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A B S T R A C T

Quantum dots (QD) are playing a vital role due to their multifunctionality such as small size and tuning the
range of band and have achieved a considerable attention in the recent decade. In recent research, the efficiency
of the solar cell (SC) has greatly been increased by application of QD. If these dots are grown systematically, may
lead to the formation of the intermediate band (IB) which leads to the absorption of photons with energy less
than the actual band through intermediate absorption process and hence increasing the carrier generation rate
which ultimately results in high current density keeping the output voltage unaffected. In this paper, we have
proposed a method to control the band flatness of the IB in InAs/GaAs QDSC. The flatness is achieved by
optimizing the doping concentration and Fermi level (FL) of the surrounding layers. Results show that the
maximum 44.12% efficiency can be achieved under maximum optical intensity.

Introduction

The discovery of IBSC has made a breakthrough in the field of
modern photovoltaic research. It was first introduced by Marti with the
efficiency 63.2% exceeding the previous maximum 33% efficiency
proposed by Shockley and Queisser [1,2]. Both of these models were
based on detailed balance theory. The detailed balance theory assumes
the ideal conditions for the photovoltaic process. However, it is difficult
to achieve in practical models due to manufacturing constraints.

An IB can be achieved if QDs are placed in a suitable barrier ma-
terial with regular symmetry which is referred as QD superlattice [3–7].
The wave functions of closely spaced Quantum dots get coupled and
form minibands. These minibands exhibit new optoelectronics proper-
ties of this tertiary compound semiconductor which is quite unique
from the parent materials [8–13]. This kind of structure may result in
the multistep absorption process when sandwiched between the layers
of active material. The formation of a new band which is IB provide
easier transportation path for the carriers. At the same time, it may also
promote the electrons to the conduction band (CB) increasing the
overall generation rate [14–22]. There are three possible absorption
processes i.e. from valence band (VB) to IB, from IB to CB and from VB
to CB. This was impossible in case of single junction SC and only those

photons with energies higher than the band gap could be harvested.
The higher absorption means higher output current density without
voltage degradation. The voltage degradation may occur in case of
multi-junction tandem SCs. But in multiband SCs, the IB cannot touch
the extraction terminals and hence the output voltage remains equal to
the difference of FLs of active material. The high output current and
voltage result in higher efficiencies [23–25].

The QD-IBSCs generally contain single intermediate band formed
somewhere in the CB offset (CBO) of the barrier and QD material. The
theoretically calculated eigen values in case of InAs/GaAs system may
have one or two IBs in CBO. But in most cases, it is assumed that there is
only one IB [26–31]. This strategy has a great contribution to the ef-
ficiency increment of SCs, and many researchers followed the same
method. However, there is a very important point needed to be con-
sidered that it is not only the CBOs where the carriers are confined but
also the VB offset [32–38]. It may also be found in some reports that
there is a zero density of states gap between the VB of the active ma-
terial and the confined VB of QD and barrier system, one of the main
reason is that the heavy hole (HH) states may couple with the states of
HH in VB of active material. So the FL of IB is supposed to lie inside IB.
The ideal condition for the maximum transition through the IB is to
dope this region partially and keep it flat. The issue of doping has been
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discussed in many research articles theoretically and experimentally
but the band flatness issue has never been addressed [39–45,49–52].

In this article, the detailed balance photovoltaic theory has been
applied to calculate the device efficiency. We have proposed a method
to control the band flatness of the intermediate band. The two-step
absorption phenomena may only take place if there is partially filled
flat band in IB layer. In any other case, this layer will not efficiently
contribute to second generation process and the output of the device is
almost equal to that of normal PIN-SC. The IB flatness is controlled by
controlling the doping and the FL of the surrounding layers and a
corresponding change in the external quantum efficiencies (QE) are
investigated.

Theory and method

The simulation of this model is performed using detailed balance
theory which is based on the ideal conditions for the photovoltaic
process. The mobilities of the carriers are taken to be constant
throughout the device, and each photon with the energy higher than
the bandgap energy is supposed to create one electron-hole pair. The
back surface is a perfect radiative reflector and both radiative and non-
radiative recombination are considered. Finally, each electron-hole pair
created in this process is collected at the device terminal. The modeling
in case of IBSC is quite complex compared with a single bandgap and
single junction SC. The introduction of symmetric arrays of QDs lead to
the generation of IB resulting in EL and EH, which can be seen in
Fig. 1(a). The values of these energies can be found by following
equations.

