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In this paper the linear theory of the thermoelasticity has been employed to study the effect of the rota-
tion in a thermoelastic half-space containing heat source on the boundary of the half-space. It is assumed
that the medium under consideration is traction free, homogeneous, isotropic, as well as without energy
dissipation. The normal mode analysis has been applied in the basic equations of coupled thermoelastic-
ity and finally the resulting equations are written in the form of a vector- matrix differential equation
which is then solved by eigenvalue approach. Numerical results for the displacement components, stres-
ses, and temperature are given and illustrated graphically. Comparison was made with the results
obtained in the presence and absence of the rotation. The results indicate that the effect of rotation,
non-dimensional thermal wave and time are very pronounced.
� 2017 A.M.Abd-Alla, Faculty of Science Sohag, Egypt. Published by Elsevier B.V. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction

During the past few decades, widespread attention has been
given to thermoelasticity theories that admit a finite speed for
the propagation of thermal signals. In contrast to the conventional
theories based on parabolic type heat equation, these theories are
referred to as generalized theories. Because of the experimental
evidence in support of the finiteness of the speed of propagation
of a heat wave, generalized thermoelasticity theories are more
realistic than conventional thermoelasticity theories in dealing
with practical problems involving very short time intervals and
high heat fluxes such as those occurring in laser units, energy
channels, nuclear reactors, etc. The phenomenon of coupling
between the thermomechanical behavior of materials and mag-
netic behavior of materials have been studied since the 19th cen-
tury. The extensive literature on the topic is now available and
we can only mention a few recent interesting investigations in
Refs. [1–19]. Ailawalia and Narah [20] investigated the effect of
rotation in a generalized thermoelastic medium with hydrostatic
initial stress subjected to ramp-type heating and loading. Kumar
and Devi [21] discussed Magneto thermoelastic with and without
energy dissipation Half-Space in contact with Vacuum. He et al.
[22] investigated the two-dimensional generalized thermoelastic
diffusion problem for a half-space. The wave propagation in two
temperature theory of thermoelasticity was investigated by War-
ren and Chen [23]. Zhu et al. [24] discussed the steady-state
response of thermoelastic half-plane with voids subjected to a sur-
face harmonic force and a thermal source. Deswal et al. [25] inves-
tigated the plane waves in a fractional order micropolar
thermoelastic half-space. Singh [26] discussed the effect of hydro-
static initial stresses on waves in a thermoelastic solid half-space.
A half-space problem in the theory of generalized thermoelastic
diffusion has been studied by Sherief and Saleh [27]. Sharma and
Bhargava [28] investigated the propagation of thermoelastic plane
waves at an imperfect boundary of thermal conducting viscous liq-
uid/generalized thermolastic solid. Sarkar and Lahiri [29] studied
the three-dimensional thermoelastic problem for a half-space
without energy dissipation. Quintanilla [30] investigated thermoe-
lasticity without energy dissipation of materials with microstruc-
ture. Youssef [31], constructed a new theory of generalized
thermoelasticity by taking into account two-temperature general-
ized thermoelasticity theory for a homogeneous and isotropic body
without energy dissipation. Atwa and Jahangir [32] have studied
two-dimensional problem of generalized thermoelasticity to study
the effect of rotation. Othman and Song [33] studied the effect of
rotation on the reflection of magneto-thermoelastic waves under
thermoelasticity without energy dissipation.

The solution of the present problem has been achieved in nor-
mal mode analysis and eigenvalue approach techniques to deter-
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mine deformation, stresses and temperatureform. The tempera-
ture, displacements and stresses are obtained in the physical
domain. The effect of the rotation, time and non-dimensional ther-
mal wave on the stresses, displacements and temperature distribu-
tion have been shown graphically. Comparisons are made with the
results in the presence and absence of rotation of the thermoelastic
half-space without energy dissipation.

Formulation of the problem

We consider a homogenous, isotropic thermoelastic half-space
in two-dimensional space subjected to a time dependent heat
source on the bounding plane. The medium is rotating uniformaly
with respect to an inertia frame and constant rotating vector in an
x; y; z rectangular Cartesian frame rotating with the medium is

X
!
¼ X n

!
. The governing equations developed by Green and Naghdi

[34], in the absence of heat sources or body forces.
The equations of motion in an isotropic thermoelastic medium

are:
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The Temperature field Tðx; z; tÞ is assumed to satisfy the general
heat conduction equation:

