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“Life must be lived forwards, but can only be understood

backwards”

– Søren Kierkegaard
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SUMMARY

Stochastic optimal control has seen significant recent development, motivated by

its success in a plethora of engineering applications, such as autonomous systems,

robotics, neuroscience, and financial engineering. Despite the many theoretical and

algorithmic advancements that made such a success possible, several obstacles remain;

most notable are (i) the mitigation of the curse of dimensionality inherent in optimal

control problems, (ii) the design of efficient algorithms that allow for fast, online

computation, and (iii) the expansion of the class of optimal control problems that

can be addressed by algorithms in engineering practice.

Prior work on stochastic control theory and algorithms mitigates the complex-

ity of the optimal control problem by sacrificing global optimality. Furthermore,

several restrictive conditions are imposed, such as differentiability of the dynamics

and cost functions, as well as certain assumptions involving control authority and

stochasticity. Thus, state-of-the-art algorithms may only address special classes of

systems. The goal of this dissertation is to establish a framework that goes beyond

these limitations. The proposed stochastic control framework capitalizes on the in-

nate relationship between certain nonlinear partial differential equations (PDEs) and

forward and backward stochastic differential equations (FBSDEs), as demonstrated

by a nonlinear version of the Feynman-Kac lemma. By means of this lemma, we are

able to obtain a probabilistic representation of the solution to the nonlinear Hamilton-

Jacobi-Bellman equation, expressed in form of a system of decoupled FBSDEs. This

system of FBSDEs can then be solved numerically in lieu of the original PDE prob-

lem. We present a novel discretization scheme for FBSDEs, and enhance the resulting

xi



algorithm with importance sampling, thereby constructing an iterative scheme that

is capable of learning the optimal control without an initial guess, even in systems

with highly nonlinear, underactuated dynamics.

The framework developed within this dissertation addresses several classes of

stochastic optimal control, including L2, L1, game theoretic, and risk sensitive control,

in both fixed-final-time as well as first-exit settings.

xii



I

INTRODUCTION

1.1 Motivation and Previous Work

Stochastic optimal control lies within the foundation of mathematical control theory

ever since its inception. Its usefulness has been proven in a plethora of engineering

applications, such as autonomous systems, robotics, neuroscience, and financial engi-

neering, among others. Specifically, in robotics and autonomous systems, stochastic

control has become one of the most successful approaches for planning and learn-

ing, as demonstrated by its effectiveness in many applications, such as control of

ground and aerial vehicles, articulated mechanisms and manipulators, and humanoid

robots [108–110,123,127,131]. In computational neuroscience and human motor con-

trol, stochastic optimal control theory is the primary framework used in the process

of modeling the underlying computational principles of the neural control of move-

ment [130, 132]. Furthermore, in financial engineering, stochastic optimal control

provides the main computational and analytical framework, with widespread appli-

cation in portfolio management and stock market trading [102,121].

By and large, prior work on stochastic control theory and algorithms imposes re-

strictive conditions such as differentiability of the dynamics and cost functions, and

furthermore requires certain assumptions involving control authority and stochastic-

ity to be met. Thus, it may only address special classes of systems. The goal of this

dissertation is to establish a framework that goes beyond these limitations. In par-

ticular, we propose a learning stochastic control framework which capitalizes on the

innate relationship between certain nonlinear partial differential equations (PDEs)

and forward and backward stochastic differential equations (FBSDEs), demonstrated

1



by a nonlinear version of the Feynman-Kac lemma. By means of this lemma, we are

able to obtain a probabilistic representation of the solution to the nonlinear Hamilton-

Jacobi-Bellman equation, expressed in form of a system of decoupled FBSDEs. This

system of FBSDEs can then be simulated by employing linear regression techniques.

We present a novel discretization scheme for FBSDEs, and enhance the resulting

algorithm with importance samping, thereby constructing an iterative scheme that

is capable of learning the optimal control without an initial guess, even in systems

with highly nonlinear, underactuated dynamics. In addition, the proposed approach

exhibits the following characteristics:

• Perform stochastic control and trajectory optimization without linearization of

the dynamics and quadratic approximations of the cost functions.

• Find nonlinear feedback control policies that yield higher performance than

their traditional trajectory optimization counterparts.

• Be based on sampling, scalable, and therefore directly applicable to high di-

mensional systems, and able to accommodate parallel computation.

• Expand the class of systems currently addressed by traditional stochastic opti-

mal control methods.

The framework developed within this dissertation addresses several classes of stochas-

tic optimal control, including L2, L1, game theoretic, and risk sensitive control, in

both fixed-final-time and first-exit settings. In what follows, we review each of the

aforementioned categories separately.

1.1.1 Stochastic L2-Optimal Control

The literature on stochastic optimal control has experienced a significant increase in

attention during the last years. In most cases, the problem of obtaining an optimal

control is associated with the solution of a generally nonlinear, second-order (in the

2



case of stochstic control) PDE, known as the Hamilton-Jacobi-Bellman (HJB) equa-

tion. A classification of different available methods can be achieved based on whether

the solution of this PDE is sought for over the entire domain, or locally around a

nominal system trajectory. In the first case, several attempts have been made to

address the difficulty inherent in solving such nonlinear PDEs, as well as the curse of

dimensionality, with various different methods and approaches. Such approaches in-

clude the use of the Galerkin method [7], level set methods [91], max-plus expansion

of solutions [86], high-order Taylor series expansions [2], or semidefinite program-

ming [72] for deterministic optimal control problems, while a stochastic setting is

considered in [48, 53, 54]. With only but a few exceptions, most of these methods

suffer from the curse of dimensionality. On the other hand, the latter category of lo-

cal methods includes traditional approaches such as Stochastic Differential Dynamic

Programing (S-DDP) [128,133], which is based on linearization of the dynamics and

a quadratic approximation of the value function around nominal trajectories, as well

as sampling-based methods.

Sampling-based methods, within stochastic control, rely on a probabilistic repre-

sentation of the solution to linear backward PDEs. This probabilistic representation is

addressed by forward sampling of state trajectories via Stochastic Differential Equa-

tions (SDEs), and the numerical evaluation of expectations. Several results based

on this framework appear in the literature under the names of Path Integral (PI)

Control [58–60, 126, 128], Kullback-Leibler (KL) Control, or Linearly Solvable Opti-

mal Control (LSOC) [34, 131]. These methods have become an exceedingly popular

approach to solve nonlinear stochastic optimal control problems due to their ability

to accommodate scalable iterative schemes. Their fundamental characteristic is that

they rely on the exponential transformation of the value function. Under the exponen-

tial transformation, and by introducing certain restrictions between control authority,

cost and stochasticity, there exists a direct relationship between the HJB PDE and the

3



backward Chapman-Kolmogorov PDE. The latter PDE, being linear, permits then

the use of the linear Feynman-Kac lemma [61], which relates backward linear PDEs

to forward SDEs. Thus, the corresponding optimal control problem can be solved

using forward sampling. This approach has interesting implications, suggesting an

information theoretic interpretation of stochastic optimal control, as well as further

connections to the Legendre transformation in statistical mechanics [126,129]. While

forward sampling-based methods exhibit several advantages against traditional meth-

ods of stochastic control, such as the mild conditions on the differentiability of the

cost and the stochastic dynamics, there are also some key disadvantages which pertain

to the nature of the exponential transformation. In particular, the effect of the expo-

nential transformation can be identified as the mapping of the value function v(t, x),

which has range [0,∞), to the desirability function ψ(t, x), whose range is (0, 1]. This

mapping leads to a drastic reduction in the ability to distinguish states with high cost

(low desirability) from states with low cost (high desirability). This issue has been

partially addressed with renormalization of the trajectory cost [128]. Finally, while

the necessary constraint introduced between control authority and stochasticity can

lead to symmetry breaking phenomena and delayed decision [58, 59], it is a rather

restrictive assumption whenever applications to engineered systems are considered.

1.1.2 Stochastic L1-Optimal Control

By and large, the literature on optimal control deals with the minimization of a per-

formance index which penalizes control energy, since the input appears in quadratic

form as part of the running cost. Such problems are typically referred to as minimum

energy problems in optimal control theory– they involve the minimization of the L2-

norm of an otherwise unconstrained control signal. While L2 minimization can be

useful in addressing several optimal control problems in engineering (e.g., prevent-

ing engine overheating, avoiding high frequency control input signals etc.), there are

4



practical applications in which the control input is bounded (e.g., due to actuation

constraints), and the L1-norm is a more suitable choice to penalize. These problems

are also called minimum fuel problems, due to the nature of the running cost, which

involves an integral of the absolute value of the input signal. Minimum fuel control

appears as a necessity in several settings, especially in spacecraft guidance and con-

trol [29, 117], in which fuel is a limited resource. Indeed, in such applications, using

the L2-norm results in significantly more propellant consumption as well as undesir-

able continuous thrusting. In some illustrative examples, this fuel penalty can be as

high as 50% [111].

The notion of L1-optimal control is also tightly related to Maximum Hands-Off

control [97, 98]. The distinguishing characteristic of a hands-off controller is its ob-

jective to retain a zero control input value over an extended time interval. In other

words, the goal of “maximum hands-off” control is to accomplish a specific task while

applying zero input for the longest time duration possible. Applications of this type

of control range from the automotive industry (engine stop-start systems [33], hybrid

vehicles [18]) to networked and embedded systems [57,68]. The “hands-off” property

is especially in a discrete context equivalent to sparsity of a signal, i.e., minimizing the

total length of intervals over which the signal takes non-zero values. The relationship

between L1-optimality and the “hands-off” property, or sparsity, is shown in [97,98].

Specifically, if an L1-optimal control problem is normal (see [4], as well as Remark

6.1 in Chapter 6), then its optimal solution is also the optimal sparse, “hands-off”

solution.

Despite the aforementioned advantages, investigation of L1-optimal control in

the literature is not as widespread as L2, since it leads to significantly more com-

plicated optimal control structures. These structures are usually a combination of

bang-off-bang control (i.e, the control signal switches between its extrema and zero)

5



and singular control, in which the control input receives intermediate values. More-

over, the particular structure often depends on the specific initial condition or other

parameter values, and neither existence, nor uniqueness of solutions, can always be

guaranteed [4]. All these subtleties complicate the process of finding a solution, which

partially explains the scarcity of L1-minimization results in the literature.

1.1.3 Differential Games and Risk Sensitive Control

The origin of game-theoretic control dates back to the work of Isaacs (1965) [55] on

differential games for two strictly competitive players, which provided a framework

for the treatment of such problems. Isaacs associated the solution of a differential

game with the solution to a HJB-like equation, namely its min-max extension, also

known as the Isaacs (or Hamilton-Jacobi-Isaacs, HJI) equation. This equation was

derived heuristically by Isaacs under the assumptions of Lipschitz continuity of the

dynamics and the payoff, as well as the assumption that both of them are separable

in terms of the minimizing and maximizing controls.

Berkovitz [11] addressed differential games using standard variational techniques,

a framework which was later adopted by Bryson, Ho, and Baron [52] to treat a special

case of differential games, namely, games of pursuit and evasion. Pontryagin also ad-

dressed pursuit and evasion problems within the framework of differential games [104].

A treatment of the stochastic extension to differential games was first provided in [70].

Therein, the authors provide a general definition of stochastic differential games, and

derive the underlying PDE, which is similar to the one derived by Isaacs, adjusted

by a term owing to stochastic effects. They also present sufficient conditions for the

existence of a saddle point, and propose a finite difference scheme as a numerical

procedure to solve the game. A series of papers exist investigating conditions for ex-

istence and uniqueness of a value function in stochastic two-player, zero-sum games;

see for example [17,24,40,51].
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Despite the plethora of theoretical work in the area of differential games, the

algorithmic part has received significantly less attention, due to the inherent difficulty

of solving such problems. Apart from results addressing special cases of differential

games (such as linear games with quadratic penalties, e.g. [32]), only a few numerical

approaches have been suggested in the past, notably the Markov Chain approximation

method [69, 120]; in general, however, these numerical procedures have found only

limited applicability due to the “curse of dimensionality.” Only recently, a specific

class of minimax control trajectory optimization methods have been derived, all based

on the foundations of differential dynamic programming (DDP) [92,93,124].

Game-theoretic or min-max extensions to optimal control are known to have a

direct connection to robust and H∞ nonlinear control theory, as well as to risk-

sensitive optimal control [5, 25, 56]. The relationship to the latter category was first

investigated by Jacobson in [56]. References [10,135] and [41] investigate risk-sensitive

stochastic control in an LQG setting, and for nonlinear stochastic systems and infinite

horizon control tasks, respectively. Ever since the fundamental work of [41, 56, 135],

the topic of risk sensitivity has been studied extensively. In a risk-sensitive setting, the

control objective is to minimize a performance index, which is expressed as a function

of the mean and variance of a given state- and control-dependent cost. Therefore,

the element of risk sensitivity arises from the minimization of the variance of that

cost. An application of the Dynamic Programming principle on the risk-sensitive

optimization criterion results in a backward PDE that is similar to the HJI PDE in

which players pay an L2-type penalty for their control effort. Thus, risk-sensitive

optimal control problems exhibit the same structure as that of a class of stochastic

differential games [5].
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1.2 Statement of Contributions

In this dissertation, we aim to develop a sampling-based control algorithm which

capitalizes on the innate relationship between certain nonlinear PDEs and Forward

and Backward SDEs, demonstrated by a nonlinear Feynman-Kac lemma. By means

of this lemma, we obtain a probabilistic representation of the solution to the nonlinear

HJB equation, expressed in the form of a system of decoupled FBSDEs. This system

of FBSDEs can be solved by employing linear regression techniques. To enhance the

efficiency of the proposed scheme when treating more complex nonlinear systems,

we then derive an iterative algorithm based on Girsanov’s theorem on the change of

measure, which features importance sampling for the case of FBSDEs. The framework

is capable of addressing several types of stochastic optimal control problems, such as

L2, L1, risk-sensitive control, and differential games, considering both fixed final time

and first exit settings. The contributions in this dissertation vis-à-vis prior work in

the literature are as follows:

• With respect to the state-of-the-art on sampling-based methods for stochastic

L2-optimal control: There is a significant difference between the proposed ap-

proach and the already existing sampling-based formulations (such as PI, KL,

and LSOC). Specifically, our approach addresses directly the nonlinear PDE,

while the latter make use of the exponential transformation, which under cer-

tain conditions yields a linear PDE problem, and then use forward sampling to

address that linear problem. Thus, the herein proposed framework relaxes these

restrictive conditions. Furthermore, while traditional sampling-based methods

yield a solution only for the initial condition point (t, x) and must be applied in

a receding horizon fashion, the solution obtained through the proposed method

extends from the initial condition (t, x) to the terminal time T , covering the

sampled state space area.
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• With respect to stochastic L1-optimal control: It is shown that L1-optimal con-

trol problems of the form considered within this research correspond to a par-

ticular FBSDE problem, in light of the nonlinear Feynman-Kac lemma, which

can then be solved in lieu of the original PDE problem. This work is the first to

address L1-optimal problems in this context, and, to the best of our knowledge,

the first to investigate stochastic L1-optimal control problems in continuous

time.

• The class of problems addressed by the proposed framework is extended to treat

cases in which the time horizon is not prespecified, as well as differential games.

• With respect to prior work on the nonlinear Feynman-Kac lemma, its applica-

tions to stochastic optimal control, and FBSDEs: The majority of prior work

in this case appears mainly within the field of mathematical finance [19], and is

typically limited to numerical schemes which are not scalable. Although some

prior work exists addressing more complex generalizations of the class of prob-

lems we consider in this dissertation (see, for example, [22, 62, 63]), the results

obtained therein have extremely limited practical applicability when engineer-

ing systems are concerned. This is because the preexisting numerical schemes

are investigated with a focus on their theoretical properties, rather than their

suitability for engineering applications. The fact that these schemes are unable

to cope with the complexity of higher dimensional systems featuring nonlinear

dynamics, as it is mostly the case in practical applications, is largely overlooked.

As a result, most of the existing work is not accompanied by simulations, ex-

cept for cases limited to simple, and mostly scalar, linear systems. In contrast,

the applicability of the framework proposed in this dissertation is demonstrated

on a four dimensional, highly nonlinear, unstable, underactuated system. This

would be practically infeasible without three key elements, proposed herein for
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the first time on FBSDEs and thus defining the novelty in this approach:

i) Restricting the class of problems to systems affine in controls with quadratic

(or L1) control penalty. This eliminates the need to perform numerical

optimization over the control input at each time step, and allows us to

compute optimal policies by using sampling only.

ii) A modified FBSDE discretization scheme featuring only one regression per

time step (instead of the p+ 1 per time step, where p is the dimensionality

of noise, performed in state-of-the-art discretizations), and is shown to

outperform the most established existing scheme in simulation accuracy in

control applications.

iii) Most importantly: the iterative scheme utilizing Girsanov’s theorem on

the change of measure for FBSDEs. This step is absolutely critical if one

wishes to apply any FBSDE algorithm for control of more complex systems,

as it is practically infeasible to do so without importance sampling.

1.3 Outline

The remainder of this dissertation consists of the following chapters, the content of

which is described as follows:

• Chapter 2 introduces notation and definitions used throughout this dissertation.

Furthermore, it presents a brief review of the relevant theoretic background

concerning probability theory, and forward and backward stochastic differential

equations; in particular, definitions of the forward and backward processes, the-

orems concerning existence and uniqueness of solutions to systems of FBSDEs,

the Markovian property of FBSDEs, and their connection to certain PDEs via

a nonlinear Feynman-Kac type formula.
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• In Chapter 3 we define the L2- type formulation of the stochastic optimal con-

trol problem. This specific class of stochastic optimal control allows for an

explicit minimization of the Hamiltonian term within the Hamilton-Jacobi-

Bellman (HJB) equation, thus simplifying the structure of the problem. We

demonstrate that under a certain decomposability condition, the HJB equation

lies within the class of PDEs that allow a probabilistic expression of their solu-

tion, in light of the nonlinear Feynman-Kac lemma, through FBSDEs. Thus, we

can obtain the solution to the HJB equation by solving the associated system

of FBSDEs.

• Chapter 4 is devoted to the investigation of numerical methods for the class of

FBSDEs involved in this dissertation. In general, the procedure of obtaining

a numerical solution for a system of FBSDEs consists of three elements: (i)

a time discretization scheme for the forward process, (ii) a time discretization

scheme for the backward process, and (iii) a numerical approximation scheme

for the conditional expectation evaluation in each time step of the backward

process. We provide a brief overview of the literature, introducing some of the

most thoroughly studied time discretization and conditional expectation ap-

proximation schemes. We then propose a novel and efficient numerical scheme,

suitable for the particular type of FBSDE systems considered in this disserta-

tion, that greatly reduces the computational complexity in obtaining a solution,

while exhibiting higher accuracy in simulations.

• Chapter 5 investigates the construction of an iterative scheme capable of ad-

dressing control problems that exhibit more complex, nonlinear dynamics. Specif-

ically, we solve the optimal control problem iteratively by suitably modifying

the drift of the forward process, thus directing the exploration of the state space
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towards the given goal state, or any other state of interest, reachable by con-

trol. Furthermore, we discuss the scheme’s convergence and error sources, and

demonstrate its effectiveness in simulation.

• In Chapter 6 we turn our attention to stochastic L1-optimal control problems.

We begin with a definition of the L1-type formulation, and show that this

specific class of stochastic optimal control also allows, in a manner similar to

its L2 counterpart, for an explicit minimization of the Hamiltonian term within

the HJB equation. We then demonstrate that under the same decomposability

condition as in Chapter 3, the HJB equation lies within the class of PDEs that

allow a probabilistic expression of their solution via the nonlinear Feynman-Kac

lemma. Thus, we can obtain the solution to the HJB equation by solving the

associated system of FBSDEs. The chapter is concluded with simulations on

different L1-optimal control problems.