= −E E EH IB V (1)

= −E E EL CB IB (2)

= +E E Eg H L (3)

There are three kinds of absorption processes may occur in this case,
from VB to IB, IB to CB and VB to CB denoted by α1, α2 and α3 re-
spectively. The relationship between absorption coefficients corre-
sponding to different energies can be seen in Fig. 1(b).

In our work, we have investigated the band flatness controlling
through the doping concentration in the surrounding layer of the IB
layer. The IB energy level is taken to be 1.05 eV for IB layer made by
InGaAs. The Fermi energy level of IB layer is denoted by EfIB. In various
studies, it can be noted that this Fermi energy level is supposed to be
pinned. To achieve this situation in practical design, the IB layer is
required to be doped with suitable donor material which can be found
by the following equation.
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where Ei, niIB and nIB are the intrinsic energy level, intrinsic carrier
concentration and a number of electrons in the IB. The intrinsic energy
can be found as
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where Eg can be deduced from EIB, NC and NV effective density of states
in CB and VB, where niIB is the intrinsic carrier concentration in IB. The
total number of electrons in the IB can be found as,

⎜ ⎟= ⎛
⎝

− ⎞
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n n exp
E E

kTIB iIB
fIB IB

(7)

which is the required number of an electron to achieve the pinning
condition for the EfIB and is equal to the doping concentration in case of
complete ionization condition. This kind of doping provides partial
doping of IB which is very important for the two-step carrier transition,
i.e., from VB to IB and from IB to CB. The carrier distribution, in this
case, can be found as,
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IB

IB
E E
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fIB IB
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where NIB is the number of electron states per unit volume in IB
[46,47]. The second and the most important step is the doping of the
neighboring layers surrounding the IB layer. The IB can be kept com-
pletely flat if the FL of surrounding layer is the same as in IB layer. The
required doping concentration, in this case, can be found calculated
using above equations. The geometrical structure of IBSC is given in
Fig. 2. It can be seen that there is PI layer which gets slightly doped due
to the diffusion of holes from neighboring P layer. Similar is the case
with IN layer. The values of the parameters used in this modeling are
given in Table 1.

Results and discussion

The energy values for the IB with different barrier width of the
square-shaped QDs within volume 27 nm3 are calculated. The simplest
case is the two QDs which can be seen in Fig. 3(a) and 4×4 QD su-
perlattice in Fig. 3(b). The corresponding wave functions for the ground

Fig. 1. (a) Schematic of IB formed by QDs (b) Formation of three-step absorption process.
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state given in Fig. 4(a) and for the excited states in Fig. 4(b). It can be
observed that the ground state energy has an inverse relation with the
barrier width and minimum energy can be found in case of 2 nm. The
ground state energy also depends on the size of QD as well, but we have
not calculated that as the focus of this paper is on the doping con-
centration of intrinsic layers. The probability density of QDs in the
ground and excited state is given in Fig. 5. The dependence of the en-
ergies on barrier width is given in Table 2.

The optically generated current has been calculated under incident
light 1000Wm−2. The absorption of this light highly depends on the
optical properties of the constituent materials. The absorption coeffi-
cient depends on the gap energies which has been discussed earlier. The
dependence of the real part of the refractive index on incident light can
be seen in Fig. 6(a). The imaginary part which is directly related to the
absorption coefficient is given in Fig. 6(b). It can be observed that the
values of the imaginary part of the refractive index are decreasing with
increase in the wavelength of the incident light, which means that the

absorption process slows down at higher wavelengths.
The optically generated electric field has been carefully studied and

the simulation for this process is performed by setting mesh size to 1/
500 for the incident wavelength. The equivalent electric field value
contour graph is then generated which can be seen in Fig. 7(a). The blue
area shows the maximum value of electric field and decreases while
crossing the different layers, creating a maximum number of electron-
hole pair at P layer boundary and gives less number of electron while
approaching to N layer. The nearly linear decrease in the field along arc
length or the cell thickness is given in Fig. 7(b). The reason for the
decrease is that more and more radiation is absorbed as it penetrates
into the material.

The investigation of donor and acceptor doping concentrations in
the constituent layers is very important for the current-voltage and
external QE calculations. The electron concentrations in different layers
of the IBSC due to doping in the equilibrium condition are given in
Fig. 8. It can be seen that maximum electron concentration 1018 cm−3 is

Fig. 2. Geometrical structure of IBSC.

