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This paper examines the three dimensional Eyring-Powell fluid flow over an exponentially stretching sur-
face with heterogeneous-homogeneous chemical reactions. A new model of heat flux suggested by
Cattaneo and Christov is employed to study the properties of relaxation time. From the present analysis
we observe that there is an inverse relationship between temperature and thermal relaxation time. The
temperature in Cattaneo-Christov heat flux model is lesser than the classical Fourier’s model. In this
paper the three dimensional Cattaneo-Christov heat flux model over an exponentially stretching surface
is calculated first time in the literature. For negative values of temperature exponent, temperature profile
firstly intensifies to its most extreme esteem and after that gradually declines to zero, which shows the
occurrence of phenomenon (SGH) ‘‘Sparrow-Gregg hill”. Also, for higher values of strength of reaction
parameters, the concentration profile decreases.
� 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The impact of heat transport phenomenon in liquid flows over a
stretching sheet has significant consideration in scientific and
technical developments. These developments include rolling the
steel at high temperature, metal extrusion, metal working process,
paper production, glass fiber production, crystal flowing, and con-
tinuous casting. Sakiadis [1] analyzed heat transfer in two dimen-
sional flows past a flat moving sheet. In 1970, Crane [2] continued
his work to stretching surface. He analytically analyzed Nusselt
number and skin friction. Later on, Wang [3] proposed 3D flow
induced by stretching of the surface. Some other applications
related to stretching surface may be found in [4–13]. However flow
analyses over exponentially stretching sheets are examined spar-
sely. Magyari and Keller [14] scrutinized the influence of viscous
fluid induced by exponentially stretching surface. Elbashbeshy
[15] discussed temperature transfer aspects in an exponentially
stretching. Khan and Sanjayanand [16] incorporated the study of
a second grade over an exponentially stretching surface.
Magneto-hydrodynamic thermal boundary layer over an
exponentially stretching sheet was analyzed by Al-Odat et al.
[17] numerically. Gireesha et al. [18] analyzed Saffman model for
magneto-hydrodynamic flow past an exponentially stretching
sheet. Further, Nadeem et al. [19] scrutinized impact of radiation
in a Jeffrey and viscous liquids past an exponentially stretching
sheet. The heat transport phenomenon in a nanofluid flow
produced by exponentially stretching sheet was beautifully
analyzed by Nadeem and Lee [20].

Most of the liquids including paints, polymer solutions, sham-
poos, paper pulp, etc., are examples of non-Newtonian. These fluids
are applicable in chemical and engineering processes. In non-
Newtonian liquids, the relation between flow field and shear stress
is complex. On the other hand, the resulting non-linear equations
become more complicated due to the viscoelastic characteristics.
Most of the scientists are working on the analysis of non-
Newtonian fluids. Powell and Eyring [21] incorporated the
Eyring-Powell fluid model in 1944. This fluid model is complex
in nature but have some aspects instead of other fluids. It is
assumed from kinetic theory of fluid instead of empirical expres-
sion. Also, it diminishes to viscous fluids for high and low shear
rates. This model is utilized to model the manufacturing material
flows. The impacts of couple stresses in the characteristic of
Eyring-Powell liquid inside the plates were proposed by Eldabe
et al. [22]. Zueco and Beg [23] depicts the properties of combine
strains using Eyring-Powell fluid model. Islam et al. [24] acquired
the perturbation results of the Eyring-Powell liquid. Patel and
Timol [25] investigated numerically the characteristics of Eyring-
Powell liquid over a wedge. Malik et al. [26] analyzed impacts of
variable viscosity using Eyring-Powell liquid. The peristaltic analy-
sis of Eyring-Powell nanofluid was examined by Akbar [27].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinp.2017.12.038&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.rinp.2017.12.038
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:t.hayat@math.qau.edu.pk
https://doi.org/10.1016/j.rinp.2017.12.038
http://www.sciencedirect.com/science/journal/22113797
http://www.journals.elsevier.com/results-in-physics


