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In this study, an endeavor is to observe the unsteady two-dimensional boundary layer flow with heat and
mass transfer behavior of Casson fluid past a stretching sheet in presence of wall mass transfer by ignor-
ing the effects of viscous dissipation. Chemical reaction of linear order is also invoked here. Similarity
transformation have been applied to reduce the governing equations of momentum, energy and mass
into non-linear ordinary differential equations; then Homotopy analysis method (HAM) is applied to
solve these equations. Numerical work is done carefully with a well-known software MATHEMATICA

ﬁ?’l&vordy for the examination of non-dimensional velocity, temperature, and concentration profiles, and then
Casson fluid results are presented graphically. The skin friction (viscous drag), local Nusselt number (rate of heat

transfer) and Sherwood number (rate of mass transfer) are discussed and presented in tabular form for
several factors which are monitoring the flow model.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://
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Chemical reaction

creativecommons.org/licenses/by/4.0/).

Introduction

The study of heat and mass transfer effects has a lot of applica-
tions in engineering especially in industry and manufacturing pro-
cesses. For example, extrusion of polymers, copper wires drawing,
continuous metals casting, glass-fiber production, human transpi-
ration, atomic power plants, cooling of electronic equipment, filtra-
tion, refrigeration, spreading of chemical pollutants in plants,
injection and diffusion of medicine in blood veins and crude oil’s
purification. The fluid whose properties cannot be explained by
Newtonian fluid models is called a non-Newtonian fluid. Blood
cells is a type of non-Newtonian fluid and can be considered as
Casson fluid due to the chain structure of blood cells and the sub-
stances like fibrinogen, rouleaux, protein etc. There are many other
important and strong applications of Casson fluids for example, in
industry; fluids behave like elastic solids and for such fluids, a yield
shear stress exists in the constitutive equations. Recently time
dependent/independent boundary layer models of Casson fluid
has attained phenomenal attention due to its rheological applica-
tions especially in chemical and mechanical engineering. Research-
ers, numerical analyst and engineers which are attached with that
area of research are putting their efforts to solve these complex
Casson fluid models [1-8]. A stretched medium is a kind of sheet
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that deals with the ambient fluid both thermally and mechanically
during a manufacturing process. That’s the reason, the fluid flow
behavior past that surface, which involves in finding the rate of
cooling, has great importance in industrial, manufacturing and
technological processes like polymer films or thin sheets produc-
tion [9-11]. Crane [12] was the first who work on the fluid’s flow
of stretching sheet of linear order in 1970 and find the similarity
solution of the steady-problem. Chiam [13,14] also work on stag-
nation point flow past a stretching sheet in 1994 where velocity
of stretching sheet is equal to the straining velocity of stagnation
point flow, then extended the idea to heat transfer with variable
conductivity past a stretching sheet in 1996. Some of the research
work related to stagnation point flow over a stretching/shrinking
sheet to above one is mentioned in [15-23].

Due to amicable applications of stretching plates and a non-
Newtonian fluid like Casson fluid, attracts many scientist and
researchers. K Bhattacharyya do work by adding heat transfer
and magnetic effects in the model of Casson fluid past a stretching
sheet [24]. Already dual solution in boundary layer flow with mass
transfer analysis have been obtained by Bhattacharyya et al. [25]
and extended it to obtaining the analytic solutions of MHD Casson
fluid flow over stretching/shrinking sheet with suction or injection
effects [26]. Shehzad and Hayat [27] find the series solution after
analyzing the non-linear steady model under mass transfer effects
on MHD Casson fluid model with chain reaction and suction
effects; where similar effects are seen under the influence of
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Nomenclature

u axial velocity part along x-axis

\Y% transverse velocity part along y-axis
X horizontal coordinate

y vertical coordinate

p density of fluid

v kinematic viscosity

u dynamic viscosity

Up plastic dynamic viscosity

Ys fluid’s yield stress

Uy velocity of the stretching surface

Vw wall mass suction/injection
Uy straining velocity

T temperature of the field

C species concentration

Tw temperature near to sheet

Too temperature away from sheet
Cw constant concentration

Coo concentration in free stream
R reaction rate of solute

D diffusion coefficient

W physical stream function

p Casson parameter

a straining rate parameter

b stretching rate parameter

Y velocity ratio parameter

n similarity variable

J dimensionless stream function
A unsteady parameter

9 dimensionless temperature
) dimensionless concentration
fo wall mass transfer parameter
B reaction rate parameter

