
Contents lists available at ScienceDirect

Results in Physics

journal homepage: www.elsevier.com/locate/rinp

Experimental studies on inhibition of mild steel corrosion by novel
synthesized inhibitor complemented with quantum chemical calculations
Taghried A. Salmana, Khalida F. Al-Azawib, Iman Mahdi Mohammedc, Shaimaa B. Al-Baghdadib,
Ahmed A. Al-Amieryd,⁎, Tayser Sumer Gaaze,⁎, Abdul Amir H. Kadhumf

a Chemistry Department, College of Science, Al-Nahrain University, Baghdad, Iraq
bApplied Science Department, University of Technology, Baghdad, Iraq
cDepartment of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq
d Energy and Renewable Energies Technology Center, University of Technology, Baghdad, Iraq
e Department of Machinery Equipment Engineering Techniques, Technical College Al-Musaib, Al-Furat Al Awsat Technical University, Al-Musaib, Babil 51009, Iraq
fDepartment of Chemical & Process Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor 43000, Malaysia

A R T I C L E I N F O

Keywords:
Corrosion
Inhibitor
Mild steel
FT-IR

A B S T R A C T

One of best method, which was used to prevent the mild steel from corrosion, was through employed natural or
synthetic organic chemical compounds. Here in, we displayed a Schiff base derivative which has nitrogen,
oxygen and sulfur atoms as corrosion inhibitor for MS “mild steel” in 1M HCl “hydrochloric acid” solution.
Synthesized inhibitor was characterized by using of FT-IR “Fourier transform infrared” and NMR “Nuclear
magnetic resonance” spectroscopies in addition to CHN analysis technique. The weight loss and SEM “Scanning
electron microscope” studies showed that inhibitor have the ability to prevent the alloy surface from corrosive
solution by adsorbing on MS surface to form stable adsorbed layer that results in the higher inhibition efficiency.
The inhibition influence of the synthesized inhibitor was increased parallel with increasing concentration and
decrease with rising temperature degrees. Furthermore, DFT “Density function theory” has been employed to
calculate quantum chemical parameters “Energy, highest occupied molecular orbital (HOMO), lowest un-
occupied molecular orbital (LUMO) and electronegativity (χ)” which performed on synthesized corrosion in-
hibitor to determine the relationship between the structure of synthesized inhibitor molecule and inhibition
performance.

Introduction

Mild steel “MS” is quite applied in considerable manufacturing ap-
plications such as Chemicals, pickling, acid cleaning, oil, gas, storage
and pipeline transportation”. MS seveir from corrosion due to corrosive
solutions and lead to the degradation of the alloy, resulting in con-
siderable economic losses for several industries. The degradation of MS
is an effect of contact of MS with the acidic and/or basic solutions
which were quite used in manufactures for diverse applications [1–6].
Schiff bases were quite significant class of molecules that synthesized
from aromatic and/or aliphatic aldehydes or ketones, and amines
[7–9]. In addition, the Schiff bases have the azomethane linkage (–C]
N) which considered the essential structural requirement for different
medicinal and pharmacological applications, including im-
munosuppressant activity [10], anti-malarial [11], anti-tubercular [12],
anti-microbial and anti-cancer activities [13]. Quantum chemical cal-
culations is nowadays employee in order to demonstrate the corrosion

inhibition mechanism of the studied inhibitors such as DFT “Density
function theory” [14–17]. Density function theory is proved a quite
powerful tool for mechanism searching [18–20]. The aim of this paper
is to study the dependence of inhibition performance of the studied
molecule and inhibitory properties of new synthesized inhibitor,
namely methyl “2-((3-hydroxy-4-methoxybenzylidene)amino)iso-
nicotinate” for the corrosion of mild steel in corrosive solution through
gravimetric technique and quantum chemical calculations using DFT
method. Theoretical calculations depending on the chemical para-
meters “highest occupied molecular orbital (EHOMO) and the lowest
unoccupied molecular orbital (ELUMO), energy gap (ΔE), dipole mo-
ment (µ), electronegativity (χ), electron affinity (A), global hardness
(η), softness (σ), ionization potential (I) and the global Electrophilicity
(ω)”. The chemical structure of the synthesized inhibitor was shown in
Fig. 1.
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Experimental