398 T. Hayat, S. Nadeem / Results in Physics 8 (2018) 397–403
The mathematical model proposed by Fourier’s (200 years ago)
for heat transfer in material is given by qi ¼ �krT ;i; here qi

describes thermal flux vector. The physical interpretation of the
Fourier’s heat transference is that any preliminary disruption is
promptly experienced by medium, which is the major limitation
of it. In 1948, Cattaneo [28] overcome this issue, and added ther-
mal relaxation to Fourier’s law. Christov [29] further improved
the Cattaneo’s model. This model is then known as Cattaneo-
Christov heat flux model. The phenomenon of heat transfer with
thermal convections utilizing Cattaneo heat flux was investigated
by Straughan [30,31]. Han et al. [32] explored the slip effects with
the Cattaneo-Christov heat flux model using Maxwell fluid. Khan
et al. [33] numerically examined the exponentially stretching flow
of viscoelastic liquid using the Cattaneo-Christov model. For
heterogeneous – homogeneous reactions, the simplest isothermal
model was suggested by Chaudhary and Merkin [34]. Khan and
Pop [35] numerically explored the 2D stagnation point flow of infi-
nite porous plate with uniform source/sink and homogeneous-
heterogeneous reactions. The numerical investigation of viscoelas-
tic liquid with homogeneous-heterogeneous reactions was again
investigated by Khan and Pop [36]. Some recent studies on
homogeneous-heterogeneous reactions in Eyring-Powell fluid have
been presented in [37–40].

In this paper, for the first time, heat flux model for Cattaneo-
Christov over an exponentially stretching surface for 3D geometry
has been derived. Cattaneo-Christov heat flux model is more gen-
eralized form of Fourier’s law of heat conduction. Therefore heat
flux is analyzed via Cattaneo-Christov heat flux model. Eyring-
Powell fluid has been taken into consideration under the stimulus
of homogeneous-heterogeneous reactions.

Mathematical modeling and flow analysis

Consider the three-dimensional, incompressible Eyring-Powell
liquid flow on an exponentially stretching surface. The laminar
flow is restricted in the domain z > 0 (see Fig. 1). The velocity com-
ponents along x and y directions are uw and vw respectively. The
surface is kept at constant temperature Tw whereas T1 being the
ambient temperature. A simple model of chemical reactions sug-
gested by Chaudhary and Merkin [34] is considered in the present
analysis. The stress tensor s is as follows:

s ¼ �pI þ rij; ð1Þ

qai ¼ �$pþ $ � ðrijÞ; ð2Þ
where extra stress tensor is given by

rij ¼ l @ui

@xj
þ 1
�
sinh�1 1

d
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� �
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Fig. 1. Physical configuration and coordinate system.
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For three dimensional flow, the principal equations are as fol-
lows [25]:
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Here Eyring-Powell fluid properties are denoted by e and d and
m;q; T , are kinematic viscosity, density and temperature, corre-
spondingly. The diffusion species coefficient are CD and CE, respec-
tively. The heat flux ~q satisfies [41]

~qþ ke
@~q
@t

þ ~V � r~q�~q � r~V þ ð~r � ~VÞ~q
� �

¼ �k1rT; ð11Þ

The liquid’s thermal conductivity and thermal relaxation time is
denoted by k1 and ke; respectively. Replacing ke ¼ 0, Eq. (11)
reduced to the Fourier’s law. Now eliminate ~q from Eqs. (8) and
(11), the following governing equation is as follows [42]:
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With relevant conditions

u ¼ uw; v ¼ vw; w ¼ 0; T ¼ Tw; CD
@d
@z

¼ kbd; CE
@e
@z

¼ �kbd at z ¼ 0;

u ! 0; v ! 0; T ! T1; d ! d0expB xþy
2Lð Þ; e ! 0; as z ! 1: ð13Þ

The velocities and temperature at the wall are given by

uw ¼ u0 exp
xþy
L ; vw ¼ v0 exp

xþy
L ; Tw ¼ T1 þ T0 expA xþy

2Lð Þ

Now apply the similarity transformations to convert partial
differential equations into ordinary differential equations [43]:
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g ¼
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T ¼ T1 þ T0 expA xþy
2Lð ÞtðgÞ; d ¼ d0 expB xþy

2Lð ÞrðgÞ;
e ¼ d0 expB xþy

2Lð ÞgðgÞ: ð14Þ
Here L, A, B and d0 are reference length, temperature exponent, con-
centration exponent and positive dimensional constant,
respectively.