Sc Schmidt number

Pr Prandtl number

C; Skin friction coefficient

Ny Nusselt number

Sh Sherwood number

magnetic and Casson parameter on the velocity profile. Sandeep
[28] present work with the collaboration of other researchers in
finding the analytical solutions of Casson fluid flow past a stretchy
sheet which is permeable and exponentially long where dual
results are obtained and shows the comparison between Newto-
nian and Casson fluid. Recently, Bilal and Hayat [29] worked on
steady model of MHD mixed convection Casson fluid flow with
the involvement of Hall and thermal diffusion effects past a
stretching sheet. Most of the models of Casson fluid models in heat
and mass transfer analysis are steady. Unsteady models of non-
Newtonian fluids past a stretching sheet have gained less atten-
tions. However, the unsteady flow models with irregular domains
are also under interest as Dehghan [30] work on time dependent
incompressible Navier-Stokes equations by introducing some
new numerical techniques. Recently, he [31,32] shows tremendous
work in boundary layer problems containing irregular domain and
provides the numerical plan for 2D Rayleigh-Stokes model with
fractional derivative. Also, Tsai [33] give the solutions of highly
nonlinear partial differential equations with irregular domain by
using hybrid homotopy technique (HAM; homotopy analysis
method + MFS; method of fundamental solutions+ APS; Aug-
mented polynomial spline). In present work, HAM is provoked to
get the solution of an unsteady Casson fluid model over simple
domain past a stretching sheet with heat, mass transfer along 1st
order chemical reaction.

Flow analysis

Consider the unsteady two-dimensional stagnation point flow
of a non-Newtonian Casson fluid over a stretching sheet. The fluid
flow is restricted to y > 0 with the involvement of 1st order chem-
ical reaction. Fig. 1 tells that flow is modelled by stretching of a
bounding and non-conducting sheet. The wall is stretched by
applying two equal and opposite forces along the x-axis, keeping
the origin fixed in such a way that the rate of movement of the
sheet is of 1st order in that flow regime. For an isotropic and
incompressible Casson fluid flow, the rheological equation of state
can be stated as (see [34])

<2uD + Yd\/%eiﬁ >,

Tij =
@y +Ys\[2)es, <,
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Fig. 1. Flow Model.
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where p, is the plastic dynamic viscosity, Y; is the fluid’s yield
stress, T = e;e; is the multiplication of the component of deforma-
tion rate with itself, e; is the (i, ™ component of the deformation
rate and 7, is the critical value of this product based on that model.
The governing equations for above flow model are (see details [35]):
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Then the suitable initial and boundary conditions are given by:
Att =0,u(x,y,0) = bx, v(x,y,0) = —vavf,,
T(x,y,0) = 7. + X, C(X,y,0) = Cy
Aty =0,u=Uy(x,t), v =Vu(t),T=1T4y,C=Cy
Asy — oo, u — U, (X),T — To,C — Cy
Uy (x,t) = bx(1 = At) " Uy (x,t) = ax(1 — it)~"

Tw(X,t) — Too = cX(1 = it) "

where u, v are the components of velocity along x, y directions, p is
the density, v is the kinematic viscosity,x is the thermal diffusivity,
D is the mass diffusivity, R is the reaction rate, U,,(x, t) is the stretch-
ing velocity of sheet (where b > 0 is the stretching parameter/con-
stant), U, (x,t) is the free stream velocity or velocity of external
flow (i.e. in the absence of pressure gradient); a > 0 is the strength
of stagnation flow. 7 is the thermal reading of the sheet, 7, is the
thermal reading of the fluid far away from the sheet, 7, (x,t) is
the surface temperature with c is any constant, Cthe strength/con-
centration of the substance and C,, is the constant concentration at
the stretching sheet, C..is also the fixed concentration but in free
stream.