K
@2T
@x2

þ @2T
@z2

 !
¼ qCE

@2T
@t2

þ cT0
@2e
@t2

ð3Þ

The thermal stresses in an isotropic elastic solid subjected to
plane strain in two dimensions are:
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where k and l are Lame’s constant, q is the density, rij are the com-
ponents of the stress tensor, u; w are the components of the dis-
placement vector, t is the time, T is the temperature, CE is the
specific heat, c ¼ ð3kþ 2lÞaT where aT is the coefficient of linear
thermal expansion, K is the thermal diffusivity, characteristic of

the theory, T0 is the temperature of the medium such that T�T0
T0

��� ��� � 1.

e ¼ @u
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For convenience of the analysis, the following dimensionless
quantities are introduced:

ðx0; z0Þ ¼ 1
l
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l
; ðu0; w0Þ ¼ ðkþ 2lÞ

cT0l
ðu; wÞ;

T 0 ¼ T
T0

; r0
ij ¼

rij

cT0
; C2

T ¼ K

qCEC
2
1

; eT ¼ c2T0

qCEðkþ 2lÞ ;
ð5aÞ

where l is the length and CT ¼ C3
C1

is the non dimensional thermal

wave speed, C2
1 ¼ kþ2l

q is the longitudinal wave velocity, C2
3 ¼ l

q is

the shear wave velocity and eT is the thermoelastic coupling param-
eter. In view of this and quantities (5a), Eqs. (1)–(5) can be rewritten
in the non-dimensional form as follows
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where

r2 ¼ @2
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þ @2
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; b ¼ l

ðkþ 2lÞ
From Eqs. (5), (6) and (7), we get
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Adding Eqs. (10) and (11) and using Eq. (5), we obtain

r2e�r2T ¼ @2e
@t2

�X2e ð12Þ

The mean value of the stresses is:

r ¼ rxx þ rzz

2
ð13Þ

Adding Eqs. (9) and (10) and using Eqs. (5)–(13), we obtain

r ¼ ae� T ð14Þ
where

a ¼ ð2� 3bÞ
2

Eliminating the dilation e from Eqs. (8), (12) and (14), we get:
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Normal mode analysis

We apply the normal modes of the form:

ðu; w; e; T; rijÞðx; z; tÞ ¼ ðu�; w�; e�; T�; r�ÞðxÞeðxtþibxÞ ð17Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
, x is the angular frequency and b is the wave num-

bers in the z-directions respectively. Using Eq. (17), we can obtain
the following equations from Eqs. (15) and (16) respectively
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where
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Eqs. (18) and (19) can be written in the form of a vector-matrix
differential equation as:
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Solution of the vector-matrix equation

We find the solution of Eq. (21) by the following the method of
eigenvalue approach as in following the solution methodology
through eigenvalue approach as in Das and Bhakta [36].

The characteristic equation of a matrix A is of the form

k4 � ðC1 þ D2Þk2 þ ðC1D2 � C2D1Þ ¼ 0 ð23Þ
The roots of the Eq. (23) are of the form
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The right eigenvector v ¼ ½v1;v2;v3;v3�T corresponding to eigen-
value k can be considered as
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From Eq. (25), the eigenvector v corresponding to the eigen-
value k ¼ ki can easily be calculated. We use the following
notations:
v1 ¼ ½v�k¼k1

; v2 ¼ ½v�k¼k1
; v3 ¼ ½v�k¼k2

; v4 ¼ ½v�k¼k2
ð26Þ

Assuming the regularity condition at infinity, the solution of Eq.
(21) can be written as

V ¼ A1v2e
�k x

1 þ A2v4e
�k x

2 ðx P 0Þ; ð27Þ
where A1; A2 are constants to be determined by the boundary con-
dition of the problem. From Eqs. (14) and (22) on using Eqs. ((28)–
(29), we can find the expression of T�ðxÞ; r�ðxÞ and e�ðxÞ as follows:
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Application

It is clear, the considered model is associated with the following
boundary conditions

(a) The boundary condition for traction freet in case of plane to
the surface x ¼ 0 rð0; z; tÞ ¼ rxxð0; z; tÞ ¼ rzzð0; z; tÞ ¼ 0
which gives

