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In this thesis, the method of Proper Orthogonal Decomposition (POD) is implemented
to construct approximate, reduced order models (ROM) of mesh movement meth-
ods. Three mesh movement algorithms are implemented and comparatively evaluated,
namely radial basis function interpolation, mesh optimization and elastic deformation.
POD models of the mesh movement algorithms are constructed using a series of system
observations, or snapshots of a given mesh for a set of boundary deformations. The
scalar expansion coe�cients for the POD basis modes are computed in three di�er-
ent ways, through coe�cient optimization, Galerkin projection of the governing set of
equations and coe�cient interpolation. It is found that using only coe�cient interpo-
lation yields mesh movement models that accurately approximates the full order mesh
movement, with CPU cost savings in excess of 99%.

We further introduce a novel training procedure whereby the POD models are generated
in a fully automated fashion. The technology is applicable to any mesh movement
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method and enables potential reductions of up to four orders of magnitude in mesh
movement related costs. The proposed model can be implemented without having to
pre-train the POD model, to any �uid-structure interaction code with an existing mesh
movement scheme.
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Chapter 1

Introduction

1.1 Background

The numerical simulation of �ow across a boundary arises in many engineering related
problems, e.g. �utter simulations of wings, blood �ow through veins and arteries and
parachute dynamics. These, and other �uid-structure interaction problems involve �ow
induced moving boundaries, and in order to accurately complete these unsteady �ow
simulations it becomes necessary for the computational grid to conform to the new
displaced domain.

In ensuring a boundary conforming mesh, the obvious choice would be to simply re-
generate the mesh at each time step. To regenerate the mesh of a complex geometry
requires the use of an automatic mesh generator which is an expensive task, especially
for three-dimensional problems. The cost can to a certain extent be mitigated by restor-
ing grid quality through localized grid coarsening and re�nement [5]. By altering or
regenerating a mesh the grid connectivity information changes, and it requires that the
solution be projected from the old mesh to the new one. Not only is this a computa-
tionally expensive process, but may lead to conservation issues arising within the �uid
domain [41]. As such, a method or algorithm is desired to displace the given mesh to
conform to a dynamically moving boundary in a computationally e�cient manner.

Several algorithms have been developed that can e�ectively adapt unstructured meshes
to the new displaced boundary without changing the grid connectivity. This is referred
to as mesh movement, examples of which include the spring analogy [12], solving a set
of Laplacian or Bi-harmonic equations [14], radial basis function (RBF) interpolation
[9, 35] or through mesh optimization [4, 11]. Despite the successes of these algorithms
in reducing the frequency and necessity for re-meshing, they may still account for
a signi�cant percentage of CPU time for a FSI simulation involving large complex
boundary deformations [34].

The aim of this thesis is to address the computational cost de�ciency of typical mesh
movement strategies via the use of e�ective reduced order models. This is to be done

1

 
 
 



CHAPTER 1. INTRODUCTION 2

such that the quality of the resulting meshes remains comparable to the original mesh
movement methods. The reduced order modeling technique that we make use of is the
method of Proper Orthogonal Decomposition (POD), also commonly referred to as Prin-
ciple Component Analysis (PCA), Singular Value Decomposition (SVD) or Karhunnen-
Loéve (KL) decomposition.

1.2 Scope of Work

The research activities conducted for the thesis are:

• Researching the fundamentals and application of POD, and its application to
ROM, as well as the various mesh movement methodologies.

• Implementation and rigorous comparison of three mesh movement strategies for
FSI modeling purposes: Radial basis function interpolation, mesh optimization
and solving a set of linear elasticity equations.

• Investigating for the �rst time the application of POD towards the generation of
ROMs of mesh movement algorithms.

• A novel training procedure is developed, where POD is used to automatically
facilitate reductions in mesh movement related computational cost of �rst time
FSI simulations. The mesh movement model is generated without having to pre-
train the POD model.

1.3 Outline of Thesis

The thesis is divided into seven chapters, including an introduction and conclusion.
Below is a brief outline of each of the chapters:

• Chapter one: Introduction. Provides background to the work presented in the
thesis and provides an overall outline.

• Chapter two: Proper Orthogonal Decomposition. This chapter provides an overall
introduction into the method of POD. The derivation and fundamental principles
are outlined along with the �method of snapshots� for the calculation of POD
basis modes. The chapter concludes with an example of a simple mesh movement
problem.

• Chapter three: System Approximations and Reduced Order Modelling Using POD.
Chapter three introduces various methods of weighted residuals (MWR). The
MWRs are introduced speci�cally with the aim of projecting a set of governing

 
 
 



CHAPTER 1. INTRODUCTION 3

partial di�erential equations onto POD basis modes. In so doing it allows for the
solution of the original problem in a transformed subspace with a signi�cantly
reduced problem size.

• Chapter four: Unstructured Mesh Movement. Description, detailed investigation
and comparative evaluation of three mesh movement methods. Each method is
compared to one another in terms of both computational e�ciency and quality
of �nal meshes produced.

• Chapter �ve: POD based ROM for Mesh Movement. Documents the application
of the method of POD to build ROMs of the mesh movement methods. Di�erent
methods for equating the POD models are investigated, as well as the quality of
the approximations and computational e�ciencies.

• Chapter six: Mesh Movement ROM Applied to a Benchmark FSI problem and
Adaptive Model Training. In this chapter, a ROM is applied to e�ect mesh move-
ment of a widely used FSI benchmark problem. We further introduce a novel
training procedure whereby the method of POD is used to e�ect reductions in
mesh movement computational costs for �rst time FSI simulations, in a fully
automated and robust manner. The method is a fully automatic wrapper, that
can be applied to any existing mesh movement method resulting in competitive
mesh qualities, for large unstructured grids and orders of magnitude reductions
in computational times.

• Chapter seven: Conclusion. The work presented in the thesis is summarized
brie�y.

 
 
 



Chapter 2

Proper Orthogonal Decomposition

2.1 Introduction

Proper Orthogonal Decomposition (POD) is a mathematical procedure aimed at �nd-
ing low-dimensional approximate descriptions of high-dimensional systems. POD is in
essence an empirical spectral method, similar to Fourier decomposition, where �eld
variables are approximated using expansions of a set of projected basis functions or
modes. POD obtains these basis functions from a set of observations, where these ob-
servations can be obtained either experimentally or through numerical simulations of
a real system. What makes POD remarkable is that the selected modes are not only
appropriate but make up the optimal linear basis for describing any given system.

POD, also commonly referred to in literature as Karhunnen-Loéve decompositions,
Principal Component Analysis (PCA) or Singular Value Decomposition (SVD), was
�rst used in the 1940s, by Karhunnen and Loéve for continuous systems [21, 26]. Since
its initial use, POD has been applied in a wide range of disciplines including image
processing, data compression, control in chemical engineering and oceanography. The
�rst use of POD in the �eld of Fluid Mechanics was by Lumley [27] as a post process-
ing step for determining coherent structures within turbulent �ow. Since then POD
has been applied successfully to many engineering problems including the characteriza-
tion of dominant turbulent �ow properties [15, 31], aircraft �utter prediction [25] and
reduced order models for multidisciplinary optimization [7, 23].

The rest of the chapter is dedicated to an overview of the underlying theory regarding
PODs, followed by a short example demonstrating the application thereof. For an easy
to understand introduction into POD refer to [6] and for a detailed and comprehensive
derivation and discussion on PODs refer to Holmes et al. [15].

4

 
 
 



CHAPTER 2. PROPER ORTHOGONAL DECOMPOSITION 5

2.2 Theoretical Background

The basic idea of POD is relatively simple. Suppose we have a set of discrete obser-
vations, {uk} for k = 1, 2, ...,M , as a function of x. These observations, or snapshots,
may be obtained either experimentally or through numerical simulation, describing for
instance the �ow velocity through a domain. The observations may be for various
instances of time, varying �ow domain geometries or for varying �ow properties. In
the case of mesh movement, these observations are the nodal coordinates for particular
domain boundaries. It is possible to approximate these observations by decomposing
the system into a linear combination of basis functions

{
ϕj
}
such that

uk ≈
M∑
j=1

αkjϕj(x) (2.1)

where αk is an appropriate set of scalar expansion coe�cients, relating to the kth snap-
shot, uk. It can be shown that the observations uk can be exactly reproduced if M
tends to in�nity [16].

There are various approximation techniques by which to compute the basis functions
{ϕj}, such as Fourier series decomposition, or Legendre and Chebyshev polynomials.
The distinction between POD and the various methods, is that POD provides the
optimal linear basis functions to describe a set of observations.

The notation we have adopted is that {.} denotes a collection of a set of vectors. uk

represents the kth snapshot vector of size N , where N is the total degrees of freedom
(DOF) of a system. Furthermore, u denotes a continuous function describing the system
observations or in the discrete form a N ×M matrix, where each column vector is a
snapshot.

2.2.1 Autocorrelation Matrix of a Finite Dimensional POD

In equation (2.1), it was stated that a set of observations, {uk} can be decomposed
linearly in terms of {ϕj}. These POD modes are chosen in such a way, that regardless
of the number of retained modes M , the approximation in equation (2.1) is as good
as possible in a least square sense. This optimality of the POD modes is found by
maximizing the average projection of the ensemble set of observations

{
uk
}
onto the

normalized basis modes ϕ

max
ϕ∈H

〈
|(u,ϕ)|2

〉
||ϕ||2

, (2.2)

where we assume that all observations
{
uk
}
form part of an in�nite-dimensional Hillbert

space H, with an associated inner product. The notation used for an inner product of
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two functions over a prede�ned interval is (·, ·), and 〈·〉 denotes an averaging operator,
which can be an ensemble average over many experimental realizations or simply be a
time-average of several samples of a single experiment. |·| denotes the modulus and ||·||
the L2-norm generated by the inner product, de�ned as

||f || = (f, f)1/2 . (2.3)

For the mesh movement problem, our system observations
{
uk
}
, are not in�nite di-

mensional functions, but rather a set of discrete vectors containing nodal coordinate
information. We therefore limit the rest of our discussion of the POD method to the
�nite dimensional case.

Solving the maximization problem (2.2), with the constraint that ||ϕ||2 = 1, it can be
shown [15] that the optimal POD modes are the eigenvectors of the autocorrelation
function, R, which for the �nite dimensional case is an N ×N tensor given by

R = 〈u⊗ u〉 , (2.4)

where N is the total degrees of freedom (DOF) of the system and ⊗ is the tensor
product.

The POD basis functions to the maximization problem stated in (2.2) is the eigenvectors
ϕ of R i.e.

Rϕ = λϕ. (2.5)

The exact de�nition of the eigenvalues, λ, in (2.5) depends speci�cally on the problem
being solved. For example, when applied to incompressible �uid �ow λ is a measure
of twice the kinetic energy pertaining to the �ow. If the POD modes are derived in
terms of the H1 Sobolov norm rather than L2 norm, then λ would be a measure of the
dissipation

(
||∇u||2

)
or vorticity (∇× u) [16].

For the mesh movement problem, λ is the square of the magnitude of displacements cap-
tured by each of the POD modes. In other words, the POD basis mode associated with
the highest ranked eigenvalue contains the dominant system behavior. By ordering the
eigenvalues and associated eigenvectors from largest to smallest, one can signi�cantly
reduce the order of the POD model by retaining only the Kth most 'energetic' modes.
The observations

{
uk
}
can then be successfully decomposed as a lower-dimensional

model i.e.

uk ≈
K∑
j=1

αkjϕj. (2.6)
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2.2.2 Method of Snapshots

In the previous section, it was shown that with a set of observations an autocorrelation
matrix could be set up from which the POD modes can be computed. The compu-
tation involves solving for the eigenvectors for this autocorrelation matrix, R. The
observations,

{
uk
}
, for mesh movement, are the coordinates of the discrete grid points

of the computational mesh. To save all the snapshot data used in the construction of R
requires a N ×M matrix, where N is the total degrees of freedom (DOF) of the system
andM is the number of snapshots deemed reasonable to accurately describe the system
of interest; each snapshot is for a di�erent domain boundary movement. To obtain the
POD modes therefore requires the solution of a N ×N eigenvalue/vector problem. In
most engineering problems, the size of N is large, often making the associated cost in
computing these eigenvectors prohibitively expensive.

As an example, the computational meshes for CFD simulations of realistic engineering
problems can easily have millions of nodal grid points. Solving for the eigenvectors of a
million by million matrix is unrealistic. The cost can, to a certain extent, be mitigated
by using iterative solvers. Fortunately, Sirovich [37] came up with the �method of
snapshots�, an elegant procedure which reduces the eigenvalue problem from N × N
to M ×M , where M � N . There is unfortunately no rigorous procedure by which to
determine the minimum number of snapshots to be used, though it can safely be stated
that M is several orders of magnitude smaller than N , in the majority of cases.

Previously we saw that the observations
{
uk
}
can be decomposed as a linear combina-

tion of the basis modes ϕ. Conversely, ϕ is an eigenvector, that from the span of the
basis mode may be expressed as a linear combination of the observed snapshots [15]

ϕ =
M∑
k=1

aku
k, (2.7)

where ak are coe�cients still to be determined. Assuming that the averaging operator
of a discrete function can be de�ned as

〈f〉 =
1

M

M∑
k=1

fk (2.8)

and substituting the modal decomposition (2.7) into (2.5) one obtains

1

M

M∑
i=1

ui

(
ui,

M∑
i=1

aku
k

)
= λ

M∑
k=1

aku
k. (2.9)

Rearranging the left hand side of equation (2.9), by using the property (x + y, z) =
(x, z) + (y, z), gives

 
 
 



CHAPTER 2. PROPER ORTHOGONAL DECOMPOSITION 8

1

M

M∑
i=1

ui

(
ui,

M∑
i=1

aku
k

)
=

1

M

M∑
i=1

ui

[
M∑
k=1

ak
(
ui,uk

)]
(2.10)

=
M∑
i=1

[
M∑
k=1

1

M

(
ui,uk

)
ak

]
ui. (2.11)

Therefore a su�cient condition for the solution of (2.5) is

M∑
k=1

1

M

(
ui,uk

)
ak = λai for i = 1, 2, ...,M. (2.12)

Using the method of snapshots, we now have a new modi�ed autocorrelation matrix of
the form

R =
1

M

(
ui,uj

)
, (2.13)

where ui represents the ith snapshot of the solution. Since we are dealing with discrete
points, the modi�ed M ×M autocorrelation matrix is equal to

R =
1

M
UUT , (2.14)

whereU is theM×N observation matrix where each row vector of the matrix represents
a snapshot. The eigenvectors a of R are now computed as an intermediate step to
determining the basis modes, i.e.

Ra = λa. (2.15)

The POD modes can then be calculated as

ϕk =
M∑
i=1

akiu
i for k = 1, 2, ...,M (2.16)

where aki is the ith element of eigenvector a corresponding to λk. It should be noted,
that the eigenvectors a computed above, are the same expansion coe�cients needed in
equation (2.1), if the observations or snapshots

{
uk
}
are to be reproduced. In Chapter 3

it will be shown however that these coe�cients need to be re-computed if a reduced
order model of a given system is desired at di�erent conditions to the original snapshot
matrix.
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Figure 2.1: The mesh used for the example of a �exible beam. The mesh is generated using
NETGEN [36].

2.3 Example of POD application

Let us consider a simple mesh movement problem of a slender 2D beam subjected to a
bending moment, presented in Figure 2.1. The mesh contains a total of 81 grid points.
We would like to generate a lower dimensional model of the mesh movement as the
beam displaces. We generate 5 snapshots of the mesh nodal co-ordinates for the beam
in various degrees of pure bending, illustrated in Figure 2.2. The mesh movement is
performed using the method of radial basis function interpolation, discussed in detail
in Section 4.2.

Here follows a summary of the required procedure to generate a lower-dimensional
model using PODs:

1. The observations are gathered and assembled into a M ×N snapshot matrix U ,
where M is the number of snapshots (5 for this example) and N the number of
interior degrees of freedom, the x and y coordinates (162 for this example).

2. The covariance matrix is computed as

R =
1

M
UUT .

3. The eigenvalues/eigenvectors are computed from

Ra = λa.

4. The eigenvectors a are sorted in order of descending magnitude of the associated
eigenvalues λ.

5. The Kth most dominant POD modes are computed

ϕk =
M∑
i=1

akiu
i k = 1, 2, ...,M
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(a) Snapshot 1 (b) Snapshot 2 (c) Snapshot 3

(d) Snapshot 4 (e) Snapshot 5

Figure 2.2: Snapshots of a slender beam in pure bending.

where aki is the ith element of vector ak corresponding to λk, and u
i is the ith

snapshot vector of U .

6. The POD modes are normalized to unit length.

7. Finally, the mesh nodal coordinates u may be approximated through a linear
combination of the Kth most dominant POD modes

u =
K∑
i=1

αkiϕ
k
i .

It should be noted that if the expansion coe�cients αki are chosen as ak, then u
would be an approximation of the kth snapshot.

2.3.1 Results of surface approximation

Applying the POD procedure outlined above, the POD modes for the mesh movement
were computed and ordered in order of descending eigenvalue magnitudes. A plot of the
ordered eigenvalues is presented in Figure 2.3, where the magnitudes are 7.9×104, 2.5×
103, 2.0, 1.7 × 10−2 and 3.5 × 10−12. Since the eigenvalues provide an indication as to
how much of the system information is captured by the associated POD modes, these
values suggest that the �rst two modes contain over 99% of the system information.
We approximate the error E of retaining only the �rst K most dominant POD modes
by
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Figure 2.3: Ordered eigenvalues for slender beam mesh movement.

E = 1−
∑K

j=1 λj∑M
i=1 λi

. (2.17)

.

To illustrate the contributions made by each of the modes, representations of the �rst
three modes, for varying degrees of magni�cations, are plotted in Figure 2.4. From the
representative plots of the modes, it becomes clear that the �rst mode, qualitatively
a pure bending mode, does in fact contain the majority of the system information.
The expansion coe�cients α controls the magnitude and direction of the associated
movement. The second mode stretches the elements at the beam tip, which prevents
element inversion for large displacements. In comparison to the �rst two modes, the
remaining three modes contribute an almost insigni�cant amount. The plot of mode 3
is for a magni�cation factor of 30, and appears to move the mesh for axial and higher
order bending displacements of the beam.