Eq. (1) is identically satisfied after involving the stream function

W(x,y,t) as

po Wy WYL
oy ox

(6)

To find similarity solutions, we will solve the above equations
by using suitable similarity transformation discussed in [36] as
follows.

l//(X,y, f) = ﬁxﬂn)’ ’70/7 t) = ﬁ)ﬂ

where # is the similarity variable. Therefore, the mass transfer
velocity can be of the type V,(t) = — [a%sfo- Now the modified

form boundary value problem is

(1 +%> 13 1+ 2 — (§0)* — AGD +gﬁ(2>) +(1+A)=0 (8)
92+ Pr{s0) — 19— AW +19)} = 0 9)
D2 ¢ Sc{tdh) — quﬂ” D} =0 (10)

with boundary conditions
At’7:07ﬁ(0) :fOﬁ(l)(o):%ﬂ(o):lvq)(o):] (1-1)
As ) — o0,V (00) — 1,9(c0) — 0, B(c0) — 0

where f= uD@,ﬁ* =B Sc=2,Pr=2 A=%y=>brepresent the
Casson fluid factor, reaction rate factor, Schmidt number, Prandtl
number, unsteadiness factor and velocity ratio parameter. The wall
mass transfer parameter is f, where f, > 0, f, <0 used for wall
mass suction, injection parameter. §')is the notation of derivative
with respect to 7. Skin friction coefficient C;, local rate of heat trans-
fer coefficient N, and local Sherwood number S, which are the
physical quantities of interest, defined as follows

21

Cﬁ*ﬁ7

xhp,

___ Xqw _
Ny = S =D, e

k(tw — 7o)’

(12)

The wall shear stress, heat flux and mass flux are defined as

ou ot oc
TW*M@}/:({ qwf_k@yzov qwf_D@yzo (13)

Now using the similarity variables Eq. (7), we get

1 - 1 " Nu o Sh _ @
in\/R_ex—(lJrﬁ)ﬁ (0), N 19(0),\/R—exf @(0) (14)

Now, we have to find the analytic-numeric solution of boundary
value problem (8)-(11).

Solution by HAM

The solution of the above governing nonlinear equations (8)-
(10) is obtained after applying the homotopy analysis method
(HAM) inspired by the Pioneer of that method [37]. According to
the boundary conditions of (11), the suitable initial guesses for
velocity, temperature and concentration profile by using the first
rule of solution expression are given below as

fo(n) = (1 —7)(exp(—=1) — 1) + 1+ fo,

Jo(1) = exp(—1), @o(n) = exp(-1n) (15)
and
ot o 7Y 0 oD
L(ﬂ):m e ﬁ(ﬁ):a—nz an’ ﬁ(@):W+% (16)

are the auxiliary linear operators satisfying the properties

E[d] + dzﬂ + d3€7"} =0

[,[d4€'7 + dse*”} =0 (17)
Lldge" +d7e " =0

where d;(j = 1,2,...,7) are the constants.

3.1 Zeroth order deformation problem

(1 =)L, 1) = fo(m)] = rHNTE(, )] (18)
(1 =)L) = Do(n)] = ThyH (MNTI(n,T)] (19)
(1 —r)L[®(n,1) — Do(n)] = rhoH? ()N [D(1,T)] (20)

subject to conditions

§(0,1) = fo, 17(0,r) = 7,1 (00,1) = 1,9(0,1) = 1,
d(oo, 1) = 0,d(0,r) = 1,d(c0,r) = 0 (21)
In Eq. (21), boundary conditions be adjusted after the existence

of embedding parameter where 0 <r <1 due to the inherited
property of HAM [For details; see references [38-40]].