� � �
r ðxÞ ¼ rxxðxÞ ¼ rzzðxÞ ¼ 0 at x ¼ 0 ð31Þ
(b) The thermal boundary condition is
qn þ VT ¼ Q0ð0; z; tÞ ð32Þ
where qn is the normal components of the heat flux vector
and Q0ð0; z; tÞ is the intensity of the applied heat sources. In
order to use the thermal boundary condition (32), we use
the generalized Fourier’s law of heat conduction in the non-
dimensional form, namely

qn ¼ � @T
@n

ð33Þ
From Eqs. (31) and (32) and Eq. (17), we obtain

VT� � dT�

dx
¼ Q0 at x ¼ 0 ð34Þ

Eqs. (28) and (29) with Eqs. (31) and (34) yield two non-
homogeneous equations for two arbitrary constants A1 and A2,
we get
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The constants A1 and A2 determined from Eqs. (34a) by using
Cramer’s rule we obtain
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The solution of the ordinary differential Eq. (36) is
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where k21–k22–k2u and A3 is a constant From Eqs. (4) and (14) after
using Eq. (17) we get
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From the boundary conditions (31) and using Eq. (37),
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Fig. 1. Variation of the temperature T , principle stress r, strain e and displacement u with respect to the axial x for different values of the non-dimensional thermal wave cT .
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From Eqs. (28) and (37) and Eq. (38), we get

A3 ¼ r�ð1� a� 2bÞðk21 � k22Þ
aDku
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� g2k2
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ð39Þ

The dimensionless temperature T, normal stress r, strain e and
displacement u can be deduced from Eqs. (28)–(30) and Eq. (37) by
using Eq. (17) as follows

Tðx; z; tÞ ¼ ext cosðbzÞ½A1ðk21 � D2Þe�k x
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Special cases

(i) If X ¼ 0, in Eqs. (40)–(43), we obtain the corresponding
expression for displacement, strain, principle stresses and
temperature for isotropic thermoelastic solid without
energy dissipation. The obtained results are similar to
Sharma and Chouhan [35].
Numerical example and discussions

With an aim to illustrate the theoretical results obtained in the
preceding section and to show the effect of rotation, we now pre-
sent some numerical results. The numerical work has been carried
out with the help of computer programming using the software
Maple. Materia chosen for this purpose is magnesium crystal, the
physical data for which is given as Following He et al. [22].

eT ¼ 0:0168; a ¼ 0:67; b ¼ 0 : 25; x ¼ 2;
a ¼ 1:2; b ¼ 1:3;
V ¼ 50; Q0 ¼ 20; CT ¼ 2:

The computations were carried out for:
Fig. 1 shows the variation of the temperature T; principle stress

r, strain e and displacement u with respect to the axial x for differ-
ent values of the non-dimensional thermal wave cT . It is observed
that the temperature increases with increasing of the axial x at
cT ¼ 0:3, while it decreases with increasing of the axial x at
cT ¼ 0:5; 0:7, the principle stress decreases with increasing of the
axial x at cT ¼ 0:3; 0:5; 0:7, the strain increases with increasing of
the axial x at cT ¼ 0:3, while it decreases with increasing of the
axial x at cT ¼ 0:5; 0:7 and the displacement increases with
increasing of axial x at cT ¼ 0:3; 0:5; 0:7.

Fig. 2: displays the variation of the temperature T; principle
stress, strain e and displacement u with respect to the axial x for
different values of the rotation X. It is observed that the tempera-
ture decreases with increasing of the axial x atX ¼ 0:3; 0:5; 0:7, the
principle stress decreases with increasing of the axial x at
X ¼ 0:3; 0:5; 0:7, the strain decreases with increasing of the axial



Fig. 2. Variation of the temperature T , principle stress r, strain e and displacement u with respect to the axial x for different values of the non-dimensional thermal wave X.

Fig. 3. Variation of the temperature T , principle stress r, strain e and displacement u with respect to the axial x for different values of the non-dimensional thermal wave t.
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x at X ¼ 0:3; 0:5; 0:7 and the displacement increases with increas-
ing of axial x at X ¼ 0:3; 0:5; 0:7.
Fig. 3 explains the variation of the temperature T; principle
stress r, strain e and displacement u with respect to the axial x



Fig. 4. Variation of the temperature T , principle stress r, strain e and displacement u with respect to the axial x for different values of the non-dimensional thermal wave z.

Fig. 5. Variation of the temperature T , principle stress r, strain e and Displacement u with respect to the axial x for different values of the non-dimensional thermal wave w.
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for different values of the time t. It is observed that the tempera-
ture decreases with increasing of the axial x at t ¼ 0:3; 0:5; 0:7,
the principle stress decreases with increasing of the axial x at
t ¼ 0:3; 0:5; 0:7, the strain decreases with increasing of the axial
x at t ¼ 0:3; 0:5; 0:7 and the displacement increases with increas-
ing of axial x at t ¼ 0:3; 0:5; 0:7.Fig. 4 shows the variation of the
temperature T; principle stress r, strain e and displacement u with
respect to the axial x for different values of the axial z. It is
observed that the temperature decreases with increasing of the
axial x at z ¼ 0:3; 0:5; 0:7, the principle stress decreases with



Fig. 6. Variation of the temperature T , principle stress r, strain e and displacement u with respect to the axial x for different values of the non-dimensional thermal wave t.

