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SUMMARY

An approach for robust design based on stochastic expansions is investigated. The

research consists of two parts : 1) stochastic expansions for uncertainty propagation

and 2) adaptive sampling for Pareto front approximation. For the first part, a strategy

based on the generalized polynomial chaos (gPC) expansion method is developed.

Second, in order to alleviate the computational cost of approximating the Pareto

front, two strategies based on adaptive sampling for multi-objective problems are

presented. The first one is based on the two aforementioned methods, whereas the

second one considers, in addition, two levels of fidelity of the uncertainty propagation

method.

Uncertainty is important because designers are concerned about performance risk.

One of the major challenges in design under uncertainty is computational efficiency,

especially for computational intensive simulations. Design under uncertainty is com-

posed of two major parts. The first one is the propagation of uncertainties, and

the other one is the optimization method. An efficient approach for design under

uncertainty should consider improvement in both parts.

Uncertainty propagation based on conventional methods such as Monte Carlo

require a large sample size. Other methods, such as local expansion offer low com-

putational cost; however, their applicability is limited to sufficiently small ranges of

random inputs and low degree of the non-linearity of the cost functions. A more

recent class of uncertainty propagation methods are those based on stochastic ex-

pansions. They have shown to perform accurately with a fraction of the expense of

Monte Carlo methods.

xi



In the present work, a strategy based on the non-intrusive polynomial chaos expan-

sion method is proposed for the uncertainty propagation part. A common limitation

in previous gPC-based approaches for robust design is the growth of the computa-

tional cost with number of uncertain parameters. In this research, the computational

cost is addressed by using sparse grids as a mean to alleviate the curse of dimension-

ality.

For scenarios of highly non-linear cost functions or large degrees of uncertainties,

the use of an efficient uncertainty propagation may still be expensive for effective

application in robust design optimization. Therefore, efficient methods for sampling

the design space are necessary. For this reason, two strategies based on the multi-

objective expected improvement, an efficient adaptive sampling method for multi-

objective problem, are presented. The first one simply uses the gPC based method

in conjunction with multi-objective expected improvement. The other is based on

two different levels of accuracy (fidelity) for the uncertainty propagation method. In

this strategy, the accuracy is provided by the high fidelity propagator, whereas a

lower uncertainty propagator drives the overall efficiency. The gPC-based strategy is

employed as the high level propagator, whereas a low cost propagator is considered

as the low level propagator.

The proposed approaches were tested successfully in a low Reynolds number airfoil

robust optimization with uncertain operating conditions and the robust design of a

transonic wing. The gPC-based method is able to find the same Pareto front as a

reference Monte Carlo-based strategy but with lower computational cost. The bi-level

strategy shows further computational efficiency.

xii



CHAPTER I

INTRODUCTION

1.1 Motivation

In the last few decades, the drive to increase performance and reduce cost within the

aerospace industry has led to the development of efficient design and optimization

approaches. Such methods rely heavily on numerical simulations in many different

disciplines. A common practice in engineering has been to carry out deterministic

analysis in the design process. However, uncertainty is ubiquitous to any real en-

gineering system due to variations in design conditions such as material properties,

physical dimensions and operating conditions.

The use of deterministic approaches greatly simplifies the design process since any

uncertain parameter is set to a nominal value. The final design, however, can have

degraded performance if the actual parameter values are slightly different from the

nominal ones [63]. Therefore, it is often important to account for off-design conditions

in the design process to avoid performance deficiencies not only during operation, but

also in later development and testing phases. Moreover, treatment of uncertainty can

potentially provide useful information that can aid in decision making during the

design process.

Design methods that pursue minimum sensitivity to inherent fluctuations of the

operating conditions or manufacturing processes are of crucial importance in aerospace

engineering. For instance, assume an aircraft is designed to consume some amount of

fuel for a nominal payload weight and mission. The actual cargo weight may vary in

everyday operations. This variation may require the airplane to fly at different angles

of attack. As a result, the drag, the thrust required, and ultimately fuel consumption
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may be quite different from intended values. A design with fuel consumption that is

insensitive to payload weight may be more desirable than one with low consumption

only for nominal weights.

The consideration of random variation in the design process is known as a design

under uncertainty. The two major classes of design formulations that account for

uncertainty are robust design (RD) and reliability-based design (RBD) [113]. The

purpose of robust design is to obtain designs that are relatively insensitive to small

changes in the uncertain quantities so they perform as intended over many operating

conditions. In reliability-based design, given some uncertain parameters affecting

responses, the main goal is to obtain a design whose probability of failure is lower

than some small value. Whether pursuing robust or reliability-based design, one

of the main challenges in design under uncertainty is the computational efficiency,

especially for expensive numerical simulations.

Design under uncertainty is composed of two major parts. The first part is the

propagation of uncertainties from uncontrolled inputs to the cost function of interest.

The second part is the optimization method. An efficient approach for design under

certainty should consider improvement in both the uncertainty propagation and the

optimization methods. Each of these two are discussed.

1.1.1 Uncertainty propagation

Propagation of uncertainties has been addressed in several ways in the literature. The

most common methods for the propagation of uncertainty through system outputs

are those based on local expansion methods such as the first and second order mo-

ment methods. First order methods include the first order first moment (FOFM) and

the first order second moment (FOSM), whereas second order methods include the

second order first moment (SOFM) and the second order second moment (SOSM); see
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for instance references [92, 91, 52]. In these methods, statistical moments are calcu-

lated by Taylor expansions of the cost function around the mean of uncertain inputs.