. 1\ &1(n, o,
wtionn) = (1+5) 00+ o 4L
ot(n,1)\* , (9F01,1) 1 9*8(n.1)

_< o >A< TR R >+(1+A) (22)
2

i) = S
+efrnn 2 - o n LD onr) + 3 T |

(23)
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. 2
o) =T
+5f7nn 22D AT OV oy,

(24)

having non-linear operators. hs, hy,he the convergence control
parameters and

H(n) = exp(—1), 1 (1) = exp(—n), H" (1) = exp(~n) (25)
are the auxiliary non-zero functions. For r = 0 and r = 1, we get

§(1,0) = fo(1),9(n,0) = do(), B(,0) = Do(1) (26)
i(n, 1) = (1), 90, 1) = 9(), (17, 1) = () (27)

As r moves from 0 to 1, i(,r), 9(n, r)andd(n, r) varies from the
initial approximation /,(#), 9o (17), ®o(7) to exact solution f(n), 9(1),
®(n) respectively. Expanding (1, r), 9(x,r) and ®(#,r) by using
Taylor’s theorem with respect to r and then using Eqgs. (23)-(25).
One can write the above profiles in the form

~ g 9§
01.1) = f0(m) + S ta ), 1q() = 2 T UL (28)
g=1 T r r=0

A = 1 0%

001) = 000 + 040, 0yt) = 5 S (29)
g=1 ’ r=0

. e &

B0.1) = Oo) + By, @) = o T (30
g=1 ’ r=0

Here f4(n7), 94(n)and®q(n) are called the qth-order deformation
derivative. Now convergence at r = 1 can be shown for the above
series as auxiliary function, initial guess, the auxiliary parameter
and the auxiliary function be selected in good way. After that, we
have

501) = foln) + 3 tan) 31)
q=1
90n) = do(n) + > () (32)
q=1
() = Do) + > Dy (33)
q=1

3.2 Higher-order deformation equations

For Egs. (31)-(33), define the vectors

() = {fo(n), f1(n), 2(1), ..., En ()} (34)
On() = {9o(m), 91(n),92(n), ..., In(0)} (35)
Dy (n) = {Do(1), D1 (1), D2(1), - .., D (1)} (36)

After differentiating the Eqs. (18)-(20) ‘q’ times with respect to
r, dividing by q! and set r = 0. The qth order deformation equations
are

LIg(1.7) = AoFa-11)] = heH(1)Rq(Fq_1 (1)) (37)

L[0g(1,1) = ZgPq-1()] = hyH ()Rq(Jq-1 (1)) (38)

LIO(1,7) = £ Pq-1(1)] = haH* (17)Ry(®g_1 (1)) 39)
with boundary conditions

£(0) = £"(0) = £ (00) = 0,94(0) = dg(00) =0,

Dq(0) = Dy(c0) =0 (40)
where
1 (B,
Rlfa-a() = gy ) (1)
r=0
q—1 9
Raa-1 () = i T 2)
r=0
q—1
Ry ) = o T ) (43)
r=0

0, g<1

X":{l, qg>1 (44)
Eqs. (41)-(44) further implies that
§ o JAVES - @ gD gD
Ry(m) = 1+ﬂ 2000 + > (g (DET (1) = 1718 (1)}
K=0
— AR 01) 520+ (A (1~ ) (45)
q-1
Ry (1) = 0 (1) + Pry_{fqica ()9 () — Igaa (DE ()}
K=0
— APr{dq 1 () + 2031, ()} (46)

q-1
Ry (1) = O (1) + Se{>_fq 11 (@Y (1) — A 031 (1)
K=0
B0 () (47)

The symbolic software MATHEMATICA is used to solve the sys-
tem of homogeneous linear equations (37)-(40) up-to some order
of approximations and then found that it can be written as an infi-
nite series of the form