• In Chapter 7, we demonstrate that framework developed in this dissertation

can be employed in the solution of a variety of classes of stochastic differential

game problems. Specifically, we show that the Hamilton-Jacobi-Isaacs PDEs,

corresponding to L2 or L1 penalties for the players, assume simplified expres-

sions under affine dynamics. Furthermore, an extension of the decomposability

condition of Chapter 3 is enough to allow for a probabilistic representation of

the solutions to these HJI PDEs via FBSDEs. Finally, we note that since the

simplified HJI PDE that appears for the L2-case of stochastic differential games

exhibits the same form as the HJB PDE of a risk-sensitive optimal control prob-

lem, the herein proposed scheme is applicable to this type of stochastic optimal

control as well. The chapter is concluded with simulations.

• Chapter 8 is devoted to the extension the framework presented in this disserta-

tion to address stochastic optimal control problems in which we do not specify
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a priori a fixed time of termination, but rather, termination occurs when a par-

ticular state (or set of states) is reached. In the context of differential games,

the boundary of such a set of states is called a terminal surface. Simulations

illustrate the main idea in this chapter.

• In Chapter 9, we apply the proposed algorithm on a stochastic, first-exit, L1-

optimal control problem, namely the soft landing problem in minimum-fuel

powered descent guidance. The objective is to successfully land a spacecraft

on a planet using the least amount of fuel, while concurrently ensuring that

the landing speed is as low as possible, in order to minimize the risk of a

harmful impact. The deterministic version of the problem allows for a simplified

expression for the control input in terms of the switching time. Thus, we can

compare the performance of the deterministic control law, applied both in an

open loop and closed loop fashion, to that of the feedback control law obtained

from the proposed framework, in the presence of a stochastic environment.

• Finally, Chapter 10 summarizes the key contributions of this dissertation and

outlines future directions of research.
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II

BACKGROUND AND PRELIMINARIES

In this chapter, we introduce notation and definitions used throughout this disserta-

tion. We also review the relevant theoretic background concerning probability the-

ory, stochastic calculus, and forward and backward stochastic differential equations.

Specifically, we define the forward and backward processes, and review the theorems

concerning existence and uniqueness of solutions to systems of FBSDEs, the Marko-

vian property of FBSDEs, and their connection to certain PDEs via a nonlinear

Feynman-Kac type formula.

2.1 Notation and Acronyms

The following list summarizes notation and acronyms used in this dissertation.

R the set of reals

R+ the set of nonnegative reals

Rn n-dimensional Euclidean space

Rn×m all n×m real-valued matrices

In the n× n identity matrix

A> the transpose of a matrix A

trA the trace of a matrix A

sgn(x)


1, if x ≥ 0

− 1, if x < 0

Ck the space of functions with continuous derivatives up to

order k
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C1,2(R× Rn) the space of functions f(t, x) : R × Rn → R which are

C1 w.r.t. t ∈ R and C2 w.r.t. x ∈ Rn.

vx, vxx the gradient and Hessian, respectively, of a function v

, defined as

≡ identically equal to

≈ approximately equal to

Ft filtration at time t

∪, ∩ union, intersection

E[·] mathematical expectation

E[·|Ft] expectation conditioned on Ft

Lp([0, T ];X) the space of measurable functions f : [0, T ] → X such

that E[
∫ T

0
||f(t)||pdt] <∞, for 1 ≤ p <∞.

N (µ, σ2) Gaussian (normal) distribution with mean µ and vari-

ance σ2

Wt a standard Brownian motion process

FSDE the forward stochastic differential equation (forward

process)

BSDE the backward stochastic differential equation (backward

process)

FBSDE a system of forward and backward stochastic differential

equations

HJB the Hamilton-Jacobi-Bellman equation

HJI the Hamilton-Jacobi-Isaacs equation

SLP the Soft Landing Problem

15



2.2 Probability and Stochastic Processes

This section summarizes the most important mathematical concepts used throughout

this dissertation. More details on these concepts can be found in references [61, 71,

100].

Definition 2.1. (σ-algebra, Measurable Space): Let Ω be a set. A σ-algebra F on

Ω is a collection of subsets of Ω that contains the empty set, the set Ω itself, and is

closed under complement and countable union of its members. The pair (Ω,F ) is

called a measurable space.

A probability space is a measurable space equipped with a probability measure:

Definition 2.2. (Probability Measure, Probability Space): Let {Ai}∞i=1 ⊂ F be

any collection of events. A probability measure P on a measurable space (Ω,F ) is a

function P : F → [0, 1] satisfying the following axioms: (i). P(∅) = 0, (ii). P(Ω) = 1

and (iii). if the events Ai are disjoint (i.e. Ai ∩Aj = ∅ for i 6= j) then the probability

of their union equals to the sum of their probabilities. The triple (Ω,F ,P) is called

a probability space. Furthermore, (Ω,F ,P) is called a complete probability space if F

contains all subsets G of Ω with P- outer measure zero.

If (Ω,F ,P) is a given probability space, then a function X : Ω→ Rn is called F -

measurable if its pre-image belongs to F , i.e., X−1(U) , {ω ∈ Ω : X(ω) ∈ U} ∈ F .

Definition 2.3. (Random Variable): Given (Ω,F ,P), a random variable X is an

F -measurable function X : Ω→ Rn.

Every random variable induces a probability measure (or distribution) µX on Rn,

defined by µX(B) = P(X−1(B)). The mathematical expectation of X is then defined

as

E[X] ,
∫

Ω

X(ω)dP(ω) =

∫
Rn

xdµX(x).
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More generally, if f : Rn → R is measurable, we define

E[f(X)] ,
∫

Ω

f(X(ω))dP(ω) =

∫
Rn

f(x)dµX(x).

Two subsets A,B ∈ F are called independent if P(A ∩ B) = P(A)P(B). If two

random variables X, Y : Ω → R are independent, then E[XY ] = E[X]E[Y ]. The

concept of conditional expectation will also be used extensively in this dissertation,

and is defined as follows:

Definition 2.4. (Conditional Expectation): Given (Ω,F ,P), a random variable

X : Ω → Rn such that E[|X|] < ∞, and H ⊂ F a σ-algebra, then the conditional

expectation of X given H, denoted E[X|H] is a function from Ω to Rn such that (i).

E[X|H] is H-measurable and (ii).
∫
H
E[X|H]dP =

∫
H
XdP for all H ∈ H.

We now proceed to the definition of stochastic processes:

Definition 2.5. (Stochastic Process): A stochastic process is a parameterized col-

lection of random variables {Xt}t∈T , defined on a probability space (Ω,F ,P), and

assuming values in Rn.

The parameter space T is usually the semi-infinite interval [0,∞). In this dis-

sertation, however, it will usually consist of the compact set [0, T ] for some constant

T > 0. For each fixed t, we have a random variable ω → Xt(ω), ω ∈ Ω, while on the

other hand, fixing a certain ω we can consider the function t→ Xt(ω), t ∈ T , which

is called a sample path or realization. In this sense, t can be seen as “time” and each

ω can be seen as a “particle”, or “experiment”. Note that the notation Xt(ω), Xt, or

X(t, ω) are used interchangeably. An important class of stochastic processes are the

square-integrable processes, defined as follows:

Definition 2.6. (Square-integrability): A stochastic process Xt is called square-

integrable if E
[ ∫ T

τ
|Xt|2dt

]
<∞ for any T > τ .
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Definition 2.7. (Filtration, Adapted Process): A filtration on (Ω,F ,P) is a family

{Ft}t≥0 of σ-algebras Ft such that Fs ⊂ Ft whenever 0 ≤ s < t, i.e, {Ft} is

increasing. Then, a process {Xt}t≥0 is called Ft-adapted if for each t ≥ 0 the function

ω → X(t, ω) is Ft-measurable.

Note that the terms adapted and progressively measurable are sometimes used

interchangeably as well. For a stochastic process, the notation (Ω,F ,P) is substituted

by (Ω,F , {Ft}t≥0,P), or simply (Ω, {Ft}t≥0,P). A large class of stochastic processes

are the so-called martingales :

Definition 2.8. (Martingale): An n-dimensional stochastic process {Mt}t≥0 on

(Ω,F ,P) is called a martingale with respect to a filtration {Ft}t≥0 and probability

measure P if (i). Mt is Ft-measurable for all t, (ii). E[|Mt|] < ∞ for all t and (iii).

E[Ms|Mt] = Mt for any s ≥ t.

Perhaps the most famous special case of a martingale is the Brownian motion,

also known as the Wiener process :

Definition 2.9. (Standard Brownian Motion): A standard Brownian motion process

(or Wiener process) is a family {Wt}t≥0 of real-valued random variables defined on

some probability space (Ω,F ,P) that satisfies:

• W0 = 0 almost surely.

• If 0 = t0 < t1 < t2 < . . . < tn, then the random variables Wtk − Wtk−1
for

k = 1, 2, . . . , n are independent (i.e., Wt has independent increments).

• For each s, t ≥ 0, the random variable Wt+s −Wt is normally distributed with

mean zero and variance s.

• For almost all ω ∈ Ω, the function Wt = Wt(ω) is everywhere continuous in t.
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The above definition covers the one-dimensional process, but can be extended to

multiple dimensions in a straightforward manner; for a p-dimensional standard Brow-

nian motion process, one has to merely stack p independent standard one-dimensional

Brownian motion processes in a p-dimensional vector. The differential dWt of a stan-

dard Brownian motion stems from the limit dWt = lim∆t→dt(Wt+∆t −Wt), and thus

in light of the definition of Brownian motion, we establish that dWt ∼ N (0, dt). An

immediate consequence is the following important property:

E[(dWt)
2] = dt.

Notice that the ratio dWt/dt follows the distribution N (0, 1/dt), and therefore has

infinite variance as dt→ 0. In engineering, the process v(t) = dWt/dt is referred to as

white noise. Based on the Brownian motion differential, we proceed to the definition

of the Itô integral.

Definition 2.10. (Itô Integral): Let Wt be a standard Brownian motion and let

Ft be any measurable, square-integrable, Ft-adapted process. The Itô integral of Ft

against Wt up to time t is a stochastic process Gt denoted by

Gt =

∫ t

0

FτdWτ .

The construction of the above integral is formally established using simple func-

tions, see [61,100] for details. Note that Gt is in fact a martingale, and its expectation

is equal to zero. We next define the concept of absolute continuity of measures.

Definition 2.11. (Absolute Continuity): Let (Ω,F ,Ftt≥0,P) be a complete filtered

probability space, fix some T > 0, and let Q be another probability measure on FT .

Then Q is absolutely continuous with respect to P|FT
(the restriction of P to FT ) if

P(H) = 0 implies Q(H) = 0 for all H ∈ FT .
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The above condition occurs if and only if there exist an FT -measurable random

variable MT (ω) ≥ 0 such that dQ(ω) = MT (ω)dP(ω) on FT , in which case we may

write

dQ
dP

= MT , on FT .

The above ratio is called the Radon-Nikodym derivative. The following lemma demon-

strates that the restrictions of absolutely continuous measures are also absolutely

continuous, and the process of Radon-Nikodym derivatives is a martingale:

Lemma 2.1. (Process of Radon-Nikodym Derivatives): Suppose that Q is absolutely

continuous with respect to P|FT
, with dQ

dP = MT on FT . Then the restrictions Q|Ft

and P|Ft are also absolutely continuous for all t ∈ [0, T ], and the process of Radon-

Nikodym derivatives defined as

Mt ,
d(Q|Ft)

d(P|Ft)
, t ∈ [0, T ],

is a martingale with respect to Ft and P.

This lemma concludes the review on probability and general stochastic processes.

In the following section, we shall focus on a specific class of stochastic processes called

Itô diffusions, or Itô stochastic differential equations.

2.3 Forward Stochastic Differential Equations

Throughout the rest of this dissertation, we shall assume (Ω,F , {Fs}s≥0,P) to be

a complete filtered probability space on which a p-dimensional standard Brownian

motion Ws is defined, such that {Fs}s≥0 is the natural filtration of Ws augmented by

all P-null sets.
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2.3.1 The Forward Process

As a forward process we shall define the square-integrable, {Fs}s≥0-adapted (also

called progressively measurable) process X(·)1, which, for any given (t, x) ∈ [0, T ]×Rn,

satisfies the Itô stochastic differential equation (SDE)


dXs = b(s,Xs)ds+ Σ(s,Xs)dWs, s ∈ [t, T ],

Xt = x.

(1)

The solution to this SDE, denoted as X t,x
s , wherein (t, x) are the initial condition2

parameters, is given in integral form as

X t,x
s = x+

∫ s

t

b(τ,Xτ )dτ +

∫ s

t

Σ(τ,Xτ )dWτ , s ∈ [t, T ], (2)

with τ being a dummy variable of integration. Here, the functions b : [0, T ]×Rn → Rn,

Σ : [0, T ]× Rn → Rn×p are assumed to be deterministic, that is, they do not depend

explicitly on ω ∈ Ω. The forward process (1) is also called the state process in the

FBSDE literature.

2.3.2 Existence and Uniqueness of Solutions to FSDEs

We begin by stating the existence and uniqueness theorem for the case of forward

SDEs. Specifically, existence and uniqueness is guaranteed in the presence of global

Lipschitz continuity (uniformly in t), and a linear growth condition on b and Σ [61,

100]:

Theorem 2.1. (Existence and Uniqueness of Solutions to SDEs): Let T > 0 and

1While X is a function of s and ω, we shall use Xs for notational brevity.
2Throughout this dissertation, all initial or terminal condition equalities for random processes,

such as Xt = x, are to be understood in the almost sure sense.
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b(·), Σ(·) be measurable functions satisfying

‖b(s, x)− b(s, y)‖+ ‖Σ(s, x)− Σ(s, y)‖ ≤ C‖x− y‖, s ∈ [t, T ], x, y ∈ Rn, (3)

for some constant C and

‖b(s, x)‖+ ‖Σ(s, x)‖ ≤ D(1 + ‖x‖), (s, x) ∈ [t, T ]× Rn, (4)

for some constant D. Then the SDE (1) has a unique, square-integrable and adapted

solution Xs.

A few useful remarks:

• Local Lipschitz continuity is enough to guarantee uniqueness of solutions [61],

however it does not provide guarantees against a finite escape time.

• In some texts (e.g. see [138]), the linear growth condition is replaced by an

integrability condition, namely ‖b(·, 0)‖+ ‖Σ(·, 0)‖ ∈ L2([0, T ]).

• Reference [3] proves existence and uniqueness of solutions in controlled diffu-

sions under the relaxed condition of local Lipschitz continuity. Somewhat less

restrictive conditions also appear in [42, 84], see also [85]; these impose a local

Lipschitz continuity along with a monotonicity condition.

2.3.3 Girsanov’s Theorem on the Change of Measure

We conclude this section by presenting the Girsanov theorem, a fundamental result

in the general theory of stochastic analysis. Essentially, the theorem states that one

may change the drift coefficient of an Itô SDE without radically changing its law; in

fact, the law of the modified process will be absolutely continuous with respect to

the law of the original process, and one can compute the Radon-Nikodym derivative

explicitly (see also Definition 2.11 and Lemma 2.1).
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Theorem 2.2. (Girsanov’s Theorem): Let X t,x
s ∈ Rn be the solution to the Itô SDE

(1), and X̃ t,x
s be the solution to the process defined by


dX̃s = [b(s, X̃s) + Σ(s, X̃s)Ks]ds+ Σ(s, X̃s)dWs, s ∈ [t, T ],

X̃t = x,

(5)

wherein Ks is any measurable, square-integrable and adapted process, and all functions

satisfy the standard conditions for existence and uniqueness of solutions. Let dQ(ω) =

M(s, ω;T )dP(ω), where

Ms , exp

(
−
∫ s

t

K>τ dWτ −
1

2

∫ s

t

|Kτ |2dτ

)
, s ∈ [t, T ],

and define

W̃s ,
∫ s

t

Kτdτ +Ws, s ∈ [t, T ].

Then Q is a probability measure on FT , the process W̃s is a Brownian motion with

respect to Q, and we may write


dX̃s = b(s, X̃s)ds+ Σ(s, X̃s)dW̃s, s ∈ [t, T ],

X̃t = x,

(6)

Therefore, the Q-law of X̃ t,x
s is the same as the P-law of X t,x

s for all s ∈ [t, T ].

More details on Girsanov’s theorem can be found in references [61,100].

2.4 FBSDE Theory

Systems of forward and backward stochastic differential equations consist of a forward

process, such as the one defined in Section 2.3.1, along with a backward process. We

define the the backward process in what follows.

23



2.4.1 The Backward Process

In contrast to the forward process, the backward process is a square-integrable,

{Fs}s≥0-adapted pair (Y (·), Z(·)) defined via a BSDE satisfying a terminal condi-

tion: 
dYs = −h(s,X t,x

s , Ys, Zs)ds+ Z>s dWs s ∈ [t, T ],

YT = g(XT ),

(7)

Here, the component Z is essentially the derivative of Y with respect to Ws, and thus

is uniquely determined by Y (and Ws) [141]. The solution is implicitly defined by the

initial condition parameters (t, x) of the FSDE since it obeys the terminal condition

g(X t,x
T ), and thus we will similarly use the notation Y t,x

s and Zt,x
s . The integral form

of (7) is

Y t,x
s = g(X t,x

T ) +

∫ T

s

h(τ,X t,x
τ , Yτ , Zτ )dτ −

∫ T

s

Z>τ dWτ , s ∈ [t, T ]. (8)

The functions h : [0, T ] × Rn × R × Rp → R and g : Rn → R are assumed to be

deterministic, that is, they do not depend explicitly on ω ∈ Ω. The function h(·) is

called generator or driver.

The difficulty in dealing with BSDEs is that, in contrast to FSDEs, and due to the

presence of a terminal condition, integration must be performed backwards in time,

i.e., in a direction opposite to the evolution of the filtration. If we do not impose

the solution to be adapted (i.e, non-anticipating, obeying the evolution direction

of the filtration), we require new definitions such as the backward Itô integral or,

more generally, the so-called anticipating stochastic calculus (see relevant discussion

in Chapter 1 of [83]). In this work we will restrict the analysis to adapted solutions. It

turns out that a terminal value problem involving BSDEs admits an adapted solution

if we back-propagate the conditional expectation of the process, that is, if we set

Ys , E[Ys|Fs]. In a sense, systems of FBSDEs describe two-point boundary value
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problems involving SDEs, with the extra requirement that their solution is adapted

to the forward filtration.

2.4.2 Existence and Uniqueness of Solutions to FBSDEs

To guarantee existence and uniqueness of a solution (X, Y, Z) in FBSDEs, an addi-

tional Lipschitz continuity assumption of the generator as well as a growth condition

on both the generator and the terminal function must be imposed [35,83]:

Theorem 2.3. (Existence and Uniqueness of Solutions to FBSDEs): In addition to

the assumptions of Theorem 2.1, let h(·) and g(·) be measurable functions such that

|h(s, x, y1, z1)− h(s, x, y2, z2)| ≤ C(|y1 − y2|+ ‖z1 − z2‖), (9)

s ∈ [t, T ], (x, y, z) ∈ Rn × R× Rp,

for some constant C and

|h(s, x, y, z)|+ |g(x)| ≤ D(1 + ‖x‖q), (s, x, y, z) ∈ [t, T ]× Rn × R× Rp, (10)

for some constant D and real q ≥ 1/2. Then the system of FBSDEs (1),(7) has a

unique, square-integrable and adapted solution (X(·), Y (·), Z(·)).