Eq. (5) is automatically verified and Eqs. (6)–(12) yield

ð1þ aÞh000 þ ðhþ sÞh00 � 2ðh0 þ s0Þh0 � abðh00Þ2h000 ¼ 0; ð15Þ
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h ¼ 0; h0 ¼ 1; s ¼ 0; s0 ¼ c; t ¼ 1; r0 ¼ k2r;

Wg0 ¼ �k2r; at g ¼ 0;

h0 ¼ 0; s0 ¼ 0; t ¼ 0; r ¼ 1; g ¼ 0; as g ! 1; ð20Þ
here a, b, Pr, K, Sc, K1, W, c and K2 are Eyring-Powell fluid parame-
ters, prandtl number, dimensionless thermal relaxation time, Sch-
midt number, strength of homogeneous reaction, ratio of diffusion
coefficient, stretching ratio parameter and strength of heteroge-
neous reaction, respectively.
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It is assume that diffusion coefficients of D and E species are of
comparable size, which means that CD and CE are equal which
implies W ¼ 1: Therefore

r þ g ¼ 1: ð22Þ
So Eqs. (18)–(19) takes the following form as
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For engineering interest, Cf is demarcated as

Cf ¼ rw

qu2
w
; ð25Þ

where the wall shear stress rw is given by
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Numerical process

The set of highly non-linear and coupled ordinary differential
equations i.e. Eqs. (15)–(17) and (23) along with boundary condi-
tions (20) and (24) are solved numerically by utilizing a solution
method named BVP-4C [44,45] in MATLAB software. Firstly, the
governing ODEs (15)–(17) and (23) have been converted into first
order ODEs because this solution method is applicable for first
order initial value problems only.

y1 ¼ h; y2 ¼ h0
; y3 ¼ h00

; y4 ¼ s; y5 ¼ s0;

y6 ¼ s00; y7 ¼ t; y8 ¼ t0; y9 ¼ r; y10 ¼ r0; ð28Þ
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With relevant initial conditions

y1ð0Þ ¼ 0; y2ð0Þ ¼ 1; y4ð0Þ ¼ 0; y5ð0Þ ¼ c;
y7ð0Þ ¼ 1; y10ð0Þ � k2y9ð0Þ ¼ 0; ð39Þ

From the above system, there are ten equations and six initial
conditions. Therefore, the appropriate initial guesses are chosen
for y3ð0Þ, y6ð0Þ, y8ð0Þ, and y10ð0Þ. The criteria for the solution to
converge were set to 10�6. The procedure was revised until the
required criterion was achieved.

Discussion section

In this segment, the effect of relevant physical parameters i.e.
Eyring-Powell fluid parameter a; stretching ratio parameter c, tem-
perature exponent A, thermal relaxation time K, Prandtl number
Pr, concentration exponent B, chemical reactions K1, K2 and Sch-
midt number Sc on velocities along x and y directions, temperature
and concentration distributions are represented in graphical and
tabular form.
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Fig. 2 describe the behavior of Eyring-Powell liquid parameter
a; on all velocity profiles h0ðgÞ and s0ðgÞ. This model explains the
properties of shear thinning liquid. From Fig. 2, as the Eyring-
Powell fluid parameter a increases, the velocity component also
increases.

Fig. 3 portrays the impacts of stretching ratio parameter c on h0

and s0 distributions. One can notice that intensification in c
prompts reducing h0 distribution but an opposite trend is observed
for s0 profile. In fact the stretching rate along y direction is higher
because the adjacent surface starts to move in that direction rather
than x direction. Due to this reason, h0 profile decreases while s0

profile increases.
Fig. 4 elucidates temperature exponent A impacts on tempera-

ture profile t for both positive and negative values of temperature
exponent A. For any under consideration value of A, there is a
decrease in temperature distribution t.