M
§(17) = limy .o Y _fq(1) (48)
q=0
M
9() = limy—. Y 0q(1) (49)
q=0
M
() = limy Y _Pg(1) (50)
q=0

Results and discussion

The successive iterations of velocity, temperature and concen-
tration after 1st iteration are as follows
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Fig. 2. h-curves of (a) Velocity Profile; (b) Temperature Profile; (¢) Concentration Profile.
hl 5Ah1 1 1 3e"hl
— e a2y - -2n
f1(n) = fo 2t 3 5€ hl 2Ae hl +
Table 1 I YT fohl 1 1, hi e~2"h1
Convergence of HAM Solution. SAe h1 4 4 e "fohl + 2 e "fohl + 4B + 4B
_ _ _ _ _ _ . _ ~"h1 Ah1 1
A=01,e=1.153=01 fo=-01,Pr=07,5c=05p =1 762 +(—1+e*’7)(1—y)+3 V+Ze’2'7h1"/
Order of Approximation —i2(0) —91)(0) —oM(0) B 8
1, ., 1 _ 7. fohly
1 0.144800 1.235499 0.780000 +=Ae?"h1y — —e"h1y — sAe "h1y +
10 0.187349 1.201256 0.775433 2 4 8 4
15 0.192995 1.165346 0.765432 1 1 h1 e—21h1 eTh1y
20 0198728 1.050355 0755345 +ge 1foh1y — 5¢€ Tfohly — Tﬁy ~ g ! 25 !
25 0.198728 1.050355 0.755345 X
30 0.198728 1.050355 0.755345 hiy? 1 1 1
35 0.198728 1.050355 0.755345 tg tg¢ #Th1y? — 5€ "h1y* + 15— ¢ *"h1n
40 0.198728 1.050355 0.755345 1 1 1
- §Ae*2”h] n—Ae "hln + ‘—lefz"hlyn + gAe*Z"hl m
1
——Ae"h1n?
g7
Table 2
Values of '(0)for multiple values of y for § = co (Newtonian fluid case) when A =0.
Y Present Study K-Bhattacharyya [4] Wang [15] M. Suali [36]
0 1.2325877 1.2325878 1.2325888
0.1 1.1465512 1.1465608 1.1465601 1.146561
0.2 1.0511291 1.0511299 1.0511312 1.051130
0.5 0.7132888 0.7132951 0.7133023
1 0 0 0
3 -4.2765455 -4.276545




KA. Khan et al./Results in Physics 8 (2018) 610-620 615

lls_ T x ¥ x T * ¥ L T L L ¥ 3
£=1.15,4=0.1
L10} 1 | .
=l fo=0,1.53,4.5
S
R-rTi
Lo} 1A _
.
[
| =
Lo
1ot o2 = _

=
b
.

n g 3

T T T T T T T T T T T T T T T T

A=012.3;e=1L15F=0.1

FAC)

0 2 4 n 6 8

(b) different values of A

A=0.1e=115

— fo <0

fo=0

-=fo>0
R e

(c) different values of 8
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1 4, 1, 1., 1
+g¢ h3Scy — 5 h3Scy + 3€ h3Scy — 5€ h3Scy
+ %Ae’zﬂhE}Scn

The convergence of the above-mentioned series (48)-(50)
firmly based on the control parameter of convergence
h; = h1,hy = h2,he = h3where the admissible range observed
from Fig. 2 of 22nd order approximation drawn below is
—-0.18 < h; < 0.01, 1.05< hy <125 and —-1.5 < hy < —0.5. The
numerical calculations of our problem with the help of square
residual error (For details, see [41]) tell that velocity field of series

no (48) converges in the whole region of # for h; = —0.1303. In the
same way, series no (49) and (50) converges at hy = 1.112 and
he = —1.1. Table 1 shows the convergence of HAM solution up to
different order of approximation.