We note that, while the existence and uniqueness of solutions to BSDEs have

been initially investigated for the case of drivers satisfying Lipschitz conditions for

the variables y and z as stated above, the literature has since then seen substantial

development. Indeed, several papers extend these results to drivers that are only

continuous and satisfy linear growth [75], or superlinear in y and quadratic in z [74].

The case of quadratic growth in z has also been analyzed in [67, 125]. More results

can also be found in references [21,79]. See also Chapter 7 in [141].
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2.4.3 The Markovian Property

The class of FBSDEs investigated in this work satisfy the distinguishing characteristic

that the forward SDE does not depend on Ys or Zs. Thus, the resulting system of

FBSDEs is said to be decoupled. If, in addition, the functions b, Σ, h and g are

deterministic, then the adapted solution (Y, Z) exhibits the Markovian property;

namely, it can be written as deterministic functions of solely time and the state

process. Using an induction argument, the following theorem is proven [35]:

Theorem 2.4. (The Markovian Property): There exist two deterministic measurable

functions v : [0, T ] × Rn → R and d : [0, T ] × Rn → Rn, such that the solution

(Y t,x, Zt,x) of the BSDE (7) is

Y t,x
s = v(s,X t,x

s ), Zt,x
s = Σ>(s,X t,x

s )d(s,X t,x
s ), s ∈ [t, T ]. (11)

Furthermore, if b, Σ, h and g are continuously differentiable with respect to (x, y, z)

with uniformly bounded derivatives, then for s ∈ [t, T ], x ∈ Rn,

Zt,x
s = Σ>(s,X t,x

s )∂xv(s,X t,x
s ), s ∈ [t, T ]. (12)

The Markovian property established by the above theorem will be proven to be

of paramount importance in the process of obtaining numerical schemes to solve

systems of FBSDEs. Specifically, it implies that the conditional expectations present

in any backward scheme can be viewed as functions of time and the state process

only. Locating these functions is of course an infinite dimensional problem, but one

may still obtain a satisfactory approximation by considering the projection on a finite

dimensional subspace of functions. This topic will be investigated in greater detail

during the review on numerical methods in Section 4.3.
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2.4.4 Connections to PDEs

There is an innate relation between stochastic differential equations and second-order

partial differential equations of parabolic or elliptic type. Specifically, solutions to a

certain class of nonlinear partial differential equations (PDEs) can be represented by

solutions to FBSDEs, in the same spirit as demonstrated by the famous Feynman-

Kac formulas [61, 118] for linear PDEs and forward SDEs. Although several results

exist featuring slightly different conditions and restrictions [35, 83, 101, 138, 141], in

this work we shall present two equivalence theorems. The first one links a PDE to

a system of FBSDEs, and is taken from [138], while the second, establishing the

converse, appears in [35].

Theorem 2.5. (Nonlinear Feynman-Kac): Consider the Cauchy problem


vt +

1

2
tr(vxxΣ(t, x)Σ>(t, x)) + v>x b(t, x) + h(t, x, v,Σ>(t, x)vx) = 0,

(t, x) ∈ [0, T )× Rn, v(T, x) = g(x), x ∈ Rn,

(13)

wherein the functions Σ, b, h and g satisfy mild regularity conditions (see Remark

2.1). Then (13) admits a unique (viscosity) solution v : [0, T ] × Rn → R, which has

the following probabilistic representation:

v(t, x) = Y t,x
t , ∀(t, x) ∈ [0, T ]× Rn, (14)

wherein (X(·), Y (·), Z(·)) is the unique adapted solution of the FBSDE system (1),(7).

Furthermore,

(Y t,x
s , Zt,x

s ) =

(
v(s,X t,x

s ), Σ>(s,X t,x
s )vx(s,X

t,x
s )

)
, s ∈ [t, T ], (15)

and if (13) admits a classical solution, then (14) provides that classical solution.
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Remark 2.1. Concerning the regularity conditions of Theorem 2, [138] requires the

functions Σ, b, h and g to be continuous, Σ and b to be uniformly Lipschitz in x, and

h to be Lipschitz in (y, z), uniformly with respect to (t, x). However, the nonlinear

Feynman-Kac lemma has been recently extended to cases in which the driver is only

continuous, and satisfies quadratic growth in z; see References [20, 27, 67, 74]. See

also Theorem 7.3.6 in [141].

Remark 2.2. The viscosity solution is to be understood in the sense of v(t, x) =

limε→0 v
ε(t, x), uniformly in (t, x) over any compact set, where vε is the classical

solution of the nondegenerate PDE


vt +

1

2
tr(vxxΣε(t, x)Σ>ε (t, x)) + v>x bε(t, x) + hε(t, x, v,Σ

>
ε (t, x)vx) = 0,

(t, x) ∈ [0, T )× Rn, v(T, x) = gε(x), x ∈ Rn,

in which Σε, bε, hε and gε are smooth functions that converge to Σ, b, h and g

uniformly over compact sets, respectively, and Σε(t, x)Σ>ε (t, x) ≥ εIn+Σ(t, x)Σ>(t, x)

for al (t, x).

Several extensions to the nonlinear Feynman-Kac lemma appear in the literature

to treat more general cases of PDEs. See for example [14, 103] for fully nonlinear

PDEs, or [62–64] for a treatment on the Hamilton-Jacobi-Bellman PDE. More general

PDEs are also treated via second-order BSDEs (2BSDEs) [22,49,105,106,119,144].

The second theorem is a converse to Theorem 2.5, proven for the special case in

which Y is one dimensional [35]:

Theorem 2.6. (Nonlinear Feynman-Kac Converse): Suppose that the FBSDE solu-

tion Y is one-dimensional and that h and g are uniformly continuous with respect to

x. Then the function v defined by v(t, x) = Y t,x
t is a viscosity solution of the PDE

(13).
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We note that the viscosity solution of Theorem 2.6 can also be proven to be unique

under more restrictive conditions on the generator function [35].
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III

STOCHASTIC OPTIMAL CONTROL – L2

FORMULATION

In this chapter, we define the L2- type formulation of the stochastic optimal con-

trol problem. This specific class of stochastic optimal control allows for an explicit

minimization of the Hamiltonian term within the Hamilton-Jacobi-Bellman (HJB)

equation, thus greatly simplifying the structure of the problem. We shall demon-

strate that under a certain decomposability condition, the HJB equation exhibits

the same form as the Cauchy problem (13) of Theorem 2.5 in Section 2.4.4. Thus,

we can obtain the solution to the HJB equation by solving the associated system of

FBSDEs. The discussion on the numerical solution procedures of FBSDE systems is

further postponed until Chapter 4.

3.1 Problem Statement

On the filtered probability space (Ω,F , {Ft}t≥0,P), consider the problem of mini-

mizing the expected cost defined by the cost functional

J(u(·); τ, xτ ) = E
[
g(x(T )) +

T∫
τ

q(t, x(t)) +
1

2
u>(t)Ru(t)dt

]
, (16)

associated with the stochastic controlled system, which is represented by the Itô

stochastic differential equation (SDE)


dx(t) = f(t, x(t))dt+G(t, x(t))u(t)dt+ Σ(t, x(t))dWt, t ∈ [τ, T ]

x(τ) = xτ ,

(17)
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with T > τ ≥ 0, wherein T is a fixed time of termination1, x ∈ Rn is the state vector,

u ∈ Rν is the control vector, and dWt are increments of a p-dimensional standard

Brownian motion. The functions g : Rn → R, q : [0, T ]× Rn → R, f : [0, T ]× Rn →

Rn, G : [0, T ] × Rn → Rn×ν , and Σ : [0, T ] × Rn → Rn×p are deterministic, that

is, they do not depend explicitly on ω ∈ Ω. We assume that all standard technical

conditions [138] which pertain to the filtered probability space and the regularity of

functions are met, in order to guarantee existence and uniqueness of solutions to (17),

and a well defined cost functional (16). These conditions include the following:

i) The functions g, q, f , G and Σ are continuous w.r.t. time t (in case there is

explicit dependence), Lipschitz (uniformly in t) with respect to the state vari-

ables, and satisfy a standard growth condition over the domain of interest (see

existence and uniqueness of solutions to SDEs, Section 2.3.2). This guarantees

that the SDE solution does not have a finite escape time, similar to the case of

ordinary differential equations.

ii) R ∈ Pν , where Pν denotes the set of all (ν× ν) positive definite real symmetric

matrices.

iii) The control process u : [0, T ]×Ω→ U , with U being a compact subset of Rν , is

square-integrable and {Ft}t≥0-adapted2. The latter essentially translates into

the control input being non-anticipating, i.e., relying only on past and present

information. We denote the set of all admissible U -valued functions as U [τ, T ].

1Optimal control problems in which the duration is not fixed a priori will be addressed in Chapter
8.

2see Definitions 2.6, 2.7 in Section 2.2.
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For any given initial condition (τ, xτ ), we wish to minimize (16) under all admis-

sible functions u(·) ∈ U [τ, T ]. We define the value function V as


V (τ, x0) = inf

u(·)∈U [τ,T ]
J(τ, xτ ;u(·)), (τ, xτ ) ∈ [0, T )× Rn,

V (T, x) = g(x), x ∈ Rn.

(18)

By applying the stochastic version of Bellman’s principle of optimality, it is shown

[39, 138] that if the value function is in C1,2([0, T ] × Rn), then it is a solution to

the following terminal value problem of a nonlinear second order partial differential

equation, known as the Hamilton-Jacobi-Bellman equation:


vt + inf

u∈U
H(t, x, u, vx, vxx) = 0, (t, x) ∈ [0, T )× Rn,

v(T, x) = g(x), x ∈ Rn.

(19)

where vx and vxx denote the gradient and the Hessian of v, respectively, and the

Hamiltonian H is defined as

H(t, x, u, p, P ) ,
1

2
tr(PΣ(t, x)Σ>(t, x)) + p>(f(t, x) +G(t, x)u) + q(t, x) +

1

2
u>Ru,

(20)

∀(t, x, u, p, P ) ∈ [0, T ]× Rn × U × Rn × Sn,

where Sn denotes the set of all (n×n) non-negative definite real symmetric matrices.

Note that this result can be extended to include cases where the value function does

not satisfy the smoothness condition. Then, if one also considers viscosity solutions

of (19), the value function is proven to be a viscosity solution of (19). Furthermore,

the viscosity solution is equal to the classical solution, if a classical solution exists.

For the chosen form of the cost integrand at hand, and assuming that the optimal

control lies in the interior of U , we may carry out the infimum operation by taking
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the gradient of the Hamiltonian with respect to u and setting it equal to zero, thus

obtaining

∂H

∂u
= 0 or Ru+G>(t, x)vx(t, x) = 0, (21)

and therefore the optimal control is given by

u∗(t, x) = −R−1G>(t, x)vx(t, x), (t, x) ∈ [0, T ]× Rn. (22)

Inserting the above expression back into the original HJB equation and suppressing

function arguments for notational brevity, we obtain the equivalent characterization


vt +

1

2
tr(vxxΣΣ>) + v>x f + q − 1

2
v>xGR

−1G>vx = 0, (t, x) ∈ [0, T )× Rn,

v(T, x) = g(x), x ∈ Rn.

(23)

3.2 A Feynman-Kac type Representation

A comparison of equations (23) and (13) indicates that the nonlinear Feynman-Kac

representation can be applied to the HJB equation given by (23) under a certain

decomposability condition, stated in the following assumption:

Assumption 3.1. There exists a matrix-valued function Γ : [0, T ]×Rn → Rp×ν such

that G(t, x) = Σ(t, x)Γ(t, x) for all (t, x) ∈ [0, T ]× Rn.

This assumption implies that the range of G must be a subset of the range of Σ,

thus excluding the case of a channel containing control input but no noise, although

the converse is allowed. This is a fundamental difference between the proposed ap-

proach and already existing sampling-based methods for stochastic control relying on

the linear Feynman-Kac lemma: in the latter category, it is additionally required that

no channel may exist in which there is noise but no control input, and the choice of

the design parameter R (i.e., the control cost penalty) is restricted by the stochastic-

ity characteristics of the system. Thus, the proposed approach imposes significantly
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less restrictive conditions. Under Assumption 3.1, the HJB equation given by (23)

can be rewritten as


vt +

1

2
tr(vxxΣΣ>) + v>x f + q − 1

2
v>x ΣΓR−1Γ>Σ>vx = 0, (t, x) ∈ [0, T )× Rn,

v(T, x) = g(x), x ∈ Rn,

(24)

in which function arguments have been again suppressed, and which now satisfies the

format of (13) with

b(t, x) ≡ f(t, x), (25)

and

h(t, x, z) ≡ q(t, x)− 1

2
z>Γ(t, x)R−1Γ>(t, x)z. (26)

We may thus obtain the (viscosity) solution of (24) by simulating the system of

FBSDEs given by (1) and (7) using the definitions (25) and (26). Notice that (1)

corresponds in this case to the uncontrolled (u = 0) system dynamics. Having es-

tablished the equivalence of the HJB PDE problem solution to that of a system of

FBSDEs, we will now investigate how FBSDEs can be solved numerically, in the

following chapter.
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IV

NUMERICAL SOLUTIONS TO FBSDES

This chapter is devoted to the investigation of numerical methods for the class of FB-

SDEs involved in this dissertation. In general, the procedure of obtaining a numerical

solution for a system of FBSDEs consists of three elements: (a). a time discretization

scheme for the forward process, (b). a time discretization scheme for the backward

process, and (c). a numerical approximation scheme for the conditional expectation

evaluation in each time step of the backward process. We provide a brief overview

of the literature, introducing some of the most thoroughly studied time discretiza-

tion and conditional expectation approximation schemes. We then propose a novel

and efficient numerical scheme, suitable for the particular type of FBSDE systems

considered in this dissertation, that greatly reduces the computational complexity in

obtaining a solution, while exhibiting higher accuracy in simulations.

4.1 PDE vs. FBSDE Algorithms

A first distinction between algorithms can be observed on the basis of whether they

target directly FBSDEs or PDEs. Indeed, as discussed in Section 2.4.4, there is

an equivalence between FBSDE problems and certain PDE problems. Thus, one

branch of numerical algorithms for FBSDEs does not directly solve these FBSDEs,

but instead focuses on obtaining numerical solutions to their associated PDEs (see

for example [30, 36, 80, 82, 90]). In general, these algorithms have limited practical

applicability due to low performance in cases where the coefficients are not smooth

and/or in high-dimensional problems, owing to their bad scalability. However, for

low-dimensional cases involving smooth coefficients, they are very efficient and hard

to compete against. Nevertheless, in what follows we will concentrate on algorithms
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that deal directly with FBSDE problems.

There are two major components typically present in numerical approximations

of FBSDEs. The first component consists of selecting a time discretization of the

FBSDE, which essentially involves the derivation of an appropriate propagation rule

(a scheme) on a selected time grid. Two schemes are needed, namely one for the

forward process and one for the backward process respectively. Due to the nature of

backward SDEs, the corresponding backward scheme will necessarily involve condi-

tional expectations. In general, these conditional expectations cannot be evaluated

in closed form, and thus we arrive at the second component common in all FBSDE

algorithmic procedures, namely the application of a suitable numerical approximation

to estimate these conditional expectations.

4.2 Time Discretization

We begin by selecting a time grid {t = t0 < . . . < tN = T} for the interval [t, T ],

and denote by ∆ti , ti+1 − ti the i-th interval of the grid (which can be selected

to be constant) and ∆Wi , Wti+1
−Wti the i-th Brownian motion increment1. For

notational brevity, we also denote Xi , Xti . The simplest discretized scheme for the

forward process is the Euler scheme, which is also called Euler-Maruyama scheme

[43,66]:


Xi+1 ≈ Xi + b(ti, Xi)∆ti + Σ(ti, Xi)∆Wi, i = 0, . . . , N − 1,

X0 = x.

(27)

Several alternative, higher order schemes exist that can be selected in lieu of the Euler

scheme. The most common are the Milstein scheme as well as various Taylor schemes

of different order. These build on top of the basic Euler scheme by adding correction

terms. Furthermore, schemes of even higher order can be obtained using Itô-Taylor

1Here, ∆Wi would be simulated as
√

∆tiξi, where ξi ∼ N (0, I).
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approximations. Multi-step as well as implicit schemes also exist, but their application

in the literature seems to be rare. A detailed analysis for all aforementioned schemes

can be found in [66]. Finally, it is important to note that for some processes, such

as the geometric Brownian motion for example, Xt can be obtained analytically, and

thus can be sampled perfectly (i.e., without numerical error) on the selected grid.

There are several ways to discretize the backward process, leading to both explicit

and implicit schemes. As a short survey, we shall first derive the simplest and most

commonly used scheme, and furthermore briefly present some alternative choices. To

this end, we further introduce the notation Yi = Yti and Zi = Zti . Then, recalling

that adapted BSDE solutions impose Ys , E[Ys|Fs] and Zs , E[Zs|Fs] (i.e., a

backpropagation of the conditional expectations), we approximate equation (7) by

Yi ≈ Yi+1 + h(ti, Xi, Yi, Zi)∆ti − Z>i ∆Wi. (28)

Multiplying with a Brownian increment ∆Wi and taking the conditional expectation

yields

0 ≈ E
[
∆Wi(Yi+1 + h(ti, Xi, Yi, Zi)∆ti)−∆Wi∆W

>
i Zi|Fti

]
≈ E[∆WiYi+1|Fti ]−∆tiZi, (29)

which suggests that Zi can be approximated as

Zi ≈
1

∆ti
E[∆WiYi+1|Fti ]. (30)

Then, in order to obtain an approximation of Yi, we apply the conditional expectation

on (28) resulting in

Yi ≈ E[Yi+1 + h(ti, Xi, Yi, Zi)∆ti|Fti ]. (31)
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By choosing to evaluate h(·) at Yi+1 instead of Yi, the scheme can be made explicit

without influencing the convergence rate [13]. The explicit backward scheme is thus

summarized as

S1


Initialize: YN ≈ g(XN),

Zi ≈
1

∆ti
E[∆WiYi+1|Fti ],

Yi ≈ E[Yi+1 + h(ti, Xi, Yi+1, Zi)∆ti|Fti ],

(32)

iterated for i = N−1, . . . , 0. Scheme S1, which is of order 1/2, is by far the most well-

established scheme in the literature [19,141]. It was initially proposed independently

by both [15,140], wherein a detailed convergence analysis can be found (see also [14]

and the error analysis in [44]). Extensions to the case of jump-diffusions can be

found in [13, 73]. Concerning the implicit version of S1, in which h(·) is evaluated

at Yi instead of Yi+1, equation (31) can be solved iteratively within each time step

(a so-called inner iteration) [46]. A variation of the implicit version of this scheme

involving importance sampling as a means of reducing the variation of the conditional

expectation approximation has been proposed by [94].

By virtue of the tower property of conditional expectations2, scheme S1 can be

written equivalently as [47]

S2


Zi ≈

1

∆ti
E
[
∆Wi

(
g(XT ) +

N−1∑
k=i+1

hk(tk, Xk, Yk+1, Zk)∆ti

)
|Fti

]
,

Yi ≈ E
[
g(XT ) +

N−1∑
k=i

hk(tk, Xk, Yk+1, Zk)∆ti|Fti

]
,

(33)

iterated for i = N − 1, . . . , 0. It is important to note that, although the schemes S1

and S2 are mathematically identical, their numerical properties in practice are very

different. Indeed, when conditional expectations are approximated numerically (see

2For a random variable Ys which is Fs-measurable and Fs ⊂ FT , the tower property reads

E[Ys|Fs] = E
[
E[Ys|FT ]

∣∣Fs

]
.
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following section), then the two schemes cease to be identical and the latter scheme

exhibits smaller propagation of errors. For an implicit version of S2, which evaluates

h(·) at Yk instead of Yk+1 and leads to the application of a Picard type iterative

procedure (outer iteration) see [8, 45, 46]. Again however, no improvement in the

convergence rate can be found compared to the explicit version [47].