To demonstrate the ability of the POD method, we will attempt to approximate snap-
shot 5 (Figure 2.2(e)). To do so, we set our expansion coe�cients to the �rst K com-
ponents of the eigenvector associated with the 5th snapshot, to produce a Kth mode
approximation. The approximate mesh solutions are shown in Figure 2.5, for only one
and two retained POD modes. We �nd that using only two modes, the approximate
mesh solution is almost indistinguishable from the exact solution.

To mathematically quantify the di�erence between the POD approximations and the
exact solution of snapshot 5, we de�ne an error function normalized to element size as

||e||2 =
1

N

∑N
i=1

√
(xi − xi exact)2

l

 , (2.18)

where l is the average length of all edges connected to node i. A plot of the error
as a function of the number of retained modes, K, is shown in Figure 2.6. From an
engineering point of view, the mesh approximation retaining only the �rst two modes is
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(a) Mode 1: Magni�cation = 0.5. (b) Mode 2: Magni�cation = 1.

(c) Mode 3: Magni�cation = 30.

Figure 2.4: Representations of the �rst three POD modes at various magni�cation factors.
Thick line = POD basis mode, thin line = initial mesh.

su�cient, with ||e||2 = 2.6×10−4. On the other hand, if we retain all �ve modes,||e||2 =
5.1× 10−9.

This example demonstrates the power of POD as applied to mesh movement; the origi-
nal system can now be accurately reproduced with only two pertinent pieces of informa-
tion. Furthermore, the approximate model is linear in nature, thus simple to compute.
It is this powerful ability of POD to cheaply and accurately approximate a system that
makes it a viable tool in the creation of reduced order models.

In this particular example, POD was used to reproduce a known mesh for a boundary
movement already computed (snapshots). It would be far more useful if one is able to
generate a reduced model of the mesh movement problem that is applicable for arbitrary
boundary deformations. To do so would require the computation of an appropriate set
of expansion coe�cients, α. To this end, Chapter 3 provides a broad overview of the
method of weighted residuals which have been successfully applied to obtain system
approximations using the method of POD.

2.4 Conclusion

In this chapter, the method of proper orthogonal decomposition was brie�y introduced.
The basic concepts were outlined and an overview of its derivation was provided. Fur-
thermore, the method of snapshots was discussed, and demonstrated as a means to
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e�ciently compute the POD modes from a set of system observations. The chapter
closed with a simple example demonstrating the ability of POD to generate an accu-
rate approximate model of mesh movement.

(a) First Mode Approximation (b) Two Modes Approximation

Figure 2.5: POD approximation of snapshot 5. Thick line = approximate solution, thin line
= exact solution.
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Figure 2.6: A plot of the error function, normalized to element sizes, comparing the di�erence
in nodal coordinates between the approximate and exact solution for snapshot 5
as a function of the number of retained modes.

 
 
 



Chapter 3

Reduced Order Modelling Using POD

The purpose of this chapter is to introduce the concept of POD in the framework of
reduced order modeling (ROM) and solution approximations.

3.1 Introduction

In the preceding chapter it was shown that given a set of snapshots, POD modes ϕi can
be found such that a lower-order approximation to these snapshots can be generated
as a linear combination of the POD modes:

u(x, t) =
M∑
j=1

αj(t)ϕj(x). (3.1)

If the coe�cients αj are chosen as the eigenvalues of the autocorrelation matrix in (2.4),
then using equation (3.1) we are able to reproduce

{
uk
}
, our ensemble of training

snapshots. It is however, in the context of ROM, fairly pointless to simply be able to
reproduce information that we already have. In Chapter 2, an example was presented
where the mesh of one of the training snapshots was approximated using POD. In order
for the ROM to be of any real value, we would like to use these computed POD basis
modes to solve the mesh movement problem for boundary motions other than those
used in the generation of the snapshot information. To do so, some means is required
to solve for an appropriate set of expansion coe�cients α.

This chapter will focus on the discussion of PODs within this framework of generating
approximate reduced order models of a given system, speci�cally for parameter changes.
The discussion will focus on systems that can be described by a set of equations (for
example, mesh motion based on the solution of a set of partial di�erential equations
(PDE), such as the equations of linear elasticity).

14
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The main aim of reduced order modeling, as the name suggests, is to as accurately as
possible �nd a solution to the system of equations, but at a reduced computational
cost. POD decomposition provides an elegant tool to this end. The model is trained
with various snapshots that are deemed representative of the system. The POD process
then extracts the dominant system information in terms of POD modes. Essentially,
the system is transformed and rotated into a subspace, where the solution coe�cients
are no longer x and y coordinates at time t, but rather the expansion coe�cients αj.
To do this, the set of governing equations are projected onto the basis modes through
some or other method of weighted residuals (MWR). Using equation (3.1), one can then
map back from the POD subspace to the Euclidean space.

By projecting the governing equations onto the POD basis modes, we still inherently
solve the original problem, but now only in an approximation subspace with a signi�cant
reduction in the magnitude of problem size. The total degrees of freedom (DOF) of
the POD based model is equal to the number of retained modes, M , in equation (3.1),
where M is typically several orders of magnitude smaller than the DOF of the original
system. Furthermore, because the POD basis modes are orthonormal to one another,
the projection of a set of coupled PDEs onto these basis modes, will result in a decoupled
set of ordinary di�erential equations.

The remainder of the chapter will brie�y discuss the most popular forms of the MWR.

3.2 Methods of Weighted Residuals (MWR)

The MWR is a commonly used numerical approximation technique for the solution of
partial di�erential equations. The most commonly used MWR is known as the Galerkin
method; other methods include the collocation method, method of least squares and
the sub-domain method.

Suppose we have a linear di�erential operator D, which acts on a function u to produce
a function f

D(u(x)) = f(x). (3.2)

We are able to linearly decompose and approximate u according to equation (3.1)
via our POD basis modes (or any other linearly independent basis functions for that
matter). To distinguish between our approximate and real solution, let us de�ne our
approximate solution as ũ ' u.

Using the approximation of (3.1) and substituting it in the di�erential operator of
equation (3.2), we will not exactly reproduce f(x). As such we can de�ne an error, or
residual as

R(x) = D(ũ(x))− f(x). (3.3)
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The idea of the MWR is now to try and force the residual to zero in some average
sense over a prede�ned interval or general domain. It does so by means of a weighting
function:

(Wj, R(x)) = 0 j = 1, 2, ...,M (3.4)

whereWj is the weighting functions which are still to be chosen, andM is the number of
basis modes used for the decomposition of ũ in equation(3.1). The distinction between
the various MWR is the choice of weighting functions [8].

3.2.1 Collocation Method

In the collocation method, the weighting functions are chosen from the family of Dirac
delta functions. The weighting function is set to

Wi = δ(x− xi) =

{
1 x = xi

0 x 6= xi
(3.5)

where i is the chosen collocation point. Hence the residual of equation (3.4) is forced
to zero at a pre-selected number of points. As the number of basis modes used is
increased, the residual is forced to zero at more points. The collocation method is by
far the cheapest computational MWR, but the obtained results are largely dependent
on the choice of collocation points. If the number of points are increased to include
all the grid points within the computational domain, the method closely resembles the
method of least squares.

3.2.2 Method of Least Squares

The method of least squares attempts to minimize the continuous sum, of the square
of the residuals, at each of the computational grid points to zero. In other words, a
minimum is to be found of

R =

ˆ
X

R2(x), (3.6)

or for a discrete computational mesh

R =
∑
i,j

R2(x) (3.7)
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where i and j are the nodal coordinates. In order to achieve a minimum, the derivative
of (3.7) in terms of the expansion coe�cients need to be set to zero. Thus the weighting
functions become

Wi =
∂R
∂αi

. (3.8)

Unfortunately, the problem can become rather expensive for large computational do-
mains. In an attempt to decrease the associated cost, the method of least squares and
collocation method can be joined. Instead of choosing i and j in (3.7) as the nodal co-
ordinates of each of the computational grid points, they may be chosen as collocation
points, where the number of points may be varied.

3.2.3 Galerkin Projection

Galerkin projection is perhaps the most well known MWR, where the weigthing function
is chosen to be the same as the basis functions, in our case ϕi.

Following the discussion presented in [1], let us consider the following generic time-
dependent PDE for u(x, t),

∂u

∂t
= Lu+N2(u, u) +N3(u, u, u) (3.9)

where L, N2, N3 are respectively linear, quadratic and cubic operators. Using Galerkin
projection to project equation (3.9) onto each of the POD basis modes ϕj, we obtain(

∂u

∂t
, ϕj

)
= (Lu, ϕj) + (N2 (u, u) , ϕj) + (N3 (u, u, u) , ϕj) . (3.10)

Now, substituting the linear POD decomposition of (3.1) into (3.10), and applying the
rules of inner products and the fact that the POD basis modes are orthogonal, gives
us:

dαk
dt

=
∑
l

αl (ϕk, L(ϕl))+
∑
l,m

αlαm (ϕk, N2 (ϕl, ϕm))+
∑
l,m,n

αlαmαn (ϕk, N3 (ϕl, ϕm, ϕn)) .

(3.11)

This is now the reduced order model of the time depended PDE (3.9), a time dependent
set of ODEs, where the order is equal to the number of retained POD modes, k =
1, 2, ..,M . The POD/Galerkin model in equation (3.11) be fairly expensive to solve,
can despite the great reduction in complexity. Fortunately, since the inner products
are functions of the POD basis modes, which are already known, they may be pre-
computed, thus to a certain extent lessening the computational cost.
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3.3 Conclusion

In this chapter, a broad overview of the various popular methods of weighted residuals
were provided, in the context of POD applications. The MWR can be used to project
the system equations onto the POD basis modes, and in so doing, allow for the solution
of the system in terms of the model expansion coe�cients.

 
 
 



Chapter 4

Unstructured Mesh Movement

The aim of this chapter is to describe and compare various mesh movement strategies
for unstructured grids.

4.1 Introduction

FSI simulations involve boundary deformations. Whether these deformations are pre-
scribed or a structural de�ection due to the �ow, it becomes necessary for the compu-
tational grid to conform to the new displaced domain when using a Lagrangian family
of descriptions. It is often inadvisable to regenerate or locally adapt a mesh at each
instance of mesh motion. Not only can this process quickly become very expensive, but
mesh topology is altered requiring that information be mapped from the old mesh to
the new one. Projection of information from one mesh to another is another expen-
sive process, and can easily lead to conservation issues arising within the �uid domain
[32, 41]. To this end, several mesh movement algorithms have been developed with the
primary aim to move a mesh such that the total frequency and necessity for re-meshing
or localized adaptation is reduced.

Moving a structured mesh is a well de�ned problem and several e�cient algorithms
exist to this end, for example the Trans�nite Interpolation method [43]. The structured
nature of the grid allows the motion of internal grid points to be interpolated, along grid
lines, based on the boundary displacements. These methods however do not apply to
unstructured meshes, which are typically preferred when a mesh is to be automatically
generated across complex geometries.

Under mesh movement, there are three main schools of thoughts or approaches to deal-
ing with the movement of unstructured meshes. The three approaches can be classi�ed
as follows: through the use of radial basis function (RBF) interpolation, through mesh
quality optimization or through the solution of a set of partial di�erential equations

19

 
 
 



CHAPTER 4. UNSTRUCTURED MESH MOVEMENT 20

(PDE). Each of the methods di�er in terms of their robustness, quality of meshes pro-
vided and their associated computational cost.

Mesh movement using Radial basis function (RBF) interpolation has become very pop-
ular in recent years because of its ability to move meshes in a computationally inex-
pensive manner [9, 35]. RBF interpolation is a well established tool for interpolating
scattered data and has for some time been used in �uid-structure interaction com-
putations to transfer information across discrete �uid-structure interfaces. In mesh
movement, RBFs are used to interpolate the motion of internal grid points based on
the known displacement of the domain boundary. The method o�ers the advantage that
no grid connectivity information is required and only a small system of equations needs
to be solved, involving only the nodes on the �ow domain boundary. The method does
however su�er from path dependency, and while the quality of meshes produced are
comparable to most available methods, RBF interpolation does not o�er direct control
over element qualities.

The second approach is based on optimization of each element within the computational
grid through some objective function [4, 11]. The objective function can be de�ned to
measure one or other mesh property. Most often it is de�ned as a scalar function that
in some fashion represents the mesh quality in terms of element shapes and sizes. In
so doing, the mesh vertices are allowed to reposition themselves to lead to an optimum
mesh quality in a global sense. Of all the available mesh movement methods, optimiza-
tion arguably produces the highest quality meshes, though at a high computational
cost. The associated cost is often prohibitively expensive (of order equal to a full CFD
solution) to be used in an actual FSI simulation.

The last major approach is to solve a set of partial di�erential equations (PDE) that
describes the position and motion of internal grid points. Examples include representing
the grid points by a series of springs [3, 12]; the grid is de�ned by a network of �ctitious
tension/compression springs, where the sti�ness of the springs are chosen to be inversely
proportional to the length of supporting edges. Other methods include solving the mesh
as a solid body elastic deformation problem by means of the �nite element method
[28, 29, 39]. Here the motion of nodes are governed by the equations of linear elasticity,
where the sti�ness of elements can be altered throughout the domain to allow for
optimal mesh qualities. A fair amount of success has also been attained by using
Laplacian and bi-harmonic operators [14]. The use of bi-harmonic operators o�er the
advantage that two conditions can be speci�ed at a moving boundary (for instance
the position and normal mesh spacing). All of the above mentioned methods requires
solving a set of PDEs for all the grid points, making the methods computationally
expensive. Furthermore, for large boundary deformations, these methods can lead to
tangled meshes.

In the remainder of this chapter we aim to investigate and discuss three mesh move-
ment algorithms, one from each major class of algorithms, namely RBF interpolation,
mesh optimization and the elastic deformation method. We rigorously compare the
three methods in terms of computational/memory cost, robustness, mesh quality and
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repeatability. The discussions examine the underlying theory pertaining to the mesh
movement algorithms to which we apply the reduced order modeling concepts later in
Chapters 5 and 6.

4.2 Radial Basis Function Interpolation

4.2.1 Formulation

The following discussion on radial basis function interpolation applied to mesh move-
ment follows the discussion presented by de Boer et al. [9].

RBF interpolation can be used to determine the motion of internal nodes given the
displacement of the boundary. The displacements of nodes are characterized by the
interpolation function s, which is de�ned by the summation of a set of radial basis
functions:

sj = s(xj) =

nb∑
i=1

αiφ (||xj − xbi||) + p(xj), j = 1, 2, ..., N, (4.1)

where N is the total number of nodal coordinates, xj = [xj, yj, zj] is the location at
which the function sj =

[
sjx , sjy , sjz

]
is evaluated. Furthermore, xbi = [xbi, ybi, zbi]

are the known boundary nodes spatial positions, nb is the number of boundary nodes,
p(xj) = [px, py, pz] is a linear polynomial, φ = [φx, φy, φz] is the given radial basis
functions and ||·|| denotes the Euclidean distance.

The coe�cients of the polynomial p (xj) and the coe�cients αi =
[
αix , αiy , αiz

]
in

equation (4.1) can be found by realizing that the interpolation function at the bound-
aries should be equal to the boundary displacement

s (xbi) = dbi, (4.2)

where dbi =
[
dbix , dbiy , dbiz

]
are the discrete values of the known boundary displace-

ments. When the polynomial is included, the system is completed with the additional
side condition/constraint that

nb∑
i=1

αiq(xbi) = 0, (4.3)

for all polynomials q(xj) of degree equal to or less than p(xj). According to de Boer et
al. [9], the minimal degree of p(xj) depends on the choice of basis functions, where a
unique interpolant exists if the basis functions are positive de�nite. If the basis functions
are conditionally positive de�nite for orders 2 or less, then a linear polynomial can be
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used. It should be noted, that through the use of a linear polynomial, that rigid body
translation and shear will be exactly recovered. A set of basis functions that adhere to
these criteria are shown in Table 4.1.

Using the conditions speci�ed in (4.2) and (4.3), the following matrix problem can be
setup to solve for the coe�cients αi and those of the linear polynomial p(xj)[

db
0

]
=

[
M bb P b

P T
b 0

] [
α
β

]
, (4.4)

where α is a matrix containing the coe�cient sets αi, and β are the coe�cients of the
linear polynomial p. M bb is a nb × nb matrix containing the evaluations of the basis
functions

M bb =

 φs1s1 φs1s2 · · · φs1snb
...

...
. . .

...
φsnb

s1 φsnb
s2 · · · φsnb

snb

 (4.5)

with φs1s2 = φ (||xs1 − xs2||). Furthermore, P b in (4.24), is an nb × 4 matrix, where
each row i is given by [1xbi ybi zbi ], and as before, db refers to the known displacements
along the boundaries.

Once the coe�cients α and β have been solved for, the interpolation function in equa-
tion (4.1) can be used to, point for point, compute the displacements of the internal
mesh grid points

dinternal = s(xinternal). (4.6)

Since the displacement of internal points are interpolated separately, no mesh connec-
tivity information is required, where the total size of the matrix system to be solved is
(nb + 4)× (nb + 4). This is primarily why mesh movement based on RBFs is computa-
tionally so e�ective, since the number of nodes on the boundaries in any typical FSI or
CFD simulation is orders of magnitude smaller than the number of internal nodes.

Several radial basis functions are cited in literature, and for a more comprehensive list
view [9]. The functions can essentially be divided into two main categories: namely
functions with global support and functions with compact support. Functions with
compact support have the following property:

φ(x) =

{
f(x) 0 ≤ x ≤ 1

0 x > 1
(4.7)

The �rst four basis functions in Table 4.1 are examples of basis functions with compact
support. The functions are generally scaled with a support radius r, such that φr = φ(ξ)
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where ξ = x/r. The support radius implies that only mesh nodes within the sphere of
in�uence de�ned by r, surrounding the centers of known movement xbi , are in�uenced.
Thus increasing the size of the support radius r, leads to an improvement in the quality
of the �nal mesh produced by the interpolation function, but it increases the density
of the matrix to be solved. Inversely, a smaller radius will result in a sparser matrix
leading to faster computation times.