In the present article, we are directed to discuss the effects of
Casson fluid in the unsteady model of the stretching sheet with
suction/injection mass transfer affects in the presence of heat,
mass transfer and chemical reaction. The involvement of unique
solution occurred due to stretching sheet with velocity ratio has
already be explained by [36]. In this current study, the similar
unique solution will be discussed with the presence of non-
Newtonian Casson fluid and mass transfer analysis. And to validate
the HAM technique, values of §(0) for = oo in Table 2 has been
found in reasonable manner with already published research work.

Influence of important parameters on dimension-free velocity,
temperature and concentration profiles are discussed in detail in
Figs. 3-6. Fig. 3a exhibits remarkably that mass suction increases
the velocity profile of Casson fluid but reverse outcomes are seen
in mass injection. It informs that there is no reverse flow in the
boundary layer as rate of change in f(#) is nowhere negative.
Fig. 3b elaborates the different cases of wall mass transfer against
several values of unsteadiness parameter A. It declares that bound-
ary layer thickness of Casson fluid flow decreases overall in all the
discussed cases as the values of A increases. Important to note that,
mass injection brings major effects where velocity profile
decreases slowly as compared to other cases. But as # > 2.9713
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T T T T T

A=01,e=115

e

B

Fig. 4. Variation of skin friction for several values of  (a) different values of fy; (b)
different values of A; (c) different values of .

X a

L= S

I § I SRS T
4 8

a1
¢

i.e. fluid moving away from the stagnation point, velocity profile
converges to one. In Fig. 3¢, velocity profile ¥ (5)decline for each
Casson parameter B but increasing the value of B also decreases
the velocity profile f(y)and momentum boundary layer thickness
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because raise the volume of plastic dynamic viscosity always slows
down the fluid motion due to its resistive nature. Moreover, it is
evident from the above figures that while increasing the value of
B, velocity of fluid is greater in mass injection as compared to mass
suction. The physical quantity of concern which is proportional to
the results of (1 +1)#"(0)is the wall skin friction coefficient which

has many important applications in engineering field. Fig. 4
describes that wall skin friction coefficient increases for several
values of p either wall mass injection/suction is involved or not.
Larger the injection value increases the wall skin friction. Overall
it decreases from mass injection to suction for values of B. It
informs that on the fluid, medium exerts a dragging force due to
the negative value of skin friction (1 +%)f”(0). Table 3 present

the detailed picture of skin friction coefficient. It reflects the same
that as the value of Casson parameter increases, the skin friction
coefficient also increases whether wall mass transfer is through
injection or suction. But suction effects are more dominant to
injection effects. Higher the suction effects increase the skin fric-
tion coefficient absolutely. Fig. 5 gives the detail picture of thermal
boundary layer. Larger the value of non-Newtonian parameter
raises the thermal boundary layer thickness in all cases of wall
mass transfer, see Fig. 5a. It is quite understandable that Casson
parameter always raises the thermal thickness of boundary layer.
But overall thermal boundary layer profile decreases for each 8.