Higher order discretization schemes for FBSDEs are available in the literature

and are based on the trapezoidal (Crank-Nicolson) rule [76, 142, 143], but do so at

the expense of introducing more conditional expectations that have to be evaluated.

Indeed, regardless of how the backward process is discretized, in all cases the schemes

involve calculating such conditional expectations. For FBSDEs within the particular

class considered in this dissertation, and by virtue of the Markovian property of

solutions presented in Section 2.4, all expectations in schemes S1 and S2, which are

conditioned on Fti , can be replaced with expectations conditioned on Xi. This is a

critical step towards the development of an implementable scheme that can be used in

practice. In general however, these conditional expectations still cannot be obtained

in closed form, and thus need to be approximated numerically. There are several ways

in which these approximations can be performed, giving rise to different algorithms.

4.3 Conditional Expectation Approximation Methods

In this section we will review several numerical methods employed to approximate

the conditional expectations that arise in the backward process discretization step

as described in the previous section. Indeed, there are several different techniques

appearing in the literature including

• Approximation of the driving Brownian motion by a scaled random walk, and

calculation of the conditional expectations using a tree structure [16, 81]. This

method is suitable for low-dimensional problems.

• Quantization methods for reflected BSDEs [6] and coupled FBSDEs [26], which
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present a probabilistic approach in which a random variable is replaced by its

projection on a finite grid.

• Gauss-Hermite Quadrature [145], Cubature methods [23], and sparse grid meth-

ods [139]. These methods rely on approximating the integral of the expectation

on a specific number of grid points.

• The Fourier Cosine method [112, 113]. Given the terminal condition g(·), the

Fourier Cosine method is initialized by expanding the solution at the terminal

condition into Fourier cosine series, wherein the integration is performed over

suitably truncated grid. Then, the series coefficients are back propagated until

the initial condition is reached. Being a grid-based method, the Fourier Cosine

method is suitable for low-dimensional problems due to its bad scalability. Also,

it may suffer from the Gibbs phenomenon, in which case the use of spectral filters

for smoothing is required.

• Monte Carlo based methods, which include nonparametric kernel estimators,

Malliavin Monte Carlo [12, 15], and Least Squares Monte Carlo [8, 9, 28, 44,

46, 47, 73, 94], with the latter being arguably the most established method for

FBSDE applications so far. Monte Carlo methods are especially promising due

to their good scalability properties. We shall examine these methods in more

detail in what follows.

4.4 Monte Carlo Based Methods for Conditional Expecta-
tion Approximation

The main advantage of Monte Carlo based methods for conditional expectation ap-

proximation is that, in theory, the convergence rate does not depend a priori on the

dimension of the problem, thus rendering them robust to the curse of dimensionality.

In practice however, the performance of these estimators in terms of variance and
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convergence rate usually does depend on the complexity and dimension of the prob-

lem, and therefore the above statement needs to be tempered [14]. Still, although

not completely immune, these methods remain the most promising approach so far

to address high dimensional problems.

Monte Carlo methods for conditional expectation approximation address the gen-

eral problem of numerically estimating conditional expectations of the form E[Y |X]

for square integrable random variables X and Y , if one is able to sample M inde-

pendent copies of pairs (X, Y ). They are based on the principle that the conditional

expectation of a random variable can be modeled as a function of the variable on

which it is conditioned on, that is, E[Y |X] = φ∗(X), where φ∗ solves the infinite

dimensional minimization problem

φ∗ = arg min
φ

E[|φ(X)− Y |2], (34)

and φ ranges over all measurable functions with E[|φ(X)|2] <∞. Thus, the goal is to

infer the mapping φ∗ given only a finite amount of sample data, a classic regression

problem within the field of machine learning. In theory, any approach developed

within the machine learning framework can be employed to solve this problem. Several

practical limitations arise however when this framework is to be applied specifically

to FBSDEs. Indeed, recall that most of the schemes presented in Section 4.2 require

at least two conditional expectation approximations per time step. Thus, a useful

approximation should be relatively fast in order to keep the total running time of the

algorithm reasonable, but also accurate enough to avoid accumulation of numerical

errors during back propagation.
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4.4.1 Nonparametric Kernel Estimators

In this approach, the conditional expectation is written as [95]

φ∗(x) = E[Y |X = x] =

∫
yp(y|x)dy =

∫
yp(x, y)dy∫
p(x, y)dy

. (35)

Having M sample pairs of (Xj, Y j), j = 1, . . . ,M , kernel density estimation suggests

p(x, y) ≈ 1

M

M∑
j=1

κh(x−Xj)κh(y − Y J), (36)

wherein κh(·) represents a chosen kernel function, parameterized by h. Substituting

this expression in equation (35) and using the properties of smoothing kernels leads

to the conditional expectation approximation

φ∗(x) ≈
∑M

j=1 κh(x−Xj)Y j∑M
j=1 κh(x−Xj)

. (37)

This method is called kernel regression, kernel smoothing, or the Nadaraya-Watson

model [96, 134]. Several kernel choices exist, such as Gaussian, RBF for higher di-

mensional inputs, Epanechnikov, tri-cube etc. See [95] for a detailed presentation. A

similar result using indicator functions can be found in [99].

We note that, although this method has been applied to approximate conditional

expectations, it has not been employed in the context of FBSDEs so far. This is

probably due to its non parametric nature, in the sense that all data generated at each

time step need to be retained for inference, which renders its use rather cumbersome.

4.4.2 The Malliavin Monte Carlo Method

The Malliavin Monte Carlo Method for approximating conditional expectations was

introduced in [12]. It uses the Malliavin integration by parts formula to estimate

conditional expectations of the form E[Y |X = x] , φ∗(x), which is given as a ratio
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of two statistics, in a way similar to the one used in the kernel estimators presented

in the previous paragraph. Given M = NK (N being the number of time steps, K

being a positive integer) independent copies of (Xj, Y j), the conditional expectation

is expressed as

E[Y |X = x] ≈
∑M

j=1 Y
jHx(X

j)Sj∑M
j=1Hx(Xj)Sj

. (38)

Here, Hx is the Heaviside function, defined as Hx(y) =
∏n

i=1 1xi≤yi , with i being a

particular dimension of x, and Sj are independent copies of a random variable whose

precise definition depends on the particular application. In the context of FBSDEs,

the reader is referred to Section 6 of [15] for more details. We note the following

important remarks:

• As in kernel estimation of Section 4.4.1, the regression estimator is the ratio of

two statistics, which is not guaranteed to be integrable. This difficulty is alle-

viated in [15] by introducing a truncation procedure along the above backward

simulation scheme.

• By suitably modifying the numerator of (38), one can obtain an equivalent

expression which exhibits lower variance (see Remark 3.3 in [12]).

• In the case of FBSDEs, applying this method requires strict regularity condi-

tions on the forward process. Indeed, [15] assumes that Σ(t, x) is invertible

for all (t, x), and that b, Σ, and Σ−1 are in C∞b (i.e., infinitely many times

continuously differentiable, bounded functions).

4.4.3 The Least Squares Monte Carlo Method

The Least Squares Monte Carlo (LSMC) method for approximating conditional ex-

pectations is arguably the most established method in FBSDE applications litera-

ture [8, 9, 28, 44, 46, 47, 73, 94], and has been studied extensively within the FBSDE

framework. Initially introduced in the field of financial mathematics by Longstaff

43



and Schwartz in 2001 [78], the method suggests a finite-dimensional approximation

of problem (34) by decomposing φ∗(·) ≈
∑K

k=1 ϕk(·)α∗k = ϕ(·)α∗, with ϕ(·) being a

row vector of K predetermined basis functions and α a column vector of constants,

thus solving

α∗ = arg min
α∈RK

E[|ϕ(X)α− Y |2], (39)

with k being the dimension of the basis. This problem is then simplified to a linear

least-squares problem if one substitutes the expectation operator with its empirical

estimator [50], thus obtaining

α∗ = arg min
α∈RK

1

M

M∑
j=1

|ϕ(Xj)α− Y j|2, (40)

wherein (Xj, Y j), j = 1, . . . ,M are independent copies of (X, Y ). Introducing the

notation

Φ(X) =


ϕ(X1)

...

ϕ(XM)

 ∈ RM×K , (41)

the solution to this least-squares problem can be obtained by directly solving the

normal equation, i.e.,

α∗ =

(
Φ>(X)Φ(X)

)−1

Φ>(X)


Y 1

...

Y M

 , (42)

or by performing gradient descent. The LSMC estimator for the conditional expec-

tation assumes then the form E[Y |X = x] , φ∗(x) ≈ ϕ(x)α∗. This procedure is

incorporated within the Schemes S1 and S2 to substitute each conditional expecta-

tion quantity, for each time step. Of course, the basis functions can differ both for

different conditional expectations as well as for different time steps. Using LSMC on
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FBSDEs was first suggested by [46], which also contains an analysis on the different

error sources. The same method has been applied on the explicit scheme S1 [73], as

well as on both the explicit [47] and implicit [8] version of S2. In general, combining

one of the above schemes together with the LSMC method introduces errors. Due

to the nature of back propagation, the errors accumulate as the algorithm is iterated

backwards in time. This explains why S1 and S2, for example, while being mathe-

matically identical, give rise to different numerical error propagation when LSMC is

applied to them, with S2 exhibiting better performance [8, 47]. It also motivates the

development of martingale basis functions [9]. In [9], the authors suggest splitting the

second expectation in S1 into two terms, thus having three conditional expectations

in total. Then, by choosing a particular set of basis functions to approximate the

conditional expectation operator, one can compute the first two conditional expecta-

tion approximations in closed form rather than using linear regression, based on their

values at the previous time step. Thus, linear regression is used only to estimate the

third term, namely E[h(ti, Xi, Yi+1, Zi)∆ti|Xi], which is also the term contributing

the least amount of simulation error.

4.5 A Novel, Efficient Numerical Scheme for FBSDEs

It is noteworthy to mention that all schemes presented in Section 4.2 are generic, in

the sense that they can be applied to any decoupled system of FBSDEs. This is due

to the Markovian property of decoupled FBSDEs, presented in Section 2.4.3, which

stipulates that the solution {Y t,x
s , Zt,x

s }s∈[t,T ] is given by deterministic functions v(·)

and d(·) per equation (11). However, the FBSDEs that arise through the nonlinear

Feynman-Kac representation of solutions to the HJB equation, as in the case at hand,

exhibit an additional smoothness property. Indeed, by virtue of equation (15), the

Z-process in (7) corresponds to the term Σ>(s,X t,x
s )vx(s,X

t,x
s ), that is, d(·) ≡ vx(·).
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Therefore, we can write

Zi = E[Zi|Fti ] = E[Σ>(ti, Xi)∇xv(ti, Xi)|Xi] = Σ>(ti, Xi)∇xv(ti, Xi). (43)

Choosing to evaluate h(·) in the approximation (31) at the right, namely as

Yi = E[Yi|Fti ] ≈ E[Yi+1 + h(ti+1, Xi+1, Yi+1, Zi+1)∆ti|Xi], (44)

and initializing the scheme with

YT = g(XT ), ZT = Σ(T,XT )>∇xg(XT ), (45)

for a g(·) which is differentiable almost everywhere, we first perform linear regression

to estimate the conditional expectation of Y as a function of x at the time step ti using

the LSMC method, and then obtain the approximation of the conditional expectation

of Z by taking the gradient with respect to x on E[Yi|Xi = x] ≈ ϕ(x)α∗i and scaling

it with Σ, i.e.,

Zi ≈ Σ(ti, Xi)
>∇xϕ(Xi)α

∗
i . (46)

Note that this approach requires the basis functions ϕ(·) of our choice to be differ-

entiable almost everywhere, so that ∇xϕ(x) is available in analytical form for almost

any x. Combining this scheme with the LSMC method yields an algorithm which is

summarized as

Initialize : YT = g(XT ), ZT = Σ(T,XT )>∇xg(XT ),

α∗i = arg min
α

1

M

∥∥∥Φ(Xi)α−
(
Yi+1 + ∆tih(ti+1, Xi+1, Yi+1, Zi+1)

)∥∥∥2

,

Yi = Φ(Xi)α
∗
i , Zm

i = Σ(ti, X
m
i )>∇xϕ(Xm

i )α∗i , m = 1, . . . ,M,

(47)
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where the matrix Φ is defined in (41). Again, the minimizer of equation (47) can

be obtained by directly solving the normal equation (42), or by performing gradient

descent.

(a) Regression on the Y data: The blue dots
represent the data for the given time instant
while the red curve denotes the fitted func-
tion representing the conditional expectation
of Y as a function of x.

(b) Similar to (a), for the Z- regression.

Figure 1: Plots of the data set available for approximating the conditional expectation
through regression, generated during the solution of a scalar linear problem, for a
given time step. Notice that the estimation of Zi through regression is very sensitive
due to the nature of the data.

There are two significant advantages of this scheme as opposed to, e.g., scheme

S1 of Section 4.2. The first one is that the proposed scheme reduces the number of

computations by performing only one regression per time step, instead of the p+1 per

time step, where p is the dimensionality of noise, required in the generic scheme. The

second, even more important advantage lies in the fact that the gradient estimation

per (30) is very sensitive to the number of available samples due to the nature of the

data (see Figure 1), and has an increasing variance as the time steps become finer.

Indeed, the worst error contribution in the generic scheme stems from estimating

Zi ≈ 1
∆ti

E[∆WiYi+1|Xi], since the variance blows up as ∆ti becomes finer due to the

presence of the term ∆Wi/∆ti [73]. Thus, there is a significant random fluctuation
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in the coefficients αz(t) of the Z-regression, which decreases rather slowly3 as the

number of samples is increased, for fixed ∆ti. The modified scheme does not suffer

from this phenomenon. A comparison of the ability of the two schemes to recover the

coefficients given in closed form for the case of a linear-quadratic regulator (LQR)

problem is given in the following section. Specifically, the coefficient comparison

is depicted in Figure 3, which clearly demonstrates the superiority of the proposed

scheme in recovering the gradient. A more detailed analysis on the various error

sources of the framework shall be postponed until Section 5.3.

4.6 Simulation Comparison

Testing the algorithm on a linear system allows for an evaluation the performance

through direct comparison with the closed form LQR solution. It also highlights the

superiority of the proposed scheme, compared to the scheme S1 presented in Section

4.2, whenever the solution is expected to satisfy smoothness conditions. We simulate

the algorithm for f(t, x) = 0.2x = c1x, G(t, x) = Σ(t, x) = 0.5 = c2, q(t, x) = 0,

R = 2, x(0) = 1, T = 1 and g(x(T )) = 10x2(T ) = c3x
2(T ), thus penalizing deviation

from the origin at the time of termination, T . This problem admits a closed form

solution [122] for the optimal control u∗, which is given by

u∗(t, x) = −c2

R
P (t)x, (48)

where P (t) is the solution to the ordinary differential equation

Ṗ (t) = −2c1P (t) +
c2

2

R
P 2(t),

P (T ) = 2c3.

3In general, the error convergence rate in Monte Carlo methods is inversely proportional to the
square root of the number of realizations,

√
M [137]
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For the purposes of comparison with the closed form solution, the set of basis func-

tions for Y was selected to be [1 x2]>, and [x] for Z, whenever a regression for Z

was employed. Figure 2(a) shows the Value function generated by the algorithm,

Figure 2(b) depicts several uncontrolled and optimally controlled trajectories, while

Figure 2(c) illustrates a comparison between the closed form control solution and the

numerical obtained by the algorithm. Concerning the algorithm’s precision, using ten

thousand trajectories and a time grid of ∆t = 0.01, the relative difference between

the numerical and analytic value for v(0, x0) is only 0.42%. Finally, Figure 3 presents

a comparison between the ability of the generic and the proposed scheme to recover

the theoretical coefficients for Z, given a variety of sample sizes. It is evident that the

estimation of the gradient of Y by means of separate regressions, as done in scheme

S1, is very inefficient both in terms of computational cost (requiring p+ 1 regressions

per time step instead of just one), as well as accuracy.
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(a) The Value function ob-
tained by the algorithm.

(b) Simulation of uncontrolled
trajectories (blue) and opti-
mally controlled trajectories
(red) of the system.
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Figure 2: Simulation for a scalar linear system: the value function, system trajectories
and control comparison.
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Figure 3: Comparison between the basis function coefficients for Z(t, x) obtained
numerically (black) and by the closed form theoretical solution (red). Top row – (a),
(b), (c): S1 scheme; obtained by employing direct regression for Z, using 1k, 10k, and
100k sample trajectories respectively. Bottom row – (d), (e), (f): Proposed scheme;
obtained via the scaled gradient of Y , without extra regression, for 1k, 10k, 100k
sample trajectories respectively.
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V

ITERATIVE METHODS AND IMPORTANCE SAMPLING

The proposed framework, as it has been presented so far, is limited in its ability to

provide approximations to the value function to only those areas of the state space

that are reachable by the unforced dynamics (Eq. (1)). Nevertheless, there are

several cases of systems in which the goal state practically cannot be reached by the

uncontrolled system dynamics (consider, for example, a forward unstable system such

as the inverted pendulum). Furthermore, even in the case in which the target state

is indeed reached by unforced trajectories, as the dimensionality of the state space

increases, the density of sample trajectories along any given path from the initial state

to the target state reduces quickly, thus increasing the demand for available samples.

In this chapter, we seek to address these issues by proposing a modification to the drift

term of the sampled trajectories. Specifically, by changing the drift, we can direct

the exploration of the state space towards the given goal state, or any other state

of interest, reachable by control. As will be shortly demonstrated, such a scheme

can be constructed through Girsanov’s theorem on the change of measure. While

the application of Girsanov’s theorem on FBSDEs is not an entirely new concept, as

it was first used to facilitate variance reduction [94], and as a means to establish a

connection between the nonlinear Cameron-Martin formula and FBSDEs [77]. In this

dissertation however, it shall be applied to construct an iterative scheme capable of

addressing control problems that exhibit more complex, nonlinear dynamics.

The present chapter is organized as follows: we first establish the equivalence

between the original system of FBSDEs and one of modified drift. We then discuss

the practical implementation of this result in the process of designing an iterative
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scheme that is capable of recovering the optimal solution in more complex, nonlinear

systems, where a single run of the algorithm is insufficient to produce good results.

Section 5.3 is devoted to the analysis of convergence and the various error sources of

the scheme. The chapter is concluded with simulations on the stochastic L2-optimal

control of an inverted pendulum and a cart-pole system.

5.1 Modifying the Drift through Girsanov’s Theorem

We now state and prove the main theorem in this chapter, which states that one may

alter the drift of the forward process if this modification is appropriately compensated

for in the backward process:

Theorem 5.1. (Change of Measure for FBSDEs): Let (X t,x
s , Y t,x

s , Zt,x
s ) be the solution

of the FBSDE system (1), (7), and let Ks : [0, T ] × Ω → Rp be any Fs-adapted,

bounded, and square integrable process. Now, consider the forward process with drift

dynamics modified by the process Ks
dX̃s = [b(s, X̃s) + Σ(s, X̃s)Ks]ds+ Σ(s, X̃s)dWs, s ∈ [t, T ]

X̃t = x.