Materials and chemical compounds

All the chemicals compounds and solvents that used in this study
were purchased from Sigma Aldrich Chemicals/Malaysia. Shimadzu
FTIR-8300 spectrometer was employee to obtained FT-IR “Fourier
transform infrared” spectra. Carlo Erba 5500 elemental analysis was
utilized to perform the CHN-Elemental analyses. NMR “Nuclear mag-
netic resonance” spectrum was recorded on a Bruker Spectrospin in-
strument at 300 nMHz UltraShield magnets. DMSO-d6 “Dimethyl sulf-
oxide-d6” has been used as solvent and TMS “Tetramethylsilane” has
been used as internal standard. The target inhibitor synthesized through
condensation reaction of 3-hydroxy-4-methoxybenzaldehyde
(0.005mol) with methyl 2-aminoisonicotinate (0.005mol) in ethanol
(50mL) and the mixture was refluxed with few drops of acetic acid for
5 h with stirring. TLC “Thin layer chromatography” has observed
through the approach of reaction. The solid cooled, filtered, washed by
ethanol and recrystallized from ethanol, yield 76%. M.P. 112–115 °C.
The purity of synthesized compound was confirmed through TLC. IR:
3285.3 cm−1 (OH), 3051.5 cm−1 (aromatic group) 1711.8 cm−1 (car-
bonyl), 1629.7 cm−1 (C]N). 1H NMR (DMSO-d6); δ: 8.96 (d, 1H, H-C]
N, pyridine), 8.29 (s, 1H, H-C]N), 6.88–7.81(s, 1H, aromatic benzene
and pyridine rings), 5.31 (s, 1H, OH), 3.78 (s, 3H, OCH3 pyridine
rings), 3.58 (s, 3H, OCH3 benzene rings). CHN analysis calculation
(found) for C15H14N2O4: C 62.93 (62.13), H 4.93 (4.52), N 9.79 (9.21).

Corrosion studies

Mild steel “MS” coupons, which were applied as electrodes in our
search, have been provided through the Company of Metal Samples. MS
alloy composition of “99.21Fe, 0.21C, 0.38Si, 0.09P, 0.05S, 0.05Mn and
0.01Al”%. The efficient surface area was 4.5 cm2 and it was cleaned
approbate to the method ASTM G1-03 [21–23]. MS coupons were
suspended duplicate in 0.2 L of 1M hydrochloric acid solution in ab-
sence and presence of the target inhibitor. The concentrations of the
inhibitor were 0.00, 0.05, 0.10, 0.15, 0.2.0, 0.25 and 0.50 g/L at five
hours as an immersion time. Coupons were washed and dried then
weighed accurately. CR “corrosion rate” and IE% “inhibition efficiency
have been calculated as in Eqs. (1) and (2) respectively:

= ×C mg cm hR
2 1 (1)

= ×IE 1 w
w

1002

2 (2)

Note: w & w1 2 are the MS coupons weight losses in presence and

absence of the studied inhibitor respectively.

DFT calculations

The optimized Geometrical structures have been done without
symmetry constraints employing “Gaussian 09, Revision A.02” [24].
The function B3LYP has been used for all optimized structures and
energies such as EHOMO “Energy of highest occupied molecular or-
bital” and ELUMO “Energy of lowest unoccupied molecular orbital”
calculations [25,26]. Inhibition mechanism of synthesized inhibitor
derived from 3-hydroxy-4-methoxybenzaldehyde and methyl 2-ami-
noisonicotinate related quantum parameters that were indicated as in
Eqs. (3)–(9) [27].

