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ABSTRACT

Many recent metasurfaces, consisting of one or two-dimensional artificial structures with subwavelength unit
cells, have been designed to manipulate optical waves by achieving the 25 continuous phase gradients. In this
paper, a method to transfer and control multi-beam reflections from a normal incident wave using a gradient-
index metasurface is presented. By tuning properly the phase difference over the gradient-index metasurface,
multi-beam anomalous reflections can be achieved, where the beam wavefronts are fully controlled by the
refractive index distribution. The theoretical and simulated results show that some excellent multi-beam
anomalous reflections are demonstrated by field distribution and radiation pattern of scattering field. Our
method may help to offer a new design methodology for multi-beam steering in many interesting optics and

microwave applications.

Introduction

According to the fundamental generalized Snell’s law [1], the gra-
dient-index metasurfaces (GMSs) with the scattering of the gradient-
phase structures on the interface can manipulate the wavefronts of re-
flected, refracted, and diffracted waves. Using this concept, a method to
transfer and control multi-beam reflections from a normal incident
wave using a GMS composed of a one-dimensional (1-D) series of su-
percells is proposed. By tuning properly the phase difference over the
GMS, multi-beam reflected from the GMS can be generated, where the
beam directions are controlled by the refractive index distribution of
the sub-supercells in the supercell. The reflected angles of multi-beam
waves are theoretically predicted and confirmed using a commercial
full-wave simulation tool, HFSS, based on finite element method for
modeling 3-D structures.

Theoretical analysis and simulated results

Following the fundamental generalized Snell’s law, the 2w con-
tinuous phase gradients generated by metasurfaces usually contribute
to the generation of anomalous waves [1]. The relation between the
incident angle 6; and the anomalous reflection angle 6, can then be
expressed as follows
Ao dé Ao
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where d¢/dx indicates a phase gradient along the metasurface; 6, and 6;
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are the reflection angle and incidence angle, respectively; n; represents
the refractive index of the incidence medium; and A, represents the
wavelength in free space. L; represents the periodic length of the su-
percell for the 2it continuous phase gradient. When a normal plane
wave (0; = 0) propagates through the metasurface at the interesting
wavelength A, the arbitrary wavefront of reflections can be controlled
by L; and n;, as shown in Fig. 1. By extending this concept, we propose a
method to create multi-beam reflections by applying multi-plane beams
with different propagating angles. The multi-beam reflections can be
achieved by designing several sub-supercells inside a supercell, where
each sub-supercell with the 2m continuous phase gradient and the
specific length is designed to generate one reflected beam. Here, the top
layer of a sub-supercell consists of dielectric slabs, where their re-
fractive indices are assigned to achieve the 2w continuous phase gra-
dient over the sub-supercell. The second layer is a perfectly electric
conductor (PEC) to support high-efficiency anomalous reflections [2].
The reflective properties of the GMSs can be analyzed by simulating the
supercells using the master-slave (M-S) periodic condition and perfectly
matched layers (PML) [3] in HFSS. To demonstrate the theoretical
analysis of muti-beam anomalous reflections, three GMS models have
been proposed and simulated at the operating wavelength of 850 nm.
Figs. 1(b)-4(b) show the y-polarized electric field distributions, and the
far-field responses of the reflected waves is presented in Figs. 1(c)-4(c).
It has been shown that the desired beam directions of the multi-beam
anomalous reflections can be achieved by designing the gradient meta-
surfaces carefully.

Their models can be extended to two-dimensional (2-D) GMSs by
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Fig. 1. Gradient-index metasurface for the one-beam anomalous reflection. (a) Schematic diagram and theoretical analysis of the GMS. (b) Simulated field dis-
tribution reflected from GMS. (c) Far-field radiation pattern of reflected wave.
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Fig. 2. Gradient-index metasurface for the two-beam symmetric anomalous reflections. (a) Schematic diagram and theoretical analysis of the GMS. (b) Simulated
field distribution reflected from GMS. (c) Far-field radiation pattern of reflected wave.
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Fig. 3. Gradient-index metasurface for the two-beam asymmetric anomalous reflections (a) Schematic diagram and theoretical analysis of the GMS. (b) Simulated
field distribution reflected from GMS. (c) Far-field radiation pattern of reflected wave.
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Fig. 4. Gradient-index metasurface for the three-beam anomalous reflections (a) Schematic diagram and theoretical analysis of the GMS. (b) Simulated field dis-
tribution reflected from GMS. (c) Far-field radiation pattern of reflected wave.
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constructing two periodic crossed sub-supercells with the 2w con-
tinuous phase gradients along the x-axis and y-axis. According to the
generalized 3D Snell's Law in Ref. [4], the directions of the beams are
derived with different polarized incident waves in this case.

Conclusions

In summary, a method to transfer and control multi-beam reflec-
tions from a normal incident wave using a GMS is presented. The GMS
consists of the sub-supercells in a supercell which gives the 2w con-
tinuous phase gradients. The sub-supercells composed of graded-index
dielectric slabs above a perfectly electric conductor can manipulate the
reflected wave independently by changing their lengths. The beam di-
rections of the multi-beam reflection waves are theoretically predicted
and confirmed by a full wave simulation tool based on finite element
method. The theoretical analysis and simulated results show good
agreements. This work provides a new design methodology for the
multi-functional manipulation of optical and EM waves, which could be
developed in many interesting optics and microwave applications.
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