Global support functions, examples of which include the last four functions in Table 4.1,
are in general more expensive to solve than compact functions. This is due to the fact
that global support functions are not zero outside some speci�ed radius, but cover the
whole space. The parameter a for the MQB and IMQB functions control the shape of
the functions. Large values of a gives a �at sheet like function whereas smaller values
give a cone like shape. Typical values for a fall in the range 10−5 to 10−3 [9].

Name De�nition

CP C0 (1− ξ)2

CP C2 (1− ξ)4 (4ξ + 1)
CTPS C0 (1− ξ)5

CTPS C1 1 + 80
3 ξ

2 − 40ξ3 + 15ξ4 − 8
3ξ

5 + 20ξ2 log (ξ)
Thin plate spline (TPS) x2 log(x)
Multiquadratic biharmonic (MQB)

√
a2 + x2

Inverse multiquadratic biharmonics (IMQB)
√

1
a2+x2

Gaussian (G) e−x2

Table 4.1: Radial basis functions

4.2.2 Mesh Movement using RBF

To demonstrate the use of RBF as a mesh movement strategy, a simple rotation and
translation test is presented. The test problem consist of a square domain with an inner
rectangle that undergoes extreme translation and rotation. The square domain is of
size 200 × 200 units with an inner rectangle of size 30 × 10. The initial mesh for the
test problem is shown in Figure 4.1, generated using NETGEN [36]. The mesh has a
total of 492 inner grid points and 74 boundary nodes, with 26 nodes on the boundary
of the inner rectangle.

In order to allow for comparison, all mesh movement test results will be cited in terms
of the element quality metric discussed in section 4.3.1.1. Brie�y, the metric fss is a
shape-size metric. fss ranges between 0 and 1, where 1 denotes the perfect element and
0 a degenerate element. The initial mesh has a minimum and mean element quality of
0.7917 and 0.9743 respectively.

In de Boer et al. [9] several di�erent radial basis functions were implemented and
compared for a variety of test cases. From their results, it was shown that the TPS
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Figure 4.1: Initial Mesh. Element qualities: minimum = 0.7917, mean = 0.9743.

basis function in general performed the best in terms of overall mesh quality, though it
tended to be more expensive than the other basis functions. Further, they showed that
the CP C2 function o�ers the best trade o� between computational e�ciency and �nal
mesh quality.

To test the mesh movement strategy independently, four basis functions are imple-
mented, namely the CP C2, CTPS C0, TPS and MQB functions. The inner rectangle
is translated in the x and y directions by 30 units, and a rotation of 60◦ anti-clockwise.
The support radius length that is chosen for the compact basis functions is 2.5 times
the characteristic length of the test problem domain, as suggested by de Boer et al. [9].
Examples of the mesh movement performed using the CP C2 and MQB functions are
illustrated in Figure 4.2.

By choosing a support radius of 2.5 times the characteristic length of the domain we
essentially change the local support functions into global functions. We do so to ensure
that the results we obtain are independent of the choice of support radius. Varying
the length of the support radius has two distinct e�ects. Firstly, there are signi�cant
computational advantages to be gained by reducing the support radius. The greatest
component of computational cost for the RBF method is to compute the basis functions.
These have to be computed for each node that falls within the sphere of in�uence de�ned
by the support radius. For all nodes outside this sphere, the value may be pre-set to zero
and thus does not have to be computed. Furthermore, the solution matrices themselves
become signi�cantly more sparse, and hence cheaper to compute. By reducing the
radius, one does however sacri�ce on the actual quality of the mesh movement process.
These e�ects are to a certain extent investigated in Section 4.2.4.

The mesh quality using RBF interpolation improves if more than one intermediate
step is used from the initial mesh to the fully deformed state. All four basis functions
are implemented with intermediate steps ranging from 1 to 15. A comparison of the
mesh qualities for the various number of intermediate steps is presented in Figure 4.3;
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(a) CP C2
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(b) MQB

Figure 4.2: Mesh after rotation and translation for 15 intermediate steps

a comparison is made between the lowest quality element within the mesh and the
average over all the elements, for each of the basis functions. From the comparative
plots, it can be seen that the CP C2 function performs the best of the four in terms of
average mesh quality, and performs second best in terms of minimum mesh quality.

The real attraction of the CP C2 function is the comparative CPU cost. Figure 4.4
depicts the CPU scaling for the four RBFs as a function of the mesh size. All four
RBFs have a near one to one scaling, where the CP C2 function requires the least
computational time, followed by CTPS C0, MQB and lastly the TPS function. The
di�erence in computational time is attributed to the complexity of the functions. The
CP C2 and CTPS C0 functions requires the evaluation of a �fth order polynomial,
where the other functions either require the computation of a logarithmic function or
square root.

A complete discussion on the behavior and accuracy of most of the known basis func-
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Figure 4.3: Comparison of the minimum and mean qualities for the four basis functions

tions can be found in [9]. In the article, several test cases are investigated, including
the application of the basis functions to the movement of a three-dimensional mesh. In
general, mesh movement through the use of RBF interpolation is shown to be a fast
and e�cient way of moving unstructured meshes.
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Figure 4.4: CPU time required for a single RBF increment as a function of mesh size.

4.2.3 Path Dependency and Limitation of RBF Interpolation

for Mesh Movement

The implementation of RBF to the problem of mesh movement in general yields �nal
meshes of comparable qualities to other mesh movement strategies [35]. Along with the
fact that they often take but a fraction of the time to solve make RBF a very attractive
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option. Unfortunately the method is path dependent. An example of this was �rst seen
in Figure 4.3 where the quality of the �nal mesh for the rotation and translation test
case was shown to be dependent on the number of displacement increments used. Path
dependency is a serious concern for transient FSI simulations where repeatability is of
critical importance.

The problem of path dependency is especially highlighted when rotations are present. In
the RBF formulation a linear polynomial is used and as a result rigid body translations,
of the entire mesh domain, can be recovered exactly. However a mesh tends to distort
quickly when rotations are present. To illustrate this problem, the inner rectangle of
the mesh presented in Figure 4.1 is rotated between −60◦ and +60◦ �ve times before
returning to the original position.

The test was performed for a total of 18 and 80 intermediate steps with the �nal meshes
shown in Figure 4.5. Rotating the block with only 18 incremental steps results in an
unacceptable mesh, with an average mesh quality of 0.4824 and the lowest element being
of a quality 0.1109. The mesh is considerably improved by using 80 incremental steps,
where the mesh in Figure 4.5(b) has a mean of 0.9318 and a minimum of 0.6841, which
is more acceptable, though still less than the original mesh, with mean and minimum
qualities of 0.9743 and 0.7917 respectively.

This example highlights the extent to which a mesh can distort when moved using
a path dependent method. In the case of using RBF interpolation this problem is
especially prominent when rotations are present. To somewhat rectify the problem
several iterations need to be used, which tends to make the mesh movement problem
expensive. In practice, there are several FSI problems where the boundary undergoes an
oscillating type motion, for example in the �utter simulation of a wing. The boundary
will typically oscillate or move backwards and forwards several times before a limit
state solution is obtained, if at all. Since RBF functions o�er no control, and rotational
movements are inherently present in these type of motions, the mesh quality will likely
deteriorate to unacceptable levels. This in turn can possibly force an increase in the
frequency of re-meshing.

4.2.4 In�uence of Support Radius for Compact Functions

The last concept that remains to be investigated in the use of RBF is the choice of
support radius r, for compact support functions. For the investigation we revisit the
extreme rotation and translation of the inner rectangle (4x = 30, 4y = 30 andφ =
60◦CCW) for a selection of mesh sizes. The RBF implemented for the investigation
is the CP C2 function with 15 displacement increments. In Figure 4.6 we plot the
minimum element qualities, computational time for a single displacement increment
and the memory requirements to store the matrix in equation (4.24), all as a function
of the chosen support radius.

 
 
 



CHAPTER 4. UNSTRUCTURED MESH MOVEMENT 28

−100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) 18 intermediate steps. Min: 0.1109, Mean: 0.4824.
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(b) 80 intermediate steps. Min: 0.6841, Mean: 0.9318.

Figure 4.5: Final meshes for rotating the inner rectangle between −60◦ to +60◦six times and
back to the original position, using the CP C2 basis function.

As alluded to in the preceding section, changing the support radius has two competing
e�ects. By decreasing the support radius, the sparsity of the solution matrix increases
resulting in decreased memory usage and a speed up in solution time. A further speed
up is attained by only having to solve the radial basis function for internal nodes located
within the sphere of in�uence. On the contrary however, decreasing the radius results
in a decrease in the quality of the �nal meshes produced. The extent or impact on
element quality due to a change of support radius depends strongly on the size of the
mesh being moved.

To better aid the discussion, let us analyze the results in Figure 4.6(a). Choosing the
support radius r to less than 100 for the 1000 DOF mesh yields unacceptable meshes.
In this instance we refer to an entangled mesh as unacceptable. Furthermore, setting
r = 100 for the same mesh yields an acceptable mesh, but su�ers from a signi�cantly
reduced minimum element quality of close to 60% as compared to a support radius
which covers the entire mesh domain. By choosing the support radius to be larger than
the domain size one essentially renders the compact support function a global function.

In contrast to the smaller mesh, choosing r = 100 for the 22,000 DOF mesh results in
only an 8% reduction in minimum element quality. The choice of support radius then
truly becomes a decision of weighing criteria. In the case of the 22,000 DOF mesh,
an 8% sacri�ce of element quality may be justi�able by gaining close to 40% and 70%
reduction in computation time and memory usage respectively.

The choice of support radius is hence an important additional heuristic to consider
when implementing a compact support function. In this study however, we regard
mesh quality as a priority, therefore for all future applications of RBF in this study
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we will make use of an in�nite support radius. We merely highlight these results to
point out that for larger meshes, there are potential computational and memory savings
available at minor reductions in the resulting mesh quality.
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(a) Minimum element qualities for 0 ≤ fss ≤ 1.
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Figure 4.6: Plots demonstrating the e�ect of the support radius to mesh quality, CPU time
and memory usage. Results are for the CP C2 function for inner rectangle motion
of 4x = 30, 4y = 30, φ = 60◦CCW, over 15 displacement increments.
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4.3 Optimization Methods for Mesh Quality Improve-

ment

The problem of mesh movement through mesh quality optimization is not so much a
mesh movement technique but rather a mesh smoothing operation. Each time the �ow
domain boundary is moved, the mesh is regularized or smoothed by allowing each of
the mesh vertices to move, through the use of some optimization algorithm. The mesh
is optimized according to an objective function which in some fashion describes the
overall quality of the mesh. Formally, the mathematical optimization problem is stated
as follows:

minimize
w.r.tx

F (x), x = [x1, x2, ..., xn]T (4.8)

where F (x) is the objective function to be optimized and x in our particular case is
the x and y co-ordinates of the interior mesh vertices that are allowed to move.

In order to solve the problem posed in equation (4.8), two choices have to be made.
Firstly, we require an objective function that adequately describes the mesh quality. For
this particular study, four mesh quality metrics are investigated, where they describe the
quality of each element within the mesh; the mesh quality metrics are scalar descriptors
of an element's shape, size or a combination of shape and size. The objective function
is then the summation of the scalar values of the mesh element qualities.

The second requirement is an appropriate optimization algorithm. Several options are
available to this end, including gradient based algorithms and numerous evolutionary,
population based methods. It is however the opinion of most researchers that if the ob-
jective function is well de�ned, continuous and di�erentiable everywhere, that gradient
based methods are the quickest and most e�cient of the available methods [38].

Within the class of unconstrained gradient based optimization, several feasible algo-
rithms exist, and to name but a few include conjugate-gradient methods, Newton and
quasi-Newton methods such as DFP or BFGS. Each of these methods o�er their own
properties in terms of the type of problems they can handle, computational cost and
convergence rates. For the purpose of this study, we will implement and compare New-
ton's method (with line search) and a conjugate gradient line search method.

Conjugate gradient methods are memory e�cient, �rst order line search algorithms
that attempt to minimize a given objective function. The conjugate gradient method
has the desirable property of quadratic termination, but only makes use of �rst order
gradient information. As a result they are quick to solve per solution iteration, however
su�er from poor convergence properties for non-quadratic functions far away from the
solution.

Newton's method on the other is a second order method that attempts to solve the
optimality criterion that all gradient components equal 0. Newton's method requires
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the evaluation of a Hessian matrix and the solution of an N ×N linear system (where
N is the total DOF of the system), which may become computationally intensive for
large problem sets. The method does however o�er the desirable property of being
quadratically convergent if it converges. Unfortunately convergence is not guaranteed
and the solution may sometimes diverge even when close to the solution. To alleviate
the convergence issue associated with Newton's method we modify Newton's method
by including a line search. In so doing, the Newton step is then used as a search
direction, with the step length determined using a general line search descent algorithm.
The implementation of the conjugate gradient method and Newton's method with line
search are detailed in Appendices A and B respectively.

As a �nal note, in the context of mesh movement, the optimization approach o�ers
some drawbacks. Firstly, for large grids (common in CFD simulations), the procedure
is computationally intensive (of approximately the same order as the CFD simulations).
Secondly, the maximum boundary displacement cannot be larger than the smallest ele-
ment size along the boundary. Large displacements lead to the inversion of the boundary
elements, which will result in the failure of any optimization algorithm to successfully
�nd an optimal and feasible mesh. To circumvent the problem, the total boundary dis-
placement has to be broken into smaller increments, where each increment will entail a
full order optimization problem. Because mesh movement through optimization o�ers
the possibility of high quality meshes, at high computational costs, it constitutes an
ideal candidate to which to apply the reduced order modeling techniques described in
the preceding chapters.

4.3.1 Mesh Quality Metrics

In literature and practice, there are several quality metrics available to choose from,
and there is no consensus within the �eld of practitioners as to which of the quality
metrics o�er the best description of element qualities. Inherently, the de�nition of a
good quality mesh is linked to the solution error; in other words, a mesh is considered
good if the error based on a simulation is below some acceptable level. The simulation
however cannot be performed unless a mesh is already available. To this end, geometric
mesh quality metrics are used to provide an indication as to whether elements are of
appropriate sizes and shapes.

Primarily, experience is used to judge what is considered as an appropriate size and
shape of an element. For instance, it is known that geometrically poor elements (dis-
torted, overly skewed, or with large aspect ratios), result in ill-conditioned matrices,
which slow or entirely prevent convergence when using an iterative solver. Prior to
knowledge of the solution, it is best to assume isotropic physics, thus the optimal shape
for triangular elements would be an equilateral triangle.

In this study, mesh movement is applied only to triangular unstructured meshes, ac-
cordingly only quality metrics pertaining to triangular elements will be investigated.
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There are a multitude of metrics that were not investigated that may work as well if
perhaps not better than the ones implemented; quality metrics are also readily available
for all element types.

4.3.1.1 Quality Metric 1

The �rst quality metric investigated is a shape-size metric proposed by Knupp [22],
and is based on the Jacobian matrix and ideas from linear algebra. The metric is a
dimensionless quantity de�ned by the weighted product

fss =
√
fsizefshape, (4.9)

where the range of fss is

0 ≤ fss ≤ 1, (4.10)

where an element with fss = 1 refers to the perfect element and fss = 0 a degenerate
element. fsize and fshape denote metrics associated with the size and shape respectively.
fsize is square rooted, since changes in element size have a smaller in�uence to mesh
quality in comparison to distorted elements.

Consider a triangular element, with the coordinates of the vertices de�ned by (xk, yk) , k =
1, 2, 3, where k is the vertices of the triangle. A Jacobian matrix for the element, around
node k is

Ak =

[
xk+1 − xk xk+2 − xk
yk+1 − yk yk+2 − yk

]
. (4.11)

The Jacobian matrix is not independent on which node it is computed, though the shape
and size metrics are, therefore the subscript k can be dropped. The determinant of A
is twice the area of the triangle, independent of which node is used for the Jacobian.
Thus let us set

α = det (A) . (4.12)

Furthermore, a �metric� tensor matrix λ can be computed by

λ = ATA (4.13)

which is a 2 × 2 symmetric matrix. The tensor matrix has three distinct components
λij, i, j = 1, 2. Geometrically λ11 and λ22 are measures of the squared lengths of two
sides within the triangle and λ12 a measure of the included angle.
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The shape metric can now be de�ned as

fshape =

√
3α

λ11 + λ22 − λ12

. (4.14)

fshape ranges between 0 and 1, where a value of 1 denotes an equilateral triangle. The
size metric is de�ned as

fsize = min (τ, 1/τ) (4.15)

where τ = α/w, is a ratio between the actual area α, of the triangle and some reference
area w. In our speci�c case, by assuming that the initial mesh is optimal in its own
right, the reference area is the initial area of the undeformed mesh. For a gradient
based optimization algorithm, we require that the functions be di�erential everywhere,
which is not the case for the size metric in equation (4.15). An alternative size metric,
suggested by Knupp [22] is

fsize =
2τ

1 + τ 2
(4.16)

which is indeed di�erentiable everywhere.

Using this metric, the objective function to be minimized is then

F = −
∑

elements

fss. (4.17)

4.3.1.2 Quality Metric 2

The second metric investigated is a robust method based on the quotient of the radii
of the circumscribed and inscribed circles of a given triangle [4]. The ratio given by

rout
rin

(4.18)

can directly give a measure of the shape quality of an element. Consider the triangles
shown in Figure 4.7. For an equilateral triangle, the ratio is 3, and as the element
degenerates, this ratio tends to in�nity.

The objective function of the metric proposed in [4] is

F =
∑

elements

(
rout
rin

)ν (
rout
r0

)µ
, (4.19)
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where ν, µ and r0 are positive constants. The choice of constants have little impact
on the solution of the optimal mesh, and for this studies the chosen values are ν = 3,

µ = 1 and r0 = 1, as proposed in [4]. The quotient
(
rout
rin

)ν
ensures that the element

shapes are favorable and
(
rout
r0

)µ
controls the size of the elements, ensuring that the

elements do not become too large.
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Figure 4.7: Comparison of the inner and outer circles for an equilateral and degenerate
triangle

4.3.1.3 Quality Metric 3

The third metric investigated is similar to equation (4.19), but instead of optimizing
for both the shape and size, the objective function only focuses of the element shapes.
The objective function is de�ned as

F =
∑

elements

(
rout
rin

)ν
. (4.20)

Once again, the choice of ν has little impact on the solution.