=E E EEnergy gap LUMO HOMO (3)

=X HOMO"“"Electron affinity"”" (4)

=I LUMO"“"Ionization potential"”" (5)

= E E"“"Global hardness"”" 1
2

( )HOMO LUMO (6)

=S"“"Chemical softness"”" 1
(7)

= +E E"“"Electronegativity"”" 1
2

( )HOMO LUMO (8)

= µ"“"electrophilicity index"”"
2

2

(9)

Results and discussion

Synthesis

To synthesize methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)
isonicotinate as a corrosion inhibitor, the sequence of the reaction
outlined in Fig. 2, starting from the available commercial compounds
methyl 2-aminoisonicotinate and 3-hydroxy-4-methoxybenzaldehyde.
The synthesis have been done through the reflux of methyl 2-aminoi-
sonicotinate in ethanol with 3-hydroxy-4-methoxybenzaldehyde. The
target compound has molecular weight 286, that was estimated based
on it formula (C15H14N2O4) which confirmed by CHN elemental ana-
lysis. The inhibitor methyl 2-((3-hydroxy-4-methoxybenzylidene)
amino)isonicotinate can be dissolve in several polar solvents such as
DMF, DMSO, dichloromethane, acetone and alcohol. The spectrum of
FTIR for of methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)iso-
nicotinate show new absorption bands and disappeared of others ab-
sorption bands. The new band at 1611 cm−1 for azomethine group, and
disappearance of the bands for amino and carbonyl groups at around
3350 cm−1 and 1700 cm−1 respectively. H NMR spectrum show singlet
at 8.29 ppm due to the azomethine (H–C]N) proton.

Weight loss results

Corrosion inhibitors that were utilized in industries are the eco-
nomical technique for efficiently protection of MS alloy surface [28].

Fig. 1. The chemical structure of the studied inhibitor.

Fig. 2. The reaction sequence for synthesized of
methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)
isonicotinate.
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Natural and/or synthetic organic inhibitors are the dominant com-
pounds which were utilized in the oil manufacture due to formation of
barrier film on the surface of MS vs acidic or basic media. Generality
these inhibitors are often heterocyclic compounds, like thiadiazoles,
oxadiazoles and triazoles [29–32]. The weight loss procedure was ap-
plied to calculate the inhibition competence of methyl 2-((3-hydroxy-4-
methoxybenzylidene)amino)isonicotinate at the concentrations (0.05,
0.1, 0.15, 0.2, 0.25 and 0.5 g/L) and at 303 K for MS in solution of 1M
of hydrochloric acid. Fig. 3, clarified the relation of concentrations of
methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)isonicotinate var-
ious CRs at deferent temperatures. CRs diminish based on inhibitor
concentration rising in HCl solution. CR was slightly decreased in
parallel with increasing of concentration.

The methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)iso-
nicotinate results, that were demonstrate in Figs. 3 and 4, respectively,
signalize that this inhibitor diminishes the corrosion on the surface of
MS in HCl solution. The inhibition qualification was increased based on
concentration increased and arrive to the extreme efficiency at the
highest examined concentration.

To determine the impact of temperatures on the performance of the
studied inhibitor, some experiments were done in presence and absence
of methyl 2-((3-hydroxy-4 methoxybenzylidene)amino)isonicotinate at
various temperatures (303, 313, 323 and 333 K). The inhibition
achievement was promoting by concentration increase of the studied
inhibitor and decreased with rising temperature. Fig. 4, displayed the
temperature impact on the methyl 2-((3-hydroxy-4-methox-
ybenzylidene)amino)isonicotinate inhibition performance.

The adsorption heat of methyl 2-((3-hydroxy-4-methox-
ybenzylidene)amino)isonicotinate on MS was negative, signalizing that
process was exothermic, that clarify the decreasing in the inhibition
efficiency with rising temperature.

It is clarified that the inhibition percentage was diminish at studied
temperatures which were 303 K to 333, at the concentrations
0.05–0.5 g/L; while the inhibition efficiency quite increased at 303 K.