Their main advantage is low computational cost and ease of implementation, which

only involves the calculation of the response gradients with respect to the uncertain

parameters. The main drawback, however, is that these methods are restricted to rel-

atively small ranges of variation and low degrees of non-linearity of responses due to

the local validity of the Taylor expansion. The other common approaches are Monte

Carlo methods. Their advantages are simplicity of implementation and insensitivity

to the number of uncertain parameters. The implementation only involves sampling

the uncertain parameters according to a joint probability distribution function and

the collection of statistics from the sample. Monte Carlo methods are by nature

insensitive to the number of uncertain parameters - dimensionality of the stochas-

tic space. Therefore, they do not suffer from the so-called “curse of dimensionality

[10, 11],” which is the exponential increase of the computational cost with the number

of dimensions. However, the convergence rates of Monte Carlo methods are the main

disadvantage. This rate of convergence is of order of N−1/2, where N is the size of the

sample. Usually, the size of the sample needed to achieve a desired level of accuracy

is very large. The implication of this slow convergence rate is high computational

cost.

To summarize, the two common approaches are useful but are also prone to dif-

ficulties in certain applications. For instance, problems that require large ranges of

uncertainty may be poorly predicted by local expansion-based methods due to the

methods’ local validity. Furthermore, more challenging designs may result on increas-

ingly complex physics which in turn lead to strong non-linear effects of the responses

with the uncertain parameters. In such as scenarios, local-based methods can give

inaccurate predictions. On the other hand, Monte Carlo methods can give accurate

predictions, but their computational cost can quickly become unaffordable.
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Amore recent class of uncertainty propagation methods are those based on stochas-

tic expansions. Unlike local-based methods or the Monte Carlo methods, they allow

high order representation and computational efficiency [111]. Therefore, these meth-

ods are intermediates between local expansion and Monte Carlo methods in the trade-

off of accuracy and computational cost. Stochastic expansion methods include intru-

sive and nonintrusive methods. The former involves the treatment of randomness at

the discretization level of the partial differential equations, leading to reformulation

of the original governing equations. New solvers must be developed or current codes

must be modified. Non-intrusive methods, however, acts over the responses of orig-

inal solvers. Therefore existing codes can be used and they can be treated as black

boxes.

Ghanem and Spanos [42] introduced an early intrusive method known as the

stochastic Galerkin method. In this method, the Hermite polynomial chaos expansion

[108] was used to model uncertainty propagation in solid mechanics. Since then, these

methods have been under development and scrutiny, mostly for solving stochastic par-

tial differential equations (SPDE). Some of the main limitations of these methods were

highlighted in [25]; however, for more general engineering problems, intrusiveness is

the main drawback. Consequently, there is a more recent interest in non-intrusive ap-

proaches which can be used with existing deterministic analysis codes. These include

the stochastic collocation method and the non-intrusive polynomial chaos. They have

been shown to perform accurately with a fraction of the expense of techniques that

have similar capabilities such as the Monte Carlo method [71, 76].

The proper selection of an uncertainty propagation method depends on the prob-

lem of interest, and several aspects need to be considered. Uncertainty in problems

whose responses exhibit low degree of non-linearity and sufficiently small ranges of

uncertainty can be efficiently predicted by using local expansion based approaches. In

contrast, for more general problems such those involving large degree of uncertainty
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and highly non-linear responses, sampling methods such as Monte Carlo can be accu-

rate but at largely higher cost. Therefore, for more general problems, the efficiency in

propagating uncertainties is the main limitation. The usefulness of stochastic expan-

sion methods in robust design has been argued; for instance, see [69, 85]. However,

these arguments are based on some analytical tests that address the strength of the

other methods rather than those of stochastic expansions. Nevertheless, in scenar-

ios of highly non-linear responses and large degrees of uncertainties, computational

efficiency is a key advantage of stochastic expansion methods [79].

Because of their compatibility with deterministic solvers, non-intrusive stochas-

tic expansions methods are attractive for use in design under uncertainty. This is

especially important for design organizations that use legacy codes. Recent studies

[27, 44, 45] have shown the usefulness of the non-intrusive generalized polynomial

chaos (gPC) in robust design optimization. These works use a formulation that re-

lies on full tensor quadrature integration techniques for the calculation of the gPC

coefficients. However, in more realistic problems, the use of such integration tech-

niques limits the applicability of the non-intrusive polynomial chaos for uncertainty

propagation because computational cost (number of deterministic code runs) grows

exponentially with the number of stochastic dimensions. Thus, the polynomial chaos-

based approaches developed in these previous works are only applicable to problems

with few uncertain parameters.

The development of a method to address more uncertain parameters is a focus of

this thesis. Because the cost of propagating uncertainties is one of the main difficulties

in robust design, it is necessary to develop methods that can reduce the cost when

dealing with uncertainties for scenarios of highly non-linear responses or wide range of

uncertainties. In the present work, a strategy based on the non-intrusive polynomial

chaos expansion is presented. The main difference with previous works [27, 44, 45] is

5



the use of sparse grids integration techniques as a mean to reduce the cost of calcu-

lating the gPC coefficients. Sparse grids [14] are effective techniques for representing

multivariate functions. This approach can yield several of order of magnitude reduc-

tion in the number of points required to achieve the same level of accuracy as the full

tensor grid approach and thus can alleviate the curse of dimensionality.