Fig. 5 portrays the impacts of Eyring-Powell fluid parameter a
on temperature distribution. From figure, temperature and thermal
boundary layer thickness are decreasing functions of Eyring-Powell
fluid parameter a.

In Fig. 6, temperature distribution is plotted for various values
of non-dimensional relaxation time K. It is noticed that there is
an inverse relationship between temperature and thermal relax-
ation time. As K ¼ 0 relates to traditional Fourier’s law, therefore
Fig. 2. Impact of a on h0ðgÞ and s0ðgÞ.

Fig. 3. Impact of c on h0ðgÞ and s0ðgÞ.
it can be concluded that in Cattaneo-Christov heat flux model, tem-
perature is lesser than the classical Fourier’s model.

Fig. 7 elucidates stretching ratio parameter c impacts on tem-
perature profile t for both positive and negative values of temper-
ature exponent A. For any under consideration value of A, there is a
decrease in temperature distribution t as stretching ratio parame-
Fig. 4. Impact of A on tðgÞ.

Fig. 5. Impact of a on tðgÞ.

Fig. 6. Impact of K on tðgÞ.
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ter c increases. For negative A, temperature profile firstly intensi-
fies to its most extreme esteem and after that gradually declines
to zero, which shows the occurrence of phenomenon (SGH)
‘‘Sparrow-Gregg hill”. From this figure, for positive A, the tempera-
ture distribution t near the wall is concave upward and for nega-
tive A, temperature distribution is concave down. Also, as c
increases, the thicknesses of thermal boundary declines. This find-
ing is in a good settlement with the outcomes of Laha et al. [4] for
the 3D problem over a linearly stretching surface.

Fig. 8 illustrates the impacts of Pr on tðgÞ. Physically, the rela-
tion between Prandtl and thermal diffusivity is inverse. As Prandtl
number Pr increases, one can expect that there are less thermal
impacts to infiltrate into the liquid. Consequently, as increase in
Pr, the temperature and corresponding thermal layer thickness
decreases.

Fig. 9 describes the effects of concentration exponent B on con-
centration profile r. From figure it is notice that the influence of
concentration exponent B on rðgÞ is decreasing.

Impact of stretching ratio parameter c on rðgÞ is analyzed in
Fig. 10. By the intensification of c, for any under consideration
value of concentration exponent B, the concentration distribution
increases. This is due to the increment of stretching along y direc-
tion that is why concentration enhances.

Fig. 11 shows the influence of Eyring-Powell fluid parameter a
on concentration profile r. It is observed from this figure that
impact of Eyring-Powell fluid parameter a on rðgÞ is increasing.
Fig. 7. Impact of c on tðgÞ.

Fig. 8. Impact of Pr on tðgÞ.
The effects of homogeneous reaction parameter K1 and hetero-
geneous reaction parameter K2 on concentration distribution are
depicted in Figs. 12 and 13. With an increase in K1 and K2, the
concentration profiles depreciates. It may be the domination of
Fig. 10. Impact of c on rðgÞ.

Fig. 11. Impact of a on rðgÞ.
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diffusion coefficient than reaction rate. This shows the good agree-
ment with Raju et al. [46].

Fig. 14 elucidates the variation of Schmidt number Sc on con-
centration field. For larger values of Schmidt number Sc, the
increasing behavior of concentration profile r is observed.
Fig. 12. Impact of K1 on rðgÞ.

Fig. 13. Impact of K2 on rðgÞ.

Fig. 14. Impact of Sc on rðgÞ.
Physically, increasing values of Sc relate to high rate of viscous dif-
fusion which causes the concentration of a fluid to increase.

Figs. 15–16 are sketched to see the influence of Eyring-Powell
fluid parameter a on the shear stress versus stretching ratio
parameter c. These figures reveals that the flow resistance incre-
ments with the variation of Eyring-Powell fluid parameter a as
well as with stretching ratio parameter c, therefore, shear stress
increases in both directions. From Table 1, the magnitude of skin
friction increments with an expansion in a and c. However it
reduces when b increases.
Fig. 15. Impact of a on skin friction along x direction.

Fig. 16. Impact of a on skin friction along y direction.

