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A B S T R A C T

In this study, a two-dimensional Immersed Boundary Lattice Boltzmann Method (IB-LBM) is employed to in-
vestigate computationally effect of flow past a pair of square cylinders in side-by-side arrangement at =Re 100,
for various corner radii. Numerical simulations were performed simultaneously by varying center to center
distance between two cylinders (1.5–5.0 D) in the transverse direction and by changing the corner radius (R)
from R/D=0.0 (square) to 0.5 (circular) with 0.1 increment. Aerodynamic characteristics, including the lift and
drag coefficients, were quantitatively calculated and compared with each other. Vorticity contours were used as
visualization aids to understand the wake pattern and underlying mechanism. The results indicate different
features in lift and drag time histories and in wake patterns for a selected range. The numerical results reveal that
the flow characteristics and vortex shedding depend significantly on the corner radius and gap spacing. A square
cylinder exhibited the maximum average drag value, and the inverse was observed in the case of a circular
cylinder. Furthermore, aerodynamic forces were reduced by rounding the corner radius.

Introduction

In recent decades, extensive studies have examined flow over a
single cylinder, because it is a significant engineering problem, but the
flow over arrays of objects is a practical concern. Objects are repeatedly
observed in groups, including chimney stacks, bridge piers, offshore
platforms, and chemical reaction towers. In view of controlling vortex
shedding, different strategies have been applied by researchers to
control fluctuating vortex shedding induced forces on a bluff body to
avoid structural failure.

An elaborate method involves controlling the separation point and
modifying the shape of the body. However, most flows comprise simple
geometrical shapes, although a complex fluid flow or configuration is a
challenge in the field of fluid dynamics. In nature, the simplest forms of
multiple structures occur in pairs that can be arranged in tandem, side
by side, and in staggered configurations. A widespread review of these
diverse flow conditions was given by Zdravkovich [1,2] for a circular
cylinder at a high Reynolds number. Thus, considerable attention fo-
cused on the flow around circular cylinders, and scattered data are
available on the square cylinder. However, in nature, abundant en-
gineering structures are available with rectangular, square, and circular
cross-section areas.

The flow around a square cylinder was examined experimentally
[3,4] and numerically [5–7] by different researchers. The main

objective of these studies involved determining the effect of the
Strouhal number and drag coefficient on the Reynolds number and on
blockage ratio. Tamura et al. [8] experimentally investigated the tur-
bulent flow around different bodies by using a wind tunnel. In turbulent
flows, a shear layer aids in reattaching the flow on the side surface of a
square cylinder that detaches from the windward edge, even at a 0°
angle of attack.

Dalton et al. [9] performed a 2D numerical simulation by using
Navier-Stokes equations to simulate the flow around a diamond shaped
cylinder and a square cylinder in Reynolds number range of 250–1000.
They concluded that instability around the structures is reduced in the
laminar and turbulent region by rounding the corners. Miran and Sohn
[10] numerically investigated the effect of the rounded corner for a
single cylinder by using Navier-Stokes equations for Reynolds number
500. They found that square cylinder had the smallest Strouhal number
and increased with the increase of corner radius. Furthermore, they
reported minimum values of the mean drag coefficient and root mean
square (RMS) values of the lift coefficient at R/D=0.2.

The flow characteristic around two square cylinders is more com-
plex than that around a single cylinder. Yen and Liu [11] experimen-
tally studied the wake flow of two side-by-side square cylinders by
varying the distance < <(0 T/ D 12) at Reynolds numbers

< <Re2262 28, 000 where T/D is center-to-center distance between the
two cylinders. They classified the flow into the following three regimes:

https://doi.org/10.1016/j.rinp.2018.05.039
Received 11 April 2018; Received in revised form 16 May 2018; Accepted 23 May 2018

⁎ Corresponding author.
E-mail addresses: ehsan_adeeb@hotmail.com (E. Adeeb), chsohn@knu.ac.kr (C.H. Sohn).