1.1.2 Optimization approach

Efficient approaches for design under uncertainty should not only consider efficient

methods for uncertainty propagation but also efficient methods for optimization.

Therefore, improvements on the optimization part are also required. A promising

technique to be incorporated in design under uncertainty is adaptive sampling. This

technique sequentially selects each sample in the design space based on informa-

tion from previously sampled data. Steps towards efficient adaptive sampling for

multi-objective optimization have already been taken. For instance, Keane [62] de-

scribes a multiobjective expected improvement criteria for adaptive sampling while

approaching the Pareto front for multi-objective optimization. This criteria is shown

to efficiently sample regions of the design space that improve or augment the current

non-dominated set.

In the present work, strategies based on stochastic expansions and adaptive sam-

pling for multi-objective problems are presented. These strategies combine and take

advantage of both methods to efficiently propagate uncertainties and sample in the

stochastic and design space, respectively. In addition, a strategy that uses multifi-

delity modeling for design under uncertainty is explored in the present work. This

handles two different levels of accuracy (fidelity) of the uncertainty propagation meth-

ods. The main idea of using different levels of fidelity of the uncertainty propagation

method is that information from a low fidelity propagation method can reduce the

use of a high fidelity method. Multifidelity methods has been traditionally employed
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for modeling different levels of accuracy of analysis codes and mostly applied to de-

terministic optimization. Therefore, this strategy is a novel extension of multifidelity

methods to design under uncertainty.

Robust design involves the maximization of the performance mean and simulta-

neous minimization of the standard variation of the performance. These statistical

moments can be calculated with different levels of accuracy of uncertainty propaga-

tion. For instance, highly accurate statical moments can be calculated by high fidelity

propagation method such as Monte Carlo or stochastic expansions, whereas less accu-

rate statistical moments may be given by less sophisticated uncertainty propagation

method such as local expansion-based methods. The main idea of working with two

different accuracy levels of the uncertainty propagation method is that the informa-

tion (statistical moments) of a low fidelity propagation method can help to represent

the more accurate statistical moments of a high fidelity method. This in turn may re-

duce the amount of information needed from the more accurate propagation method.

In the proposed strategy, the uncertainty propagation method works with two levels

of information. The accuracy is given by the high fidelity propagator, whereas a lower

uncertainty propagator increases the overall efficiency by providing information that

guides the use of the high fidelity propagator. Stochastic expansions are employed as

the high fidelity propagation method, whereas a less sophisticated uncertainty prop-

agation method such as a local expansion based approach is considered as the low

fidelity propagation method.

The use of different levels of fidelity in model representation is known as a mul-

tifidelity approach, variable-complexity model, or multi-level code. Such techniques

represent system outputs from data of different degrees of accuracy or ‘fidelity’ 1.

1Note: the multiple levels should not be confused with multi-level architectures for multidisci-
plinary optimization, for example, collaborative optimization decomposes an optimization problem
into a discipline and system level.
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Often, outputs of system models can be obtained from simulation codes at differ-

ent levels of fidelity or accuracy, with version ranging from the most sophisticated

level of simulation to the most basic. For instance, in physical systems, the high

level simulation may contain detailed physics that are not accounted for in a lower

level simulation that only includes simplified physics. Moreover, models of different

complexities also imply different computational cost. The use of only high level sim-

ulations for a system of interest may become too costly. In this case, using data from

less expensive simulations to represent the system may reduce the overall cost. This

is underlying purpose of multi-fidelity approaches.

Multi-fidelity approaches have been mainly developed and applied to surrogate-

based optimization (see for instance [37, 96]). In those cases, the need is to in-

clude high fidelity simulations such as computational fluid dynamics or finite element

method in the design process. Surrogate modeling of experimental and computational

data have also been addressed by multi-fidelity modeling [99, 66], although to a lesser

extent. In the present approach, multi-fidelity modeling is applied to a different prob-

lem: design under uncertainty. The purpose is to use two different levels of fidelity

in the uncertainty propagation method.
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1.2 Research questions, hypothesis, and predictions

Assume that a Pareto front of the mean and standard deviation of a cost function is

needed for robust design. The first research question, hypothesis and prediction are

general and provide a framework for the thesis.

1.2.1 Primary research question (general)

How can uncertainties be propagated efficiently for high degrees of uncertainty and

non-linearity?

Hypothesis (general)

Higher computational expense due to higher degree of non-linearity and uncertainty

is unavoidable for a single design point. However, robust design strategies based on

stochastic expansions, adaptive sampling and multi-fidelity modeling for uncertainty

propagation can be efficient while finding a Pareto front. Stochastic expansions is em-

ployed as a means for propagating uncertainty efficiently, whereas adaptive sampling

is used for efficient approximation of the Pareto front. Furthermore, the consideration

of propagating uncertainties with two different levels of fidelity can achieve further

computational efficiency since the low fidelity information helps the high fidelity prop-

agator to focus in regions where higher accuracy is needed.

Prediction (general)

Proof-of-concept approaches based on stochastic expansions, adaptive sampling and

multi-fidelity modeling for uncertainty propagation can be formulated for use in ro-

bust design.
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1.2.2 Secondary research question

What are particular implementations of these general strategies for use in robust

design?