A=0.1e=115

20,

.15,

A=01e=1158=01 |

0.8

Pr=10.3.0510709

1oF

(c) several values of unsteady parameter A

(b) several values of Pr

T T T T T T T

15,

A=0.0e=1158=0.1

Pr=10.22,0.52,0.6Z,0.82

(d) steady case against wall mass transfer

Fig. 5. Temperature influence (1) for (a) several values of f; (b) several values of Pr; (c) several values of unsteady parameter A; (d) steady case against wall mass transfer.
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Table 3
Skin Friction Coefficient for 30th approximation.
A Pr Sc fo B (1 +%)f”(0) A Pr Sc fo B 1 +%)f//<0)
0.01 0.7 0.5 -2 0.1 —0.6950611 2 —-0.233717
0.2 —0.4702941 5 —0.202921
0.3 —0.3789356 100 —0.181581
0.4 —0.3276822 0.01 0.7 0.5 0 0.1 —0.844791
0.5 —0.2944311 0.2 —0.616445
1 —0.2200264 0.3 —-0.522311
2 —0.1773332 0.4 —0.468882
5 —0.1493234 0.5 —0.433887
100 —0.1304363 1 —0.354163
0.01 0.7 0.5 -1 0.1 —0.766832 2 —0.306625
0.2 —0.538977 5 —-0.273663
0.3 —0.445381 100 —0.249972
0.4 —0.392425 0.01 0.7 0.5 1 0.1 —0.928881
0.5 -0.357834 0.2 —-0.702857
1 —0.279534 0.3 —0.609585
0.01 0.7 0.5 2 0.1 —1.01896 0.01 0.7 0.5 2 1 —0.547339
0.2 —0.797064 2 —0.500528
0.3 —0.706688 5 —0.465112
0.4 —0.655829 100 —0.437102
0.5 —-0.622715
Table 4
Local Nusselt Number for 30th approximation.
A Pr Sc fo B —'(0) A Pr Sc fo B —'(0)
0.0 0.22 0.5 -1 0.1 0.475759 0.1 0.62 1.449211
0.2 0.473433 0.01 0.7 0.5 -1 0.1 0.811811
0.3 0.471931 -0.5 0.943988
1 0.468028 0.0 1.116771
2 0.466652 0.5 1.325351
0.71 0.1 0.696526 1 1.563051
0.2 0.694523 -1 0.2 0.809550
0.3 0.692853 -0.5 0.941065
1 0.687376 0.0 1.113341
0.71 0 0.1 1.08272 0.5 1.321580
0.2 1.07915 -1 0.3 0.803366
0.3 1.07665 -0.5 0.939343
1 1.06943 0.0 1.111201
1 0.1 1.57582 0.5 1.319160
0.2 1.57171 -1 1 0.805274
0.3 1.56888 -0.5 0.934526
1 1.56095 0.0 1.105041
03 -1 0.1 0.53689 0.5 1.312054
0.5 0.635132 -1 0.1 0.811811
0.7 0.694118 0.2 0.809550
03 0 0.692067 0.3 0.808366
0.5 0.900031 0 0.1 1.116770
03 1 0.885276 0.2 1.113340
0.5 1.239411 1 0.1 1.563051
0.7 1.560421 0.2 1.559100
0.1 0.22 -1 0.1 0.489469 0.1 0.22 -1 0.1 0.601756
0.42 0.622116 0.42 0.838272
1 0.786081 1 1.327813
1.22 0.823821 1.22 1.480883
0.1 0.22 1 0.737743 0.1 0.82 1 1.757031
0.42 1.115330 1 2.016121

Further Fig. 5b, d shows the temperature’s influence for the multi-
ple values of Prandtl number. It smokes out that increasing the
value of Prandtl number lowers down the temperature profile.
Prandtl number always regulate the relative thickness of the
momentum and the thermal boundary layer. For small Prandtl
number, where the thermal boundary layer is bigger than the
momentum boundary layer, heat diffuse quickly. Hence Prandtl
number can be used to increases the cooling rate of conducting
flows. Moreover, the thermal boundary layer thickness declines
after enlarging the Prandtl number as best depicted in Fig. 5b,5d.
Observation is that mass blowing process raises the temperature
as compared to other mass transfer analysis for any value of
unsteady parameter A. Fig. 5c represent the different sections of