Table 1
Simulation parameters [48,53]

Layer Thickness
(nm)

Doping
(cm−3)

Electron mobility
(cm2 V−1 s−1)

Hole mobility
(cm2 V−1 s−1)

Electron life
time (ns)

Hole life
time (ns)

P(GaAs) 300 1×1018 1250 278 3 7
PI(GaAs) 200 5×1012 1250 278 3 7
IB(InGaAs) 600 1×1017 2000 2000 10 50
IN(GaAs) 200 5×1012 1250 278 3 7
N(GaAs) 200 1×1018 1250 278 3 7

Fig. 3. Simulation of (a) two coupled QDs and (b) 4× 4 QD superlattice.
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in the N layer shown by the red color in Fig. 8(a) and (b). Similarly, the
doping concentration of the hole in the device has also been in-
vestigated under equilibrium condition which can be seen in Fig. 9(a)
and (b). The increased numbers of electron and hole in different layers
lead to generation of built-in potential, which is maximum at the ex-
ternal boundary of N layer and decreases towards P layer having a
minimum value at the external boundary. The potential profile changes
while applied under external bias to study the current-voltage char-
acteristics. So the potential decreases under forward voltage and be-
come zero for the maximum output voltage. The value of the maximum
output voltage depends on the difference of the FL energies of the P and
N layers and the intensity of the incident light [7].

The flat band condition for whole IB region can be achieved if the
diffusions of the high carrier concentrations of N layer and P layer are

buffered through extra layers, which are PI and IN in our case. Further,
the FL of these extra layers must be equalized to the FL of the IB layer
through proper doping. The SC is then treated in dark current condition
under applied forward bias, where the maximum voltage is taken to be
to 1.2 V. Fig. 10 shows the potential profile of the device under an
equilibrium condition.

The efficiency of IBSC is investigated under different doping con-
centrations of PI and IN layers corresponding to the FL of IB, which is
supposed to be pinned with IB energy. The Fermi energy level for IB is
1.05 eV in this model. The reason for choosing this value is that this
value is achievable in the actual growth process of QD-IB. The required
doping concentration for PI and IN layers at FL of 1.05 eV is calculated
to be 4.7×1018m−3. The doping concentration is varied for a different
range having a maximum value of 5.1× 1018 m−3. The current-voltage
characteristics can be seen in Fig. 11 with a maximum optical intensity
of 1000Wm−2. It can be seen that the current density increases with
increase in the doping concentration with a very slight change in the
output voltage. The increment of the doping concentration beyond
4.7×1018 m−3 not only results in higher current value, but also in the
lower open-circuit voltage value leading to lower QEs. The maximum
efficiency can be observed to be 44.12% with current density to be
457 Am−2 at open-circuit voltage of 1.18 V. The current-voltage char-
acteristics of IBSC for different doping concentrations are given in
Table 3.

Fig. 4. Height expressions of wave function in (a) Ground state and (b) Excited state.

Fig. 5. Vertical views of probability density in (a) Ground state and (b) Excited state.

Table 2
Intermediate Band energies for different barrier width values.

No QD size (nm) Barrier Size (nm) EIB (eV) EH (eV)

1 3.00 2.00 0.23 1.19
2 3.00 4.00 0.30 1.12
3 3.00 6.00 0.31 1.11
4 3.00 8.00 0.35 1.07
5 3.00 10.00 0.37 1.05
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Conclusion

In summary, we have investigated the band flatness controlling of
the partially doped IB layer. Different values of doping concentration in
the intrinsic layers surrounding the IB are applied and corresponding

changes in the QE of SC are investigated. Simulation results show that
the efficiency of the IBSC highly depends on the flat band region. A
decrease in the output voltage is observed at higher values of the
doping concentration as the recombination process is higher compared
to carrier generation. The maximum efficiency in this research work is

Fig. 6. Refractive index of (a) GaAs and (b) InGaAs.

Fig. 7. (a) Surface electric field by incident radiation in 2D (b) Decrease in the electric field along cell thickness.

Fig. 8. (a) Electron concentration in 2D (b) Height expression of electron concentration.
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calculated to be 44.12% at the maximum optical intensity. We have
proposed an innovative flat band IBSC structure in this paper which
may be fabricated through molecular beam epitaxy, having efficiency
much higher compared to the available IBSCs.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.rinp.2018.05.037.
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