Contents lists available at ScienceDirect

Results in Physics

Generation of multi-beam reflected from gradient-index metasurfaces

T.V. Hoang^a, J.H. Lee^{b,*}

^a Metamaterial Electronic Device Research Center, Hongik University, Seoul 04066, Republic of Korea
^b School of Electronic and Electrical Engineering, Hongik University, Seoul 04066, Republic of Korea

ABSTRACT

Many recent metasurfaces, consisting of one or two-dimensional artificial structures with subwavelength unit cells, have been designed to manipulate optical waves by achieving the 2π continuous phase gradients. In this paper, a method to transfer and control multi-beam reflections from a normal incident wave using a gradient-index metasurface is presented. By tuning properly the phase difference over the gradient-index metasurface, multi-beam anomalous reflections can be achieved, where the beam wavefronts are fully controlled by the refractive index distribution. The theoretical and simulated results show that some excellent multi-beam anomalous reflections are demonstrated by field distribution and radiation pattern of scattering field. Our method may help to offer a new design methodology for multi-beam steering in many interesting optics and microwave applications.

Introduction

According to the fundamental generalized Snell's law [1], the gradient-index metasurfaces (GMSs) with the scattering of the gradientphase structures on the interface can manipulate the wavefronts of reflected, refracted, and diffracted waves. Using this concept, a method to transfer and control multi-beam reflections from a normal incident wave using a GMS composed of a one-dimensional (1-D) series of supercells is proposed. By tuning properly the phase difference over the GMS, multi-beam reflected from the GMS can be generated, where the beam directions are controlled by the refractive index distribution of the sub-supercells in the supercell. The reflected angles of multi-beam waves are theoretically predicted and confirmed using a commercial full-wave simulation tool, HFSS, based on finite element method for modeling 3-D structures.

Theoretical analysis and simulated results

Following the fundamental generalized Snell's law, the 2π continuous phase gradients generated by metasurfaces usually contribute to the generation of anomalous waves [1]. The relation between the incident angle θ_i and the anomalous reflection angle θ_r can then be expressed as follows

$$\sin \theta_r = \sin \theta_i \pm \frac{\lambda_0}{2\pi n_i} \frac{d\phi}{dx} = \sin \theta_i \pm \frac{\lambda_0}{2\pi n_i} \frac{2\pi}{L_i} = \sin \theta_i \pm \frac{\lambda_0}{n_i L_i}$$

where $d\phi/dx$ indicates a phase gradient along the metasurface; θ_r and θ_i

the refractive index of the incidence medium; and λ_0 represents the wavelength in free space. L_i represents the periodic length of the supercell for the 2π continuous phase gradient. When a normal plane wave ($\theta_i = 0$) propagates through the metasurface at the interesting wavelength λ_0 , the arbitrary wavefront of reflections can be controlled by L_i and n_i , as shown in Fig. 1. By extending this concept, we propose a method to create multi-beam reflections by applying multi-plane beams with different propagating angles. The multi-beam reflections can be achieved by designing several sub-supercells inside a supercell, where each sub-supercell with the 2π continuous phase gradient and the specific length is designed to generate one reflected beam. Here, the top layer of a sub-supercell consists of dielectric slabs, where their refractive indices are assigned to achieve the 2π continuous phase gradient over the sub-supercell. The second layer is a perfectly electric conductor (PEC) to support high-efficiency anomalous reflections [2]. The reflective properties of the GMSs can be analyzed by simulating the supercells using the master-slave (M-S) periodic condition and perfectly matched layers (PML) [3] in HFSS. To demonstrate the theoretical analysis of muti-beam anomalous reflections, three GMS models have been proposed and simulated at the operating wavelength of 850 nm. Figs. 1(b)-4(b) show the y-polarized electric field distributions, and the far-field responses of the reflected waves is presented in Figs. 1(c)-4(c). It has been shown that the desired beam directions of the multi-beam anomalous reflections can be achieved by designing the gradient metasurfaces carefully.

are the reflection angle and incidence angle, respectively; n_i represents

Their models can be extended to two-dimensional (2-D) GMSs by

* Corresponding author.

https://doi.org/10.1016/j.rinp.2018.06.052

2211-3797/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

esults in

PHYSICS

E-mail address: jeonglee@hongik.ac.kr (J.H. Lee).

Received 8 March 2018; Received in revised form 21 June 2018; Accepted 23 June 2018 Available online 28 June 2018

Fig. 1. Gradient-index metasurface for the one-beam anomalous reflection. (a) Schematic diagram and theoretical analysis of the GMS. (b) Simulated field distribution reflected from GMS. (c) Far-field radiation pattern of reflected wave.

Fig. 2. Gradient-index metasurface for the two-beam symmetric anomalous reflections. (a) Schematic diagram and theoretical analysis of the GMS. (b) Simulated field distribution reflected from GMS. (c) Far-field radiation pattern of reflected wave.

Fig. 3. Gradient-index metasurface for the two-beam asymmetric anomalous reflections (a) Schematic diagram and theoretical analysis of the GMS. (b) Simulated field distribution reflected from GMS. (c) Far-field radiation pattern of reflected wave.

Fig. 4. Gradient-index metasurface for the three-beam anomalous reflections (a) Schematic diagram and theoretical analysis of the GMS. (b) Simulated field distribution reflected from GMS. (c) Far-field radiation pattern of reflected wave.

constructing two periodic crossed sub-supercells with the 2π continuous phase gradients along the x-axis and y-axis. According to the generalized 3D Snell's Law in Ref. [4], the directions of the beams are derived with different polarized incident waves in this case.

Conclusions

In summary, a method to transfer and control multi-beam reflections from a normal incident wave using a GMS is presented. The GMS consists of the sub-supercells in a supercell which gives the 2π continuous phase gradients. The sub-supercells composed of graded-index dielectric slabs above a perfectly electric conductor can manipulate the reflected wave independently by changing their lengths. The beam directions of the multi-beam reflection waves are theoretically predicted and confirmed by a full wave simulation tool based on finite element method. The theoretical analysis and simulated results show good agreements. This work provides a new design methodology for the multi-functional manipulation of optical and EM waves, which could be developed in many interesting optics and microwave applications.

Acknowledgments

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2015R1A6A1A03031833).

References

- Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334:333–7.
- [2] Zhang Y, Hagen JV, Younis M, Fischer C, Wiesbeck W. Planar artificial magnetic conductors and patch antennas. IEEE Trans Antennas Propagat 2003;51(10):2704–12
- [3] Bardi I, Remski R, Perry D, Cendes Z. Plane wave scattering from frequency-selective surfaces by the finite-element method. IEEE Trans Magn 2002;382:641–4.
- [4] Aieta F, Genevet P, Yu N, Kats MA, Gaburro Z, Capasso F. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurface with phase discontinuities. Nano Lett 2012;12(3):1702–6.