4.3.1.4 Quality Metric 4

The �nal quality metric is a combination of the size metric presented in section 4.3.1.1,
and quality metric 3. The shape of the elements is controlled by the ratio of inner
and outer radii, while the element size is controlled by equation (4.16). The objective
function to be minimized is then

F =
∑

elements

(
rout
rin

)(
1

fsize

)
. (4.21)
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4.3.2 Test Case Comparing Quality Metrics

To test the applicability of each of the quality metrics, the same mesh movement prob-
lem used in section 4.2.2, with the initial mesh shown in Figure 4.1 will be used. The
inner rectangle once again will be translated in the x and y directions by 30 units
and rotated a total of 60◦ counter-clockwise. For the mesh movement tests, it will
be assumed that an appropriate optimization algorithm is made use of, as discussed
in Section 4.3.3. The �nal meshes are compared to the benchmark set by the RBF
interpolation method, using the CP C2 function.

Before continuing the discussion and comparison of the four metrics, mention must
be made that we have modi�ed metric 1 for the purposes of the mesh movement. In
section 4.3.1.1, we de�ned fss such that it ranges between 0 and 1. The de�nition as
is provides for intuitive comparisons between meshes, as the extremes are well de�ned,
with 0 being a degenerate element and 1 the optimal. Metric 1 however is ill-suited
towards the application in an optimization algorithm, as the extremes are not harsh
enough. Letting a few elements become degenerate will not have a signi�cant impact
on the total cost function. The optimization algorithm will thus allow for a few ele-
ment qualities to approach 0 in order to attain an overall improvement in the mesh
quality. To demonstrate this, Figure 4.8 shows the �nal mesh as optimized for using
the original form of metric 1. The mean quality for the mesh, as measured by metric 1,
is 0.8404 while the minimum element quality is 0.0003, which for all practical purposes
is degenerate, and will lead to an ill-conditioned solution matrix.

We propose the following modi�ed form of metric 1

f ss modi�ed =
1√

fsizefshape
. (4.22)

In so doing, fss now ranges between ∞ and 1 for a degenerate and perfect element
respectively.
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Figure 4.8: Mesh after rotation and translation using the original form of metric 1.
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The �rst important consideration when comparing the four quality metrics is the com-
putational cost associated with each of the metrics. The total number of iterations
required to reach convergence for each of the metrics are shown in Table 4.2. All the
metrics require a similar number of iterations, both for the conjugate Gradient and
Newton's method. There is also little di�erence in the cost per iteration between each
of the metrics, therefore there is no overriding distinction on the basis of computational
cost. The four metrics must accordingly be compared purely on merit of the quality of
their respective �nal meshes.

Metric Conjugate Gradient Newton
1 141 6
2 304 7
3 176 6
4 201 7

Table 4.2: Number of iterations required to reach convergence for inner rectangle motion of
4x, y = 30, φ = 60◦CCW.

In order to allow for a fair comparison of the quality metrics, the initial mesh is pre-
optimized with the respective metrics prior to the mesh movement; in so doing, we
remove any bias towards the initial mesh. Using the same initial mesh for all four
metrics would unfairly disadvantage metrics 2 and 3, as they contain no information
pertaining to the original mesh.

The �nal meshes for each of the metrics are presented in Figure 4.9. The gray-scale
mapping is a measure of the element qualities based on the original form of metric 1,
where 0 ≤ fss ≤ 1 for degenerate and perfect elements respectively. By studying the
�gures, it becomes apparent that the mesh movement produced through optimization
is heavily dependent on the choice of quality metrics.
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(a) Metric 1 (modi�ed).
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(b) Metric 2.
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(c) Metric 3.
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(d) Metric 4.

Figure 4.9: Mesh movement after rotation and translation for all four metrics. Inner rect-
angle movement of 4x, y = 30, φ = 60◦CCW. The gray-scale is a measure of
element quality using the original form of metric 1, 0 ≤ fss ≤ 1.
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As an example, the meshes produced using metric 2 results in elements along the inner

rectangle being severely distorted (Figure 4.9(b)). Because of the quotient
(
rout
r0

)
in

metric 2, the optimization algorithm attempts to minimize the volume of all mesh
elements. Since the large majority of elements are located close to the inner rectangle
boundary, the optimization algorithm will favor these elements to be small. Having
small elements close to the �ow boundary is desirable for �uid simulations, as this is
the region where most of the complex �ow behavior occurs. Having said that, while it
is bene�cial to have the smaller elements on the boundary, it is far more detrimental
for unsteady �uid simulations if these elements are distorted.

Metric 1 on the other hand appears to produce a �nal mesh with high element qualities
along the inner boundary (Figure 4.9(a)), but generates distorted elements further away
from the boundary. In an attempt to produce meshes that compromise between the
good inner element qualities of metric 1, with the overall improved performance of
metric 2, metric 2 was modi�ed by removing the size quotient resulting in the current
form of metric 3. The size quotient in metric 2 is to ensure that elements do not
become overly large. Since the starting mesh consists of a set of closely packed elements
there is little room for extreme size changes; controlling the element sizes is therefore
unnecessary. Using metric 3 we attain an overall improvement in the quality of elements
along the boundary (Figure 4.9(c)).

Metric 4 was created by taking this notion one step further. Since most elements are
located along the inner domain boundary, any optimization algorithm will favor these
elements. Thus by inserting the size measurement of 1

fsize
we force the optimization

algorithm to keep the element volumes along the boundary as close to the original
mesh as possible. The result of this is a further improvement in the quality of elements
along the inner boundary, while not sacri�cing the overall mesh quality (Figure 4.9(d)).

To numerically quantify and compare the performance of each of the metrics we report
on the worst and mean element qualities in Tables 4.3 and 4.4. To ensure that we
compare like quantities, we report the element qualities using all 4 metrics for each of
the mesh movements. The top performing metric for each measure is highlighted for
ease of viewing.

In terms of worst element qualities (Table 4.3), metric 2 consistently provides the best
results. All four metrics are however formulated to maximize mean element qualities,
and hence we are not that interested in which metric performs best in terms of worst
element qualities, save that the �nal meshes should contain no degenerate elements.
If worst element qualities are the desired property of a mesh, then the cost functions
should be chosen or formulated accordingly. Metric 2 produces high worst quality
elements because the metric heavily penalizes distorted elements. The optimization
routine therefore spends considerable e�ort ensuring that there are as few distorted
elements as possible. The exact opposite is true for the original formulation of metric
1, where near degenerate elements were not penalized enough.

Since none of the �nal meshes produce near degenerate elements, the top performing
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metric will be chosen solely on the basis of mean element qualities. In Table 4.4,
one may observe that the top performing metrics, for each metric measure, sits along
the diagonal of the table. We ignore these diagonal terms, because optimizing and
measuring the mesh quality using the same metric will always produce the best results.
Based on the results with the diagonal terms omitted, we note that mesh movement
based on metric 4 produces the overall highest quality meshes. Metric 4 will therefore
be the metric of choice for all future optimization based mesh movements.

Starting mesh optimized according to and measured by

Mesh moved Metric 1 (mod.) Metric 2 Metric 3 Metric 4

according to Worst Rank Worst Rank Worst Rank Worst Rank Rank
Starting Mesh 1.5995 - 3.7560× 103 - 5.3607 - 5.0526 - -
RBF CP C2 13.2927 - 6.1894× 105 - 24.8947 - 30.5798 - -

Metric 1 (mod.) 6.3359 1 1.4995× 105 4 15.7634 4 15.8788 4 4
Metric 2 6.3548 2 8.2735 × 103 1 9.8429 1 10.6980 1 1
Metric 3 9.5118 4 3.7729× 104 2 11.6018 2 11.1999 2 2
Metric 4 7.3339 3 6.6899× 104 3 12.6984 3 11.3971 3 3

Table 4.3: Comparison of worst element quality of all four quality metrics. Results are for
inner rectangle movement 4x = 30, 4y = 30, φ = 60◦CCW. Meshes are pre-
optimized with each of the respective quality metrics to allow for fair comparisons.

Starting mesh optimized according to and measured by

Mesh moved Metric 1 (mod.) Metric 2 Metric 3 Metric 4

according to Mean Rank Mean Rank Mean Rank Mean Rank Rank
Starting Mesh 1.0576 - 623.9486 - 4.0934 - 3.7597 - -
RBF CP C2 1.8947 - 9.2598× 103 - 5.6679 - 5.4564 - -

Metric 1 (mod.) 1.5197 1 2.9973× 103 4 5.1308 3 4.8346 3 3
Metric 2 1.7975 4 1.3569 × 103 1 5.2559 4 5.0141 4 4
Metric 3 1.7068 3 2.1173× 103 3 4.9804 1 4.7825 2 2
Metric 4 1.6592 2 1.9653× 103 2 5.0451 2 4.2787 1 1

Table 4.4: Comparison of mean element qualities of all four quality metrics. Results are
for inner rectangle movement 4x = 30, 4y = 30, φ = 60◦CCW. Meshes are pre-
optimized with each of the respective quality metrics to allow for fair comparisons.

4.3.3 Optimization Algorithms

In this section, we aim to compare the computational cost and e�ciency of the conju-
gate gradient method and Newton's method (with line search). For the sake of brevity
the implementation of the algorithms will not be discussed here, but to ensure re-
producibility of the work, detailed discussions of the algorithms are attached in the
appendices.
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Since the cost associated with each of the metrics are similar to one another, we will
focus the rest of our discussion on the comparison of the optimization algorithms using
metric 4 only. The quality metric is continuous and di�erentiable everywhere, allowing
for the �rst derivatives and Hessian required by the optimization algorithms to be
computed analytically. To take advantage of the sparsity of the Hessian matrix, only
the non-zero entries are saved. A sparse matrix solver with LU factorization is made use
of along with node re-numbering to produce LU factors with near minimal bandwidth.
The re-numbering scheme used is the reverse Cuthill-McKee ordering scheme available
in MATLAB [13]. An analysis and comparison of solver technologies is covered in
greater detail in Section 4.3.4.

The gradients and Hessian are computed analytically to decrease the computational
cost. Using �nite di�erencing (FD), while being more expensive does o�er some ad-
vantages. Using FD allows for a generic solution, and can inter-changeably be used on
any objective function or quality metric without requiring any additional coding. FD
is however considerably more expensive, and a comparison of the CPU scaling is shown
in Figure 4.10.

In the cases where FD is used to compute the �rst and second derivatives, Newton's
method is a poor choice for the optimization problem, as it scales poorly for an increase
in problem size. When using FD, the computation/construction of the Hessian accounts
for close to 99% of the solution time, thus quasi-Newton methods such as DFP or BFGS
would be better suited. Both the DFP and BFGS algorithms never compute the Hessian
but rather make approximations thereof, mitigating a large portion of the computation
time. They do however sacri�ce on the convergence rate, changing Newton's second
order convergence properties to super linear.
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Figure 4.10: Computational cost scaling comparison between Newton solver with derivatives
and Hessian computed analytically and through �nite di�erencing.

To compare the conjugate gradient and Newton optimization algorithms, we make use
of the same rotation and translation problem as in the preceding section, for increasing
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mesh sizes. The convergence criteria used is the normalized error

||e||2 =
1

N

∑N
i=1

√
(xicurrent − xiold)2

l

 < 1× 10−5 (4.23)

where l is the average length of all edges connected to node i. We also use a single RBF
displacement increment to initially displace the boundary and mesh prior to starting
the mesh optimization.

We make use of a single RBF increment because the maximum displacement that the
boundary may move, for the optimization algorithm, is the minimum element size along
the boundary. Boundary displacements larger than this results in element inversion, and
the subsequent failure of the optimization algorithm. Large boundary displacements
therefore have to be divided into several smaller increments, where each increment
is fairly expensive. As an example, for the �nest mesh implemented in this study
(DOF≈160000), over 500 increments are required for the inner rectangle movement of
4x = 30, 4y = 30, φ = 60◦CCW. By using a single initial RBF increment, we are able
to cheaply move the mesh to the desired boundary location, while ensuring that none
of the elements are inverted. We implement the same method later on in Chapter 5,
when we train our reduced order model.

The computational time comparisons for the two algorithms are shown in Figure 4.11.
Figure 4.11(a) depicts the total number of iterations required to reach convergence,
Figure 4.11(b) the time per iteration and Figure 4.11(c) the total time required for a
displacement increment, all as a function of problem size.

The conjugate gradient method is known to scale well with problem size, and is expected
to outperform second order methods for larger problems. For the mesh movement
problem, we �nd that Newton's method performs better for an increase in problem
size. For smaller problems the Conjugate gradient method performs better, with a
cross over point for a mesh of around 1000 DOF. The cross over point itself will vary
from computational platform and implementation, but a mesh of 1000 DOF is still
insigni�cant in comparison to the size of meshes used in actual simulations. For any
practical applications, Newton's method would therefore be the preferred optimization
method.

Per iteration, the Conjugate Gradient method is cheaper, but requires a signi�cantly
larger number of iterations to reach convergence, and hence the poor CPU cost scaling.
The reason for this is based on the manner in which the two methods obtain their
respective search directions. The Conjugate Gradient method only uses �rst order, local
gradient information. As a result, elements far away from one another have no inter-
relating information. For example, if the elements along the inner rectangle boundary
are distorted, the elements further away at the edge of the domain have no gradient
information regarding this distortion. It takes several iterations for this information

 
 
 



CHAPTER 4. UNSTRUCTURED MESH MOVEMENT 42

to propagate through the mesh. On the other hand, Newton obtains search directions
based on a Hessian, which incorporates information for the whole mesh domain; while
being more expensive per iteration, Newton requires substantially fewer iterations to
reach convergence.
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ment increment.
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Figure 4.11: CPU time and memory usage comparisons between Conjugate Gradient and
Newtons method as a function of problem size.

Despite the clear advantage Newton has in terms of computational time, it does come
at a larger memory cost. Figure 4.11(d) is a comparison of the memory scaling as a
function of problem size for the two optimization algorithms. The fact that the Hessian
is so sparse, and only the non-zero entries are saved, results in Newton's method scaling
similarly to that of the Conjugate gradient method, at a near one to one ratio. To
provide an indication to the sparsity of the matrix, consider the mesh in Figure 4.1.
The Hessian matrix is of size [1132× 1132] while containing only 13200 non-zero entries,
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accounting for slightly more than 1% of the total number of entries in the full matrix.
Despite scaling the same, Newton's method is signi�cantly more memory expensive,
and in applications where memory is the de�ning constraint, the Conjugate gradient
method would be the preferred method.

4.3.4 Brief Analysis of Solver Technologies Available in MAT-

LAB

In the preceding section the Newton mesh optimization problem was solved using a
direct sparse solver. In this section we aim to brie�y explore the validity of our solver
choice. In large problem sizes typically expected in CFD simulations of realistic prob-
lems it is commonly accepted that direct solvers are infeasible, and one would rather
opt for a matrix free iterative solver. Note however that the study of solver technolo-
gies and e�ective pre-conditioners are entire research �elds of their own and beyond the
scope of this study.

Nevertheless, it is important to use a suitable solver that scales well in terms of both
CPU usage and in memory as the aim of this thesis is CPU savings. In this section
we therefore try to demonstrate that the direct sparse solver is the most e�cient solver
available in MATLAB for the class and size of problems with which we are dealing.
Yet despite using a direct matrix based solver, all the reported savings reported in
Chapters 5 and 6 hold true even if an iterative solver is implemented instead.

In general, the computational cost of using direct solvers on a full matrix, such as Gauss
elimination, is of O (N3), with memory requirements of O (N2). Direct matrix solvers
therefore become too expensive to be implemented for large problems. Due to the
sparsity of the matrix being solved, we used MATLAB's sparse matrix solver. Numerical
tests showed the sparse solver to achieve a CPU scaling factor of approximately O (N1.5)
(for our particular application, illustrated in Figure 4.12). The memory requirements
of the solver to our mesh problems is approximately of O (100N).

In contrast, matrix free, iterative methods such as Krylov subspace solvers, with a good
pre-conditioner can have computational costs ofO (N logN) with memory requirements
of O (N) [10]. In MATLAB, there are several iterative methods to choose from, and
the one that for our particular application yielded the best results is the symmetric
LQ method [2]. The performance of iterative methods depend largely on the choice of
pre-conditioners used. The use of pre-conditioners is often problem speci�c, and may
for example be used to improve the stability of the solution when solving the set of
Navier-Stokes equations for �ow problems. In our application, we use a pre-conditioner
to improve the computational time performance of the iterative solver by primarily
reducing the number of required iterations to reach convergence.

To brie�y illustrate the e�ect of pre-conditioners, we plot the CPU scaling for the
symmetric LQ method in Figure 4.12 for no pre-conditioner and a very simple pre-
conditioner. Consider a matrix problem of the form
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Ax = b, (4.24)

whereA and b is a known matrix and vector respectively, solving for an unknown vector
x. The symmetric LQ method solves the problem in (4.24), given a positive de�nite
pre-conditioner M , by solving �rst for y

(√
M
)′
A
(√
M
)′
y =

(√
M
)′
b (4.25)

then solves for x by

x =
(√
M
)′
y (4.26)

where (.)
′
denotes the inverse of a matrix. The square root of a matrix is de�ned such

that M =
√
M
√
M , which exists if M is positive semi-de�nite [20]. The symmetric

LQ function never fully computes the inverse, but approximates it iteratively. Based
on equations (4.25) and (4.26) it may be noted if a pre-conditioner of M = A is sup-
plied, the symmetric LQ method would solve the matrix problem in a single iteration,
provided that the computation of the inverse is exact. A good pre-conditioner choice
for the symmetric LQ method is thus all the diagonal terms of matrix A, provided A
is diagonally dominant. Both these sets of results are shown in Figure 4.12, for both
CPU cost and the number of iterations required to reach convergence. The convergence
criteria used is that the normalized residual be less than 1× 10−6.
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Figure 4.12: a) CPU scaling and b) number of iterations required for the symmetric LQ
iterative method for solving Newton's method, using di�erent pre-conditioners.