(49)

along with the compensated BSDE


dỸs = [−h(s, X̃s, Ỹs, Z̃s) + Z̃>s Ks]ds+ Z̃>s dWs, s ∈ [t, T ],

ỸT = g(X̃T ),

(50)

and denote its solution by (X̃ t,x
s , Ỹ t,x

s , Z̃t,x
s ). Then (x, Y t,x

t , Zt,x
t ) = (x, Ỹ t,x

t , Z̃t,x
t ) al-

most surely. Furthermore, if

(Y t,x
s , Zt,x

s ) =

(
v(s,X t,x

s ), Σ>(s,X t,x
s )vx(s,X

t,x
s )

)
, s ∈ [t, T ], (51)
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and

(Ỹ t,x
s , Z̃t,x

s ) =

(
ṽ(s, X̃ t,x

s ), Σ>(s, X̃ t,x
s )ṽx(s, X̃

t,x
s )

)
, s ∈ [t, T ], (52)

with v, v̄ being solutions to Cauchy problems satisfying the format of (13), then v(·) ≡

ṽ(·) almost everywhere.

Proof. The first statement of Theorem 5.1 claims that the solutions of the two systems

of FBSDEs coincide at the initial condition (t, x). To prove this, we define a new

measure Q with dQ(ω) = M(t, ω;T )dP(ω), where

Ms , exp

(
−
∫ s

t

K>τ dWτ −
1

2

∫ s

t

|Kτ |2dτ

)
, s ∈ [t, T ], (53)

is the process of Radon-Nikodym derivatives dQ(s)/dP(s) with Q(s) and P(s) being the

restrictions of Q and P to Fs, respectively. Then, by Girsanov’s Theorem (Theorem

2.2, see also [61,100]), Ms is a P-martingale, the P-law of (X, Y, Z) is the same as the

Q-law of (X̃, Ỹ , Z̃), and

W̃s ,
∫ s

t

Kτdτ +Ws, s ∈ [t, T ],

is a Brownian motion under Q. Now, defining the Q-Brownian increment dW̃s =

Ksdt+ dWs, it becomes evident that equations (49) and (50) are simply copies of the

dynamics of equations (1) and (7), if one substitutes dWs in the latter with dW̃s:


dX̃s = b(s, X̃s)ds+ Σ(s, X̃s)dW̃s, s ∈ [t, T ]

X̃t = x.
dỸs = −h(s, X̃s, Ỹs, Z̃s)ds+ Z̃>s dW̃s, s ∈ [t, T ],

ỸT = g(X̃T ).
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Since at the time of initialization, t, Mt is by construction equal to one with prob-

ability one (in both P and Q-measure), the measures P and Q restricted to Ft are

equal, and therefore the pairs (Yt, Zt) and (Ỹt, Z̃t) are equal in expectation as well.

This proves that the value function at the initial condition (t, x) is independent of

the drift term modification.

The second statement of Theorem 5.1 claims that if each of the two FBSDE

systems are associated with the solution of a Cauchy problem respectively1, then

the solutions of these Cauchy problems match. This fact is easily established if one

examines the associated PDEs. Indeed, the FBSDE problem defined by (49) and (50)

corresponds to the PDE problem


vt +

1

2
tr(vxxΣΣ>) + v>x (b+ ΣK) + h(t, x, v,Σ>vx)− v>x ΣK = 0,

(t, x) ∈ [0, T )× Rn, v(T, x) = g(x),

(54)

which of course is identical to the PDE problem (13), as we have merely added and

subtracted the term v>x ΣK. Thus, although the FBSDEs are different, they are

associated with the same PDE problem.

Returning to the original problem formulation and recalling the definition of Γ(·)

in Assumption 3.1, we may apply any nominal control ū to the state dynamics in

order to obtain the modified drift system, which exhibits the form

dx(t) = [f(t, x(t)) + Σ(t, x(t))Γ(t, x(t))ū(t)]dt+ Σ(t, x(t))dWt. (55)

Thus, the controlled system trajectories are sampled from the forward process (49)

with

Ks = Γ(s,Xs)ū(s), s ∈ [t, T ], (56)

1Note that the second part of Theorem 5.1 assumes a link between PDEs and FBSDEs –given
by a converse Feynman-Kac lemma [35]– which is not necessary in the first part.
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while b(s,Xs) ≡ f(s,Xs) as per (25). Notice that the nominal control ū2 may be

any open or closed-loop control, a random control, or even a control calculated by a

previous run of the algorithm. In the latter case, one obtains a more refined solution,

thus arriving at an iterative scheme. This will be discussed in greater detail in the

following section.

To implement importance sampling, we return to the discrete representation of

Section 4.5, and define Ki = Kti . The forward process can again be sampled using the

Euler-Maruyama scheme. For the backward process, there are two equivalent ways

in which one can incorporate importance sampling in an algorithm, but the most

straightforward way is to simply define

h̃(s, x, y, z, k) , h(s, x, y, z)− z>k, (57)

and utilize the proposed scheme using h̃ instead of h.

5.2 Incorporating Importance Sampling and Sample Tra-
jectory Blending

If no initial guess for the control input is available, the algorithm can be initialized

using sample trajectories generated by zero or random control inputs. In the latter

case, the goal is to amplify the exploration of the state space, whenever the noise

level is too low to result in adequate exploration. If an initial guess for control exists,

it may speed up the iterative scheme and improve the accuracy, but it is otherwise

not an absolute requirement. A full iteration of the algorithm will then provide an

approximation of the value function based on the chosen basis functions, which is

accurate for that particular area of the state space that was visited by the sampled

trajectories. In the next iteration, sample trajectories are generated using the control

2Relation (56) is valid under the extra condition that the control input is bounded, a mild
restriction for engineering purposes.
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law (22), which is based on the value function approximation of the previous iteration.

Notice however, that the sampled trajectories of these two subsequent iterations differ

significantly– one was generated with zero (or random) control, whereas the other

was generated using the optimal control resulting from the first iteration. Thus,

different areas of the state space are visited during the sampling stages of those two

iterations. Since the value function approximation is accurate only in the area visited

by the initial trajectories, by evaluating the control law along the newly generated

samples, we are essentially performing extrapolation. Depending on the problem, this

extrapolation may or may not be accurate. If it is accurate, then a very small –if any–

change will be observed in the recovered basis function coefficients after the second

run has been concluded. In general however, the observed change will be significant.

This is due to the discrepancy between the areas visited during the sampling stage

of the algorithm, and the areas that are visited when the control law is evaluated.

Intuitively, convergence of the algorithm occurs when the sample trajectory areas and

controlled trajectory areas are sufficiently close or coincide.

While in many cases, solving the problem in an iterative fashion by applying

a previously calculated control law, leads to a smooth convergence to the optimal

trajectory and cost, there are instances in which the transition between successive

controlled trajectories oscillates significantly, thus preventing convergence (see the

simulations section of Chapter 6, for example). The underlying cause seems to be the

algorithm’s sensitivity to changes in the control law between iterations. Essentially,

the control input changes too drastically between iterations, similar in nature to

a gradient descent algorithm taking a step size which is too large. Mitigation of

this phenomenon can be accomplished, however, through the blending of the sample

trajectories used by the algorithm. Specifically, instead of generating all sample

trajectories for the next iteration using solely the obtained control law, we may sample

only a short percentage of the total number of them (typically 2-5%). Thus, the new
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pool of sampled trajectories consists mainly (95-98%) of the same trajectories as in the

previous iteration, while only a few are new, resulting from the newly obtained control

law. Furthermore, we may choose the old trajectories to correspond to lowest cost

realizations, thereby discarding the least favorable ones in favor of new realizations

generated using a new control law. Essentially, instead of completely renewing the

pool of trajectory samples and respective control inputs in each iteration, we create

pools of favorable samples and controls, that remain largely the same, discarding

bad trajectory-control couples in favor of newly sampled ones. This results in pools

that possibly combine trajectories/controls of several previous iterations, provided

they are good enough. Defining the ratio γ , Mold

M
∈ [0, 1), i.e., the percentage of

trajectory samples of the previous iteration present in the next iteration, the complete

procedure, featuring importance sampling and trajectory blending, is summarized in

the Algorithm 1 table. Note that one can also terminate this algorithm when the

Algorithm 1 NFK-FBSDE Algorithm with Importance Sampling and Sample Tra-
jectory Blending

Input: Initial condition x0, initial control input ū if available (otherwise zero), ter-
minal time T , number of Monte Carlo samples M , blending ratio γ ∈ [0, 1), number
of iterations Nit.
Output: Basis function coefficients for the value function, αi.

1: procedure NFK FBSDE(x0, ū, T , M , γ, N , Nit)
2: Assign M control inputs ū using either initial, zero, or random values, to

generate a collection Uc.
3: Sample a collection X of M state trajectories by applying discretization (27)

on equation (49), using the control sequences of Uc;
4: for 1 : Nit do
5: Using X and Uc, repeat the backward scheme (47) for N − 1 time steps,

using h̃ of equation (57) to obtain αi for each time step i = 0, . . . , N − 1;
6: Sample (1−γ)M new trajectories per discretization (27) using the control

law (22), and evaluate the cost (16);
7: Discard (1 − γ)M trajectories of X and controls Uc that correspond to

high cost and add the newly sampled ones;
8: end for
9: return αi.

10: end procedure
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evaluation of the cost in successive iterations does not exhibit significant change, in

lieu of a predetermined number of iterations Nit.

5.3 Scheme Convergence

The proposed algorithm consists of two components in which numerical approxima-

tion is performed, thus raising the question of convergence guarantees. Specifically,

we identify the following components:

• The time discretization schemes (Section 4.2). Concerning this component, con-

vergence of the schemes presented in Section 4.2 is established in its respective

literature [15,47,140]. Proving the convergence of the proposed scheme is more

involved, since the error in this case is no longer independent of the error aris-

ing from the numerical approximation of conditional expectations. A proof of

convergence of the proposed scheme was constructed, but it was not complete

before the dissertation submission deadline, and thus its publication will be

postponed until a future date.

• The LSMC method of approximating conditional expectations (Section 4.4.3).

Here, we may identify two sub-components:

i) The use of a finite number of basis functions for the conditional expecta-

tion in (34). Convergence is straightforward: assuming that the unknown

function φ lies within a space that can be spanned by a (possibly infinite)

set of basis functions of our choice, the projection error vanishes as their

number tends to infinity, thereby spanning the entire space in which φ lies.

The rate of convergence, however, is difficult to analyze [141].

ii) The use of a finite number of samples in the empirical estimator for the

expectation in (40). The empirical estimator converges as the Monte Carlo

samples tend to infinity, by virtue of the Law of Large Numbers. In general,
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the convergence rate in Monte Carlo methods is proportional to the square

root of the number of realizations,
√
M , by the Central Limit Theorem

[137].

It is important to note that, in contrast to the aforementioned two components, the

following two components do not require convergence analysis:

• The PDE-FBSDE problem equivalence, illustrated by the nonlinear Feynman-

Kac lemma (Section 2.4.4), during which no approximation is performed.

• The importance sampling component, which is based on Girsanov’s theorem

(Section 5.1). Again, no convergence analysis is necessary because the two

expressions are mathematically equivalent. No approximation step is performed.

The different numerical properties arise only because of the finite number of

samples that are used, and vanish as the number of samples tends to infinity.

Unfortunately, obtaining error bounds in the FBSDE literature has been proven to

be a difficult task. We can identify three sources of error in the algorithm:

• The time discretization error, which is introduced as soon as a time discretiza-

tion scheme is applied to the continuous forward and backward processes (1)

and (7). For the S1-scheme, this error decreases at a rate
√
N , where N is the

number of (equidistant) time steps [73].

• The projection error, which results from projecting the unknown, exact solution

of the infinite dimensional problem (34) to a finite set of basis functions, in

order to obtain the finite dimensional approximation (39). As noted in previous

literature, this error is hard to quantify except on some special cases [46].

• The simulation error, which is incurred by substituting the expectation op-

erator with its empirical estimator in equations (39)-(40) and using only a
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finite number M of Monte Carlo samples for the purposes of linear regres-

sion. Concerning the S1 scheme, the worst contribution stems from estimating

Zi ≈ 1
∆ti

E[∆WiYi+1|Xi], since the variance blows up as ∆ti becomes finer due

to the presence of the term ∆Wi/∆ti.

5.4 Simulation Results

Simulations on nonlinear systems were performed to demonstrate that the nonlinear-

ity in the dynamics is handled efficiently, and furthermore illustrate the importance

of the iterative nature of the scheme when dealing with more complicated problems.

5.4.1 The Inverted Pendulum

The equations of motion for the inverted pendulum are given by

m`2θ̈ + bθ̇ −mg` sin θ = u, (58)

and stochasticity enters the system in form of perturbations in the torque u. For

the purposes of this simulation, two thousand trajectories were generated on a time

grid of 0.005 with time horizon T=2. The system noise covariance was set to 0.1.

No initial guess for the control input was necessary. For the basis of the Value

function approximation, modified Chebyshev polynomials [65] up to second order

have been selected. The scheme was repeated for 15 iterations, without any use of

trajectory blending (γ = 0). The algorithm successfully learned the optimal control

to invert and stabilize the pendulum. Figure 4(a) depicts the mean of the controlled

trajectories for each algorithm iteration (gray scale). We observe that a balancing yet

suboptimal trajectory is obtained at the very first iteration of the algorithm, while

subsequent iterations further improve it until convergence. The trajectories after the

final iteration are shown in red. Finally, Figure 4(b) depicts the convergence of the

cost mean and standard deviation as the iterative scheme progresses.
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Figure 4: Mean optimal state trajectories and cost per iteration for the inverted
pendulum.

5.4.2 The Cart-Pole System

To assess the efficiency of the proposed scheme in underactuated systems, we simu-

lated the algorithm on a cart-pole system (see Figure 5). The equations of motion

are given by

ẍ =
1

mc +mp sin2 θ

(
u−mp sin θ(`θ̇2 + g cos θ)

)
, (59)

θ̈ =
1

`(mc +mp sin2 θ)

(
u cos θ −mp`θ̇

2 cos θ sin θ + (mc +mp)g sin θ

)
, (60)

and stochasticity enters the system in form of perturbations in u. For the purposes of

simulation, five thousand trajectories were generated on a time grid of 0.005 with time

horizon T=3. The system noise covariance was set to 1. Again, no initial guess for

the control input was necessary. For the basis of the value function approximation,

modified Chebyshev polynomials [65] up to second order have been selected. The

scheme was repeated for 35 iterations, without any use of trajectory blending (γ = 0).

Figure 6(a) depicts the mean of the controlled trajectories for each algorithm iteration
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Figure 5: Cart pole: mc denoted the mass of the cart, mp denotes the mass of the
pole and ` is the length of the pole.

(gray scale). The trajectories after the final iteration are shown in red. Finally, Figure

6(b) depicts the convergence of the cost mean and standard deviation as the iterative

scheme progresses.
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VI

THE STOCHASTIC L1-OPTIMAL CONTROL PROBLEM

In this chapter, we turn our attention to stochastic L1-optimal control problems.

We begin with a definition of the L1- type formulation, and show that this specific

class of stochastic optimal control problems allows for an explicit minimization of the

Hamiltonian term within the Hamilton-Jacobi-Bellman (HJB) equation, thus greatly

simplifying the structure of the problem. We then demonstrate that under the same

decomposability condition, namely Assumption 3.1 of Section 3.2, the HJB equation

exhibits the same form as the Cauchy problem (13) of Theorem 2.5 in Section 2.4.4.

Thus, we may obtain the solution to the HJB equation by solving the associated

system of FBSDEs. The chapter is concluded with simulations that validate the nu-

merical algorithm by applying it on a well-known minimum fuel problem, which offers

an analytic solution. Furthermore, we demonstrate the superiority of the proposed

stochastic control law against deterministic control laws, whenever they are applied in

the presence of stochastic disturbances. The algorithm’s ability to handle nonlinear

dynamics, on the other hand, is also demonstrated by an application on the inverted

pendulum system.

6.1 Problem Statement

On the filtered probability space (Ω,F , {Ft}t≥0,P), consider the problem of mini-

mizing the expected cost defined by the cost functional

J(τ, xτ ;u(·)) = E
[
g(x(T )) +

T∫
τ

q(t, x(t)) + p(t, x(t))>|u(t)| dt

]
, (61)
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associated with the stochastic controlled system, which is represented by the Itô

stochastic differential equation (SDE)


dx(t) = f(t, x(t))dt+G(t, x(t))u(t)dt+ Σ(t, x(t))dWt, t ∈ [τ, T ],

x(τ) = xτ .

(62)

In the above, T is a fixed time of termination1, x ∈ Rn is the state vector, dWt are

increments of a p-dimensional standard Brownian motion, and u ∈ U ⊂ Rν is the

control vector, where U = [−umin
1 , umax

1 ] × [−umin
2 , umax

2 ] × · · · × [−umin
ν , umax

ν ], with

umin
i ≥ 0, umax

i > 0. Note that the assumption about the signs of umin
i and umax

i is

without loss of generality. The same analysis can be performed for any umin
i < umax

i

regardless of their sign. Furthermore, | · | denotes the element-wise absolute value,

p : [0, T ] × Rn → Rν
+ is a (possibly time/state dependent) vector of nonnegative

weights, and q : [0, T ] × Rn → R is the state-depended part of the running cost.

If the “fuel consumption” penalty is to be applied on all control channels equally,

independently of time or state, then p reduces to a constant vector of ones. Finally,

all aforementioned functions, as well as g : Rn → R, f : [0, T ] × Rn → Rn, G :

[0, T ] × Rn → Rn×ν , and Σ : [0, T ] × Rn → Rn×p, are deterministic, in the sense

that they do not depend explicitly on ω ∈ Ω. We assume that all standard technical

conditions [138] which pertain to the filtered probability space and the regularity of

functions are met, in order to guarantee existence and uniqueness of solutions to (62),

and a well defined cost functional (61). These include the following:

i) The functions g, q, p, f , G and Σ are continuous with respect to time t (in case

there is explicit time dependence), Lipschitz (uniformly in t) with respect to

the state variables, and satisfy a standard growth condition over the domain of

interest (see existence and uniqueness of solutions to SDEs, Section 2.3.2).

1Optimal control problems in which the duration is not fixed a priori will be addressed in Chapter
8.
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ii) The control process u : [τ, T ]× Ω→ U ⊂ Rν is square-integrable and {Ft}t≥0-

adapted, which essentially translates into the control input being non-anticipating,

i.e., relying only on past and present information. We denote the set of all ad-

missible U -valued functions as U [τ, T ].

For any given initial condition (τ, xτ ), we wish to minimize (61) under all admis-

sible functions u(·) ∈ U [τ, T ]. We define the value function V as


V (τ, xτ ) = inf

u(·)∈U [τ,T ]
J(τ, xτ ;u(·)), (τ, xτ ) ∈ [0, T )× Rn,

V (T, x) = g(x), x ∈ Rn.

(63)

By applying the stochastic version of Bellman’s principle of optimality, it is shown

[39, 138] that if the value function is in C1,2([0, T ] × Rn), then it is a solution to

the following terminal value problem of a nonlinear second order partial differential

equation, known as the Hamilton-Jacobi-Bellman (HJB) equation, which –omitting

function arguments for brevity– assumes for the problem at hand the following form


vt + inf

u∈U

{
1

2
tr(vxxΣΣ>) + v>x f +

(
v>xG+ p>D(sgn(u))

)
u+ q

}
= 0,

(t, x) ∈ [0, T )× Rn, v(T, x) = g(x), x ∈ Rn,

(64)

wherein vx and vxx denote the gradient and the Hessian of v, respectively, D(x) ∈ Rn×n

denotes the diagonal matrix with the components of x ∈ Rn in its diagonal, and sgn(·)

denotes the signum function. Note that this result can be extended to include cases

where the value function does not satisfy the smoothness condition. Then, if one also

considers viscosity solutions of (64), the value function is proven to be a viscosity

solution of (64). Furthermore, the viscosity solution is equal to the classical solution,

if a classical solution exists. For the chosen forms of cost integrand and dynamics at

hand, we may carry out the infimum operation over u explicitly. To this end, let ui

be the i-th element of u and consider the following cases:
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• Case ui > 0, that is, sgn(ui) = +1. Then, if (v>xG)i+(p>)i > 0, the Hamiltonian

is minimized for ui = −umin
i ≤ 0, which leads to a contradiction. On the other

hand, if (v>xG)i + (p>)i < 0, the Hamiltonian is minimized for ui = umax
i > 0,

which is consistent with the hypothesis.