Results in Physics 10 (2018) 256–263

Available online 07 June 2018
2211-3797/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22113797
https://www.elsevier.com/locate/rinp
https://doi.org/10.1016/j.rinp.2018.05.039
https://doi.org/10.1016/j.rinp.2018.05.039
mailto:ehsan_adeeb@hotmail.com
mailto:chsohn@knu.ac.kr
https://doi.org/10.1016/j.rinp.2018.05.039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinp.2018.05.039&domain=pdf


single mode vortex shedding <(T/ D 0.1), gap flow mode vortex shed-
ding < <(0.1 T/ D 5.5), and coupled vortex shedding mode >(T/ D 5.5).

Kolar et al. [12] experimentally measured the wake feature of two
side-by-side square cylinders at a Reynolds number of 23, 100 and found
that vortex created from the gap decayed quickly when compared with
created from the body. They also observed a predominant vortex street
in the anti-phase mode. The main focus of the study was a synchronized
regime. Alam and Zohu [13,14] used a flow visualization technique at a
low Reynolds number of 300 and reported four regimes based on T/D,
as follows: a single body regime for <(T/ D 0.2), wide street regime for

< <0.2 T/ D 1.1, transitional regime for < <1.1 T/ D 1.4, and coupled
regime for all other spacing ratios. Burattimi et al. [15] numerically
examined the flow around two square cylinders at a Reynolds number
of 73 and reported different ranges of the wake flow regimes, and their
results are consistent with those of Agrawal et al. [16], who used a
different numerical technique.

With respect to flow around two circular cylinders, many re-
searchers experimentally studied the side-by-side arrangement for the
intermediary ratio (1.0 to 3.0), where the wakes interaction occurred
strongly for a very high Reynolds number [17–19]. In these studies,
they concluded that, at small spacing ratios, the flow wake behind the
cylinder is asymmetrical and symmetrical for large spacing ratios. In
one experiment by Xu et al. [20], they investigated the gap spacing and
Reynolds number effect for a cylinder in a side-by-side configuration
using a fluorescence flow visualization technique. They concluded that
the Reynolds number can alter the formation of two vortex streets. A
technique blending the finite-difference and finite-element methods
was applied by Chang and Song [21] to investigate flow features, and it
showed different wake flow patterns around two side-by-side cylinders.

As shown by prior researchers, the wake flow pattern is completely
dependent on the distance between two cylinders and the Reynolds
numbers. However, previous studies mainly focused only on the square
and circular cylinders. Therefore, there is a paucity of studies ex-
amining a low Reynolds number regime for two square cylinders in a
side-by-side arrangement by varying the corner radius, and this should
be examined further. Additionally, it is necessary to document and
understand variations between the flow properties.

The purpose of this study is to investigate systematically and thor-
oughly the wake flow of two square cylinders by varying the corner
radius to understand the effect of the gap spacing’s role and the wake
flow pattern at a Reynolds number of 100. For the Fluid Structure
Interaction (FSI) problem, complex geometrical shapes normally de-
pend on an unstructured and body-fitted grid. A somewhat unconven-
tional alternative approach is the Immersed Boundary Method (IBM),
which has a benefit over conventional approaches for addressing the
stationary, moving, and flexible FSI problems. In this study, the
Immersed Boundary Lattice Boltzmann Method (IB-LBM) was employed
to study the wake pattern and measure the aerodynamic flow quan-
tities.

Computational methodology

Geometrical configuration and boundary condition

The system of interest involves examining the behavior of flow past
two side-by-side cylinders for various corner radii in a channel. Fig. 1(a)
shows the boundary condition and geometry of the computational do-
main for IB-LBM analysis. Two equal square cylinders with a dimension
of D are separated in the transverse direction (T). The corner radius of a
square cylinder, as in Fig. 1(b), is varied as ⩽ ⩽0.0 R/ D 0.5, where R
denotes the corner radius, and six corner radii are used with an incre-
ment of 0.1. The non-dimensional distance (T/D) between two cylinders
is varied from 1.5 to 5.0, and a total of six gap ratios (1.5, 2.0, 2.5, 3.0,
4.0, and 5.0) are examined in this numerical study.