In our application of the symmetric LQ method it appears as though the choice of pre-
conditioner has little impact on the solution scaling of the problem, but does impact
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the overall solution time. We do not quite attain CPU scalings of O (N logN), but the
results for the iterative solver is nonetheless competitive. Furthermore, for the size of
problems we are dealing with, the direct sparse solver scales similarly but at a fraction
of the cost. In terms of the solver technologies available in MATLAB, the direct sparse
solver is hence the most e�cient in terms of CPU time, provided the system is very
sparse.

4.4 Mesh Movement Using Equations of Linear Elas-

ticity

The �nal mesh movement technique which is evaluated is the elastic deformation
method, where the motion of internal nodes is governed by a set of linear elasticity
equations. The method is an example of mesh movement techniques based on the solu-
tion of a set of partial di�erential equations. Within the class of PDE based techniques,
several methods have been proposed in an attempt to handle the compromise between
quality of meshes produced, the extent of boundary deformations that can be handled
and the associated cost.

The method of elastic deformation has not gained popularity as a mesh movement
technique because for large deformations the method often leads to mesh entanglement
or hanging nodes. To rectify the problem, Stein et al. [39] proposed the use of a Jacobian
based sti�ening factor. By introducing the sti�ening factor, the amount of deformation
of elements can be controlled.

It is possible to selectively treat the mesh deformation without the inclusion of this
sti�ening factor, by adjusting the Lamé constants of the elasticity equations. The
inclusion of the sti�ening factor however allows for a far greater degree of control. The
sti�ening factor causes smaller elements to be rendered �sti�er� in comparison to the
larger elements and thus undergo a smaller degree of distortion due to the boundary
deformation. Since most of the small elements in a mesh are usually located near
the boundary, the method allows for mesh movements whereby the amount of element
distortion near the �ow boundary may be minimized to the desired level.

4.4.1 Model Formulation

4.4.1.1 Equations of Linear Elasticity and Finite Element Formulation

Let Ω be a spatial domain bounded by ∂Ω. The domain boundary is partitioned into
∂Ωu and ∂Ωt corresponding to the Dirichlet and Neumann-type boundary conditions,
where prescribed displacements ū and tractions t̄ are applied. The equation governing
the internal node motion may be written as [17]
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∇ · σ + f = 0 inΩ, (4.27)

σ = Cε inΩ, (4.28)

ε =
1

2

(
∇u+∇Tu

)
inΩ, (4.29)

u = ū on ∂Ωu, (4.30)

σn = t̄ on ∂Ωt (4.31)

where σ denotes the stress tensor, f the external force, C the fourth order elasticity
tensor, ε the strain tensor, u the displacements and n an outward pointing unit normal.

Since it is in general not possible to solve the strong form of the boundary value problem
(4.27)-(4.31), we use Galerkin's method to formulate the weak form

ˆ
Ω

σ · ∇wdΩ =

ˆ
∂Ωt

t̄ ·wdβ +

ˆ
Ω

w · fdΩ, (4.32)

where w is an arbitrary weighting function such that w = 0 along ∂Ωu. In the Finite
Element method, we choose the weighting function to be similar to the displacement
function,

u = [N ]T {Ue} and w = [N ]T {We} , (4.33)

where [N ] is the displacement shape functions, {Ue} is the nodal displacement vector
and {We} the nodal weigthing function vector. Thus the global integrals of equa-
tion (4.32) takes the form

ˆ
Ω

[...] dΩ =
∑

elements

ˆ
Ξ

[...]eJedΞ, (4.34)

where Ξ represents the element local domain in terms of local co-ordinates ξ, [...]
represents what is being integrated and Je is the elemental Jacobian de�ned by

Je = det

(
∂x

∂ξ

)e
. (4.35)

For the mesh movement, we make use of the constant strain triangle (CST) element
[19], and thus no numerical integration is necessary. Furthermore, we make a plane
stress assumption since we are dealing with two dimensional meshes only.
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4.4.1.2 Jacobian Sti�ening

The Jacobian sti�ening factor alters the way in which the Jacobian is handled. We
modify the �nite element integration (4.34) as follows

ˆ
Ω

[...] dΩ =
∑

elements

ˆ
Ξ

[...]e Je
(
J0

Je

)χ
dΞ, (4.36)

where χ is a non-negative sti�ening constant, and J0 is an arbitrary scaling constant
inserted to make the alteration dimensionally consistent [39].

The Jacobian of an element is linked to the elemental volume, e.g. for the CST element
Je = 2× Area. Therefore, by inserting the sti�ening factor, we cause smaller elements
to sti�en up. The amount of elemental sti�ening can be controlled by altering the
sti�ening constant χ. For χ = 0 we retrieve the original FEM formulation, and with
χ = 1 we remove the Jacobian altogether. Furthermore, for χ = 2 the smallest elements
within the mesh will be forced to remain almost unchanged.

4.4.2 Rotation and Translation Test Case

To test the application of the linear elastic deformation method, the same mesh move-
ment problem used in section 4.2.2, with the initial mesh shown in Figure 4.1 will be
used. The inner rectangle once again will be translated in the x and y directions by
30 units and rotated a total of 60◦ counter-clockwise. We use CST elements to model
the triangular mesh, and assume plane stress. For comparison purposes we make use
of element quality metric 1 de�ned in section 4.3.1.1, where fss ranges between 0 for
degenerate elements and 1 for the good elements. We move the boundary over 15
displacement increments.

To illustrate the dependency of the elastic deformation method on number of increments
and Poisson's ratio, we plot the minimum and mean element qualities in Figure 4.13
for ν = −0.99, 0.3 and 0.499 with a sti�ening constant of χ = 1.

To demonstrate the e�ect of the sti�ening factor on mesh movement using the equations
of linear elasticity, we set the sti�ening constant χ = 0, 1 and 2. The �nal meshes for
the three sti�ening constants are shown in Figure 4.14 (for Poisson's ratio of ν = 0.3).
By setting χ = 0 we retrieve the standard Finite Element formulation, and it is evident
that the smaller elements near the boundary perform poorly. They undergo large
distortions and stretching, and there is severe tangling of elements near the tip of the
inner rectangle. By setting χ = 1, we essentially remove the Jacobian from the FEM
formulation, resulting in the sti�ening of the smaller elements near the boundary, and
an overall improvement of the mesh. For a sti�ening constant of χ = 2, the smallest
elements in the mesh remain essentially unchanged. Thus near the inner rectangle, we
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(a) Minimum element qualities.
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(b) Mean element qualities.

Figure 4.13: Comparison of the mean and minimum element qualities for the elastic defor-
mation method as a function of the number of displacement increments and
Poisson's ratio ν. Quality measured using 0 ≤ fss ≤ 1.

obtain high quality elements, but the larger elements further away from the boundary
are severely distorted and stretched.

The mesh movement using equations of linear elasticity in conjunction with the sti�-
ening factor allows the user �ne control over the desired element qualities near the
boundaries. Figure 4.15 depicts the minimum and mean element qualities of the mesh
for the range of 0 < χ < 2. For 1 ≤ χ ≤ 1.1 we obtain a good compromise between
minimum and mean element qualities for the rotation and translation test case.
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(c) χ = 2

Figure 4.14: Final meshes using equations of linear elasticity, after rotation and translation
for di�erent values of χ

Furthermore, the elastic deformation method performs well in comparison to other
mesh movement techniques. In Table 4.5, we compare the minimum and mean ele-
ment qualities, for the same mesh movement problem, using RBF interpolation, mesh
optimization and now the linear elastic deformation. As expected, mesh optimization
provides the highest element qualities, but the elastic deformation method performs
better than RBF interpolation.

The elastic deformation method with Jacobian sti�ening is a particularly e�ective mesh
movement technique. It provides a high degree of control over the element qualities,
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Figure 4.15: Element quality measure for rotation and translation test case for varying χ
(see Figure 4.14).

No. Mesh Movement Minimum Mean
1 RBF CP C2 0.2724 0.8125

2 Opt:
(
rout
rin

)(
1

fsize

)
0.3747 0.8306

3 Elasticity: χ = 1 0.3157 0.8298

Table 4.5: Comparison of element qualities for rotation and translation test for all three mesh
movement techniques. Mesh quality measure by metric 1 (Section 4.3.1.1).

and is computationally e�cient, as will be shown in the following section.

4.4.3 Computational Cost

For the solution of the linear elastic equations, we make use of the Finite Element
method. To improve the memory usage of the solution we save only the non-zero
entries of the sti�ness matrix, and use a sparse matrix solver to �nd the displacements.
To improve the computational performance we re-number the mesh nodal connectivity
(using the reverse Cuthill-McKee ordering scheme [13]) to allow for a diagonally banded
sti�ness matrix, and use LU factorization to improve memory performance. The CPU
and memory usage for the elastic deformation method is shown in Figure 4.16, and is
compared to the RBF interpolation and optimization methods.

In terms of computational cost for large problems, the elastic deformation method
is shown to be an e�cient mesh movement method. For large problems the elastic
deformation method outperforms RBF interpolation using a �xed support radius. It
should however be noted, based on the discussion in Section 4.2.4 that for larger meshes
the computational times using RBF can be improved by decreasing the support radius.
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By decreasing the support radius, RBF interpolation does become the cheapest of the
three methods with only a minor sacri�ce in terms of �nal mesh qualities.

The elastic deformation method is however, despite the sparse implementation, the
most memory intensive method of the three, though compares similarly to Newton's
method. As with the Newton optimization routine, the system can be solved using
an iterative solver, which would reduce the memory requirements, while increasing the
overall solution times.

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Degrees of Freedom

T
ot

al
 C

P
U

 ti
m

e

 

 
Elastic Deformation
RBF: CP C2

Optimization: Newton
Optimization: Conjugate gradient

(a) CPU time scaling.

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

Degrees of Freedom

M
em

or
y 

U
sa

ge
 [M

B
]

 

 

Elastic Deformation
RBF: CP C2

Optimization: Newton
Optimization: Conjugate gradient
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Figure 4.16: CPU and memory scaling comparisons of all three mesh movement methods.

4.4.4 Path Dependency of Linear Elastic Formulation

The elastic deformation method, like RBF interpolation, is a path dependent mesh
movement scheme. To demonstrate this, we revisit the example used in Section 4.2.3,
where the inner rectangle is rotated between ±60◦ �ve times before returning to the
original position. The test is performed using 18 and 80 intermediate steps, with the
�nal meshes shown in Figure 4.17.

Using only 18 intermediate steps, the resulting mesh is completely tangled and conse-
quently unusable. For 80 intermediate steps the minimum and mean element qualities
is 0.6065 and 0.9637 respectively. This is a marginal decrease compared to the starting
mesh which had minimum and mean element qualities of 0.7917 and 0.9743 respectively.

The elastic deformation method is path dependent due to the small strain and displace-
ment assumption made for classic linear elastic analysis. For meshes undergoing large
deformations, these assumptions are no longer valid, and in order to attain meshes of
reasonable qualities the total displacements need to be subdivided into smaller incre-
ments. This path dependency can be removed by modifying the constitutive equations
to a general non-linear elasticity formulation [44].
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(a) 18 intermediate steps. Tangled mesh.
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(b) 80 intermediate steps. Min: 0.6065, Mean:
0.9637.

Figure 4.17: Final meshes produced for the inner block rotated between +60◦ and −60◦

�ve times and back to the original position using the linear elastic deformation
method.

Using a non-linear elastic formulation will have two e�ects. Firstly, for any given
deformation there would exist a unique mesh solution. Much like the optimization
methods, the non-linear elastic method will be capable of regularizing a mesh once it
has been deformed. Unfortunately it will also su�er from the same drawbacks as the
optimization method. The method itself will be more expensive than the standard
linear elastic formulation as the solution involves solving a set of non-linear equations
and no elements may be inverted prior to solving the constitutive equations. For this
reason, the maximum boundary displacement per increment will also be limited to the
size of the smallest element along the boundary edge, or an initial, inversion free guess
of the mesh would need to be provided.

4.5 Conclusion

Three mesh movement methods were investigated, namely radial basis function in-
terpolation, mesh optimization and elastic deformation. Of the three methods, mesh
movement through optimization, o�ered the highest quality �nal meshes but proved to
be computationally the most expensive. Elastic deformation, with the added Jacobian
sti�ening factor, was the fastest of the three with the second highest quality meshes.
It was however demonstrated that the CPU scaling using RBF can be improved by
decreasing the support radius size for compact support functions with only a small
sacri�ce in element quality.

For the optimization method, it was shown that using a Newton solver o�ered better
CPU scaling in comparison to conjugate gradient methods. A sparse solver, with analyt-
ically determined gradients and Hessian were implemented and near one to one scaling
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factors were obtained in terms of both CPU and memory scaling. Mesh optimization
o�ers the advantage that for any given boundary displacement there exists a unique
mesh. The method as implemented is not applicable to hybrid meshes and also su�ers
from the limitation that any given displacement increment cannot be larger than the
smallest element lengths along the moving boundary. As such, large displacements has
to be broken into many smaller displacement increments, each of which is an expensive
full optimization problem or an initial inversion free guess needs to be provided.

Both the RBF interpolation and elastic deformation methods were demonstrated to
be path dependent. While a single displacement increment can be used regardless
of the motion magnitude, using larger number of displacement increments result in
signi�cantly improved mesh qualities. Due to the path dependency both these methods
may experience mesh degeneration, especially for transient FSI simulations. The RBF
interpolation method however requires no grid connectivity information and is therefore
suited to hybrid meshes without any changes to the formulation or implementation.

 
 
 



Chapter 5

POD Based ROM for Mesh Movement

The aim of this chapter is to generate e�cient POD based reduced order models of
mesh movement algorithms.

5.1 Introduction

In Chapter 4 mesh movement techniques were introduced, namely radial basis function
interpolation, mesh optimization and elastic deformation. All three techniques proved
to be relatively costly operations. The aim of this chapter is to test the possibility
of generating reduced order models of these mesh movement techniques based on the
method of proper orthogonal decomposition, introduced in Chapters 2 and 3.

POD enables the de�nition of a lower-dimensional model to describe a higher dimen-
sional system. In essence, it creates a subspace to the original system, which requires
far fewer degrees of freedom to describe a much larger system. In order to apply the
POD techniques to reduced order modeling requires that the system's basis modes be
computed. To do so the model needs to be trained by generating a set of snapshots
that is representative of the original system.

In terms of mesh movement, these snapshots are the mesh nodal coordinates associated
with the meshes of a pre-de�ned set of domain boundary movements. Since a POD
based model can only reproduce information within close proximity to the information
in these snapshots, the boundary movements must be chosen as those most likely to
be encountered in the actual simulation. This inherently means that certain a priori
knowledge is required as to how the actual system will behave. Fortunately, in most
engineering problems, a substantial amount of information relating to a problem, such as
the predominant physics is usually known or can be estimated prior to the simulation. If
no such knowledge exists, there are several techniques available, such as Latin hypercube
sampling, that can be used to aid in the choice of snapshots.

54
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The generation of a POD based model for mesh movement can be viewed as a pre-
processing step to the actual simulation. Once the initial cost of generating the snap-
shots and determination of the orthogonal modes have been completed, the mesh move-
ment problem becomes trivially cheap. The second advantage is that once a POD model
has been generated, it can be applied repeatedly, whether it is for the same problem or
a problem with the same domain but di�erent simulation parameters. There exists, as
an example, many scenarios where a simulation is to be run on the same �ow domain,
with di�erent model parameters such as inlet velocities, density, viscosity or even struc-
turally related properties of the FSI problem. Using the conventional mesh movement
techniques would imply that a large fraction of CPU time is spent on solving the mesh
movement problem that would be similar in all these simulations. On the other hand,
once a POD model has been trained, it can be used in all these cases, at a mere fraction
of the cost.

In order to demonstrate the POD technique applied to mesh movement, the simple
rotation and translation of an inner rectangle used in sections 4.2.2 and 4.3.2 will be
used again. For the purposes of this study we will attempt to generate reduced order
models of the optimization and elastic deformation mesh movement methods.

5.2 Snapshot Generation for Simple Rotation and Trans-

lation Test Case

The �rst requirement for generating a PODmodel is to acquire a set of snapshots. When
generating the snapshots, it is crucial that we capture the kind of mesh movements
that is representative of the expected boundary movements. Since the motion of the
internal rectangle is merely a benchmark problem, and not related to any actual physical
problem, there is no possible prior knowledge as to what the rectangle motion is going
to be. Our choice of snapshots is merely based on what we will attempt to reproduce.
For example, if we wish to use the POD model to rotate the rectangle, then our training
snapshots will be of the inner rectangle at various degrees of rotation.

For this particular test, we however wish to produce or generate a POD model that can
translate and rotate the inner rectangle anywhere within a ±40 translational and ±90◦

rotational region in the square domain. To do so, we require snapshots of appropriate
meshes for various instances of the inner rectangle translated through several x, y co-
ordinates and angles of rotation. Rather than simply choosing a set of random motions
and rotations, we will make use of the statistical method of Latin Hypercube sampling
(LHS) [30, 40].

Latin hypercube sampling is often used in uncertainty analysis, and was developed
primarily to generate a distribution of plausible collections of parameter values from a
multidimensional distribution [30]. To aid in the de�nition of LHS, let us consider a
Latin Square. A Latin square is a statistical sampling where the parameter domain is
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divided into a square grid, where sample points are distributed within this grid. The
square is considered a Latin square if and only if there exists only one sample point
within each row and column. Figure 5.1 is a representation of a Latin square with 4
sample points. The Latin Hypercube is the generalization of this concept, where the
dimension of the cube is extended to an arbitrary amount N , where N is the number of
parameters. In the Latin cube, each axis-aligned hyperplane contains only one sample
point. Each of the parameter domains is then divided into M equally spaced intervals,
where M is the number of sample points used.

A detailed discussion of LHS, and computation methods for the sample points are
available in [40], or can readily be found in several other literature sources.

x1

2x

Figure 5.1: Latin Hypercube with number of variables N = 2, and number of sample points
M = 4.