• Case ui < 0, that is, sgn(ui) = −1. This is a valid case if −umin
i is strictly

less than zero. Then, if (v>xG)i − (p>)i < 0, the Hamiltonian is minimized

for ui = umax
i > 0 which leads to a contradiction. On the other hand, if

(v>xG)i − (p>)i > 0, the Hamiltonian is minimized for ui = −umin
i < 0, which is

consistent with the hypothesis.

The optimal control law thus obtained is given by

u∗i =


umax
i , (v>xG)i < −(p>)i

− umin
i , (v>xG)i > (p>)i, i = 1, · · · , ν,

0, −(p>)i < (v>xG)i < (p>)i,

(65)

namely, the optimal control law turns out to be bang-bang control. This covers the

particular case when umin
i = 0 as well, in which case the corresponding condition is

−(p>)i < (v>xG)i.

Remark 6.1. Notice that in the control law given by (65), we do not assign a value

for u∗ whenever (v>xG)i = −(p>)i or (v>xG)i = (p>)i, because in those two cases the

control input is not uniquely defined. In fact, any value in [0, umax
i ] and [−umin

i , 0]

respectively attains the same infimum value in (64). A problem in which either one

of these equalities is satisfied over a nontrivial time interval is a singular fuel-optimal

problem [4]. In what follows, we shall assume that the minimum fuel problem is nor-

mal, in the sense that the aforementioned equalities are not satisfied over a nontrivial

time interval, P- almost surely.
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Substituting the control law given by (65), the HJB equation 64 assumes the

equivalent form
vt +

1

2
tr(vxxΣΣ>) + v>x f + q +

ν∑
i=1

min

{
(v>x G+ p>

)
i
umax
i , 0,−(v>x G− p>

)
i
umin
i

}
= 0,

(t, x) ∈ [0, T )× Rn, v(T, x) = g(x), x ∈ Rn.
(66)

6.2 A Feynman-Kac type Representation

A comparison of equations (66) and (13) indicates that the nonlinear Feynman-Kac

representation can be applied to the HJB equation given by (66) under Assumption

3.1, in which case (66) satisfies the format of (13) with

b(t, x) ≡ f(t, x) (67)

and

h(t, x, z) ≡ q +
ν∑
i=1

min

{
(z>Γ + p>

)
i
umax
i , 0, − (z>Γ− p>

)
i
umin
i

}
. (68)

We may thus obtain the (viscosity) solution of (66) by simulating the system of

FBSDEs given by (1) and (7) using the definitions (67) and (68).

6.3 Simulation Results

The aim of the simulations presented in this section is twofold. First, the proposed

algorithm is validated by means of an application to a linear problem for which an

open loop control law is available in closed-form for the deterministic setting of that

problem. This is the double integrator problem in Section 6.3.1. We demonstrate

that the algorithm is able to recover the optimal control sequence, using only im-

portance sampling. For this problem, sample trajectory blending is not necessary.

Furthermore, the obtained stochastic feedback control law is shown to outperform
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both the deterministic open loop as well as the deterministic closed-loop control law

in the presence of noise. Finally, in Section 6.3.2, the ability of the algorithm to han-

dle nonlinear dynamics, as well as the significance of the sample trajectory blending

technique, are demonstrated through simulations on an inverted pendulum system.

6.3.1 The Double Integrator

To validate the proposed algorithm on stochastic L1-optimal control problems, we

tested it on the fuel-optimal control problem of a stochastic double integrator plant.

The deterministic case offers a closed form solution; see [4], Ch. 8-6. Specifically, the

deterministic problem reads: Given the system equations

ẋ1(t) = x2(t) (69)

ẋ2(t) = u(t), |u(t)| ≤ 1, (70)

we wish to find the control which forces the system from an initial state (x10, x20) to

the goal state (0, 0), and which minimizes the fuel

J =

∫ T

0

|u(t)| dt, (71)

where T is a fixed (i.e., prespecified) response time. Existence of solutions is guaran-

teed if T satisfies a number of conditions depending on the values of the initial state.

For an initial state (x10, x20) in the upper right quadrant of the plane, the condition

reads

T ≥ x20 +
√

4x10 + 2x2
20, (72)

in which case the existence of a unique solution is guaranteed. The corresponding

fuel-optimal control sequence is {−1, 0,+1}, in which the control switching times t1
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and t2 are

t1 = 0.5

(
T + x20 −

√
(T − x20)2 − 4x10 − 2x2

20

)
, (73)

t2 = 0.5

(
T + x20 +

√
(T − x20)2 − 4x10 − 2x2

20

)
, (74)

that is,

u∗(t) =


− 1, t ∈ [0, t1),

0, t ∈ [t1, t2),

1, t ∈ [t2, T ].

(75)

A stochastic counterpart of this problem is obtained if the system equations are

modeled in the following form

dx1(t) = x2(t) dt, (76)

dx2(t) = u(t) dt+ σ dw(t), |u(t)| ≤ 1, (77)

i.e., modeling stochasticity in form of perturbations in the control input u. An al-

ternative stochastic counterpart could feature noise in the first channel as well. Ter-

minal state conditions are not meaningful in a stochastic setting, since whenever the

system dynamics are modeled by controlled diffusions, the probability of hitting a

particular point in state space exactly is zero. Therefore, instead of the final condi-

tion (x1(T ), x2(T )) = (0, 0), we introduce a “soft” constraint in the cost function by

adding a terminal cost:

J = E
[
C(x2

1(T ) + x2
2(T )) +

∫ T

0

|u(t)| dt

]
, (78)

where C is a large enough constant, thus penalizing deviation from the origin at the

time of termination.
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Figure 7: Double integrator plant, phase, cost, and control sequence.

For the purposes of simulation, two thousand trajectories were generated on a

time grid of ∆t = 0.01, with σ = 0.1, T = 4 and (x10, x20) = (0.8, 1.2). For the basis

of the value function approximation, modified Chebyshev polynomials [65] up to

second order have been selected. The proposed algorithm was run for 15 iterations,

using solely importance sampling. The use of sample trajectory blending was not

necessary for the convergence of the algorithm (γ = 0 in Algorithm 1). Figure 7.(a)

depicts the mean of the controlled trajectories in phase-plane after each iteration of

the algorithm (gray scale). The trajectory that corresponds to the final iteration

is marked in red. Figure 7.(b) depicts the cost mean ± 3 standard deviations per

iterations of the algorithm. Lastly, Figure 7.(c) shows the corresponding controls

for these mean trajectories in various colors, each color representing an algorithm

iteration. The control that corresponds to the final algorithm iteration is marked in

black and illustrates that the optimal control sequence {−1, 0,+1} is indeed finally

recovered.

We now compare the performance of the proposed stochastic control law against

the deterministic control law (75), if both laws are applied in a system influenced by
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(a) Deterministic, open loop. (b) Deterministic, closed loop
(by recalculating the control at
each time step).

(c) Stochastic feedback control
resulting from the proposed al-
gorithm.

Figure 8: Comparison between the deterministic control law (75), applied in open loop
(a) and closed loop (b) fashion, as well as the stochastic feedback control resulting
from the proposed algorithm.

noise. Specifically, for the same noise profile, we used the three following approaches:

• application of the deterministic control law (75), calculated once (at the initial

condition) and applied in an open-loop fashion (D-OL),

• the same control law, applied in a feedback fashion, in which for each time in-

stant and state (ti, xi) of the sampled trajectories, the controls are recalculated2

using the current state as initial condition and T − ti as a new fixed final time

(D-CL),

• the proposed stochastic feedback control law, obtained by our algorithm (S-CL).

The results of each approach are depicted in Figure 8(a), (b), and (c), respectively.

As expected, in D-OL, noise results in large variation between trajectories, many of

which fail to reach the goal state. Performance is improved in the case of D-CL, as the

deterministic controls are recalculated at each iteration, however the improvement is

rather minor. This is because in D-CL, even though the control law is applied in a

feedback fashion, it does not account for the noise, and thus the resulting trajectories

2Note that the control law in (75) is valid for initial conditions in the upper right quadrant.
See [4] for more details.
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are allowed to drift to areas of the state space for which a new fixed final time T − ti

no longer guarantees existence of a solution that leads to the goal state. The S-CL law

obtained by the proposed algorithm does not seem to suffer from this phenomenon. A

comparison of the cost mean and variance of these three approaches is shown in Figure

9. Specifically, D-OL, D-CL and S-CL result in a cost mean of 5.36, 4.75 and 2.97

respectively, and a cost variance of 14.00, 2.49 and 0.07 respectively. Note that here

we evaluate the cost given by equation (78) for all approaches. In the deterministic

setting, and in presence of the fixed final state conditions, the two costs (71) and (78)

are equivalent.
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Figure 9: Cost comparison between the deterministic open loop bang-bang control
law (75) used in open loop, in closed loop, and the stochastic feedback bang-bang
control of the proposed algorithm. Cost mean (left) and variance (right).

6.3.2 The Inverted Pendulum

The equations of motion for the inverted pendulum are given by

m`2θ̈ + bθ̇ −mg` sin θ = u, (79)

and stochasticity enters the system in form of perturbations in the torque u. The

constraint umax = umin = mg` makes this problem nontrivial, since the controller
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is forced to generate enough momentum by swinging back and forth to successfully

invert the pendulum. For the purposes of this simulation, two thousand trajectories

were generated on a time grid of ∆t = 0.005 with time horizon T = 1.5. The blending

ratio was set to γ = 0.98, meaning that in each iteration, 2% of the least favorable

sample trajectories and associated control inputs are discarded from the pools in favor

of newly sampled ones. The system noise covariance was set to 0.1. No initial guess

for the control input was necessary. For the basis of the value function approximation,

modified Chebyshev polynomials [65] up to second order have been selected. Figure 10

depicts an unsuccessful attempt of the algorithm to invert and stabilize the pendulum,

in the absence of sample trajectory blending (γ = 0). We observe that the mean of

the controlled system trajectories fluctuates between iterations (Figure 10.a), and

thus no convergence to an optimal trajectory is achieved. The same behavior is

reflected in the cost (Figure 10.b). In contrast, for γ = 0.98, the task is achieved

after approximately 55 iterations with minor improvements thereafter, as shown in

Figure 11. These results highlight the importance of sample trajectory blending as a

technique to smoothen changes in the optimal control between successive algorithm

iterations.
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Figure 10: The inverted pendulum system: Inability of the algorithm to converge in
the absence of sample trajectory blending.
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Figure 11: The inverted pendulum system: The algorithm converges for a blending
ratio of γ = 0.98
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VII

STOCHASTIC DIFFERENTIAL GAMES AND

RISK-SENSITIVE CONTROL

The aim of this chapter is to demonstrate that framework developed in this disserta-

tion can be employed in the solution of a variety of classes of stochastic differential

game problems as well. Specifically, we show that the Hamilton-Jacobi-Isaacs PDEs,

corresponding to L2- or L1-type of control penalties for the players, assume simplified

expressions under affine dynamics. Furthermore, an extension of the decomposability

condition of Chapter 3 is enough to allow for a probabilistic representation of the

solutions to these HJI PDEs via FBSDEs. Finally, we note that since the simplified

HJI PDE that appears for the L2-case of stochastic differential games exhibits the

same form as the HJB PDE of a risk-sensitive optimal control problem, the herein

proposed scheme is applicable to this type of stochastic optimal control as well. The

chapter is concluded with simulations.

7.1 Game Formulation

On the filtered probability space (Ω,F , {Ft}t≥0,P), consider a differential game in

which the expected game payoff is defined by the functional

P (u(·), v(·); τ, xτ ) = E
[
g(x(T )) +

T∫
τ

q(t, x(t)) + Lu(u(t))− Lv(v(t))dt
]
, (80)

where T > τ ≥ 0, T is a fixed time of termination1, and x ∈ Rn represents the game

state vector. The minimizing player seeks to minimize the payoff by controlling the

1Games in which the duration is not fixed a priori but instead involve a terminal surface will be
addressed in Chapter 8.
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vector u ∈ U ⊂ Rν , while the maximizing player seeks to maximize the payoff by

controlling the vector v ∈ V ⊂ Rµ. The functions g(·) and q(·) represent a termi-

nal payoff and a state-dependent running payoff, respectively, while Lu(·) and Lv(·)

represent the penalties paid by the minimizing and maximizing player, respectively.

It is assumed that the payoff functional is either of L2-type (minimum energy) or of

L1-type (minimum fuel), that is, the functions Lu and Lv satisfy either one of the

following two forms:

L2 : L(s) =
1

2
s>Rs,

L1 : L(s) = p>|s|,

where R is a positive definite real-valued matrix, p a vector of positive weights and

| · | represents the element-wise absolute value. The game state obeys the dynamics of

a stochastic controlled system which is represented by the Itô stochastic differential

equation (SDE)


dx(t) = f(t, x(t))dt+G(t, x(t))u(t)dt+B(t, x(t))v(t)dt+ Σ(t, x(t))dWt,

t ∈ [τ, T ], x(τ) = xτ ,

(81)

in which dWt are standard Brownian motion increments. We assume that all standard

technical conditions which pertain to the filtered probability space and the regularity

of functions are met, in order to guarantee existence, uniqueness of solutions to (81),

and a well defined payoff (80) (see Section 2.3.2) Furthermore, the square-integrable

processes u : [0, T ]×Ω→ U ⊂ Rν and v : [0, T ]×Ω→ V ⊂ Rµ are {Ft}t≥0-adapted,

which essentially translates into the control inputs being non-anticipating, i.e., relying

only on past and present information. If the control penalty for the maximizing or

minimizing player is of the L2-type, then U and/or V may be open subsets of Rν and

Rµ, respectively. Otherwise, for an L1-type of penalty, the respective domain is a

76



compact subset of the form U = [−umin
1 , umax

1 ] × [−umin
2 , umax

2 ] × · · · × [−umin
ν , umax

ν ],

with umin
i ≥ 0, umax

i > 0, and similarly for V . Note that the assumption about the

signs of umin
i and umax

i is without loss of generality. The subsequent analysis can

be performed for any umin
i < umax

i regardless of their sign. In this setting, p>|s|

represents a positively weighted summation of the element-wise absolute values of

the control input. If the “fuel consumption” penalty is to be applied on all control

channels equally, then p reduces to a vector of ones. Note that one could also consider

a time/state dependent weight vector p(t, x), without modifying the analysis.

The intuitive idea behind the game-theoretic setting is the existence of two players

of conflicting interests. The first player controls u and wishes to minimize the payoff P

over all choices of v, while the second player wishes to maximize P over all choices of

u of his opponent. At any given time, the current state is known to both players, and

instantaneous switches in both controls are permitted, rendering the problem difficult

to solve, in general. Formally, for any given initial condition (τ, xτ ), we investigate

the game of conflicting control actions u, v that minimize (80) under all admissible

non-anticipating strategies assigned to u(·), while maximizing it over all admissible

non-anticipating strategies assigned to v(·). The structure of this problem, due to the

form of the dynamics and cost at hand, satisfies the Isaacs condition2 [39, 55, 107],

and the payoff is a saddlepoint solution to the following terminal value problem of a

second order partial differential equation, known as the Hamilton-Jacobi-Isaacs (HJI)

equation


Vt + inf

u∈U
sup
v∈V

{
1

2
tr(VxxΣΣ>) + V >x (f +Gu+Bv) + q + Lu(u)− Lv(v)

}
= 0,

(t, x) ∈ [0, T )× Rn, V (T, x) = g(x), x ∈ Rn.

(82)

In the above, function arguments have been suppressed for notational compactness,

2The Isaacs condition renders the viscosity solutions of the upper and lower value functions equal
(see [40]), thus making the order of maximization/minimization inconsequential.
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and Vx and Vxx denote the gradient and the Hessian of V , respectively. The term

inside the brackets is the Hamiltonian. Depending on the form of Lu(u) and Lv(v), we

distinguish three cases; (a) both cost terms are of L2-type, (b) both terms are of L1-

type, and (c) mixed L2,L1-type cost terms. We shall investigate each case separately

in what follows.

7.1.1 Case I: L2-L2

Let Lu(u) = 1
2
u>Ruu and Lv(v) = 1

2
v>Rvv, with u and v taking values in U ⊂ Rν

and V ⊂ Rµ respectively. Assuming that the optimal controls lie in the interiors of U

and V , we may carry out the infimum and supremum operations in (82) explicitly, by

taking the gradient of the Hamiltonian with respect to u and v and setting it equal

to zero to obtain

Ruu+G>(t, x)Vx(t, x) = 0,

−Rvv +B>(t, x)Vx(t, x) = 0.

Therefore, for all (t, x) ∈ [0, T ]× Rn, the optimal controls are given by

u∗(t, x) = −R−1
u G>(t, x)Vx(t, x), (83)

v∗(t, x) = R−1
v B>(t, x)Vx(t, x). (84)

Inserting the above expression back into the HJI equation (82) and suppressing func-

tion arguments for notational brevity, we obtain the equivalent characterization


Vt +

1

2
tr(VxxΣΣ>) + V >x f + q − 1

2
V >x

(
GR−1

u G> −BR−1
v B>

)
Vx = 0,

(t, x) ∈ [0, T )× Rn, V (T, x) = g(x), x ∈ Rn.

(85)
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7.1.2 Case II: L1-L1

Let Lu(u) = p>u |u| and Lv(v) = p>v |v|, with u and v taking values in U = [−umin
1 , umax

1 ]×

[−umin
2 , umax

2 ] × · · · × [−umin
ν , umax

ν ], and V = [−vmin
1 , vmax

1 ] × [−vmin
2 , vmax

2 ] × · · · ×

[−vmin
µ , vmax

µ ], respectively. Then, the HJI equation (82) can be written as



Vt + inf
u∈U

sup
v∈V

{
1

2
tr(VxxΣΣ>) + V >x f +

(
V >x G+ p>uD(sgn(u))

)
u

+
(
V >x B − p>v D(sgn(v))

)
v + q0

}
= 0, (t, x) ∈ [0, T )× Rn,

V (T, x) = g(x), x ∈ Rn,

(86)

in which D(x) ∈ Rn×n denotes the diagonal matrix with the elements of x ∈ Rn in its

diagonal, and sgn(·) denotes the signum function.

Again, we may carry out the infimum and supremum operations over u and v

explicitly by performing the same analysis as in Chapter 6, to obtain the optimal

control law for the minimizing player:

u∗i =


umax
i , (V >x G)i < −(p>u )i

− umin
i , (V >x G)i > (p>u )i, i = 1, · · · , ν,

0, −(p>u )i < (V >x G)i < (p>u )i,

(87)

while the optimal control law for the maximizing player reads:

v∗i =


vmax
i , (V >x B)i > (p>v )i

− vmin
i , (V >x B)i < −(p>v )i, i = 1, · · · , µ,

0, −(p>v )i < (V >x B)i < (p>v )i.

(88)

Remark 7.1. We note again that, as in Chapter 6, the control laws given by (87)-

(88) are not uniquely defined whenever (V >x G)i = −(p>u )i or (V >x G)i = (p>u )i (and

similarly for v), as any value in [0, umax
i ] and [−umin

i , 0] respectively attains the same

79



infimum value in (86). A problem in which either one of these equalities is satisfied

over a nontrivial time interval is a singular fuel-optimal problem [4]. In this work,

we shall assume that the problem is normal, in the sense that the aforementioned

equalities are not satisfied over a nontrivial time interval.