Table 1
Effects of skin friction Cf along x and y directions.

a b c CfxðReÞ
1
2 CfyRe

1
2

0.1 0.3 0.5 �1.16824 �0.586858
0.5 �1.39662 �0.709678
1.0 �1.67553 �0.85724
1.5 �1.94891 �1.00084
1.8 �2.11098 �1.08575
0.3 0.1 0.5 �1.29827 �0.651541

0.2 �1.29077 �0.650262
0.3 �1.28308 �0.648959
0.5 �1.2670 �0.646263
0.6 �1.25854 �0.644862

0.3 0.3 0.0 �1.05405 0.0
0.1 �1.10412 �0.111621
0.2 �1.15183 �0.233044
0.3 �1.19743 �0.363538
0.5 �1.28309 �0.648961
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Concluding remarks

The three dimensional Eyring-Powell fluid flow using Cattaneo-
Christov heat flux model and heterogeneous-homogeneous chem-
ical reactions over an exponentially stretching surface was
intended to investigate in this paper. The governing nonlinear par-
tial differential equations are transformed into strong nonlinear
ordinary differential equations using similarity transformations.
The nonlinear ordinary differential equations along with boundary
conditions are tackled numerically by using bvp-4c technique.
From the presented study, the following conclusions were drawn:

� The intensification in stretching ratio parameter c prompts
reducing h0 distribution but an opposite trend is observed for
s0 profile.

� Temperature in Cattaneo-Christov heat flux model is lesser as
compared to classical Fourier’s model.

� There is a decrease in temperature distribution t as stretching
ratio parameter c increases.

� For negative values of temperature exponent A, temperature
profile shows the occurrence of phenomenon (SGH) ‘‘Sparrow-
Gregg hill”.

� By the intensification of c, for under consideration value of con-
centration exponent B, the concentration distribution increases.

� The flow resistance increments with the variation of a as well as
with c,therefore, shear stress increases.

References

[1] Sakiadis BC. Boundary-layer behavior on continuous solid surfaces: I.
Boundary layer equations for two-dimensional and axisymmetric flow.
AIChE J 1961;7:26–8. also see part II, 221–5.

[2] Crane LJ. Flow past a stretching plate. Zeitschrift für angewandte Mathematik
und Physik (ZAMP) 1970;21(4):645–7.

[3] Wang CY. The three-dimensional flow due to a stretching flat surface. Phys
Fluids 1984;27(8):1915–7.

[4] Laha MK, Gupta PS, Gupta AS. Heat transfer characteristics of the flow of an
incompressible viscous fluid over a stretching sheet. Heat Mass Transfer
1989;24(3):151–3.

[5] Hsiao KL. To promote radiation electrical MHD activation energy thermal
extrusion manufacturing system efficiency by using Carreau-Nanofluid with
parameters control method. Energy 2017;130:486–99.

[6] Hsiao KL. Combined electrical MHD heat transfer thermal extrusion system
using Maxwell fluid with radiative and viscous dissipation effects. Appl Therm
Eng 2017;112:1281–8.

[7] Hsiao KL. Micropolar nanofluid flow with MHD and viscous dissipation effects
towards a stretching sheet with multimedia feature. Int J Heat Mass Transfer
2017;112:983–90.

[8] Hsiao KL. Stagnation electrical MHD nanofluid mixed convection with slip
boundary on a stretching sheet. Appl Therm Eng 2016;98:850–61.

[9] Hsiao KL. Numerical solution for Ohmic Soret-Dufour heat and mass mixed
convection of viscoelastic fluid over a stretching sheet with multimedia
physical features. J Aerosp Eng 2016;30(1):04016082.

[10] Hayat T, Nadeem S. Induced magnetic field stagnation point flow of nanofluid
past convectively heated stretching sheet with Buoyancy effects. Chin Phys B
2016;25(11):114701.

[11] Ishak A, Jafar K, Nazar R, Pop I. MHD stagnation point flow towards a stretching
sheet. Physica A 2009;388(17):3377–83.

[12] Hayat T, Nadeem S. The effects of MHD and buoyancy on Hematite water-
based fluid past a convectively heated stretching sheet. Neural Comput Appl
2017:1–8.