The origin of the computing domain is considered at (0, 0). The
surface of the cylinder is assumed as no-slip. Top and bottom

boundaries of the domain are considered at a transversal distance of
25D from the upper and lower cylinders, respectively, and considered
as a free-stream with = ∞U U and =v 0. The formulation of the
boundary condition in LBM framework is considered as Guo [22]. A
uniform velocity profile is prescribed at the inlet, and it is considered as
20D from the cylinder L( )u . A far field is enacted such that it does not
affect the vortices formed in the wake region of the cylinder. An out-
flow boundary condition (zero normal pressure gradient) is assumed for
the outlet with ambient properties and considered at a distance L( )d of
40D that is sufficiently far to be considered as a far field.

Mathematical formulation

Lattice Boltzmann method

A two-dimensional immersed boundary lattice Boltzmann in-house
code was developed to simulate the interaction of fluid flows in the
present study. Frisch et al. [23] pioneered the idea of the principle of
many particles on the nodes. Collision and propagation are two major
steps in this scheme. At each time step, the particles collide with each
other and change their velocities, although the net mass and mo-
mentum remain the same. In this study, a D2Q9 scheme (D2 represents
two dimensions and Q9 refer to the nine particles) is employed with a
single relaxation time factor Bhatnagar Gross Krook (BGK) [24,25],
which is expressed as follows:
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where wi denote the corresponding weights: =w 16/360 , =w 4/36i for
=i 1, 2, 3, 4, and =w 1/36i for =i ρ5, 6, 7, 8; denotes the fluid density,

f denotes the body force acting on the fluid, → =u u v( , ) denotes the
velocity of the fluid at the node, and =c δx t( / 3 )s denotes the speed of
sound. Velocity vectors for this model are expressed as follows:
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where δt denotes the time step and → =δ r δx δy( , ) is the lattice spacing
in which fluid particles move to nodes. These equations of collision and
propagation are applied iteratively, and the boundary condition is ap-
plied after the propagation. The macroscopic fluid velocity →u and
density ρ at a node are expressed as follows:

∑=ρ f
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i
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Velocity corrected immersed boundary method

To mimic the no-slip boundary condition, a velocity correction
based immersed boundary method (Wang et al. [26]) is coupled with
LBM. In the formulation, the velocity is modified in the neighboring
points of the immersed boundary. The corrected velocity field is ob-
tained by a Lagrangian interpolation to satisfy the no-slip boundary
condition at the boundary intersection points p p( , )x y (Fig. 2(a)), as
follows:

∑ ∏=
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−
−
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r r
r r
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c
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k j
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where k denotes the velocity corrected points. a and b at the horizontal
mesh line, c and d at the vertical mesh line, i denotes the points in the x-
direction (p a a b, , ,x 1 , and b1), and j denotes the points along the y-
direction (p c c d, , ,y 1 , and d1). The mean value is used if the velocity is
modified more than once at a mesh point. Subsequently, the corrected
velocity is used to determine the body force, as follows:
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In the study, the non-dimensional form of drag and lift forces is
expressed as follows:
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where CL and CD denote the lift and drag force per unit length,

respectively. The Root Mean Square (RMS) value of the lift coefficient is
expressed as follows:
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where N defines the number of the time steps, and CL j, defines the in-
stantaneous lift coefficient. To obtain accurate results, the time aver-
aged value of drag and lift is computed after the solution achieves
steady state periodicity. The Strouhal number is defined as, where F is
vortex shedding frequency:

=St FD
U (11)

Grid independence study

In this study, three cases of mesh size are employed, namely, G1,
G2, and G3, for the mesh independent study. The remaining parameters
for the mesh generation and a comparison between the meshes is given
in Table 1 for flow past a square and circular cylinder.

In addition to a comparison of grid dependence, aerodynamics
quantities are acquired and equated with previous data, and these are
listed in Table 2. The results are consistent with those in previous
studies, and this ensures the reliability of the code. With respect to the
subsequent analysis, all computations are performed by using the G2
grid.

Results and discussion

Wake pattern

Different types of flow pattern occur that totally depend on the
transverse spacing between the cylinders. Fig. 3(a) shows the effect of
wake pattern around two cylinders in side-by-side configuration at

=T D/ 1.5 by changing corner radius ⩽ ⩽R D0.0 / 0.5. In the down-
stream, both bodies vortex shedding resembles a single cylinder vortex
pattern at each time instance, with a single vortex in the downstream.