To illustrate the bene�t of LHS, let us consider a cube with two parameters, x1 and x2,
and 1000 sample points, where the values of x1 and x2 range continuously between 0
and 1. The sample points along with histogram plots of x1 and x2 as computed by LHS
are shown in Figure 5.2. Using LHS, the sample points are chosen randomly, with the
exception that the distribution of each parameter is chosen uniformly along the length
of the parameter intervals, which is illustrated by the histogram plots.
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Figure 5.2: Example of a 2D Latin hypercube sampling with 1000 data points ranging be-
tween 0 and 1. (a) x and y coordinates of data points. (b) Histogram plot of x1

dimension. (c) Histogram plot of x2 dimension.

We use LHS to generate a set of 60 data points for three variables, x and y translation
and rotation φ; we then generate a snapshot for each of these data points. The number
of snapshots necessary is not know prior to an actual analysis, and the choice of 60
snapshots is selected rather arbitrarily. Because of the relative uniform distribution
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o�ered by the Latin hypercube sampling, we should in theory now have information
covering most combinations of translations and rotations in the sampled region. It
should be noted that the sampling was taken for a maximum x and y translation ranging
between +40 and −40 and rotations between +90◦ and −90◦. These values represent
the limit of the mesh movement algorithms for this particular mesh; any movements
greater than these values result in meshes that contain one or more elements with too
poor a quality for the e�ective use in simulations.

5.3 POD Model of Optimization Mesh Movement

The snapshots are generated using the optimization based method of Chapter 4, where
RBF interpolation is used to initially move the mesh from the origin to the Latin
hypercube speci�ed points.

Once we have our snapshots, we can now compute our POD basis modes, as described in
Chapter 2. The mesh coordinates may be approximated by the summation of expansion
coe�cients and the POD modes

x ≈
M∑
i

α(xb)iϕi, (5.1)

where x is a vector containing the x and y nodal coordinates, ϕ is the POD modes and
α(xb) is the expansion coe�cients as a function of the boundary nodal coordinates, xb.

With the POD modes known, all that is needed for the ROM to fully describe the
mesh nodal coordinates is the expansion coe�cients, α. These coe�cients have to
be computed by some means when the domain boundary is moved. In the original
mesh optimization method, we optimized the mesh quality with respect to an objective
function F (x) de�ned in terms of the inner nodal coordinates:

minimize
w.r.t. x

F (x), x = [x1, x2, ..., xn]T , (5.2)

where the total degrees of freedom of the problem was twice the number of nodal coor-
dinates. Using the POD modes, we now have a subspace of the original problem, where
we can now solve (5.2), in terms of only the expansion coe�cients, and consequently
substantially fewer DOF. The original optimization problem is solved in terms of α by
substituting (5.1) into (5.2), such that we minimize

minimize
w.r.t. α

F (x(α)), α = [α1, α2, ..., αM ]T . (5.3)

The total DOF of the problem to be solved is now equal to the number of modes
M that we decide to retain. If we study the eigenvalues associated with the POD
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modes (Figure 5.3), we note that the �rst 10 modes are dominant, and contain over
99.99% of the system information. The system can therefore be accurately reproduced
by retaining only the �rst 10 most dominant modes. This means that our systems
DOF will be reduced from 2N to around 10, which signi�es a remarkable decrease in
computational cost.
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Figure 5.3: Ordered eigenvalues for associated POD modes for the 60 snapshots.

To brie�y illustrate the contributions made by each of the POD basis modes, represen-
tations of the �rst 5 modes are shown in Figure 5.4. The �rst two modes appear to
contain the predominant system information, and handles all the x and y translations
as well as some rotation information for the inner block movement. The third POD
mode contains information with regards to the block rotation and expands elements
away from the inner block, and mode 4 controls the degree of element contractions
around the inner rectangle. The type of information contained within modes 5 and
upwards cannot be expressed in terms of simplistic motions, however the magnitude of
their contributions is minimal in comparison to the �rst 4 modes.

It should be noted that the basis modes representations in Figure 5.4 does not include
the inner rectangle boundary. The boundary itself is prescribed and as such does not
form part of the information contained within the POD modes. The external boundary
is also prescribed, however since they are known and for this problem remain unchanged
are included in the basis modes plots to assist in providing a concrete and easy to
understand de�nition of the boundary.

The expansion coe�cients α scale the magnitude and directions of each POD mode to
the contribution of the overall solution. There is however a slight problem in trying to
solve the mesh movement by optimizing (using equation (5.3)) for the coe�cients α.
The cost function in terms of the coe�cients is populated with multiple local minima.
To illustrate, a random search direction is chosen and the function F (x (α)) is evaluated
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along the path. The plot of the function pro�le is shown in Figure 5.5. Because of
these local minima, there is no gradient based optimization routine available that will
guarantee convergence of the solution to the global minimum, unless the starting points
are chosen to be close to the exact solution, or more appropriately, within the valley of
the global minimum.

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5

Figure 5.4: Representations of the �rst 5 POD modes. Magni�cation factor of 0.3.
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Figure 5.5: Function pro�le of the cost function, F (x(α)).

The presence of these local minima is attributed to element inversion. For any instance
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in which there are elements within the mesh that are inverted a local minimum will exist,
for example the mesh depicted in Figure 5.6. The mesh itself consist of high quality
elements, save for the inverted elements located along the inner rectangle boundary.
A similar problem exists within the full order mesh optimization, but never arises as
a computational issue. Although the optimization algorithm individually moves each
of the nodal coordinates, the cost function gradient provides search directions that
never move nodes to locations that will result in element inversion. When de�ning the
objective cost function in terms of the coe�cients α, these local minima are an acute
problem, because even a minor change in one of the dominant expansion coe�cients,
has an e�ect on all the nodal coordinates.

Figure 5.6: Example of a local minimum.

We propose using an interpolation method to obtain an approximation to the expansion
coe�cients α as an initial starting guess for the optimization algorithm. Interpolation
would then be used to equate a function relating the expansion coe�cients to the
moving boundary coordinates based on information gathered from the generated set of
snapshots.

The most commonly used method for generating surrogate surface models is the method
of Least Squares (LS) using some polynomial basis [33]. Brie�y, LS attempts to �nd an
approximate description f (x) that approximates, in the least-square sense, a function
fi at locations xi where i = 1, ..., N . The approximate function is de�ned as

f(x) = b(x)Tc, (5.4)

where b (x) = [b1(x), b2(x), ..., bk(x)]T is the polynomial basis vector and c = [c1, ... , ck]
T

is a vector of unknown coe�cients that need to be solved. The coe�cients c can be
solved by solving the following matrix problem:

∑
i

b(xi)b(xi)
Tc =

∑
i

b(xi)fi. (5.5)
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Di�erent approximations can be obtained by using various order polynomials, for ex-
ample a linear polynomial with three dimensions would be b(x) = [1, x, y, z]T or a
second order polynomial with two dimensions is b(x) = [1, x, y, xy, x2, y2]T .

In our particular application, the LS method with linear polynomials provides un-
satisfactory interpolations of the expansion coe�cients. To demonstrate the ability
of interpolation methods to approximate the coe�cients we move the inner rectangle
along a prede�ned path. The path is depicted in Figure 5.7, where the inner rectangle
moves from 4x = 30, 4y = 30 and φ = 60◦CCW (position A), through the origin
(B) to 4x = −30, 4y = −30 and φ = 60◦CCW (C). The approximations of the �rst
6 coe�cients are shown in Figure 5.8, along with the exact values of the respective
expansion coe�cients α.
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��
��
��
��

��
��
��
��
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B

C

Figure 5.7: Pre-de�ned path for the motion of the inner rectangle between 4x = 30, 4y =
30, φ = 60◦CCW to 4x = −30, 4y = −30, φ = 60◦CCW . The expansion
coe�cients α for the POD model along the path is shown in Figure 5.8.

From the coe�cient plots in Figure 5.8, it may be noted that the linear LS function
adequately approximates the �rst 4 expansion coe�cients. However, from α5 onwards,
the relationship between boundary positions and expansion coe�cients become too non-
linear for a linear basis polynomial. This approximation can be signi�cantly improved
by using a higher basis polynomial; the approximations based on a quadratic polynomial
is also shown in Figure 5.8. It is certainly conceivable, that using a cubic, or even higher
polynomial basis would provide even better approximations.

Using higher order polynomials does however have serious cost implications. For exam-
ple, for a 2D mesh, the size of the matrix problem (equation (5.5)) to be solved using
a linear polynomial is of size [2nb + 1]× [2nb + 1], where nb is the number of boundary
nodes used to generate the approximation. In contrast, using a quadratic polynomial,
the matrix problem size increases to [n2

b + 3nb + 1]× [n2
b + 3nb + 1], where each matrix

problem will have to be solved K times, where K is the number of expansion coe�cients
to be solved for. The cost implications can become rather severe, especially considering
that the matrices to be solved consist entirely of non-zero entries. As an example, for
a problem with 100 boundary nodes, a linear approximation requires the solution of
a 201 × 201 size matrix, compared to a 10301 × 10301 sized matrix using a quadratic
polynomial basis.
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(a) α1 (b) α2

(c) α3 (d) α4

(e) α5 (f) α6

Figure 5.8: Plots of the �rst 6 expansion coe�cients α along the prede�ned path illustrated
in Figure 5.7.

The costs are not that severe if one considers that the matrix problem only has to be
solved once o�, and can be done using an iterative solver. Furthermore, it is not neces-
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sary that all the boundary nodes be used in the interpolation function. For example, in
our problem with the rectangle, only the corner nodes need be used, as they completely
describe the position and orientation of the block. On the other hand, if the boundary
surface is more complex, for example an aircraft wing, only every nth node needs to be
accounted for, where n can be changed to include all the nodes or only a small number
of key nodes.

Having said that, it would be preferable if an interpolation method is used that can gen-
erate relationships between highly non-linear data, while only using a linear polynomial
basis. Several such methods are available, to name but a few, include the Weighted
Least Squares (WLS), Moving Least Squares (MLS) [24, 33] and RBF interpolation.
In contrast to the classical LS, the WLS and MLS do not approximate the data in a
global sense, but rather locally with a weighting function. The WLS approximations
are computed around discrete points, whereas the MLS is computed continuously over
the domain.

While both the WLS and MLS can e�ectively be used to describe highly non-linear
relationships between data, another e�ective interpolation method is through radial
basis functions. Since RBF interpolation has already been used in the preceding part
of the work, a fully functioning RBF code is already available, and is hence the in-
terpolation method chosen. The approximations produced using RBF interpolation,
with CP C2 radial basis functions, is also shown in Figure 5.8. RBF provides as good
an approximation as 2nd order LS, while the size of the matrix to be solved is only
[2nb + 1]× [2nb + 1].

Using RBF interpolation, we now have an e�ective means by which to approximate the
POD coe�cients. These approximations can now be used as the initial starting point
for the optimization routine. The RBF approximations are in fact so good, that further
optimization of the expansion coe�cients is in most cases unnecessary, unless a very
accurate solution is desired.

5.3.1 Results of Simple Translation and Rotation Problem

To summarize, at this point we generated 60 snapshots of the mesh at various positions
and angles of rotation based on hypercube generated sampling points. The POD basis
modes were then computed based on these snapshots. We then suggested two ways for
which to solve for the POD coe�cients: i) to approximate the coe�cients using RBF
interpolation, and ii) to use these approximations as an initial starting point for an
optimization routine to solve equation (5.3).

It remains to quantify how well the POD model is able to reproduce the meshes for
various boundary motions. The optimization routine that will be made use of for
the test is the Newton-Raphson method. The DOF for the ROM is small enough
that it will be computationally e�cient, and we gain from second order convergence.

 
 
 



CHAPTER 5. POD BASED ROM FOR MESH MOVEMENT 64

Secondly, since the starting point for the optimization will be a good one, we are mostly
guaranteed of convergence.

To demonstrate the ability of the POD based ROM, the inner rectangle is translated
by 30 units in the x and y directions and rotated by 60◦ counter clock-wise. The
meshes produced by the ROMs for the mesh movement are shown in Figure 5.9. From
the �gure, we note that the POD based ROM is capable of reproducing the full order
mesh movement. It may also be noted that the approximations based on the RBF
interpolation is in fact very good.

Comparing the element qualities of the ROM with the full order optimization, we
�nd that using only interpolation of the coe�cients the mean percentage di�erence in
element qualities is 0.3477%, and using Newton to further optimize the coe�cients we
�nd a di�erence of 0.0274%. Figure 5.10 presents histograms comparing the percentage
di�erence in terms of each element size and shape for the mesh generated by the ROM
and the full order mesh optimization. Using only RBF interpolation we �nd that 97.83%
of the elements' size di�er by less that 5% and 86.11% of the elements' shapes di�er by
less than 5%. There is only a minor improvement in the use of Newton optimization,
with 98.68% and 88.28% of the elements' size and shape respectively di�ering by less
than 5%. The histograms show that some of the elements experience either a positive
or negative size and shape change. The positive changes indicate that the element
shape and sizes improved in comparison to the full order optimization. Notice that the
histograms are centered about zero, indicating that on average the mesh quality does
not deteriorate signi�cantly.

The initial results appear to be promising. If we further consider that the inner rectangle
motion of 4x = 30, 4y = 30, φ = 60◦CCW is close to the edge of the training region
speci�ed by the Latin hypercube sampling points, the results are more attractive. POD
basis modes are far better at interpolating between information contained within the
snapshots, as opposed to extrapolating. Figure 5.11 presents histograms comparing the
di�erence in element sizes and shapes for an inner rectangle motion of 4x = 10, 4y =
10, φ = 10◦CCW, which lies further in the interior of the training region. We �nd
that all the element sizes and shapes, for both the use of coe�cient interpolation and
Newton optimization, di�er by less than 5%.
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(a) Full order mesh optimization.
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(b) POD ROM with coe�cient interpolation only.
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(c) POD ROM using Newton's method to solve the coe�cients α.

Figure 5.9: Comparison of �nal meshes after rotation and translation of full order optimiza-
tion and ROM using 10 coe�cients.
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(a) POD ROM with coe�cient interpolation only.
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(b) POD ROM with Newton's method to solve for coef-
�cients.

Figure 5.10: Histogram plot of the percentage change in shape and size for each element
in the mesh of the ROM compared to the full order mesh optimization. For
4x = 30, 4y = 30, φ = 60◦CCW.
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(a) POD ROM with coe�cient interpolation only.
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(b) POD ROM with Newton's method to solve for coef-
�cients.

Figure 5.11: Histogram plot of the percentage change in shape and size for each element
in the mesh of the ROM compared to the full order mesh optimization.For
4x = 10, 4y = 10, φ = 10◦CCW.
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Of more interest to us than the actual di�erences in terms of shape and size, is whether
the meshes produced by the reduced order models are good enough to be used in a
simulation. To this end, in Table 5.1 we summarize the element qualities for the ROMs
as well as for the full mesh optimization, for inner rectangle movements ranging from
well within the training region to the extremes of the snapshot training region. The
element qualities in Table 5.1 are the minimized cost functions based on quality metric 4
(Section 4.3.1.4), which was the cost function that was minimized.

Quality Metric 4:
P

elements

“
rout
rin

”“
1

fsize

”
No. 4x 4y φ◦ CCW Full Optimization ROM Coe�cient Interpolation ROM Optimization

1 0 0 0 3.9538× 103 3.9561× 103 3.9548× 103

2 10 10 10 4.0227× 103 4.0281× 103 4.0249× 103

3 20 20 20 4.2231× 103 4.2339× 103 4.2261× 103

4 30 30 60 5.0024× 103 5.0750× 103 5.0527× 103

5 40 40 90 6.3248× 103 6.3782× 103 6.3624× 103

Table 5.1: Mesh quality for various inner rectangle movement based on mesh quality Metric 4.

Unfortunately the cost function metric is di�cult to interpret, as the values themselves,
ranging from 1 to ∞, have little meaning save that they should be as low as possible.
For this reason, in Table 5.2 we report the minimum and mean element qualities, but
now using 0 ≤ fss ≤ 1. This quality metric is well bounded and hence allows for
intuitive comparisons to be made, where values of 0 and 1 implies degenerate and
perfect elements respectively.

Based on the results in Table 5.2 it may be noted that for all the positions both
the ROM based on coe�cient interpolation and optimization provide adequate meshes
and compare favorably with the full optimization method. The only exception is for
the extreme boundary movement (4x = 40, 4y = 40, φ = 90◦CCW), for which the
minimum element quality produced by ROM coe�cient interpolation is somewhat less
than that of the ROM optimization and full optimization.

Full Optimization ROM Coe�cient Interpolation ROM Optimization

No. 4x 4y φ◦ CCW min (fss) mean (fss) min (fss) mean (fss) min (fss) mean (fss)

1 0 0 0 0.7844 0.9780 0.7799 0.9777 0.7806 0.9779

2 10 10 10 0.7329 0.9648 0.7067 0.9641 0.7230 0.9645

3 20 20 20 0.5753 0.9312 0.5265 0.9305 0.5824 0.9308

4 30 30 60 0.3812 0.8297 0.3770 0.8326 0.3563 0.8299

5 40 40 90 0.2789 0.7898 0.1393 0.7869 0.2485 0.7855

Table 5.2: Element qualities for various movements of the inner rectangle. 0 < fss < 1.

The fact that the ROM based on coe�cient interpolation produces results that so closely
matches those of ROM based on Newton optimization is probably not that surprising.
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The objective cost function in terms of the expansion coe�cients is populated with a
large number of local minima (Figure 5.5). We use RBF interpolation to gain an approx-
imation of the POD expansion coe�cients and use these approximations as the starting
point for Newton's method. Newton's method will only be able to �nd the minimum
of the valley in which the RBF interpolation places the starting guess, and there is no
guarantee that this valley in fact contains the global minimum. The results obtained
by the POD ROMs are however accurate enough to suggest that our computations of
the expansion coe�cients are at the very least close to the global minimum.