Assessment of our results show that the inhibition efficiency of the
methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)isonicotinate in-
creased in parallel with increasing concentration. The highest value of
inhibition efficiency was 91.4% which at 0.5 g/L as concentration for
methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)isonicotinate.
Moreover, the best concentration for methyl 2-((3-hydroxy-4-methox-
ybenzylidene)amino)isonicotinate was 0.5 g/L, and the reason was no
significant changes in inhibition efficiency at higher concentration. The
Arrhenius equation “Eq. (10)” was applied to demonstrate the tem-
perature effects on the inhibition efficiency of methyl 2-((3-hydroxy-4-
methoxybenzylidene)amino)isonicotinate as studied inhibitor [33,34].

= +lnC E (activation energy)
R(gas constant)T(temperature)

lnA(Arrhenius factor)R
a

(10)

The energy without and with methyl 2-((3-hydroxy-4-methox-
ybenzylidene)amino)isonicotinate are calculated as in Eq. (11) and
Arrhenius plots that displayed in Fig. 5.

=Slope E
2.303R(gas constant)

a

(11)

The Ea value was 89.7 kJmol−1 for methyl 2-((3-hydroxy-4-meth-
oxybenzylidene)amino)isonicotinate, which indicate the important of
methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)isonicotinate in
HCl media that could be compared with the value of Ea in absence of
methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)isonicotinate and
this result refer to that methyl 2-((3-hydroxy-4-methoxybenzylidene)
amino)isonicotinate molecules forming protective film on coupon sur-
face [33].

Proposed inhibition mechanism

The inhibition performance of the target inhibitor methyl 2-((3-
hydroxy-4-methoxybenzylidene)amino)isonicotinate might depend on
one of the major parameters that were atomic charges and/or molecular
weights, and minor parameter which was the stability of complex that
depend on the linkage nature between the inhibitor and the metal.
Fig. 6 displayed formation of complex between the atoms at the surface
of MS and the studied inhibitor molecules.

The mechanism for methyl 2-((3-hydroxy-4-methoxybenzylidene)
amino)isonicotinate can be clarified based on VBT “valence bond
theory”. The electron configuration of iron ion ++, is [Ar]3d6. The 3d
orbitals mix with the unoccupied 4 s and 4p orbitals to form sp3 or
d2sp3 hybrid orbitals that may be oriented appropriately across the
azomethine group and/or non-bonding electrons pairs of oxygen atoms
in molecules of studied inhibitor. Orbitals overlap of iron ions and
methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)isonicotinate,
complex with form with, tetrahedral, square planar or octahedral
geometry that the metal orbital loaded and formation of valence shell.
The mechanism of inhibition may have clarified in other theories
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namely CFT “crystal field theory” or MOT “molecular orbital theory”.
The complexation between the iron and inhibitor molecules, co-
ordination bonds form via transfer electron from the nitrogen and
oxygen atoms to the d orbitals of iron.

Scanning electron microscopy

MS coupons surfaces have been characterized via SEM before and
after coupons immersion in corrosive solution at 30 °C without the in-
hibitor and with the inhibitor at the concentration of 0.5 g/L for three
hours, as displayed in Fig. 7. Coupon surface have been damaged in
absence of inhibitor because of high dissolution rate of iron in HCl
solution. On the other hand, a film has been observed on coupon sur-
face in presence of the studied inhibitor. This result indicate that methyl
2-((3-hydroxy-4-methoxybenzylidene)amino)isonicotinate molecules
adsorbed on the coupon surface as barrier film against corrosive solu-
tion.

Quantum calculations

The inhibitor methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)
isonicotinate molecules have various atoms such as oxygen and ni-
trogen with azomethine group in addition to aromatic rings that having
resonance effect, through the linkage between azomethine group,
phenyl and pyridine rings together to form molecule with significant
properties due to inductive and resonance effects. It is clear from geo-
metrical structure of methyl 2-((3-hydroxy-4-methoxybenzylidene)
amino)isonicotinate, the optimized structure is planar due to the ar-
omaticity. Electronic structures of methyl 2-((3-hydroxy-4-methox-
ybenzylidene)amino)isonicotinate were find using of DFT-B3LYP/6-
311G. EHOMO “highest occupied molecular orbital energy” and
ELUMO “lowest unoccupied molecular orbital energy” studied for me-
thyl 2-((3-hydroxy-4-methoxybenzylidene)amino)isonicotinate and
shown as in Fig. 8. Factors such as ΔE, μ and χ have been displayed as in
Table 1. EHOMO demonstrate the electron ability of the methyl 2-((3-
hydroxy-4-methoxybenzylidene)amino)isonicotinate with electron sus-
ceptibility as comparing to other searched natural or synthetic organic