Fig. 1. Geometric configuration (a) computational domain with boundary condition (b) corner radius.

Fig. 2. Immersed-boundary [26] intersection points (hollow circles) with a
horizontal grid line; boundary intersection points (hollow square) with a ver-
tical grid line; and boundary-dependent points (solid circles) along the hor-
izontal grid line.

Table 1
Grid dependence study.

Grid name δx CD St. No. Type of body

G1 0.050D 1.51 0.148 Square
1.41 0.158 Circular

G2 0.025D 1.50 0.146 Square
1.40 0.168 Circular

G3 0.010D 1.50 0.146 Square
1.40 0.168 Circular
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Inner vortices of upper and lower cylinders interact more intensely and
cancel each other’s effect. Mainly, vortex shedding occurs only by the
outer vortices of both bodies.

At transverse spacing of 2.0D, single vortex patterns become dis-
turbed: one cylinder wake influences another body’s wake. Strong in-
teraction of the wakes is observed between bodies when the center-to-
center distance is up to 2.0D for all corner radii. The instantaneous
vorticity contour at 3.0D are shown in Fig. 3(b) which shows a biased
wake flow pattern, in addition to an extremely wider wake. The bodies
vortex shedding influences each other. Vortices of the same strength are
shed exactly at the same time and generate in the form of long strips, as
opposed to a round shape for all corner radii. One interesting ob-
servation is that a single vortex is shed behind each cylinder and shows
a bias: The wake behind one cylinder is larger and wider than that of
the other one. This is occasionally observed for the upper cylinder and
for the lower cylinder. This biased wake pattern behavior is observed
for corner radius ⩽ ⩽0.0 R/ D 0.4 until 3.0D, and it is 2.5D for

< ⩽0.4 R/ D 0.5.
When T/D increases further from the above described corner radius

transverse spacing, the interaction between cylinder vortices becomes
successively weaker, and vortices shed more independently. It is ob-
served that a vortex from both cylinders never cross the imaginary
centerline of the domain. The vortices of the opposite strength from the
upper and lower bluff bodies are synchronous and shed collectively.
Single-body vortex pattern appear separately for each body and exhibit
extremely weak interaction. Separate vortices shed from both the cy-
linders create a binary vortex street of the wake in the downstream. In
terms of the shape of the vortex, they are similar to single bluff body
vortices for their respective corner radii. An additional observation is
that the wake width is altered by changing the corner radius of the
body. A square cylinder =(R/ D 0.0) results in a wider wake that de-
creases when the corner radius increases, and the circular cylinder

=(R/ D 0.5) results in the narrow wake (Fig. 3(c)).
Fig. 4 shows the instantaneous vortex pattern when center to center

distance is 1.5D for =R/ D 0.0. At this distance, different kind of vortex
pattern is observed for all the corner radii. Fig. 4(a) shows that vortex
shedding occurs only because of the free stream sides (outer) of both
cylinders. In Fig. 4(b), the upper cylinder free stream side vortex (outer)
and lower cylinder inner vortex merge together and shed combined,
whereas the inner vortex of the upper cylinder is trapped between
them. Fig. 4(c) and (d) show that one of the outer wakes is much longer
than normal. Because of the very small gap, the vortex shedding of the
wake becomes quite complex, irregular, and arbitrary at this distance.
In all the time steps, the inner vortices of both bodies have much less
contribution in vortex shedding. Thus, vortex-shedding process occurs
arbitrarily, which is observed for all corner radii at this distance. An
analysis of the flow pattern until a 2.0D distance indicates that the
phenomena of merging vortices is non-periodic, but the shedding pat-
tern remains like that of a single cylinder until 1.5D.

Aerodynamic forces

Lift and drag time histories show different features in a side-by-side

configuration by changing the center-to-center distance (T/D) between
bodies. However, it shows an in-phase phenomenon for time histories in
tandem configuration [1,2] for a circular cylinder. Different features of
drag and lift =(R/ D 0.5) time histories are shown in Fig. 5 with respect
to different transverse spacing ratios =T/ D 1.5, 2.5, and 5.0.

Fig. 5(a) and (b) shows CL and CD time histories for a close center-to-

Table 2
Comparison with extant studies at Re 100.