Hypothesis

Assume two particular implementations: 1) a single-level method and 2) a bi-level

method consists of:

• Uncertainty Propagation based on the generalized polynomial chaos (gPC)

• Multi-objective EI for adaptive sampling in the design space

The bi-level approach considers in addition the propagation of uncertainties with

two different levels of fidelity. This is based on a correction factor between :

• Polynomial chaos expansions (gPC) as the high fidelity propagator

• A low fidelity propagator

Prediction

These approaches will behave as in the primary hypothesis: they will efficiently work

in the stochastic space for uncertainty propagation, and efficiently sample in the de-

sign space while approximating the Pareto front. Moreover, the bi-level method will

use low fidelity information to efficiently guide the high fidelity propagator while

finding the Pareto front. Efficiency is measured by 1) the number of non-dominated

designs at the actual Pareto front and 2) average distance of the non-dominated de-

signs to the actual Pareto front
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1.2.3 Third research question

How is the bi-level strategy affected by varying levels of non-linearity and uncertainty?

Hypothesis

The performance will decrease as the degree of non-linearity of the cost function and

the level of uncertainty of the random parameters decrease.

Prediction

For a test problem in which non-linearity can be varied, the relative performance

(bi-level vs. single level) will decrease as the problem becomes non-linear and the

level of uncertainty decreases.

1.3 Thesis layout

Review of important concepts such as uncertainty, uncertainty propagation methods

and design under uncertainty formulations are presented in Chapter II. Chapter III

is exclusively dedicated to explaining stochastic expansion methods. These methods

are described with emphasis on nonintrusive approaches. The proposed polynomial

chaos - sparse grid based uncertainty propagation approach is presented in chapter IV.

Numerical examples are presented to highlight the advantage of this method compared

to others. In chapter V, the proposed strategies for robust design optimization are

presented. Then, in chapter VI, the presented strategies are applied to aerodynamic

robust design under uncertain operating conditions. Finally, conclusions are presented

in Chapter VII.
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CHAPTER II

BACKGROUND

2.1 Uncertainty

2.1.1 Aleatory and epistemic uncertainty

There are at least two types of uncertainty that need to be distinguished due to their

difference in origin, modeling and effects: Aleatory and epistemic uncertainty. As

described by Oberkampf et al.[82, 83], aleatory uncertainty is defined as the inherent

variation associated with the physical system or environment under consideration

and is also known as inherent uncertainty, variability, irreducible uncertainty, and

stochastic uncertainty. Conversely, epistemic uncertainty derives from some level of

ignorance of the system or environment.

Sources of aleatory uncertainty are identified because of the natural randomness

in the system or process under consideration. The quantities subjected to uncertainty

can take on values in an established or known range, but their exact value will vary by

chance from time to time. If sufficient information is available, aleatory uncertainty

is generally quantified by probabilistic approaches. In computational simulations

of physical systems governed by partial differential equations, common sources of

aleatory uncertainty include model parameters, boundary and initial conditions that

may vary randomly.

Unlike aleatory uncertainty, epistemic uncertainty results from the lack of knowl-

edge or information. It can be reduced by increasing understanding (either by re-

search or more relevant data) of the system or process of interest. For that reason,

this type of uncertainty is also know as reducible uncertainty or subjective uncer-

tainty. In addition to probabilistic approaches, epistemic uncertainty can also be
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treated by non-probabilistic approaches such as possibility theory, fuzzy set theory,

and evidence theory.

In this work, the framework of probability theory is adopted regardless of the type

of uncertainty. Probabilistic approaches provide a solid and comprehensive theoretical

foundation and offers the most versatile statistical tools.

2.1.2 Uncertainty quantification process

The uncertainty quantification process, in general, involves two stages: quantification

and propagation of uncertainty. Quantification of the uncertainty sources is the first

stage of uncertainty quantification. This step is very problem dependent and often

involves statistical analysis, experimental error analysis, and often expert judgment

[33]. The end result of this stage is a joint probability density function, ρ(ξ), of

the vector ξ, which contains all the random variables used to describe the sources of

uncertainty.

Once the sources of uncertainty are quantified, the main focus is on quantifying

the propagation of these uncertainties through a system or model of interest. In

general, the main interest is on the effect of uncertainties on some functional J of

the system or model; this functional is also known as a cost function. Under the

probability theory framework, there are several methods for uncertainty propagation

that are discussed in the next section.

The end product of the uncertainty quantification process is a quantitative descrip-

tion of the probable values of the cost function, J . It is a result of the combination of

our knowledge of the uncertainty sources and the behavior of the cost function with

respect to these sources. In the probabilistic framework, this quantitative descrip-

tion is expressed by a probability density function of the cost function, ρ(J ). This

distribution function allows decision making based on risk analysis.
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2.2 Methods for propagating uncertainty

As mentioned above, uncertainty quantification involves two stages. The first stage

comprises the determination and quantification of uncertainty sources, denoted here

by a vector containing “d” random parameters, ξ = (ξ1, . . . , ξd). The outcome of such

as process is a joint probability density function ρ(ξ). The second stages involves the

propagation of the random parameters through the cost function J . The outcome

of this process can be statistical moments or more generally, a probability density

function ρ(J ). Several approaches for uncertainty propagation have been developed.

The most common approaches are sampling methods, local-based expansion meth-

ods, and integration-bases methods. More recently, stochastic expansions have been

introduced as uncertainty propagation methods. These methods are described next.