thermal reading against the different unsteady parameters for all
cases of wall mass transfer. Dotted curves where no mass transfer
involves, 1st part represent that as fluid closest to the stagnation
point, temperature profile decreases but in 2nd part it increases
either the model is steady or unsteady. Fig. 6a-6f shows the con-
centration influence for different parameters of given model.
Fig. 6a demonstrate that profile decreases for each g but increasing
the value of B also raises the concentration profile. Fig. 6b shows
that concentration profile also increases but suction has lower con-
centration overall as compared to other cases. Fig. 6¢c-d represent
that increasing the value of Schmidt number lowers down the con-
centration boundary layer. It informs that heavier species attempt
to hold back the concentration level. Also, these diagrams declare
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Table 5
Sherwood Number for 30th approximation.
A Sc fo B i3 ~@'(0) A Sc fo B B _0/(0)
0.01 0.5 -1 0.1 0.648741 0 0.5 0 0.1 1 0.903517
0.5 0.768253 1 0.807225
0 0.904325 2 0.712304
0.5 1.055761 3 0.623383
1 1.220911 0 0.5 1 0.1 1 1.220711
-1 0.2 0.647638 1 1.115181
0.5 0.766938 2 1.003771
0 0.902825 3 0.889873
0.5 1.054177 0 0.22 -1 0.1 0.487451
1 1.219171 0.42 0.611294
-1 0.3 0.646987 0.62 0.695823
0.5 0.766146 0.82 0.756929
0 0.901904 0 0.5 -1 0.1 0 0.311741
0.5 1.053091 1 0.648705
1 1.218061 2 0.894944
-1 1 0.645352 3 1.096641
0.5 0.764102 0.5 0 0.1 0 0.581597
0 0.899469 1 0.903517
0.5 1.050311 2 1.143561
1 1.215001 3 1.342481
-1 0.1 0.648741 0.5 1 0.1 0] 0.935216
0.2 0.647638 1 1.220710
0.3 0.646987 2 1.443611
1 0.6445352 3 1.633041
2 0.644742 0.1 0.5 -1 0.1 0 0.299116
0 0.1 0.904325 1 0.640719
0.2 0.902825 2 0.888979
0.3 0.901904 3 1.091741
1 0.899469 0 -1 0.1 0 0.311741
2 0.898521 1 0.187893
1 0.1 1.220911 2 0.075044
0.2 1.219170 0 0 0.1 0.581597
0.3 1.218066 1 0.425406
1 1.215013 2 0.264961
2 1.213771 0 1 0.1 0.935216
0 -1 0.1 0.648705 1 0.767266
1 0.571258 2 0.578751
2 0.501559
3 0.443695

that concentration boundary layer decreases overall but higher
concentration is observed in unsteady case as compared to time
independent case. Fig. 6e, f informs about the influence of chemical
reaction parameter. It is the observation that rise in the value of
reaction rate parameter releases heat energy and it declines the
concentration boundary layer of Casson fluid. It reveals that higher
the level of impurities lower down the concentration profile.
Table 4 depicts the influence of heat transfer coefficients on differ-
ent parameters. It shows that N, decreases by enhancing the value
of Casson parameter but higher the Prandtl value increases the rate
of heat transfer in all the cases of different wall mass transfer
parameters. Once again, rate of heat transfer is greater in magni-
tude in suction effects as compared to mass blowing or no mass
transfer. Most important is, rate of heat transfer is greater under
the influence of unsteady model as compared to steady model.
Table 5 depicts the influence of mass transfer coefficients on differ-
ent parameters. Sherwood number decreases by enhancing the
value of Casson parameter but increases by increasing the value
of wall mass transfer fobut most important is, rate of mass transfer
increases as reaction rate parameter enhances but decline is
observed for all the values of f, but individual profiles of Sherwood
number decreases while increasing the value of unsteady parame-
ter A.

Conclusion

The present study deals the numerical solution of the influence
of heat and mass transfer of an unsteady Casson fluid model with

wall mass transfer past a stretching sheet. Some key findings are
discussed below. Enlarge the value of unsteady parameter A, from
wall mass injection to suction, velocity profile attains absolute
minima near the stagnation point. Time dependent phenomena
reduce the boundary layer thickness as compared to steady effects.
Increases the Casson parameter decrease the velocity influence and
concentration profile but enhances the thermal boundary layer.
Larger the mass suction rate at any specified value of B shows dom-
inancy that it reduces the thermal boundary and concentration
profile.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.rinp.2017.12.080.
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