RBF interpolation however provides su�ciently good results that it is not necessary to
further optimize the coe�cients, except perhaps in extreme cases. An additional bene�t
in using RBF to interpolate the POD expansion coe�cients is that we can move the
boundary to any position in a single increment regardless of the size of displacement.
In the full order optimization, if the boundary displacement is larger than the smallest
element along the boundary, we have to divide the displacement into smaller increments.
Thus, if we use a �ne mesh, and large displacements are experienced we need to perform
the expensive full optimization many more times, or use RBF interpolation to initially
move the mesh, which is still fairly expensive. The ROM has no such limitations.

Figure 5.12 shows the mean di�erence in element qualities between the ROMs and
the full order mesh optimization as a function of the number of coe�cients used in
the approximation. From the �gure, it may be noted that the ROM can accurately
reproduce the full mesh movement by retaining as few as 4 POD basis modes. This is
perhaps not entirely suprising for this problem since there are really only a small number
of degrees of freedom in the motion, i.e. 2 translations and 1 rotation. The implications
thereof is that the total problem size to be solved is then essentially reduced from 2N
down to just 4.
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Figure 5.12: Plot of percentage di�erence in mean element qualities for the ROM compared
to the full order optimization, as function of the number of coe�cients. Inner
rectangle movement of 4x = 30, 4y = 30 and φ = 60◦CCW.

The �nal question that remains to be answered is how many snapshots is an appropriate
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choice. Unfortunately there is no way of knowing prior to generating a POD model how
many snapshots are actually necessary to su�ciently train a ROM. To demonstrate the
dependence of the ROM on the number of snapshots, we plot the di�erence in mean
element qualities between the ROM based on coe�cient optimization and the full order
mesh movement method in Figure 5.13 as a function of the number of snapshots. The
mean di�erence reported on is the average value of the mean element di�erences for the
inner rectangle at four di�erent positions within the domain. Furthermore, to ensure
that we maintain a consistent comparison, all LHS points are saved for each successive
addition of snapshots, and the number of LHS data points (number of snapshots) is
doubled to ensure that our LHS data distribution retains uniformity.

From the plot, it may be noted that the initial choice of 60 snapshots is far more
than necessary. In fact, as few as 5 snapshots are su�cient to adequately describe the
system. In retrospect, this is perhaps not that surprising, considering that our LHS
speci�ed snapshots are uniformly distributed throughout the domain, and the POD
method extracts from this information the predominant system variances. Considering
further that the �rst 4 modes contain all the really important system information, no
more than 5 snapshots and 4 retained POD modes are necessary.

These properties are however entirely dependent on the type of problem that one at-
tempts to approximate, and the choice of training snapshots. Unless signi�cant infor-
mation is known about a system prior to a simulation there will always be a risk of either
generating too many snapshots, or more detrimentally, too few. Naturally there also
exists the possibility of generating snapshots that do not provide su�cient descriptions
of the system on hand, or spending valuable computational time generating snapshots
of scenarios that never feature within the real simulation.

In an attempt to alleviate this concern, a novel adaptive training procedure is intro-
duced in Chapter 6. The training procedure allows for the POD method to be used
in conjunction with a full order mesh movement scheme and generate snapshots only
when necessary. The training procedure therefore will require no prior knowledge of a
system, or the expected behavior thereof.

5.3.2 Computational cost of the ROM

Figure 5.14 is a comparison of the CPU time required for the ROM based on coe�cient
interpolation and optimization, and is compared to the cost of the full order optimiza-
tion. Both ROMs are based on 10 expansion coe�cients, and the gradients and Hessian
required by Newton's method for the coe�cient optimization are computed using �nite
di�erencing.

The �gure highlights why it is such an attractive option to use RBF interpolation only
to compute the expansion coe�cients. The computational time for the interpolation
remains almost unchanged for an increase in problem size; the cost is only a function
of the number of coe�cients used, which is kept constant at 10, and the number of
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Figure 5.13: Plot of percentage di�erence in mean element quality for ROM using coe�cient
optimization as a function of the number of snapshots used in the computation
of the POD modes.

boundary nodes, which is much smaller than the total DOF of the mesh. For the
smallest mesh, the ROM results in a 96.84% saving in CPU time, and further increases
to 99.99% savings or almost 5 orders of magnitude speed up. The ROM based on using
Newton's method to optimize the coe�cients performs less favorably, but none the less
produces CPU time reductions ranging from 87.35% to 96.51% from the smallest to
largest mesh.
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Figure 5.14: CPU scaling of ROMs in comparison to full order optimization.

As a �nal note, it is possible to compute the gradients and Hessian matrix for the ROM
based on those computed for the full optimization. The gradients and Hessian for the
full optimization can be found analytically, and thus are fairly cheap to compute. The
derivatives of the objective function, in terms of the coe�cients can be computed by
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dF

dα
=

(
dx

dα

)T
dF

dx
. (5.6)

And since x =
∑M

i αiϕi,
dx
dα

is the basis modes. Therefore the di�erential becomes

dF

dα
= [ϕ]T

dF

dx
, (5.7)

where dF
dx

is the analytical derivatives of the full order system, and [ϕ] is a [N ×M ]
matrix containing all the basis modes. Similarly the Hessian can be computed as

d2F

dα2
= [ϕ]T

d2F

dx2
[ϕ] , (5.8)

where d2F
dx2 is the analytical Hessian for the full order system.

The CPU time for Newton's method using the above analytical gradients, as well as
those using �nite di�erencing are shown in Figure 5.15. The plots are for CPU times
as a function of the number of coe�cients used, for three di�erent mesh sizes consisting
of 100, 550 and 2000 nodal coordinates.

For problems where a small number of coe�cients and POD modes are retained it
is bene�cial to use �nite di�erencing. For more than approximately 14 coe�cients
for smaller meshes to 19 coe�cients for larger meshes it becomes cheaper to compute
the gradients analytically. For our mesh movement problem we need no more than 10
coe�cients, but it is conceivable that a mesh movement problem with complex boundary
movements would require a greater number of coe�cients.

It is the opinion of the author that using only RBF interpolation to solve the ROM is
su�cient. There is a clear computational advantage, and only a slight improvement in
the ROM accuracy by further optimizing on the RBF interpolation approximations.

5.4 POD Model of Elastic Deformation Mesh Move-

ment

The �nal mesh movement algorithm to which we will apply the concepts of POD based
reduced order modeling is the elastic deformation method.

In the previous section we have shown that POD can be used to e�ectively generate
reduced order models of mesh movement. Using RBF interpolation to compute the
expansion coe�cients, any mesh movement technique can be approximated cheaply and
accurately, including the elastic deformation method. The elastic deformation method
is however based on a set of partial di�erential equations, which allows us to apply
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Figure 5.15: CPU time per iteration, as a function of number of coe�cients used for Newton's
method using analytical and �nite di�erence gradients.

one of the weighted residual methods discussed in Chapter 3 to compute the respective
expansion coe�cients. In so doing, the set of equations can be projected onto the POD
basis modes, allowing for the original set of equations to be solved but for a reduced
number of DOFs. The primary aim of this section is thus to investigate whether there
are any advantages to solving for a projected set of equations rather than simply using
RBF to interpolate the coe�cients.

For the purposes of the investigation, we will make use of Galerkin's projection, dis-
cussed in Section 3.2.3. For the original �nite element formulation, the solution of the
equations of linear elasticity results in

Ku = f , (5.9)

where K is the sti�ness matrix of size N × N , f is the force vector and u is the
displacement vector to be solved. Using Galerkin's method to project the POD basis
modes onto the equations of linear elasticity, we end up with a similar matrix problem,

Kαuα = fα, (5.10)

where Kα is now a M ×M sti�ness matrix in terms of the expansion coe�cients α, fα
is the force vector now of size M and uα are the displacement in terms of coe�cients.
The solution of the ROM is now a matrix problem of size M rather than N , where
M � N .

By using Galerkin projection, and since we are using CST elements that require no
integration, we �nd that
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Kα = [ϕ]T K [ϕ] (5.11)

where [ϕ] is the N ×M set of basis modes. Similarly

fα = [ϕ]f (5.12)

and the actual system nodal coordinates displacements are found by

u = [ϕ]uα. (5.13)

To solve the reduced system in (5.10) is therefore signi�cantly cheaper, but setting
up the solution matrix problem is slightly more expensive than setting up the initial
system. It is hence expected that the ROM based on Galerkin's projection will only o�er
slight computational bene�ts for small mesh movement problems. As the problem size
increases, a greater percentage of the CPU time will be spent solving the matrix problem
(5.9), in which case the Galerkin based ROM will provide increasing computational
savings.
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Figure 5.16: Comparison of CPU times for the full order elastic deformation and ROM based
on interpolation and Galerkin projection.

To demonstrate, we generate 60 snapshots for sti�ening constant of χ = 1 , with the
magnitudes of rotation and translation selected using Latin hypercube sampling, in a
similar fashion to the optimization based ROM. Figure 5.16 is a comparison of the
computational cost of the full order elastic deformation method, the ROMs based on
Galerkin projection and ROMs using coe�cient interpolation.

As expected, the computational savings obtained using the Galerkin based ROM in-
creases as a function of the problem size, with CPU time savings ranging from 8.06%
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to 35.40% from the smallest to largest mesh respectively. Despite the promising CPU
times for the Galerkin based ROM, using coe�cient interpolation only we still obtain
signi�cantly larger computational savings, with up to 99.33% savings for the largest
mesh. Another advantage of using RBF interpolation to compute the coe�cients is
that only a single displacement increment is required. The times shown in Figure 5.16
is for only a single displacement increment, but the ROM based on Galerkin projection
requires as many displacement increments as the full order system solution did; for our
rotation and translation test problem we used 15 increments. Thus for large displace-
ments, the computational bene�ts using coe�cient interpolation increases further.

Furthermore, the computational times of the ROM are compared to the linear elastic
formulation using direct matrix solvers. In Section 4.3.4 we demonstrated that an
iterative solver scales similarly to the sparse direct matrix solver, only at a factor more
expensive. Therefore, these computational percentage savings would be signi�cantly
increased if an iterative solver were rather made use of. Especially considering that the
ROM is small enough that direct solvers can comfortably be used.

Despite the considerably larger savings obtained using only coe�cient interpolation, the
RBF based ROM does not sacri�ce on the accuracy of the reproduced mesh. In fact, the
RBF based ROM produces better quality meshes. Figure 5.17 shows the meshes for the
rotation and translation problem for both ROMs and the full order elastic deformation
method and Figure 5.18 shows histogram plots comparing the percentage di�erence of
the size and shape of each mesh element using the ROMs in comparison to the full
order elastic deformation method. Using RBF interpolation we �nd that all elements
di�er by less than 5% in terms of both shape and size in comparison to the full order
solution. For the Galerkin model, 99.15% and 97.26% of the elements change by less
than 5% in terms of size and shape.

The one advantage of using Galerkin's projection, as opposed to using simple inter-
polation, is that the original set of PDE is still solved, but only in a subspace of the
solution space. The control o�ered by the elastic deformation method is therefore still
maintained, in the sense that we can still change the Jacobian sti�ening constant. The
snapshots for the POD based ROM can for example be trained for a sti�ening constant
of χ = 1, or a speci�c set of elastic properties, but the ROM can be used for a much
larger range. Using RBF interpolation, the ROM can only reproduce meshes for the
exact conditions used in training.

Figure 5.19 compares the mean element qualities of the mesh after rotation and trans-
lation for a varying sti�ening constant χ, for both the full order elastic deformation
and the Galerkin based ROM. We �nd that the ROM, despite being trained for χ = 1,
is capable of accurately reproducing meshes for the range of χ from 0.8 to 1.3, and can
produce adequate meshes for the range of χ = [0.5 to 2].

Using Galerkin projection we are capable of generating a ROM that for larger prob-
lems is capable of providing noticeable reductions in computational cost while largely
maintaining the control of the original method. Using RBF interpolation to compute
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the coe�cients on the other hand limits the range of application of the ROM. It does
however provide better mesh approximations at signi�cantly reduced computational
costs.
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(a) Full order elastic deformation.
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(b) POD ROM with coe�cient interpolation.

−100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−10 0 10 20 30 40 50 60 70

0

10

20

30

40

50

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) POD ROM with Galerkin projection.

Figure 5.17: Comparison of �nal meshes after rotation and translation of elastic deformation
mesh movement method and reduced order models thereof.
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(a) POD ROM with coe�cient interpolation.
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(b) POD ROM with Galerkin projection.

Figure 5.18: Histogram plot of percentage di�erence in shape and size for each element
between the elastic deformation method ROMs and full order solution. For
4x = 30, 4y = 30, φ = 60◦CCW, and χ = 1.
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Figure 5.19: Mean element qualities using both the full elastic deformation method and
Galerkin projection based ROM for changing χ.

5.5 Conclusion

In this chapter we demonstrated the ability of the method of POD to generate e�ective
reduced order models of mesh movement algorithms. We implemented and tested the
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method to optimization and elastic deformation mesh movement schemes, though the
method is applicable to any movement method. We trained the POD models as a pre-
processing step to a simple combined rotation and translation test case. It was found
that computing the POD expansion coe�cients using RBF interpolation alone resulted
in comparably good quality �nal meshes, with CPU cost reductions in excess of 99%.

The following chapter will focus on the implementation of the proposed POD model
to a common FSI simulation. An adaptive training model is introduced, whereby the
POD model can be implemented without having to be pre-trained.

 
 
 



Chapter 6

Mesh Movement ROM Applied to a

Benchmark FSI Problem and Adaptive

Model Training

6.1 Introduction

In Chapter 5 we have shown that the method of proper orthogonal decomposition can
be applied successfully to generate reduced order models of mesh movement algorithms.
In this chapter, we aim to implement and test the method on a real FSI simulation,
and introduce an adaptive training model for the POD ROM. The problem we aim to
investigate is the common FSI benchmark problem [18, 42] depicted in Figure 6.1, with
�ow over a �xed rectangle with a �exible tail, with �uid �ow from the left to right
domain boundary.

Figure 6.1: Initial mesh for oscillating tail benchmark problem.

The FSI simulation results for the benchmark problem was made available by Oxtoby
and Malan [34], and is based on their uni�ed �nite-volume FSI computational code cur-
rently under development at the Council for Scienti�c and Industrial Research, South
Africa. For the �exible tail problem they picked up two predominant boundary motion

78

 
 
 



CHAPTER 6. ADAPTIVE MODEL TRAINING 79

types; the �rst is for the �exible tail predominantly de�ecting in its �rst mode with mi-
nor second mode oscillations, and secondly they noticed large second mode oscillations.
Pressure plots of the two boundary motion types, at selected time steps, are shown in
Figures 6.2 and 6.3.

Figure 6.2: Pressure plots for �rst mode deformations.

Figure 6.3: Pressure plots for second mode deformations.

For our investigation, we are not concerned with the actual �uid �ow, but rather the
boundary and mesh motion induced by the �uid �ow. To provide an indication of the
tail motion, the vertical displacement of the beam tip is plotted in Figure 6.4 for both
modes of deformation. Approximately 4500 and 2000 time steps were required to ensure
that limit state is achieved for the two simulations respectively.

To facilitate the discussion in the remainder of the chapter, we will refer to the bound-
ary motion of Figure 6.2 as �rst mode deformation and Figure 6.3 as second mode
deformation.

6.2 Analysis of Full Order Mesh Movement

For the results of Oxtoby et al. [34], the mesh movement was performed using mesh
optimization, through the use of quality metric 2 introduced in Section 4.3. If we
consider that for the �rst mode shape deformation analysis, 4500 mesh movement steps
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(a) First mode deformation. 4500 time steps.
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(b) Second mode deformation. 2000 time steps.

Figure 6.4: Beam tip vertical displacement plots.

are required, at an average of 22 seconds per mesh update step, it implies a total
computational time of close to 27 hours for the mesh movement alone.

It should be noted that the times reported here are not those obtained by Oxtoby and
Malan, but the times obtained by our own implementation of the same method. The
implementation of the mesh movement by Oxtoby et al. is on a di�erent computational
platform in a C++ environment where we implemented our own version in MATLAB.
Furthermore, their mesh movement was performed using Newton optimization, where
the gradients and Hessian are computed through Finite Di�erencing, where we compute
these analytically.

Our motives for reporting on the CPU times required by the mesh movement is not to
naively provide de�nitive times. We realize that the computational times are depen-
dent on a variety of factors, of which implementation and programming environment is
but two; especially considering that MATLAB is primarily a convenient development
environment and is not ideal for e�cient number crunching. We report on the times
so as to enable us to make order of magnitude estimates of the computational cost for
the methods we hope to compare. Speci�cally in the case where we report 27 hours
required for the 4500 mesh movement steps we merely try to highlight that the mesh
movement, based on mesh optimization, comes at signi�cant computational e�ort.

The mesh movement accounts for a signi�cant percentage of the total CPU time required
for the FSI simulation. Oxtoby et al. claim the mesh movement alone accounts for
close to 60% of the full FSI solution time. It is well documented that mesh movement
based on optimization is highly expensive, and the cost may be considerably reduced
by implementing mesh movement methods such as RBF interpolation. On average,
mesh motion through our implementation of RBF interpolation requires around 1.1
seconds for a single increment, which results in a total time required of approximately
80 minutes. On its own, this already represents a signi�cant reduction in the mesh
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movement time, from our estimate close to a factor of 20.

In Figures 6.5 and 6.6, we compare the mean element qualities, based on metric 1,
0 ≤ fss ≤ 1 (Section 4.3.1.1), for the actual mesh movements obtained by Oxtoby et
al. and through the use of RBF interpolation. The results for the RBF interpolation is
obtained by using a single displacement increment between each time step. The mesh
quality plots highlight the path dependency of RBF interpolation and the possibility of
mesh degeneration for a transient FSI problem. The problem is especially prominent
for the second mode oscillations. To remove the mesh quality deterioration more RBF
displacement increments would have to be used between time steps.
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(a) Full order mesh optimization.
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(b) Full order RBF interpolation.

Figure 6.5: Mean element quality plots for �rst mode deformations for full order mesh move-
ment using mesh optimization and RBF interpolation based on 0 ≤ fss ≤ 1.

The deterioration using a single RBF displacement increment is not critical for the
�rst mode oscillations, but becomes a problem for the second mode deformations. It is
especially a problem considering that the minimum element quality in the mesh drops
to as low as 0.18, which is close to degenerate. For the full mesh optimization, the
lowest element quality through all time steps is 0.43.
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(a) Full order mesh optimization.
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(b) Full order RBF interpolation.