2.2.1 Local expansion-based methods

The local expansion-based methods, also known as perturbation methods in engi-

neering mechanics, are a class of uncertainty propagation methods that consists of

expanding all the random parameters around their respective mean values by Taylor

expansion series. Mathematical simplicity is the great advantage of these methods,

which make s them the most widely used technique for analyzing random systems in

engineering [42]. Non-intrusively, the method specifically consists of using sensitiv-

ity information of the output of interest with respect to the stochastic variables to

approximate statistical moments.

Consider the second-order Taylor approximation of a multi-variate function J at

the mean value ξ:

J (ξ) = J (ξ) +
1

2

∑ ∂J
∂ξi

∣

∣

∣

∣

ξ
(ξi − ξi)

+
1

2

∑∑ ∂2J
∂ξi ∂ξj

∣

∣

∣

∣

ξ
(ξi − ξi)(ξj − ξj), (1)
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where ξi is the mean value of the “i-th” random variable. A central assumption of this

approach is that the random variables contained in the vector ξ are uncorrelated. By

applying this assumption and the definition of expectation; the mean and variance

are:

µJ =

∫

Γ

J (ξ)ρ(ξ)dξ (2)

σ2
J =

∫

Γ

[

J (ξ)− J (ξ)
]2
ρ(ξ)dξ,

where ρ(ξ) is the joint probability density function and Γ the space of the random

variables. The first two statistical moments become:

µJ = J (ξ) +
1

2

∑

(

∂2J
∂ξ2i

∣

∣

∣

∣

ξ

)

σ2
ξi

(3)

σ2
J =

∑

(

∂J
∂ξi

∣

∣

∣

∣

ξ

)2

σ2
ξi
+

1

2

∑∑

(

∂2J
∂ξi ∂ξj

∣

∣

∣

∣

ξ

)2

σ2
ξi
σ2
ξj
. (4)

Equations 3 and 4 are also known as the moment method. This method is also

categorized by the number of terms used in the first two statistical moments. For

instance, by using only the first term, the first order first moment (FOFM), and

first order second moment (FOSM) methods are defined for the mean and variance,

respectively. Alternatively, if all terms of equations 3 and 4 are considered, the second

order first moment (SOFM), and the second order second moment (SOSM) methods

are defined for the mean and variance, respectively. Note that the previous equations

only require information of the first two statistical moments of the uncertain inputs,

ξ, to approximate the first two moments of the system output J [6]. This differs

from other methods, which require information of the probability density function of

the uncertain inputs ξ.

The main advantage of these methods is the low computational cost. This cost

depends mostly on the available methods for the calculation of the derivatives. The

most common approach for derivative calculation is finite difference. More recently,

automatic differentiation and adjoint approaches have been applied [104, 2] in order
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to exploit their low cost in approximating sensitivity information, especially for large

number of variables. Because of the low computational cost, local expansion-based

methods have extensively been used in robust design; see for instance [52, 58, 91, 92,

57, 59, 104].

Despite the appealing simplicity of local expansion-based methods, their appli-

cability is limited to small degrees of randomness of the input parameters and low

degree of non-linearity of the system output. Equations 3 and 4 yield good approxi-

mations of the moments if the function J is approximately linear for the entire range

of values of ξ [53]. Furthermore, if the function is nonlinear the above equations are

only adequate for small values of variance of ξ [6]. This is because of the local valid-

ity of the Taylor expansion [42]. An alternative method to improve the accuracy is to

consider higher order Taylor expansion terms such as second order terms. However,

high order derivatives do not guarantee a better approximation [43] since the method

validity is still local. These restrictions are a major barrier when dealing with more

general problems such those that involve highly non-linear system outputs and large

degrees of uncertainties.

2.2.2 Sampling methods

Sampling methods are another common type of uncertainty propagation. In this

category, the Monte Carlo (MC) and quasi-Monte Carlo (quasi-MC) methods are

found. In MC methods, a sequence ξ1, ξ2, . . . , ξN of the random vector ξ is generated

according to the joint probability density function of the input random variables ρ(ξ).

Then, simulations are performed for each sample point to obtain the cost function

J (ξi). The first two moments are calculated according to
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µJ =
1

N

N
∑

i=1

J (ξi) (5)

σ2
J =

1

N − 1

N
∑

i=1

[

J (ξi)− µJ

]2
. (6)

Furthermore, the probability density function ρ(J ) is approximately obtained by cal-

culating the histogram of the cost function given a sufficiently large sample sequence.

There are several advantages of the Monte Carlo methods. Simplicity in their

implementation is one of them. They only involve: a sampling method such as

acceptance-rejection method for the generation of the sequence, the execution of

the simulations, and finally the calculation of the statistics. Another advantage is

robustness since there are not underlying assumptions of the cost function such as

smoothness and locality. A third advantage is that the MC methods are insensitive

to the number of random variables, i.e. size of the vector ξ. Therefore, they not

suffer of the so-called “curse of dimensionality.” The last advantage is the potential

parallelization of the method due to the independence of the sample sequence.

The main drawback of the Monte Carlo methods is, however, their slow con-

vergence rate. The accuracy as a function of the sample size scales as O(N−1/2).

Although this has no dimensionality influence, the convergence rate is extremely low

and the method requires very large samples to achieve high accuracy. For instance, a

factor of 4 increase in the computational cost is needed to improve the accuracy only

by a factor of 2. As a result, the computational cost of the Monte Carlo method can

easily become prohibited.