[13] Hayat T, Nadeem S. Heat transfer enhancement with Ag–CuO/water hybrid
nanofluid. Results Phys 2017;7:2317–24.

[14] Magyari E, Keller B. Heat and mass transfer in the boundary layers on an
exponentially stretching continuous surface. J Phys D Appl Phys 1999;32
(5):577.

[15] Elbashbeshy EMA. Heat transfer over an exponentially stretching continuous
surface with suction. Arch Mech 2001;53(6):643–51.

[16] Khan SK, Sanjayanand E. Viscoelastic boundary layer flow and heat transfer
over an exponential stretching sheet. Int J Heat Mass Transfer 2005;48
(8):1534–42.
[17] Damseh R. Thermal boundary layer on an exponentially stretching continous
surface in the presence of magnetic field effect. Int J Appl Mech Eng 2006;11
(2):289–99.

[18] Gireesha BJ, Pavithra GM, Bagewadi CS. Boundary layer flow and heat transfer
of a dusty fluid over an exponentially stretching sheet. British J Math Comput
Sci 2012;2(4):187–97.

[19] Nadeem S, Zaheer S, Fang T. Effects of thermal radiation on the boundary layer
flow of a Jeffrey fluid over an exponentially stretching surface. Numer
Algorithms 2011;57(2):187–205.

[20] Nadeem S, Lee C. Boundary layer flow of nanofluid over an exponentially
stretching surface. Nanoscale Res Lett 2012;7(1):94.

[21] Powell RE, Eyring H. Mechanism for relaxation theory of viscosity. Nature
1944;154(55):427–8.

[22] Eldabe NTM, Hassan AA, Mohamed MA. Effect of couple stresses on the MHD
of a non-Newtonian unsteady flow between two parallel porous plates.
Zeitschrift für Naturforschung A 2003;58(4):204–10.

[23] Zueco J, Bég OA. Network numerical simulation applied to pulsatile non-
Newtonian flow through a channel with couple stress and wall mass flux
effects. Int J Appl Math Mech 2009;5(2):1–16.

[24] Islam S, Shah A, Zhou CY, Ali I. Homotopy perturbation analysis of slider
bearing with Powell-Eyring fluid. Zeitschrift für Angewandte Mathematik und
Physik (ZAMP) 2009;60(6):1178–93.

[25] Patel M, Timol MG. Numerical treatment of Powell-Eyring fluid flow using
method of satisfaction of asymptotic boundary conditions (MSABC). Appl
Numer Math 2009;59(10):2584–92.

[26] Malik MY, Bilal S, Bibi M, Ali U. Logarithmic and parabolic curve fitting analysis
of dual stratified stagnation point MHD mixed convection flow of Eyring-
Powell fluid induced by an inclined cylindrical stretching surface. Results Phys
2017;7:544–52.

[27] Akbar NS. Application of Eyring-Powell fluid model in peristalsis with nano
particles. J Comput Theor Nanosci 2015;12(1):94–100.

[28] Cattaneo C. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena
1948;3:83–101.

[29] Christov CI. On frame indifferent formulation of the Maxwell-Cattaneo model
of finite-speed heat conduction. Mech Res Commun 2009;36(4):481–6.

[30] Straughan B. Stability and wave motion in porous media, vol. 165. New York:
Springer; 2008. p. xiv+-437.

[31] Straughan B. Thermal convection with the Cattaneo-Christov model. Int J Heat
Mass Transfer 2010;53(1):95–8.

[32] Han S, Zheng L, Li C, Zhang X. Coupled flow and heat transfer in viscoelastic
fluid with Cattaneo-Christov heat flux model. Appl Math Lett 2014;38:87–93.

[33] Khan JA, Mustafa M, Hayat T, Alsaedi A. Numerical study of Cattaneo-Christov
heat flux model for viscoelastic flow due to an exponentially stretching
surface. PLoS One 2015;10(9):e0137363.

[34] Chaudhary MA, Merkin JH. A simple isothermal model for homogeneous-
heterogeneous reactions in boundary-layer flow. I Equal diffusivities. Fluid
Dyn Res 1995;16(6):311–33.