inhibitors [35,36]. The releasing electronic ring pyridine bonded to
phenyl group via azomethine in methyl 2-((3-hydroxy-4-methox-
ybenzylidene)amino)isonicotinate increase the electron donating abil-
ities of methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)iso-
nicotinate molecules as in Fig. 8. Energies of HOMO may be consider as
the affinity of methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)iso-
nicotinate molecules. ΔE is first factor that depict the bond of coupon
MS surface and methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)
isonicotinate molecules. The searched inhibitor methyl 2-((3-hydroxy-
4-methoxybenzylidene)amino)isonicotinate has energy gap equal to
5.349 eV as showed in Fig. 8 and Table 1. Generally, the searched in-
hibitor with minimum χ indicate higher electron propensity demon-
strate higher inhibition efficiency. χ quite support our results. The

Fig. 6. The proposed mechanism.

Fig. 7. The SEM images of MS coupons surface in HCl in the absence (a) and presence (b) of inhibitor.

Optimized Structure 

HOMO

LUMO

Fig. 8. Electronic structures of methyl 2-((3-hydroxy-4-methoxybenzylidene)
amino)isonicotinate.
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dipole moment with high value refer to superior corrosion inhibitor.
Best on our research, the value of dipole moment of methyl 2-((3-hy-
droxy-4-methoxybenzylidene)amino)isonicotinate was 4.113 that refer
to methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)isonicotinate
molecules have superior inhibition performance. From table 1 the µ of
methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)isonicotinate mo-
lecules have higher value than that of water molecules and this in-
dicating that methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)iso-
nicotinate molecules have higher abilities to react physically or
chemically with coupons MS surface. Hence we can conclude that,
methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)isonicotinate mo-
lecules may be adsorbed on the MS surface by removing of war mole-
cules [37–39].

The hardness and softness were utilized to evaluate the activity and
stability of methyl 2-((3-hydroxy-4-methoxybenzylidene)amino)iso-
nicotinate molecules. Hardness displayed resistance against the elec-
tron polarization. Hard molecule has large energy gap while soft mo-
lecule has moderate energy gap [40]. Methyl 2-((3-hydroxy-4-
methoxybenzylidene)amino)isonicotinate molecule has global hardness
equal to 2.674 and it was proved that methyl 2-((3-hydroxy-4-meth-
oxybenzylidene)amino)isonicotinate molecule that has hardness with
small value was refer to excellent inhibitor. Electron transfer need
chemical softness with maximum value [41]. Methyl 2-((3-hydroxy-4-
methoxybenzylidene)amino)isonicotinate molecule has chemical soft-
ness equal to 0.373 eV so, it has the excellent inhibition efficiencies.

Conclusion

The inhibition effects of the studied inhibitor methyl 2-((3-hydroxy-
4-methoxybenzylidene)amino)isonicotinate on MS coupon surface in
HCl solution have been searched using weight loss and SEM techniques.
DFT have been applied to confirm the methodological findings. The
weight loss results demonstrate that methyl 2-((3-hydroxy-4-methox-
ybenzylidene)amino)isonicotinate inhibit the HCl media and the in-
hibition efficiencies increase in parallel with rising of concentration.
The inhibition performance was 91.4% that demonstrate the superior
protection versus hydrochloric acid. The molecules of methyl 2-((3-
hydroxy-4-methoxybenzylidene)amino)isonicotinate inhibit the corro-
sion at MS coupon surface in HCl by adsorbing on the surface of coupon
and form protective barrier through physisorption or chemisorption
SEM pictures indicate that methyl 2-((3-hydroxy-4-methox-
ybenzylidene)amino)isonicotinate adsorbed on coupon surface and
shield the surface from HCl.
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