Previous studies CL RMS, CD St. No. Type of body

Berrone et al. [27] – 1.48 0.145 Square
Lam et al. [28] 0.18 1.49 0.144 Square
Present result 0.18 1.50 0.146 Square
Williamson (Exp) [29] – – 0.164 Circular
Zdravkovich – 1.40 0.167 Circular
Kang (Exp) [30] 0.32 1.33 0.165 Circular
Lee and Yang [31] 0.33 1.34 0.165 Circular
Present result 0.33 1.40 0.168 Circular

Fig. 3. Wake pattern for all corner radii: T/D (a) 1.5 (b) 3.0 (c) 5.0.
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center distance between bodies =(T/ D 1.5). Time histories show that
stabilization never occurs for a periodic pattern and fluctuations occur
in time histories, thereby producing non-periodicity in the flow. In a
side-by-side arrangement, the overall drag increases on both bodies, in
contrast to the tandem arrangement [1,2], in which single-body wake
phenomena reduce the drag on the downstream body. The amplitude
fluctuation values are low for lift time histories. Both drag and lift ex-
hibit non-periodic behavior, which is observed for a long period com-
pared with other transverse spacing ratios. Similar phenomena are
observed for all corner radii ⩽ ⩽(0.0 R/ D 0.5) until a 2.0D transverse
spacing.

When center to center distance is increased, the shedding pattern
changes from periodically unstable and moves towards periodically
stable shedding. In this gap ratio (for corner radius ⩽ ⩽0.0 R/ D 0.4 till
3D, and it is 2.5D for < ⩽0.4 R/ D 0.5) both bodies lift time history
shows no-phase difference when flow field get periodic. The reverse is
observed in the drag graph as flow get periodically stable drag time
histories start showing out of phase phenomena (Fig. 5(b) and (d)). A
similar trend is observed for all corner radii. With respect to a side by
side arrangement, a different value is observed for =R/ D 0.5 due to
corner radius because it is difficult for wakes to interact with each
other.

When center-to-center distance further increases (for corner radius
⩽ ⩽0.0 R/ D 0.4 greater than 3D, and it is greater than 2.5D for
< ⩽0.4 R/ D 0.5), the flow in the downstream region stabilizes quickly,

and both bodies vortex shedding do not affect each other, as shown in
Fig. 5(e) and (f). As the flow in the downstream becomes periodically
stable, a phase difference is exhibited by the upper and lower bluff
bodies in the lift time history, and no phase difference is observed in the
drag graph. The reverse is observed when the transverse spacing is
greater than 2.0D. An interesting observation for all the spacing is that
the lift coefficients of both bodies exhibit different force amplitudes,
where the square cylinder =(R/ D 0.0) exhibits a lower fluctuation
when compared with that of a circular cylinder =(R/ D 0.5), and it in-
creases as R/D increases. Overall, a mean negative lift is generated by
the upper body, and a mean positive lift is generated by the lower body
in all transverse spacing ratios. A transverse gap (T/D=1.5 and 2.0)
between the cylinders (with a lower pressure in the gap and a higher
pressure on the sides of the body) forces the flow to pass with increased
speed from the gap. Although the mean lift is zero for a single cylind-
rical object, the pressure difference generated by this transverse

arrangement produces a mean negative and positive lift on the bodies.
The effects of the corner radius and transverse spacing on the

average drag coefficient are shown in Fig. 6(a) and (b) for the upper
and lower bodies, respectively. Drag for the upper and lower bluff
bodies exhibit almost identical values, even at a very small distance (T/
D=1.5), when compared with a tandem arrangement [1–2] in which
large variations in aerodynamic coefficients occur when the cylinder is
placed in a low spacing ratio. Fig. 6(a) and (b) shows that, by increasing
the transverse distance, the drag exhibits a linearly decreasing trend for
the upper and lower bodies for all corner radii, and the values approach
to their respective corner radii. This is most likely because the gap flow
interaction of the bodies becomes insignificantly effective. Additionally,
by changing the corner radius, the flow separation is delayed, and this
results in less drag on the bluff body. R/D=0.0 exhibits a maximum
value, and R/D=0.5 exhibits a minimum value.