An improvement on the convergence rate can be obtained by quasi-Monte Carlo

methods. These methods use low-discrepancy (also known as quasi-random) se-

quences instead of the random or pseudo-random sequences of the Monte Carlo

method. In low-discrepancy sequences, the elements of a sequence are correlated

to make them more uniform than random sequences [18]. As a result, quasi-Monte

17



Carlo methods exhibit an accuracy O(N−1(logN)d), where d is the dimension of ξ.

This improves the accuracy of the MC method by almost a square. However, since

the dimension affects the accuracy through the logarithmic term, quasi-Monte Carlo

methods are better suitable for problem with low to medium dimensionality.

2.2.3 Numerical integration-based methods

A third class of uncertainty propagation methods calculates statistical moments by

direct numerical integration, using appropriate quadrature formulas. The simplest

general technique for approximating multidimensional integrals is through product

rule of one-dimensional quadrature rules. There are several choices for the quadrature

such as Gaussian, Clenshaw-Curtis, Gaus-Patterson. By applying a tensor product

formulation, the two first statistical moment are calculated according to

µJ =

mi1
∑

i1=1

w1
i1
. . .

mid
∑

id=1

wd
id
J (ξ1i1, . . . , ξ

d
id
) (7)

σJ =

mi1
∑

i1=1

w1
i1
. . .

mid
∑

in=1

wd
id

[

J (ξi1i1 , . . . , ξ
d
id
)− µJ

]2
, (8)

where wk
ik
, k = 1, . . . , d are the weights of the one-dimensional quadrature rule and

mik is the number of nodes of the quadrature in the kth direction.

The main advantage of these methods is that well developed one-dimensional

quadrature approaches for integration can be used. The total number of function

evaluations is m =
∏d

k=1mik ; consequently, this number grows exponentially with the

number of dimensions. Therefore, the main disadvantage of these methods is that

they also suffer from the curse of dimensionality due primarily to the full product

tensor approach.

2.2.4 Stochastic expansion-based methods

Another class of methods was originally developed to solve stochastic partial differen-

tial equations (SPDE). These methods address equations with stochastic inputs and
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are mainly applied to computational physics problems. In this field, the stochastic

Galerkin methods employ polynomial chaos expansions to represent the solution and

inputs to stochastic differential equations [42]. This procedure leads to a set of new

coupled partial differential equations derived from the original governing equation.

These methods have shown exponential convergence and shown to be far more effi-

cient than sampling based methods. Unfortunately, for design under uncertainty, the

intrusiveness of the stochastic Galerkin method stands as the main limitation since

the derived set of differential equations require efficient and robust solvers and thus

modification of existing of deterministic solvers.

Non-intrusive approaches based on stochastic expansion have also been developed.

The first one is a variant of the generalized polynomial chaos named the non-intrusive

polynomial chaos [71] and the other one is the stochastic collocation method [76, 110].

These methods will be extensively used in this work and thus detailed explanations

are postponed until later chapters .

2.2.5 Other approaches

In order to obtain low cost methods for propagating uncertainty, several other ap-

proaches that combine elements of the above mentioned methods have been proposed.

A brief explanation of the most relevant method concerning the present work are given

here.

2.2.5.1 Univariate dimension-reduction method

The univariate reduction method (UDR) [95] approximates a multivariate function

with a linear combination of univariate functions. This process is then used to calcu-

late multivariate statistical moments by numerical integration.
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The UDRmethod considers the following approximation for multivariate functions

J (ξ) =

d
∑

i=1

J (ξ1, . . . , ξi, . . . ξd)− (d− 1)J (ξ1, . . . , ξd)

=

d
∑

i=1

Ji(ξi)− (d− 1)J (ξ), (9)

where ξi is the mean value of the “i-th” random variable, and ξ is a vector composed

of the mean values of each of the random variables. Assuming independence of the

random variables, UDR can be applied to statistical moment calculations as follows:

E[J k(ξ)] = E





(

d
∑

i=1

Ji(ξi)− (d− 1)J (ξ)

)k


 (10)

The aforementioned decomposition allows calculation of multivariate moments

in terms of moments of univariate functions, and thus a recursive formula is given

in reference [95]. In general, any one-dimensional quadrature method can be used

for calculating the univariate moments. The computational cost depends on the

number of quadrature points taken on the one-dimensional integration and is usually

(m − 1)d + 1, where m is the number of quadrature points. If fewer points are

considered in the quadrature, say 2 or 3, this method leads to a computational cost

similar to local expansion methods. Thus, in simple cases, UDR can provide good

accuracy at low cost.

There has been recent interest in this method due to its low cost and improved

accuracy compared to local expansion methods; see for instance [85]. However, this

method is restricted to multivariate functions that have very weak interaction effects

between their variables. If more significant interaction effects are present, this method

will certainly become inaccurate. In such scenarios, more general decomposition such

as high-dimensional model representations (HDMR) [93, 94, 72] should be considered.

As a matter of fact, the decomposition proposed in the UDR formulation is identical

to the first order terms of the cut-HDMR decomposition. HDMR is a model for
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capturing high dimensional input-output system behavior. This model represents

the output of a multivariate function as a function expansion that results from a

hierarchical correlated decomposition in terms of the input variables. The model is

composed of d+ 1 groups of terms, where d is the dimensionality of the multivariate

function. Every group represents the order of the expansion, for instance the ith-group

of terms express the effect of the i variables acting on the output. According to this,

the first-order terms represent the effect of single variables acting alone, the second-

order terms represent the effect on the output by variables acting pairwise, and so on.