Figure 6.6: Mean element quality plots for second mode deformations for full order mesh
movement using mesh optimization and RBF interpolation based on 0 ≤ fss ≤ 1
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This example highlights one of the advantages of using mesh optimization; for any
boundary displacement, there exists a unique mesh solution and the mesh movement is
not path dependent. The computational cost is however prohibitively expensive, and
cannot realistically be used in any FSI simulation of a real world problem, for even
moderately large meshes. Generating a POD ROM of the problem would reduce the
associated cost.

6.3 POD Model and Adaptive Training

For the oscillating tail mesh movement problem, we now introduce the concept of
adaptive POD training. It is, to the best of our knowledge, the �rst application of POD
in the context of ROM, where the model is not trained as a pre-processing step. In all
applications of POD ROMs in literature, a full set of simulations are performed and the
results then used to train the model. The model is then capable of reproducing the full
results, at signi�cant cost reductions, and can be applied for minor problem parameter
modi�cations. All the applications of POD to mesh movement in the previous chapters,
have followed this philosophy.

It is di�cult to justify the use of POD in this context. If a full FSI simulation is
required to generate a POD model of the mesh movement, it would make far more sense
to generate a ROM of the full FSI results rather than the mesh movement alone. It is
possible to generate the POD training snapshots based on predictions of the boundary
movement. There does however remain the question as to how many training snapshots
are required, and how they should be selected. As an example, for the oscillating tail
problem, the model can be trained by generating snapshots for the various modes of
deformation. Generating snapshots of hypothetical boundary displacements, without
prior knowledge of the simulation, allows for the possibility that erroneous selections are
made. The snapshots might not properly de�ne the actual motion, or computational
time might be wasted on snapshots that may never feature in the full FSI simulation.

To alleviate these issues, we propose the use of an adaptively trained POD model, to
facilitate the full order mesh movement, with the aim of reducing computational costs
for �rst time simulations. The idea is fairly simple. The POD model is initialized with
the starting mesh in its undeformed con�guration and the �rst full order mesh movement
step based on the �rst FSI time step. The model is then used for all subsequent
boundary movements until the mesh quality deteriorates below some lower limit. A
full order mesh optimization is then performed, with the results used as an additional
training snapshot to update the POD model. When computing the POD basis modes,
each of the snapshots computed to date would then be used.

For the full mesh movement, the minimum element quality across the range of time steps
is 0.4276, and the lowest mean element quality is 0.8973 for the �rst mode deformation
and for the second mode deformations the lowest minimum and mean is 0.4265 and
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0.9092 respectively. Because we already have the results of the full FSI simulation, and
associated meshes, we know beforehand what appropriate selections would be for the
lower limits.

If the method is used for �rst time analysis, such knowledge is not available. If the
lower limits are pre-set without such knowledge, there is the possibility that these
limits might be set either too high or too low. If the lower limits are higher than what
is achievable by the full order mesh movement algorithm, more updating snapshots
would be generated than would be necessary. Or if the limits are too low, we might
obtain acceptable meshes for a simulation, but meshes that have unnecessarily low mesh
qualities than what would have been obtained by the full order mesh movement. To
alleviate this uncertainty, it is possible to set these lower limits adaptively as well, by
setting them as a small percentage lower than the lowest mesh qualities obtained in
preceding updating snapshots.

Mesh optimization is particularly well suited to the adaptive training model because
there exists a unique solution for any given boundary movement. At each instance
where the mesh movement based on the ROM deteriorates below the lower limits, and an
updating snapshot is required, the mesh is improved by running a full order optimization
routine. This is not true for path dependent methods such as RBF interpolation or the
elastic deformation method. Once the mesh has degenerated, using a full order RBF
interpolation step will not improve the mesh quality, but rather result in further mesh
degeneration.

Having said that, the adaptive training method is applicable to any mesh movement
method, as long as su�cient precautions are taken. For example, if RBF interpolation
is used to generate the updating snapshots, the boundary and mesh can be displaced
from the original position to the deformed state as long as numerous incremental dis-
placement steps are used. In essence, the adaptive procedure will save path dependent
methods from the sort of mesh degeneration shown in Figure 6.6(b). Applying the
adaptive POD training to path dependent methods such as RBF interpolation would
essentially render them path independent.

Lastly, the number of POD modes retained for the ROM can be adapted as well. Due
to the negligible cost of the ROM it was decided for the purposes of this demonstration
to retain all the modes already computed at any given time. It is however possible to
retain only the Kth most 'energetic' modes. In other words, use all the modes computed
until the addition of an extra mode does not improve the accuracy of the ROM. This
could be useful for problems that require a large number of updating snapshots, in
which case retaining all the modes might render the computational time of the ROM
noticeable.

The proposed method of POD can be applied as is to any FSI code with an already
existing mesh movement algorithm. It will allow for computational cost reductions for
�rst time simulations, without the user having to have any prior knowledge regarding
system behaviors.
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6.3.1 Results of Adaptive ROM

Let us �rst consider an adaptive ROM for the �rst mode deformations, by pre-setting
the lower limits to 0.4 and 0.9 for minimum and mean element qualities respectively. As
in Chapter 5, the ROM is generated using RBF interpolation to compute the expansion
coe�cients and using the interpolated results as a starting guess for full optimization.
For the pre-set lower limits, the adaptive model requires a total of 28 updating snap-
shots. The number of POD modes retained for the ROM approximation is set equal to
the total number of available snapshots at any given point.

To provide an indication as to how well the POD ROMs replicate the full order mesh
movement, the normalized error function between the exact and approximate nodal
coordinates is plotted in Figure 6.7, where the error function is de�ned by

||e||2 =
1

N

∑N
i=1

√
(xi − xiexact)2

l

 , (6.1)

where l is the average length of all edges connected to node i.

From the plot, it is evident that the ROM based on coe�cient optimization outperforms
the ROM based on coe�cient interpolation. However, of far more importance than the
actual di�erences in nodal coordinates, is whether the meshes generated by the ROMs
are still appropriate for use in a simulation. To this end, the mean element qualities
for the full mesh optimization and the ROM based only on coe�cient interpolation is
shown in Figure 6.8(a) along with the 28 updating positions.

Figure 6.7: Normalized error between the nodal coordinates obtained by the POD ROMs
compared to the full order mesh optimization for the �rst mode deformation.

With only 28 updating snapshots, and using only coe�cient interpolation, POD is
capable of producing a ROM that closely replicates the full order model, and does
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so at a substantial cost reduction. The full mesh movement takes approximately 27
hours to solve for the 4500 time steps, where the ROM takes 653 seconds, including the
snapshots training. Of the total time, updating the POD modes and RBF model takes
a total of 2.3326 seconds. The POD model itself takes an average of 0.003 seconds to
compute per time step, and for all the time steps combined, about 13.5 seconds.

The POD related costs are therefore negligible in comparison to the costs of the full
optimization mesh movement. In essence, the computational time for the mesh move-
ment is reduced from 4500 full optimization problems, down to 28. The adaptive ROM
signi�cantly outperforms even the RBF interpolation model, while maintaining all the
advantages o�ered by full optimization.

(a) Mesh quality lower limits pre-set to 0.4 and
0.9 for minimum and mean element qualities.
28 updating snapshots required.

(b) Mesh quality lower limits set to 10% lower
than mesh qualities of updating snapshots.
16 updating snapshots required.

Figure 6.8: Mean element quality comparison, for �rst mode deformation, using full order
mesh optimization and adaptively trained POD ROM based on coe�cient inter-
polation. 0 ≤ fss ≤ 1.

Despite the clear cost reductions in comparison to the full mesh optimization, the
adaptive model in Figure 6.8(a) illustrates the risk if the lower quality limits are set
too high. In the range of 0.6 to 0.68 seconds, the mean element qualities for the full
optimization model drops below 0.9, which was the value of our pre-set lower limit.
In this region, 15 updating snapshots are generated, one for every time step. If we
adaptively set the lower limit as 10% lower than the lowest qualities in the updating
snapshots, the 15 snapshots generated in this region is reduced to just 3, or a total of
16 updating snapshots for the full simulation. The POD model costs is now reduced
from 653 to 368 seconds (Figure 6.8(b)), while not having any in�uence on the quality
of the mesh movement model.

For the second mode oscillations, the adaptively trained ROM requires more updating
snapshots than was required for �rst mode boundary movements. Figure 6.9 shows
the mean element qualities along with update positions for the ROM using coe�cient
interpolation and full mesh movement. Figure 6.9(a) is for pre-set lower limits of 0.9
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and 0.4 for mean and minimum element qualities respectively, and Figure 6.9(b) is for
adaptively set lower limits (10% lower than updating snapshots).

The pre-set model requires a total of 32 updating snapshots. While the mesh obtained
using this ROM is more than adequate for simulations, since the element qualities never
drop below the pre-set limits, it does however deviate from the solution obtained by the
full mesh motion for the time steps between 2 and 4 seconds. By adaptively changing
the limits requires an additional 26 snapshots, but improves on the replication of the
full order mesh movement model. An additional 26 updating snapshots is an expensive
computational addition, yet the ROM remains cheaper than both the full optimization
and RBF interpolation movement models. Furthermore, the ROM does not su�er from
the path dependent mesh degeneration experienced by the full order RBF interpolation
method (Figure 6.6(b)).

(a) Mesh quality lower limits pre-set to 0.4 and
0.9 for minimum and mean element qualities.
32 updating snapshots required.

(b) Mesh quality lower limits set to 10% lower
than mesh qualities of updating snapshot.
58 updating snapshots required.

Figure 6.9: Mean element quality comparison, for second mode deformation, using full or-
der mesh optimization and adaptively trained POD ROM based on coe�cient
interpolation. 0 ≤ fss ≤ 1.

The mean element quality plots in Figure 6.9 is for a ROM based on coe�cient interpo-
lation. The mesh qualities obtained are more than good enough to be used in any full
FSI simulation. It can however be shown that using coe�cient optimization to further
improve on the starting guess provided by interpolation produces superior approxima-
tions. To illustrate, the normalized error between the nodal coordinates obtained by
the POD ROMs compared to the full order mesh optimization is shown in Figure 6.10.

Despite the superior performance of ROM using coe�cient optimization, the increased
accuracy is unnecessary. While coe�cient optimization ROM is more than an order
of magnitude computationally cheaper, and scales better than full optimization, it
is also more than an order of magnitude more expensive than using just coe�cient
interpolation. For this reason, and the fact that the coe�cient interpolation ROM
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produces su�ciently good quality meshes, it is the advised ROM technique for mesh
movement.

(a) Mesh quality lower limits pre-set to 0.4 and
0.9 for minimum and mean element quali-
ties.

(b) Mesh quality lower limits set to 10% lower
than mesh qualities of updating snapshot.

Figure 6.10: Normalized error between the nodal coordinates obtained by the POD ROMs
compared to the full order mesh optimization for the second mode deformation.

As a �nal note, POD modes are better at interpolating data contained within the
training snapshots as opposed to extrapolating. The adaptive training implementation
of the POD model inherently implies that the model is required to extrapolate for
information outside the system observations. The number of snapshots used to fully
de�ne the model is more than if the FSI simulation was performed and a few snapshots
were selected at key points. For the �rst mode deformations, by selecting snapshots
at the deformation extremes and a few intermediate points, we require as few as 9
snapshots to generate a ROM as adept as the one in Figure 6.8, where the adaptively
trained model required 16. It is the opinion of the author, that the gains incurred by
not having to pre-train the ROM outweighs the additional cost incurred.

6.4 Conclusion

In this chapter, an adaptive training model was introduced. The model was imple-
mented and tested on a common �exible beam FSI benchmark simulation. The adaptive
POD model is capable of accurately replicating the full mesh movement at signi�cant
cost reductions. For the simulation, two distinct deformation modes were identi�ed,
where a total of 4500 and 2000 time steps were required for the simulation of each of
the respective motion types. The adaptive model required as few as 16 and 58 updat-
ing, full order mesh movement solutions, for the �rst and second mode deformations
respectively.
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The unique advantage of the training procedure is that no pre-training is required. The
POD method, as is, can be applied to any FSI code that has an existing mesh movement
scheme. The model can be used to speed up �rst time simulations, without the end
user having to have any prior knowledge of the system being analyzed. The training
model introduced in this chapter, to the best of the author's knowledge, constitutes the
�rst use of the method of POD, in the context of ROM, where the POD model is not
trained via a set of pre-computed simulations.

 
 
 



Chapter 7

Conclusion

The research presented in this thesis seeks to test the applicability of using POD to gen-
erate reduced order models for mesh movement algorithms. The scope of the research
conducted can be divided into two main categories: implementation and comparisons
of three common mesh movement algorithms; and the application of POD to generate
ROMs of these mesh movement algorithms.

The three mesh movement methods investigated was RBF interpolation, mesh opti-
mization and the elastic deformation method. It was shown that mesh movement
through optimization o�ered the highest quality mesh movement, but at the highest
computational expense. Optimization is also the only mesh movement method that
o�ers direct control over the mesh qualities via the use of quality based cost function.
The optimization was performed using the Conjugate gradient method and Newton's
method with a line search. With the gradients and Hessian computed analytically, and
through the use of a sparse matrix solver, Newton's method scaled the better of the
two (in terms of CPU times) as a function of problem size.

The elastic deformation method, with Jacobian sti�ening factor, o�ered the second
highest quality �nal meshes. The method proved to be computationally the cheapest
(when compared to RBF interpolation with a constant large support radius). The op-
timization mesh movement method was demonstrated to o�er the advantage that for
any given boundary displacement, there exists a unique mesh. Both RBF interpolation
and the elastic deformation method are path dependent, and the mesh may deteri-
orate through the course of a simulation. The problem is particularly acute for the
RBF interpolation method, since the interpolation function is not formulated to handle
rotations.

Reduced order models were generated using POD for the optimization and elastic de-
formation methods. In both cases it was shown that using only RBF interpolation to
compute the POD expansion coe�cients o�ered comparably good quality �nal meshes.
Furthermore, CPU savings in excess of 99% were observed for a single displacement
increment. The interpolation model was compared to models based on coe�cient opti-
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mization and Galerkin projection. In both cases, the RBF interpolation model o�ered
less control over model parameter changes, but signi�cant CPU cost reductions.

Lastly, we introduced a fully automatic adaptive training model, whereby a POD based
ROM can be used without the model having to be pre-trained. The POD model is pro-
gressively trained and updated as a function of mesh quality. With the adaptive training
procedure, the POD methodology can now be implemented as is, to any FSI code as a
wrapper to an existing mesh movement scheme. The training model allows for signi�-
cant speed gains of FSI simulations involving large complex boundary deformations.
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Appendix A

Conjugate Gradient Method for

Unconstrained Minimization

The following discussion on the Conjugate gradient method follows the discussion pre-
sented by Snyman [38].

Conjugate gradient methods are a class of �rst order line search methods, which will
converge exactly in a �nite number of iterations when applied to a positive-de�nite
quadratic function. This property of quadratic termination is a desirable one, as the
method will still perform well in the region of a local minimum when applied to a non-
quadratic function. There are many methods available for determining conjugate search
directions, and the method we implemented is known as Fletcher-Reeves directions.

Suppose we are trying to minimize the function f(x), where x = [x1, x2, ..., xn], and
ui, i = 1, 2, ..., n is the unit vector search direction. The Fletcher-Reeves search direc-
tions are given by

u1 = −∇f(x0) (A.1)

where x0 is the initial starting guess, and for i = 1, 2, ..., n− 1

ui+1 = −∇f
(
xi
)

+ βiu
i (A.2)

where xi = xi−1 +λiu
i. λi corresponds to the optimal descent step in iteration i, found

through some or other line search method. For the Fletcher-Reeves search direction βi
is de�ned as

βi =
||∇f (xi)||2

||∇f (xi−1)||2
. (A.3)

If the function to be minimized is quadratic, i.e. of the form
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f(x) =
1

2
xTAx+ bTx+ c, (A.4)

where c ∈ R, b is a real n-vector and A is a positive de�nite n × n real symmetric
metric, then the search directions ui are mutually conjugate with respect to the matrix
A.

The conjugate gradient algorithm, as implemented and presented in [38] is provided
below.

Given the initial starting guess of x0:

1. Compute ∇f(x0) and set u1 = −∇f(x0).

2. For i = 1, 2, ..., n do:

(a) set xi = xi−1 + λiui where λ is found such that

f (xi−1 + λiu
i) =

min
λ

f (xi−1 + λui) (line search).

(b) compute ∇f (xi) ,

(c) if convergence criteria satis�ed, then stop, and set the minimum x∗ = xi.

(d) if 1 ≤ i ≤ n− 1:

ui+1 = ∇f (xi) + βiu
i with βi computed using A.3.

3. Set x0 = xn and go to step 2 (restart).

The line search method implemented is the standard form of the Powell quadratic
interpolation method. The convergence criteria used for the mesh movement problem
is ||xi − xi−1|| < 1× 10−5.

 
 
 



Appendix B

Newton Method With Line Search

Newton's method is a second order line search method, and minimizes a function f(x),
by solving for ∇f(x) = 0 iteratively. Given an initial starting guess of x0, Newton
solves the updated value by:

1. ∇2f (xi−1)4x = −∇f (xi−1) , i = 1, 2, ...

(a) solve 4x

2. xi = xi−1 +4x

3. Repeat until ||4x|| < ε

where ε is the convergence criteria.

The method in its original form is highly dependent on starting point, and convergence
is not guaranteed. The method can be made more robust, by using Newton's method
to compute the search direction and using a standard line search to determine the step
size in the computed direction. The modi�ed form of Newton's method for iteration i
is then given by:

1. ∇2f (xi−1)ui = −∇f (xi−1)

(a) Solve ui.

2. xi = xi−1 + λiui such that

f (xi−1 + λiu
i) =

min
λ

f (xi−1 + λui) (line search).

Once again, Powell's quadratic interpolation method was used for the line search and
the convergence criteria used for the mesh movement problem is ||xi − xi−1|| < 1×10−5.
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