[35] Khan WA, Pop I. Flow near the two-dimensional stagnation-point on an
infinite permeable wall with a homogeneous–heterogeneous reaction.
Commun Nonlinear Sci Numer Simul 2010;15(11):3435–43.

[36] Khan WA, Pop IM. Effects of homogeneous–heterogeneous reactions on the
viscoelastic fluid toward a stretching sheet. J Heat Transfer 2012;134
(6):064506.

[37] Hayat T, Imtiaz M, Alsaedi A. Effects of homogeneous-heterogeneous reactions
in flow of Powell-Eyring fluid. J Central South University 2015;22(8):3211–6.

[38] Khan NA, Sultan F. Homogeneous-heterogeneous reactions in an Eyring-
Powell fluid over a stretching sheet in a porous medium. Spec Top Rev Porous
Media: Int J 2016;7(1).

[39] Khan I, Malik MY, Salahuddin T, Khan M, Rehman KU. Homogenous–
heterogeneous reactions in MHD flow of Powell-Eyring fluid over a
stretching sheet with Newtonian heating. Neural Comput Appl 2017:1–8.

[40] Hayat T, Nadeem S. Aspects of developed heat and mass flux models on 3D
flow of Eyring-Powell fluid. Results Phys 2017;7:3910–7.

[41] Tibullo V, Zampoli V. A uniqueness result for the Cattaneo-Christov heat
conduction model applied to incompressible fluids. Mech Res Commun
2011;38(1):77–9.

[42] Dong Y, Cao BY, Guo ZY. Generalized heat conduction laws based on
thermomass theory and phonon hydrodynamics. J Appl Phys 2011;110
(6):063504.

[43] Liu IC, Wang HH, Peng YF. Flow and heat transfer for three-dimensional flow
over an exponentially stretching surface. Chem Eng Commun 2013;200
(2):253–68.

[44] Shampine LF, Gladwell I, Thompson S. Solving ODEs with matlab. Cambridge
University Press; 2003.

[45] Shampine LF, Kierzenka J, Reichelt MW. Solving boundary value problems for
ordinary differential equations in MATLAB with bvp4c. Tutorial Notes
2000;2000:1–27.

[46] Raju CSK, Sandeep N, Saleem S. Effects of induced magnetic field and
homogeneous–heterogeneous reactions on stagnation flow of a Casson fluid.
Eng Sci Tech, Int J 2016;19(2):875–87.

http://refhub.elsevier.com/S2211-3797(17)32025-9/h0005
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0005
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0005
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0010
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0010
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0015
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0015
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0020
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0020
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0020
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0025
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0025
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0025
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0030
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0030
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0030
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0035
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0035
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0035
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0040
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0040
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0045
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0045
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0045
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0050
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0050
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0050
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0055
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0055
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0060
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0060
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0060
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0065
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0065
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0070
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0070
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0070
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0075
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0075
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0080
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0080
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0080
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0085
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0085
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0085
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0090
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0090
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0090
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0095
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0095
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0095
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0100
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0100
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0105
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0105
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0110
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0110
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0110
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0115
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0115
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0115
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0120
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0120
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0120
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0125
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0125
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0125
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0130
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0130
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0130
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0130
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0135
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0135
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0140
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0140
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0145
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0145
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0155
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0155
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0160
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0160
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0165
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0165
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0165
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0170
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0170
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0170
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0175
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0175
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0175
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0180
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0180
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0180
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0185
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0185
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0190
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0190
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0190
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0195
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0195
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0195
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0200
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0200
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0205
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0205
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0205
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0210
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0210
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0210
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0215
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0215
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0215
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0220
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0220
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0225
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0225
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0225
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0230
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0230
http://refhub.elsevier.com/S2211-3797(17)32025-9/h0230

	Flow of 3D Eyring-Powell fluid by utilizing Cattaneo-Christov heat flux model and chemical processes over an exponentially stretching surface
	Introduction
	Mathematical modeling and flow analysis
	Numerical process
	Discussion section
	Concluding remarks
	References