We may insert the optimal control laws (87)-(88) back into the HJI equation (86),

to obtain the equivalent expression



Vt +
1

2
tr(VxxΣΣ>) + V >x f + q

+
ν∑
i=1

min

{
(V >x G+ p>u

)
i
umax
i , 0,−(V >x G− p>u

)
i
umin
i

}

+

µ∑
i=1

max

{
(V >x B − p>v

)
i
vmax
i , 0,−(V >x B + p>v

)
i
vmin
i

}
= 0,

(t, x) ∈ [0, T )× Rn, V (T, x) = g(x), x ∈ Rn,

(89)

that is, the min and max operations are performed over three values for each control

channel.

7.1.3 Case III: Mixed L2-L1

As it is evident from the previous two cases, each player’s optimality analysis is done

independently. Thus, we may combine the analysis performed in the two previous

cases and consider a third case in which one player pays a L2-type penalty, while

the other pays an L1-type. For example, the case in which the minimizing player is

subject to an L2-type penalty, while the maximizing player is subject to an L1-type

would yield the control laws (83) and (88) for the minimizing and maximizing player,

respectively, while the HJI equation would assume the form
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Vt +
1

2
tr(VxxΣΣ>) + V >x f + q − 1

2
V >x GR

−1
u G>Vx

+

µ∑
i=1

max

{
(V >x B − p>v

)
i
vmax
i , 0,−(V >x B + p>v

)
i
vmin
i

}
= 0,

(t, x) ∈ [0, T )× Rn, V (T, x) = g(x), x ∈ Rn.

(90)

Expressions for the case in which the penalty type assignment is switched between

the two players are also readily available.

7.2 A Feynman-Kac type Representation

By comparing the PDEs in Sections 7.1.1, 7.1.2 and 7.1.3 with the Cauchy problem

(13), we may conclude that the nonlinear Feynman-Kac representation can be applied

to each HJI equation of these sections under an extension of the decomposability

condition of Assumption 3.1 in Section 3.2, stated as follows:

Assumption 7.1. There exist matrix-valued functions Γ : [0, T ] × Rn → Rp×ν and

Λ : [0, T ]× Rn → Rp×µ such that G(t, x) = Σ(t, x)Γ(t, x) and B(t, x) = Σ(t, x)Λ(t, x)

for all (t, x) ∈ [0, T ]× Rn.

Similarly to Assumption 3.1, Assumption 7.1 implies that the ranges of G and L

must be a subset of the range of Σ, and thus excludes the case of a channel containing

control input but no noise, although the converse is allowed. Under Assumption 7.1,

the HJI equations in Sections 7.1.1, 7.1.2 and 7.1.3 (equations (85), (89) and (90),

respectively) satisfy the Cauchy problem (13) standard form. We readily obtain the

following SDE coefficients b(·) and h(·):

b(t, x) ≡ f(t, x) (91)
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and

Case I : h(t, x, z) ≡ q − 1

2
z>
(
ΓR−1

u Γ> − ΛR−1
v Λ>

)
z, (92)

Case II : h(t, x, z) ≡ q +
ν∑
i=1

min

{
(z>Γ + p>u

)
i
umax
i , 0, − (z>Γ− p>u

)
i
umin
i

}

+

µ∑
i=1

max

{
(z>Λ− p>v

)
i
vmax
i , 0,−(z>Λ + p>v

)
i
vmin
i

}
, (93)

Case III : h(t, x, z) ≡ q − 1

2
z>ΓR−1

u Γ>z

+

µ∑
i=1

max

{
(z>Λ− p>v

)
i
vmax
i , 0,−(z>Λ + p>v

)
i
vmin
i

}
. (94)

The (viscosity) solution of PDEs (85), (89) or (90) are thus obtained by simulating

the FBSDE systems given by (1) and (7) per definitions (91) and (92), (93) or (94),

respectively. Notice that (1) corresponds again to the uncontrolled (u = 0, v = 0)

system dynamics. We conclude this section by noting that the resulting FBSDE

problem can be solved iteratively using the importance sampling algorithm of Section

5.2.

7.3 Connection to Risk-Sensitive Control

The connection between dynamic games and risk-sensitive stochastic control is well-

documented in the literature [5, 25, 56]. Specifically, the optimal controller of a

stochastic control problem with exponentiated integral cost (a so-called risk-sensitive

problem) turns out to be identical to the minimizing player’s unique minimax con-

troller in a stochastic differential game setting. Indeed, consider the problem of

minimizing the expected cost given by

J(u(·); τ, xτ ) = ε lnE
{

exp
1

ε

[
g(x(T )) +

∫ T

τ

q(t, x(t)) +
1

2
u(t)>Ru(t) dt

]}
, (95)
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where ε is a small positive number. The state dynamics are described by the Itô SDE


dx(t) = f(t, x(t))dt+G(t, x(t))u(t)dt+

√
ε

2γ2
Σ̃(t, x(t))dWt, t ∈ [τ, T ],

x(τ) = xτ .

(96)

In this setting, the name “risk-sensitive” arises because of the nature of cost (95):

indeed, performing a Taylor series expansion, one obtains

J = E[J0] +
1

2ε
var[J0] + . . . ,

in which J0 denotes the quantity inside the brackets [·] in (95). Thus, this selection of

cost penalizes both the mean and the variance of J0. Suppressing function arguments

for notational compactness, the associated Hamilton-Jacobi-Bellman PDE for this

problem is [5]


Vt + inf

u∈U

{
ε

4γ2
tr(VxxΣ̃Σ̃>) + V >x (f +Gu) + q +

1

2
u>Ru+

1

4γ2
V >x Σ̃Σ̃>Vx

}
= 0,

(t, x) ∈ [0, T )× Rn, V (T, x) = g(x), x ∈ Rn.

(97)

The infimum operation can be performed explicitly, and yields the optimal control

u∗(t, x) = −R−1G>(t, x)Vx(t, x). Setting Σ =
√
ε/2γ2Σ̃ and substituting the optimal

control in the PDE (97) we readily obtain the equivalent characterization


Vt +

1

2
tr(VxxΣΣ>) + V >x f + q − 1

2
V >x

(
GR−1G> − 1

ε
ΣΣ>

)
Vx = 0,

(t, x) ∈ [0, T )× Rn, V (T, x) = g(x), x ∈ Rn.

(98)

The above equation is merely a special case of equation (82) obtained for the game-

theoretic version, if one substitutes Rv = (1/ε)I and B = Σ. Notice that this special

case of B automatically satisfies Assumption 7.1 with Λ being the identity matrix.
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Thus, imposing the same decomposability condition on G, the solution to the risk-

sensitive stochastic optimal control problem can be obtained by simulating the system

of FBSDEs given by (1) and (7) using the definitions (91) and (92).

7.4 Simulations

As a proof of concept, we simulated the algorithm for two different cases of differential

games: a scalar system with nonlinear drift dynamics, and a game based on the single

integrator problem in the Simulations section of Chapter 6.

7.4.1 A Scalar Example

We consider the scalar system with nonlinear drift dx = (4 cos x+u+0.5xv)dt+0.5dw,

setting q(t, x) = 0, Ru = 2, Rv = 5, x(0) = 1, T = 1 and g(xT ) = 40x2
T , thus

penalizing deviation from the origin at the time of termination, T . Two thousand

trajectories were generated on a time grid of ∆t = 0.005, while the set of basis

functions for Y was selected to be [1 x x2]>. The results are depicted in Fig. 12. From

the shape of the value function in Fig. 12(b) it is seen that the value is relatively

flat at the beginning since there is no state-dependent running cost and becomes

progressively quadratic at the final time owing to the boundary condition V (T, xT ) =

40x2
T . Note, however, that Fig. 12(b) shows the value function over a rectangular

grid. In fact, we have an accurate estimate of the value function only over the area

of the state space visited by the sampled (open-loop) trajectories. In that sense, the

areas not visited by the system are extrapolated based on the basis functions chosen

to represent V .

7.4.2 A Single Integrator Game with Mixed Types of Penalties

We consider a stochastic differential game based on the single integrator optimal

control problem of the Simulations section of Chapter 6. Here, the minimizing player

has a control restricted to |u(t)| ≤ 1 and pays an L1 penalty, while the maximizing
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(a) Trajectories of the uncon-
trolled (u = v = 0) system
(blue), and the optimally con-
trolled system (red).

(b) The Value function.
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Figure 12: Simulation for a scalar nonlinear differential game: controlled and uncon-
trolled system trajectories, the value function, and the coefficients of its decomposi-
tion.

player has no control constraints and pays an L2 penalty. The dynamics are given by

dx1(t) = x2(t) dt, dx2(t) = (u(t) + β v(t)) dt+ σ dw(t), |u(t)| ≤ 1, (99)

i.e., stochasticity enters in form of perturbations in the control input channel. Here,

β is a constant, the assigned value of which we may vary. An alternative stochastic

counterpart could feature noise in the first channel as well. The payoff functional is

given by:

P = E
[
10 (x2

1(T ) + x2
2(T )) +

∫ T

0

|u(t)| − 2.5 v2(t) dt

]
. (100)

For the purposes of simulation, 3,000 trajectories were generated on a time grid of

∆t = 0.01, with σ = 0.1, T = 4 and (x10, x20) = (0.8, 1.2). The proposed algorithm

was executed for 50 iterations, using importance sampling. We run the algorithm

for a very small value of β, (e.g., β = 10−8), to investigate whether the solution of

the stochastic differential game resembles the solution of the of the single integrator

optimal control problem in the Simulations section of Chapter 6. Indeed, as shown

in Figure 13.(b), this optimal control sequence {−1, 0,+1} is recovered. Increasing
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(a) Mean system trajectories. (b) Control.

Figure 13: Simulation results for β = 10−8. (a) The mean of the controlled system
trajectories of each iteration (grayscale) and after the final iteration (red). The black
dot represents the origin. (b). The minimizing and maximizing control input for
the mean system trajectory for each iteration (coloured) and after the final iteration
(black). We see that the optimal minimizing control sequence {−1, 0,+1} is finally
recovered.

the value of β to 0.1, Figure 14.(a) depicts the mean of the controlled trajectories in

phase-plane after each iteration of the algorithm (gray scale). The trajectory that

corresponds to the final iteration is marked in red. Figure 14.(b) depicts the payoff

mean ± 3 standard deviations per iteration of the algorithm. Interestingly enough,

the optimal minimizing control now differs, as shown in Figure 14.(c).
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(a) Mean system trajectories. (b) Cost

(c) Control.

Figure 14: Simulation results for β = 0.1. (a) The mean of the controlled system
trajectories of each iteration (grayscale) and after the final iteration (red). The black
dot represents the origin. (b). Cost mean ± 3 standard deviations per iteration.
(c). The minimizing and maximizing control input for the mean system trajectory
for each iteration (coloured) and after the final iteration (black). We see that the
optimal minimizing control sequence has now changed.
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VIII

FIRST EXIT FORMULATIONS

All optimal control problems formulated thus far require the selection of an appro-

priate value for the time of termination. In several situations however, choosing

such a value can be challenging and may introduce unnecessary restrictions in the

class of problem solutions. This can be illustrated by means of the following exam-

ple: consider the case in which a system is expected to accomplish a specific task

(e.g., inverting a pendulum, achieving a desired configuration for a robotic arm etc.).

The presence of a fixed final time implies the constraint that this task needs to be

accomplished at exactly time T , thereby effectively rejecting control solutions that

accomplish it at a different time, sooner or later. Unless timing is a critical factor

in control design, the particular time instant in which the task is completed is often

unimportant. In other words, the class of control solutions within which we seek the

optimum is restricted to those solutions that satisfy the terminal time requirement,

and may greatly influence the resulting cost, without being an important control

design factor. This implies that there is an additional dimension with respect to

which the performance index can be optimized, namely the time of termination, a

fact which has been addressed in classic optimal control theory by considering free

final time formulations.

Similarly, in the context of differential games, the game formulations presented in

Chapter 7 assumes that the game has a fixed, prespecified duration. Nevertheless, in

many games this is not the case; rather, the game terminates when a particular state

(or set of states) is reached. The set of states signaling game termination are called

a terminal surface in the literature of differential games.
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In a stochastic setting, free final time problems without cost discounting can be

troublesome due to the absence of boundedness guarantees. Furthermore, since the

presented approach is a sampling-based method, allowing the process to continue

without imposing an upper bound on its duration may yield trajectory samples that

have a very large – or even possibly infinite – time duration, and thus cannot be

simulated (see relevant discussion in [37]). However, we may formulate a first exit

problem with time upper bound, in which the process terminates as soon as the

task has been achieved, or a specified maximum time duration has passed, whichever

event occurs first. Thus, this formulation enables optimization with respect to time

as well. Intuitively, if the optimal mean final time is finite and the upper bound is

large enough, this aforementioned formulation should yield that optimal final time

(in expectation). This extension also allows us to address differential games involving

a terminal surface.

8.1 Problem Statement

Let G be the domain of the drift-diffusion process within the state space, and let

∂G ∈ C1 be its boundary, the crossing of which signals early process termination, i.e.,

∂G separates the target set from the rest of the domain (in the case of differential

games, ∂G represents the terminal surface). Given (Ω,F , {Fs}s≥0,P), we may define

the cost

J(u(·);x0, T ) = E
[
Ψ(T , x(T )) +

T∫
0

L(t, x(t), u(t))dt
]
, (101)

in which L is either an L2 or L1-type running cost, as described in Chapters 3 or 6,

respectively (see equations (16) and (61)), and T and Ψ(·) are defined as follows:

T , min{τexit, T}, with τexit , inf{s ∈ [0, T ] : x(s) ∈ ∂G}, (102)
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that is, τexit is the first hitting time in which a trajectory reaches the boundary ∂G,

and

Ψ(t, x) ,


g(x), (t, x) ∈ {T} × G,

ψ(t, x), (t, x) ∈ [0, T )× ∂G.
(103)

Here, g(·) is the usual fixed final time terminal cost, while ψ(·) is a function assigning

a terminal cost for time instants t < T , whenever the trajectories hit the target set

before the maximum time of termination has elapsed. Following a similar procedure

as in Sections 3.2 or 6.2, and under Assumption 3.1, the resulting HJB PDE is [39]


vt +

1

2
tr(vxxΣ(t, x)Σ>(t, x)) + v>x b(t, x) + h(t, x,Σ>(t, x)vx) = 0, (t, x) ∈ [0, T )× G,

v(T, x) = g(x), x ∈ G,

v(t, x) = ψ(t, x), (t, x) ∈ [0, T )× ∂G
(104)

in which b(·) and h(·) may take any of the forms given by equations (25) - (26), or

(67) - (68), depending on whether the running cost in (101) is of the L2 or L1 type,

respectively. In the context of differential games, the associated b(·) and h(·) are given

by (91) and (92), (93) or (94). The corresponding FBSDEs that yield a probabilistic

solution to this problem are [138]


dXs = b(s,Xs)ds+ Σ(s,Xs)dWs, s ∈ [t, T ],

Xt = x.

(105)

and 
dYs = −h(s,Xs, Zs)ds+ Z>s dWs, s ∈ [t, T ],

YT = Ψ(XT ).

(106)

The same procedure can be applied to a differential game setting. We conclude

this section by noting that the resulting FBSDE problem can be solved iteratively

using the importance sampling algorithm of Section 5.2.
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8.2 Simulations

To illustrate the theory, we simulated the algorithm for the scalar system dx =

(−0.2x + 0.5u)dt + 0.5dw. With an initial condition x(0) = 1, we assume that the

target is x = 0, and therefore terminate the process early, once the origin is crossed,

without any penalty (ψ(t, x) = 0). After a maximum duration of T = 2 has passed,

we terminate the process and penalize deviation from the origin at that time instant

using g(xT ) = 5x2
T . Furthermore, we set q(t, x) = 0, and R = 1. For comparison,

we also simulate the same system without the presence of a terminal surface. For

the purposes of simulation, two thousand trajectories were generated on a time grid

of ∆t = 0.005, while the set of basis functions for Y was selected to be [1 x x2]>.

The results are depicted in Fig. 15. The cost mean and variance for the first exit

problem is 1.7 and 10.7 respectively, while for the fixed final time problem the cost

mean and variance are 3.5 and 14.7 respectively, indicating that there is a significant

decrease in the cost if we relax the requirement of a fixed final time for the task to

be accomplished.

(a) Trajectories of the uncontrolled (u = 0) sys-
tem (blue), and the optimally controlled system
(red). The process may terminate early once the
goal (x = 0) has been achieved. Cost mean and
variance are 1.7 and 10.7 respectively.

(b) Trajectories of the uncontrolled (u = 0) sys-
tem (blue), and the optimally controlled system
(red). The process terminates only when T = 2.
Cost mean and variance are 3.5 and 14.7 respec-
tively.

Figure 15: System trajectories: (a) with early termination at the target x = 0, and
(b) with fixed time of termination T .
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IX

APPLICATION: THE SOFT LANDING PROBLEM

In this chapter, we will apply the proposed algorithm to the soft landing problem

(SLP). Therein, the goal is to find the optimal control, i.e., the optimal thrust profile,

for a spacecraft attempting to make a soft landing on a planet, using a minimum

amount of fuel. The problem was originally addressed by considering only one spatial

dimension (namely the altitude with respect to the planet), in which case its deter-

ministic formulation offers a closed-form solution (initially obtained by Miele [88,89]

during the 1960’s, see also [38,87]). In more recent years, there has been renewed in-

terest in the topic, which appears under the name Powered-Descent Guidance (PDG),

mainly due to the success of NASA’s Mars Science Laboratory program. Several re-

sults appear in the literature, treating a more complex problem involving all three

spatial dimensions, more accurate modeling of the dynamics to account for plane-

tary rotation, and several state and control constraints [1, 31, 116]. The challenges

faced in the implementation of planetary PDG controllers are the twofold: (a) the

environmental uncertainty and stochastic disturbances present, and (b) the limited

capabilities for onboard computation.

In this dissertation, we address both of these issues by an application of the pro-

posed algorithm on the L1-optimal SLP. We shall demonstrate that the algorithm

offers superior performance in the presence of stochastic disturbances, compared to

both an open-loop, as well as a closed-loop implementation of the deterministic solu-

tion, offering a much lower mean and variance on the touchdown speed. Depending

on given safety specifications, we can further reduce this mean and variance, thus
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gaining a more robust, safer controller, at the expense of slightly increased fuel ex-

penditure. Furthermore, the nature of the algorithm allows for a complete solution

of the problem a priori and off-line, thus minimizing the required onboard computing

capabilities of the spacecraft.

9.1 Problem Description

In this section, we formally define the SLP. We first introduce the deterministic setting

and its closed-form solution, which we will later use for validation and comparison

purposes. We then present a stochastic version of the problem, on which we will apply

the proposed algorithm. Finally, in the simulation section, we compare the numerical

results obtained by the proposed algorithm to those of the closed-form solution (both

in open-loop and closed-loop implementation).