According to HDMR theory, it is known that only the first order terms are not always

enough to represent accurately a multivariate function; however, when developing

such a family of methods, the idea was that physical systems involving multivariate

function could be well represented by lower order terms, and thus avoiding the high

cost in which multivariate functions can incur.

2.3 Design under uncertainty formulations

A design process that accounts for random variability is known as a design under

uncertainty. The two major classes of design formulations that consider uncertainty

are robust design and reliability-based design [113]. The purpose of robust design

is to obtain designs that are relatively insensitive to small changes in the uncertain

quantities so they perform as intended over their life cycles. In reliability-based

design, given some uncertain parameters affecting responses, the main goal is to

obtain design whose probability of failure is lower than some small value. Although

robust and reliability-based design can follow similar mathematical formulations, the

main difference is the design scenario [58].

The domain of application of these two approaches is shown in figure 1. Their

applicability strongly depends on the frequency and the impact of the events. It is

clear that no system is viable if variations in a regular basis can lead to catastrophe.
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Figure 1: Uncertainty-based design domains

On the contrary, systems are preferable to be design so they are insensitive (robust)

to frequent variations. In case of extreme events, it is desirable to minimize the

possibility of their occurrence. This is the domain of reliability-based design.

Robust and reliability-based design are described in more detail.

2.3.1 Robust design

A robust design is a product or process whose performance does not suffer unac-

ceptable degradation if exposed to variation due to manufacturing process, usage

conditions, or design specifications. This concept can be observed in figure 2 which

contrasts robust and deterministic designs [86]. The objective function exhibits a

global optimum which is shown on the left side of the plot. This would be the solu-

tion if the problem if treated as a deterministic optimization. At that point, however,

the objective function can vary drastically with small changes in the design variable.

Therefore, the design at that point is not robust. If the variation of the design vari-

ables is considered, it is clear that the point shown on the right side is a better design
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from robustness perspective.

The origins of robust design are attributed to Taguchi [105, 88], who understood

quality as a minimization of the statistical variation of performance. This notion

of quality has to be included in the product design, and not in later stages such as

operation.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Robust
Deterministic

Figure 2: Robustness of the objective function

Since its introduction, robust design has been subject to many improvements. The

concept was extended to simulation-based design and improved to exploit non-linear

constrained optimization techniques [86]. Conceptually, robust design is classified

in three types [4]. The first type identifies design variables that satisfy a set of

performance requirement targets despite variations in noise factors. The second type

of robust design identifies design variables values that satisfy a set of performance

requirement targets despite the variation in the design variables themselves. For

instance, design variable values may change during the course of the design process,

so the goal is to find values that have the least impact on the system performance.

A third type of robust design identifies adjustable ranges for design variables that
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satisfy a a set of performance requirements targets and are insensitive to variability

within the system model. In practice, robust design of the first type is commonly

found. The second type has also been studied [78], but to a lesser extent.

Several methods for robust optimization have been developed; for instance, see

references [4, 86]. Among them, one method for achieving robustness is to minimize

the mean and standard deviation of the cost function of interest. Therefore, the

optimization problem can be formulated as a multi-objective optimization problem:

Minimize F = [−µJ , σJ ]T (11)

Subject to

P[ gi(X , ξ ) ≤ 0) ] ≥ pi, i = 1, . . . , r (12)

X l ≤ X ≤ X u

where J is the cost function, and X is the vector of design variables. The inequality

constraint for gi expresses that all constrain must be satisfied regardless of the noise

in the design variables.

2.3.2 Reliability design optimization

Reliability-based design are similar to robust design, but have a different focus. Meth-

ods for reliability optimization are based on the assumption that the design space is

divided in regions of success and failure. In reliability analysis, system failure condi-

tions are expressed by limit state functions. These functions are usually non-linear

relationship of the type g(ξ) = 0, where ξ is a vector containing the uncertain param-

eters with known statistics. This equation divides the uncertain space in regions of

safety and failure. Conventionally, the failure domain is described by g(ξ) ≤ 0. This

situation is illustrated in fig. 3 for a problem involving two uncertain parameters.

Therefore, the main purpose of reliability analysis is the development of methods
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Figure 3: Reliability regions and limit state function

for calculating the probability that g(ξ) ≤ 0

P[ g(ξ) ≤ 0 ] =

∫

g(ξ)≤0

ρ(ξ) dξ, (13)

where ρ(ξ) is the joint probability of the uncertain parameters.

Optimization for reliability methods are based on these safety and failure regions.

The main goal is to find the best design that is sufficiently far from the failure region.

Mathematically, this can be expressed as a small probability of failure. Then, the

optimization problem can the be formulated as follows:

Minimize F [J (X , ξ )] (14)

Subject to

P[ gi(X , ξ ) ≤ 0 ] ≤ Rgi, i = 1, . . . , r.
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F is the objective function which can be a function of the mean and standard deviation

of the cost function J . The uncertain parameter, Rgi is the reliability target for the ith

constraint. Equation 14 involves calculations of the probability that every constraint

is less than the specified target for a particular design vector X . Therefore, most of

the effort resides on the accurate calculation of these tail probabilities. In practice,

the first order reliability method (FORM) and the second order reliability method

(SORM) are popular choices for reliability optimization due to the high computational

cost incurred by calculating failure probabilities.