Fig. 7. Variation of the temperature T , principle stress r, strain e and displacement u with respect to the axial x for different values of the non-dimensional thermal wave z.
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Fig. 8. Variation of the temperature T , principle stress r, strain e and displacement u with respect to the axial x for different values of the non-dimensional thermal wave cT .
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increasing of the axial x at z ¼ 0:3; 0:5; 0:7, the strain decreases
with increasing of the axial x at z ¼ 0:3; 0:5; 0:7 and the displace-
ment increases with increasing of axial x at t ¼ 0:3; 0:5; 0:7.

Fig. 5 shows the variation of the temperature T; principle stress
r, strain e and displacement u with respect to the axial x when
vanishes the rotation X for different values of the frequency x. It
is observed that the temperature decreases with increasing of the
axial x at x ¼ 0:3; 0:5; 0:7, the principle stress decreases with
increasing of the axial x at x ¼ 0:3; 0:5; 0:7, the strain decreases
with increasing of the axial x at x ¼ 0:3; 0:5; 0:7 and the displace-
ment increases with increasing of axial x at x ¼ 0:3; 0:5; 0:7.

Fig. 6 shows the variation of the temperature T; principle stress
r, strain e and displacement u with respect to the axial x when
vanishes the rotation X for different values of the time t. It is
observed that the temperature decreases with increasing of the
axial x at t ¼ 0:3; 0:5; 0:7, the principle stress decreases with
increasing of the axial x at t ¼ 0:3; 0:5; 0:7, the strain decreases
with increasing of the axial x at t ¼ 0:3; 0:5; 0:7 and the displace-
ment increases with increasing of axial x at t ¼ 0:3; 0:5; 0:7.

Fig. 7 shows the variation of the temperature T; principle stress
r, strain e and displacement u with respect to the axial x when
vanishes the axial z for different values of the time t. It is observed
that the temperature decreases with increasing of the axial x at
z ¼ 0:3; 0:5; 0:7, the principle stress decreases with increasing of
the axial x at z ¼ 0:3; 0:5; 0:7, the strain decreases with increasing
of the axial x at z ¼ 0:3; 0:5; 0:7 and the displacement increases
with increasing of axial x at z ¼ 0:3; 0:5; 0:7.

Fig. 8 shows the variation of the temperature T; principle stress
r, strain e and displacement u with respect to the axial x when
vanishes the rotation X for different values of the non-
dimensional thermal wave cT . It is observed that the temperature
decreases with increasing of the axial x at cT ¼ 0:3; 0:5; 0:7, the
principle stress decreases with increasing of the axial x at
cT ¼ 0:3; 0:5; 0:7, the strain decreases with increasing of the axial
x at cT ¼ 0:3; 0:5; 0:7 and the displacement increases with increas-
ing of axial x at cT ¼ 0:3; 0:5; 0:7.
Conclusions

The analysis of graphs permits us some concluding remarks:

� The rotation plays a significant role in the distribution of all the
physical quantities. The amplitude of all the physical quantities
vary (increase or decrease) as rotation increases. Presence of
rotation restricts the quantities to increase near the point of
application of source as well as away from the source.

� The displacement component and stress components show an
increase nature with increase or decrease amplitude with
respect to x due to presence of rotation. The resulting quantities
with and without rotation show opposite increase or decrease
pattern in the form of waves. These trends obey elastic and
thermoelastic properties of a solid under investigation.

� In absence of rotation, we observe the trends with increasing
amplitudes in case of concentrated normal force/thermal point
source. In case of uniformly distributed force/source, trends dif-
fer and some where it also results in non uniform pattern of
graphs.

� The result provides a motivation to investigate conducting
thermoelectric materials as a new class of applicable thermo-
electric solids. The results presented in this paper should prove
useful for researchers in material science, designers of new
materials, physicists as well as for those working on the devel-
opment of magnetothermoelasticity and in practical situations
as in geophysics, optics, acoustics, geomagnetic and oil
prospecting etc. The used methods in the present article is
applicable to a wide range of problems in thermodynamics
and thermoelasticity.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.rinp.2017.09.021.
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