The mean lift coefficients for the upper and lower cylinders also
exhibit identical magnitudes, although with opposite signs; thus, the
resultant net lift force is not zero for each cylinder. The effects of the
corner radius and gap on CLRMS for the upper and lower bodies are
shown in Fig. 7(a) and (b). When center-to-center distance is low (T/
D=1.5D), R/D=0.5 exhibits a maximum value, and R/D=0.0 ex-
hibits a minimum value for CLRMS. Overall, with an increase in the T/D
and decrease in R/D (starting from the circular cylinder), the lift trend
decreases. As shown in Fig. 7(a) and (b), the interaction for R/D=0.5
becomes weak earlier compared with the other corner radius bodies,
thereby ensuring the absence of interaction with other bluff body
wakes. All bodies corner radii exhibit a decreasing trend as transverse
spacing increases.

Fig. 8(a) and (b) shows the time-averaged streamlines for R/D=0.0
and 0.5 at transverse spacing of 2.5D and 4D. At a low gap ratio, both
bodies time-averaged streamlines illustrate that they interact with each
other strongly. As the transverse spacing value increases, streamlines
become independent and do not have any influence on each other.

When both bodies exhibit a close gap, significant changes occur in
the flow characteristics, and the wake structure is completely different
from that of a single body. An increase in the center-to-center distance
between the two bodies makes the interaction weaker, and the gap
turns out to be insignificant irrespective of the corner radius. Therefore,
the values ultimately approach the single-body corner radius. In the
side-by-side configuration, the drag is reduced on both bodies because
of the rounding of the corners of a square cylinder and by increasing the

Fig. 4. Instantaneous vortex pattern at T/D=1.5 for R/D=0.0: (a) vortex shedding from freestream side (b) inner vortex of upper cylinder trap in between two
vortices (c) upper cylinder outer vortex stretched (d) lower cylinder outer vortex stretched.
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Fig. 5. Time histories of the lift and drag coefficients for R/D=0.5: (a) T/D=1.5 (b) T/D=2.5 (c) T/D=3.0.

Fig. 6. Variation in the average drag coefficient by varying the corner radius and center-to-center distance: (a) upper cylinder (b) lower cylinder.
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T/D.

Conclusions

In this study, the IB-LBM method was used to predict the aero-
dynamic flow characteristics of a square cylinder in a side-by-side
configuration, with different rounded corners at Reynolds number 100.
For this purpose, an in-house numerical code was developed and vali-
dated with available published data, which shows good agreement with
the previous results. In the side-by-side configuration, the drag de-
creased by rounding the corners of a square cylinder and by increasing
the transverse distance.

For ⩽ ⩽0.0 R/ D 0.5, ⩽T/ D 1.5, both body wakes merged with each
other and acted like a single structure wake for all corner radii and shed
like a single body. The gap between the two bodies was small and
generated a pressure difference that produced mean negative and po-
sitive lift for upper and lower bodies, respectively. Thus, R/D=0.0
(square cylinder) resulted in a larger and wider wake when compared
with R/D=0.5 (circular cylinder) and other corner radius bodies. The
flow separation was delayed by changing the corner radius; thus, R/
D=0.0 showed a higher drag value. The time histories for lift and drag
never became periodically stable at transverse spacing (1.5D and 2.0D).

For ⩽ ⩽0.0 R/ D 0.4 ( ⩾ ⩽2.0 T/ D 3.0) and R/D=0.5
( ⩾ ⩽2.0 T/ D 2.5), the time history (lift and drag) and shedding pattern
of flow moved from periodically unstable to periodically stable beha-
vior. Wake bias was observed behind each cylinder, which is com-
pletely arbitrary. Thus, there was an impact on each other’s wake,
which made a much wider wake.

With respect to ⩽ ⩽0.0 R/ D 0.4 (T/D > 3.0) and for R/D=0.5 (T/
D > 2.5), the wake interaction between the two cylinders became
progressively weaker by increasing the spacing. The wake vortices of

both bodies never crossed the imaginary centerline of the domain and
produced a single body wake pattern for their respective corner radii.
Further, the values of the aerodynamic coefficients approached those of
a single body.
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