9.1.1 Deterministic Setting

Consider the problem of a spacecraft attempting to make a soft landing on a planet,

using a minimum amount of fuel. The dynamical equations are given by

ḣ(t) = v(t),

v̇(t) = −g +
u(t)

m(t)
, u(t) ∈ [umin, umax],

ṁ(t) = −αu(t),

t ∈[0, tf ], h(0) = h0, v(0) = v0, m(0) = m0,

wherein h : [0, tf ] → R+, v : [0, tf ] → R, and m : [0, tf ] → R+ denote the altitude,

vertical speed, and mass of the spacecraft at time t, respectively, g is the gravitational

acceleration, assumed to be constant, α is a positive constant that describes the

mass flow rate, and u(t) : [0, tf ] → [umin, umax], is the control input (thrust), with

umin, umax ∈ R+. As admissible controls, we consider all piecewise continuous control
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functions taking values in the aforementioned interval. The initial conditions are

(h0, v0,m0), whereas the terminal conditions are h(tf ) = v(tf ) = 0. Here, tf denotes

the time instant of landing, whose particular value is otherwise left unspecified. For

the mass, we assume that a reasonable value has been assigned to m0 so that landing

with remaining mass at or above the dry mass (mass of the spaceship without fuel)

is feasible. We wish to obtain the optimal control u∗(t) that satisfies the above

conditions, while minimizing the amount of fuel spent:

Jdet(u(·);h0, v0,m0) =

∫ tf

0

|u(t)|dt. (107)

It can be shown [38,87,88] that the solution to this L1-optimal control problem of free

final time yields a unique optimal bang-bang controller, and that the problem is normal

(meaning singular control does not appear within the optimal control sequence), and

that there is at most one switch time. The optimal control sequence is

u∗(t) =


umin, t ∈ [0, ts),

umax, t ∈ [ts, tf ],

(108)

in which ts denotes the switching time. It can be shown (see Appendix A) that the

switching and final time satisfy the following system of equations:

h0 + v0ts +
tf
α
− 1

α
(ts −

m0

αumin

)ln(1− αumin

m0

ts)−
1

2
gt2s

+
m0 − αumints

α2umax

ln

(
1− αumax

m0 − αumints
(tf − ts)

)
+

1

2
g(tf − ts)2 = 0, (109)

α(umax − umin)ts = αumaxtf +m0

(
exp(α(v0 − gtf )− 1)

)
. (110)

The above system can be numerically solved for ts and tf .
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9.1.2 Stochastic Setting

We consider a stochastic version of the above problem by introducing the dynamics

dh(t) = v(t)dt,

dv(t) = (−g +
u(t)

m(t)
)dt+ σ

bumax

m(t)
dWt, u(t) ∈ [umin, umax],

dm(t) = −αu(t)dt− σαbumaxdWt,

t ∈[0, T ], h(0) = h0, v(0) = v0, m(0) = m0,

Since the time of termination, tf is not specified a priori, we will consider a first

exit problem, in which the process terminates when the hyperplane h = 0 is crossed,

or an upper bound T on the time duration has passed. Thus the state space is

G = {h, v,m : h ∈ R+, v ∈ R,m ∈ R+}, with ∂G = {h, v,m ∈ G : h = 0}. Enforcing

the terminal equality constraints h(tf ) = v(tf ) = 0 in a stochastic setting is not

meaningful, since the probability of hitting those states exactly is zero. We shall

introduce them as soft constraints in the cost, which we define as the following:

J(u(·);h0, v0,m0, T ) = E
[
Ψ(T , h(T ), v(T )) +

T∫
0

q|u(t)|dt
]
, (111)

with q being a positive constant, T the minimum between the time of first exit, τexit,

and the upper bound T , and

Ψ(t, h, v) ,


c1h

2(t) + c2v
2(t), (t, h, v) ∈ {T} × G,

c3v
2(t), (t, h, v) ∈ [0, T )× ∂G,

(112)

where in c1, c2, and c3 are positive constants. The motivation behind this choice

of terminal cost Ψ(·) is that trajectories that terminate earlier than t = T because

of touchdown (h = 0) are penalized a high touchdown speed, whereas trajectories

95



that terminate at t = T (i.e., without a touchdown) are penalized for both residual

altitude and speed.

9.2 Simulation Results

For the purposes of simulation, we assumed the following constants: (taken from [136],

which investigates safe landing on Mars) g = 3.71, b = 0.02, α = 4.83E − 4, umin =

4.97E3, umax = 1.33E4, σ = 3, and initial conditions (h0, v0,m0) = (80,−10, 1905).

Comparison of performance is done via two metrics, namely the touchdown speed, and

the fuel mass used; in both cases, both mean and variance are calculated. Another

indicator is the percentage of trajectories that lead to a touchdown.

9.2.1 Deterministic Control- Open-Loop Implementation

In this case, we calculate the switching time and apply the deterministic control law

(108) in an open-loop fashion. The results are depicted in Figure 16. Out of the 1000

trajectories simulated, only 50.3% lead to touchdown. The remaining trajectories lead

to a hovering above the ground, which also explains the spike in fuel expenditure, seen

in Figure 16(b). Of the 50.3% of the trajectories for which a touchdown occurs, most

of them are considered a crash, due to the high speed impact. Indeed, the mean

touchdown speed is -5.24 m/s, with a variance of 5.40.

9.2.2 Deterministic Control- Closed-Loop Implementation

We now simulate the control law (108) in a closed-loop fashion, i.e., at each time

instant we recalculate the switching time. Switching back and forth between controls

(due to the influence of the noise) is allowed.

The results are depicted in Figure 17. All of the 1000 trajectories simulated now

lead to a touchdown. However, most of them are still considered a crash, due to the

high speed impact. Indeed, the mean touchdown speed this time is -3.19 m/s, with a

variance of 1.96.
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(a) Trajectories resulting from the open-loop implementation of control law (108). Only 50.3%
of trajectories lead to touchdown, the rest ends up hovering above the ground (see left figure)).

(b) Touchdown speed profile (left) and fuel consumption profile (right). Out of the 50.3% of
the trajectories that lead to touchdown, most of them are considered a crash. The high fuel
expense in the right is explained by the hovering above the ground.

Figure 16: SLP: solution of the open-loop implementation of control law (108).

9.2.3 Proposed Algorithm

For T = 8.5, q = 1, we used three thousand trajectory samples on a time grid

of ∆t = 0.005, and a trajectory blending ratio of 0.98. The results are depicted

in Figure 18. After the final iteration of the proposed algorithm, we evaluate the

performance of the control law by simulating 1000 trajectories for time intervals long

enough to achieve touchdown, see Figure 18(b). For t > T , we use the same control

law as for t = T . In contrast to the deterministic setting, the cost given by (111)

can be used to shape trajectories based on whether we place more importance on

minimizing the touchdown speed even for worst-case disturbances (at the expense
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(a) Trajectories resulting from the closed-loop implementation of control law (108). 100% of
trajectories lead to touchdown.

(b) Touchdown speed profile (left) and fuel consumption profile (right). Most of the trajectories
still lead to a crash.

Figure 17: SLP: solution of the closed-loop implementation of control law (108).

of increased fuel usage), or whether fuel expenditure is critical and should be thus

done in a parsimonious manner. Two such cases are depicted in Figure 19. In Case

I, fuel is relatively expensive, thus for some noise profiles the spacecraft has a high

touchdown speed (mean -0.62 m/s, variance 0.061). In contrast, Case II corresponds

to relatively cheap fuel, and thus the algorithm increases the effort to contain the

spread of trajectories, thus avoiding a crashing impact even for bad noise profiles

(mean touchdown speed -0.55m/s, variance 0.006). This increases the fuel expenditure

(used fuel mass of Case II: mean 43.2kg variance 1.5, as opposed to 39.7/1.1 for

Case I). Assuming that any touchdown speed higher than 5ft/sec (1.52m/sec) is
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(a) The mean of the controlled system trajectories of each iteration (grayscale) and after the final
iteration (red).

(b) Optimally controlled trajectories, simulated until touchdown. 100% of the trajectories lead to
touchdown.

Figure 18: SLP: solution of the proposed algorithm.

considered a crash1, we may summarize the comparison results in Table 2. The

results are also shown in Figure 20. The superiority of the proposed algorithm in

providing a control solution leading to a smooth landing, which is furthermore robust

to stochastic disturbances, is evident. In addition, all computations can be performed

off-line, leading to a simple implementation, which does not require high on-board

computational capability for the spacecraft.

1See NASA specifications, e.g., https://www.nasa.gov/mission_pages/station/structure/
elements/soyuz/landing.html
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Figure 19: Comparison between the touchdown speed and fuel consumption profiles
for cases I and II. In case I, fuel is relatively expensive, thus it is used frugally, leading
to low fuel consumption (right figure). This however also leads to a few realizations
corresponding to high touchdown speed (spacecraft crashes, left figure). Case II,
which is characterized by relatively cheap fuel, greatly reduces the variance of the
touchdown speed, thereby avoiding realizations that lead to crashes, at the expense
of increased fuel consumption.

Method
Touchdown Speed [m/s]

(mean/variance)
Fuel Usage [kg]
(mean/variance)

Touchdown
Percentage

Crash
Percentage

Deterministic,
Open Loop

-5.24/5.40 32.4/25.3 50.3% 95.0%

Deterministic,
Closed Loop

-3.18/1.96 31.9/5.1 100% 86.8%

Stochastic,
Case I

-0.62/0.061 39.7/1.1 100% 2.3%

Stochastic,
Case II

-0.55/0.006 43.2/1.5 100% 0*%

Table 2: Comparison of all methods in terms of touchdown speed, fuel mass used, per-
centage of trajectories that lead to touchdown, and percentage of trajectories leading
to crash. A crash is classified as a trajectory with a touchdown speed greater than
5ft/s (1.52 m/s). For Case II, no crashes occur; the Chebyshev-Cantelli Inequality
gives an upper bound of 0.6 % on the probability of a crash occurring in this case.

100



(a) Touchdown speed comparison (mean/variance)

(b) Fuel usage comparison (mean/variance).

(c) Crash percentage

Figure 20: Performance comparison of the three methods. For (c), a crash is classified
as a trajectory with a touchdown speed greater than 5ft/s (1.52 m/s). For Case II of
the proposed method, no crashes occur; the Chebyshev-Cantelli Inequality gives an
upper bound of 0.6 % on the probability of a crash occurring in this case.
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X

CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

In this dissertation, we presented a novel framework to address various stochastic

optimal control problems and differential games. In light of a nonlinear Feynman-

Kac lemma, we transform the Hamilton-Jacobi-Bellman boundary value problem to a

problem involving a system of forward and backward stochastic differential equations.

This framework relaxes some of the restrictive conditions present within the existing

literature on sampling-based methods for stochastic optimal control. We then develop

an efficient numerical scheme to solve the resulting systems of FBSDEs. In particular,

the proposed numerical scheme requires only one regression operation per time step

(as opposed to p + 1 – where p is the dimensionality of the noise– as it is the case

in the most established scheme in the literature), and is furthermore enhanced with

importance sampling. The latter is derived by means of Girsanov’s theorem on the

change of measure and allows us to obtain solutions in an iterative manner, whenever

the problem is characterized by complex, nonlinear dynamics. We have applied the

framework on various problems of stochastic optimal control, including L2, L1, and

risk-sensitive control in both fixed final time and first-exit settings, as well as differ-

ential games. The usefulness of the framework is also illustrated with an application

on the soft landing problem.

As future directions of research, we may propose the following:

• Convergence / Error analysis of the proposed scheme. A proof of con-

vergence of the proposed scheme was constructed, but it was not complete before

the dissertation submission deadline, and thus its publication will be postponed
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until a future date. Furthermore, an interesting extension would be the investi-

gation of the various error sources, along with the calculation of their associated

upper bounds.

• Constraint investigation. It may be feasible to introduce constraints, which

will make the framework more useful in addressing practical engineering prob-

lems. The herein presented framework can handle “soft-constraints” introduced

in the running cost. Alternatively, a first-exit type of formulation can be con-

sidered, in which parts of the termination surface are associated with a high

terminal cost. Introduction of state constraints in stochastic optimal control is

an open research topic, with only a few recent results in the literature [114,115].

• Mixed L2-L1 penalty. The framework can address control effort penalties that

are a combination of L2 and L1. The combined penalty allows for a closed-form

expression of the optimal control [97], and under the decomposability condition

assumed in this dissertation, the HJB PDE is associated to a system of FBSDEs.

Some caution is needed in the algorithmic implementation however, since the

optimal control is expressed in terms of saturation functions.

• Higher-dimensional problems: data dimensionality reduction. Al-

though sampling-based methods do not suffer from the curse of dimensionality,

there is still increased difficulty in dealing with high dimensional problems. In

the proposed framework, the main bottleneck is expected to be the selection

of a good set of basis functions for regression, whenever high-dimensional data

are expected to lie on a lower-dimensional manifold. This suggests an interest-

ing research direction towards the application of data dimensionality reduction,

various projection methods including the tensor-train decomposition method

etc., on the proposed framework.

• Alternative methods for regression. In this dissertation, we used linear
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regression for the approximation of conditional expectations. This is the fastest

and simplest approach, but it is nevertheless plausible that the numerical scheme

can benefit from more sophisticated regression methods.

• Local-to-global: imitation learning. The algorithm yields a control law

which is accurate for an area of the state space that was visited by the sampling

trajectories, i.e., it is a local solution. However, during the several iterations

of the algorithm, different areas are visited during sampling, with most of the

solution information being discarded every time. One can therefore attempt

to aggregate this information using a universal function approximator, e.g., a

neural network. In this case, the neural network may learn to replace the entire

algorithm, similar to what is done in the field of imitation learning.
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APPENDIX A

SUPPLEMENTARY MATERIAL TO THE SOFT

LANDING PROBLEM

In this appendix, we derive the system of equations that can be solved to obtain

the switching time ts, and final time tf , in the Soft Landing Problem. It can be

shown [38, 87, 88] that the solution to the SLP yields a unique optimal bang-bang

controller, and that the problem is normal (meaning singular control does not appear

within the optimal control sequence), and that there is at most one switch time. The

optimal sequence is {umin, umax}, with a switching time ts. The total time duration

is tf . Recall that the dynamics are given by:

ḣ = v, (113)

v̇ = −g +
u

m(t)
, u(t) ∈ [umin, umax], (114)

ṁ = −αu, (115)

h(0) = h0, v(0) = v0, m(0) = m0, (116)

For the first segment t ∈ [0, ts), where u = umin, we have by virtue of (115)

m(t) = m0 − αumint. (117)

Substituting the above in (114) and integrating yields

v(t) = v0 −
1

α
ln

(
1− αumin

m0

t

)
− gt. (118)
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Again, we substitute the above expression in (113) and perform integration to obtain

h(t) = h0 + v0t+
t

α
− 1

α
(t− m0

αumin

)ln

(
1− αumin

m0

t

)
− 1

2
gt2. (119)

We evaluate the previous three expressions at t = t−s :

h(ts) = h0 + v0ts +
ts
α
− 1

α
(ts −

m0

αumin

)ln

(
1− αumin

m0

ts

)
− 1

2
gt2s, (120)

v(ts) = v0 −
1

α
ln

(
1− αumin

m0

ts

)
− gts, (121)

m(ts) = m0 − αumints. (122)

We now move to the interval [ts, tf ], wherein u = umax. Following the same procedure,

the state equations are given by

h(t) = h(ts) + v(ts)(t− ts) +
t− ts
α
− 1

α
(t− ts −

m(ts)

αumax

)ln

(
1− αumax

m(ts)
(t− ts)

)
− 1

2
g(t− ts)2, (123)

v(t) = v(ts)−
1

α
ln

(
1− αumax

m(ts)
(t− ts)

)
− g(t− ts), (124)

m(t) = m(ts)− αumax(t− ts). (125)

We apply the boundary condition v(tf ) = 0 in (124) to obtain

v(ts) =
1

α
ln

(
1− αumax

m(ts)
(tf − ts)

)
+ g(tf − ts). (126)

The above, along with the boundary condition h(tf ) = 0, are applied in (123) to

obtain

h(ts) = −tf − ts
α

− m(ts)

α2umax

ln

(
1− αumax

m(ts)(tf − ts)

)
− 1

2
g(tf − ts)2. (127)
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We now enforce continuity of states and equate the above to the expressions given by

(120) and (121), and simplify to obtain the final expressions

h0 + v0ts +
tf
α
− 1

α
(ts −

m0

αumin

)ln(1− αumin

m0

ts)−
1

2
gt2s

+
m0 − αumints

α2umax

ln

(
1− αumax

m0 − αumints
(tf − ts)

)
+

1

2
g(tf − ts)2 = 0, (128)

α(umax − umin)ts = αumaxtf +m0

(
exp(α(v0 − gtf )− 1)

)
. (129)
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[116] Scharf, D., Açikmeşe, B., Dueri, D., Benito, J., and Cosoliva, J.,

“Implementation and experimental demonstration of onboard powered-descent

guidance,” Journal of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 213–

229, 2017.

123



[117] Seywald, H., Kumar, R. R., Deshpande, S. S., and Heck, M. L., “Mini-

mum fuel spacecraft reorientation,” Journal of guidance, control, and dynamics,

vol. 17, no. 1, pp. 21–29, 1994.

[118] Shreve, S., Stochastic Calculus for Finance II: Continuous Time Models.

Springer Finance Textbooks, Springer, 2004.

[119] Soner, H. M., Touzi, N., and Zhang, J., “Wellposedness of second or-

der backward SDEs,” Probability Theory and Related Fields, vol. 153, no. 1-2,

pp. 149–190, 2012.

[120] Song, Q., Yin, G., and Zhang, Z., “Numerical solutions for stochastic differ-

ential games with regime switching,” IEEE Transactions on Automatic Control,

vol. 53, pp. 509–521, March 2008.

[121] Stein, J., Stochastic Optimal Control, International Finance, and Debt Crises.

Oxford University Press, 2006.

[122] Stengel, R. F., Optimal Control and Estimation. Dover Publications, Inc.,

1994.

[123] Stulp, F., Theodorou, E., and Schaal, S., “Reinforcement learning with

sequences of motion primitives for robust manipulation,” IEEE Transactions

on Robotics, vol. 28, no. 6, pp. 1360–1370, 2012.

[124] Sun, W., Theodorou, E. A., and Tsiotras, P., “Game-theoretic contin-

uous time differential dynamic programming,” American Control Conference,

Chicago, IL, pp. 5593–5598, July 1–3, 2015.

[125] Tevzadze, R., “Solvability of backward stochastic differential equations with

quadratic growth,” Stochastic processes and their Applications, vol. 118, no. 3,

pp. 503–515, 2008.

124



[126] Theodorou, E. A., “Nonlinear stochastic control and information theoretic

dualities: Connections, interdependencies and thermodynamic interpretations,”

Entropy, vol. 17, no. 5, pp. 3352–3375, 2015.

[127] Theodorou, E. A., Buchli, J., and Schaal, S., “A generalized path in-

tegral control approach to reinforcement learning,” The Journal of Machine

Learning Research, vol. 11, pp. 3137–3181, January 2010.

[128] Theodorou, E. A., Tassa, Y., and Todorov, E., “Stochastic differential

dynamic programming,” American Control Conference, pp. 1125–1132, 2010.

[129] Theodorou, E. A. and Todorov, E., “Relative entropy and free energy

dualities: Connections to path integral and KL control,” 51st IEEE Conference

onf Decision and Control, pp. 1466–1473, 2012.

[130] Todorov, E., “Stochastic optimal control and estimation methods adapted

to the noise characteristics of the sensorimotor system,” Neural Computation,

vol. 17, pp. 1084–1108, May 2005.

[131] Todorov, E., “Efficient computation of optimal actions,” Proceedings of the

National Academy of Sciences, vol. 106, no. 28, pp. 11478–11483, 2009.

[132] Todorov, E. and Jordan, M., “Optimal feedback control as a theory of

motor coordination,” Nature Neuroscience, 2002.

[133] Todorov, E. and Li, W., “A generalized iterative LQG method for locally op-

timal feedback control of constrained nonlinear stochastic systems,” American

Control Conference, pp. 300–306, 2005.

[134] Watson, G. S., “Smooth regression analysis,” Sankhyā: The Indian Journal
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