This chapter has summarized existing methods for uncertainty propagation meth-

ods as well as robust and reliability-based design. The discussion now focus on one

particular uncertainty propagation method - stochastic expansion. This method will

be applied to robust design.
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CHAPTER III

STOCHASTIC EXPANSIONS

The uncertainty propagation methods reviewed in Chapter II are based in classical

methods for evaluating predictions such as statistical moments of a quantity of interest

or the probability of particular events. The application of these methods is limited by

more or less restrictive assumptions, such as variability of the uncertain parameters

(ξ) or linearity of the cost function (J ). However, for more general problems in

which the variability and number of uncertain parameters are large and the cost

function can be highly nonlinear, the main obstacle of propagating uncertainties is

the computational cost.

The main purpose of this chapter is to provide insight on one particular type of

uncertainty propagation methods – stochastic expansions – that provides a balance

between accuracy and computational cost. Stochastic expansions can be classified as

intrusive or nonintrusive. The former acts directly on the governing equations of a

physical system, and thus requires modification of existing solvers or development of

new solvers. However, the latter acts on the output of the governing equations system;

therefore, it allows the use of existing deterministic codes. Even though the emphasis

of this thesis is on nonintrusive methods, the basic formulation of intrusive methods

is also reviewed. The purpose is to explain the mathematical formulation of the

nonintrusive polynomial chaos, which is the main focus for uncertainty propagation

in the present work.

3.1 Background

Stochastic expansion is a more recent alternative for uncertainty propagation and

consists in representing the solution u by a functional representation of the random
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variables expansions of the type

û (X , t, ω) =

P
∑

i=0

αi (X , t, ξ)Φi(ξ), (15)

where û is the dependent random quantity, αi are the expansion coefficients, and Φi

are the basis functions. The ω denotes the random dependence on random input

parameter ξ. Such functional expansions are known as stochastic expansions. Since

the introduction of the stochastic Galerkin method by Ghanem and Spanos [42] in

which the Hermite polynomial chaos expansion is used to model uncertainty propaga-

tion in solid mechanics, stochastic expansion methods have been under development

and scrutiny, mostly for solving stochastic partial differential equations (SPDE). The

stochastic expansion methods mostly differ from each other based only on the choice

of the basis functions, and by the definition of the coefficients of the expansion.

One type of functional representations is based on the generalized polynomial

chaos (gPC) expansion. The polynomial chaos is based on the work of Wiener on ho-

mogeneous chaos [108] and it is essentially a spectral representation in random space.

The term chaos as used by Wiener refers to randomness, and it has no relationship

with the concept of chaos theory of non-linear dynamical systems. Uncertainty prop-

agation methods based on this type of expansion have been developed both in the

global context, employing spectral expansions spanning all the stochastic space, and

in a local context, using localized spectral representations. In both cases, uncertainty

is represented by a gPC expansion through a model by using the stochastic Galerkin

projection to reformulate the governing equations into equations for the gPC coeffi-

cients, or by using numerical evaluations of the gPC coefficients of the model outputs

employing solutions of the deterministic model. The former is also known as intru-

sive approaches because the original governing equations are reformulated requiring

development of a new solver or modification of the original one. The latter has been

named nonintrusive as the original code can be treated as a black box. The advantage

of the intrusive gPC expansion is that directly finds the gPC representation of model
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outputs by a one-time solution of the reformulated model. Conversely, the advantage

of the nonintrusive method is the ability of using already well developed codes.

A second stochastic expansion method is the stochastic collocation (SC) method

[76, 110]. Similarly to the gPC based uncertainty propagation method, exponential

convergence rates can be achieved for statistical moments of interest. The main

difference, however, is that unlike the gPC approach which estimates coefficients for

known basis functions, SC uses interpolating functions for known coefficients. This

formulation leads to a set of uncouple system of the governing equation, and thus the

SC formulation is nonintrusive. In this chapter, a brief review of these methods is

given.

3.2 Mathematical Preliminaries

Consider the following partial differential equation with random input parameters ξ

given by

L (X , t, ξ; u) = f (X , t, ξ) , X ∈ D, (16)

subject to the boundary condition

B (X , u) = g(X), X ∈ ∂D, (17)

defined in a physical domain D ⊂ R
d, d = 1, 2, 3, with boundary ∂D, and X =

(x1, . . . , xd) as the space coordinates. In the previous equations, u = u (X , t, ω) is the

solution, and L is a general differential operator that may contain spatial or time

derivatives as well as linear and non-linear terms. B is a boundary operator and, in

general, can be stochastic. This operator can adopt different forms in various bound-

aries, for instance, B = I, where I is the identity operator for Dirichlet boundaries, or

B = n.∇ for Neumann boundaries. The terms f and g are source terms which, in gen-

eral, can be random as well. The vector ξ containing random parameters represents

uncertainty in the system due to equation parameters, initial conditions, boundary

29



conditions, or even the physical domain. Due to the dependence on random param-

eters, the solution u is regarded as a random process and can be represented by the

functional representation shown in equation 15.

The vector ξ = (ξ1, . . . , ξd) ∈ R
d containing the uncertain parameters will be

modeled by the probabilistic framework. It is assumed that the components (ξi, i =

1, . . . , d) of this d-variate random vector are random variables that are mutually

independent of each other with probability density function ρi : Γi → R
+, where Γi

is the support of the random parameter i. As a result, the joint probability density

function of the random vector ξ is expressed as

ρ(ξ) =
d
∏

i=1

ρi(ξi),

with support

Γ =

d
∏

i=1

Γi ⊂ R
d.

The general procedure of solving the stochastic differential equation (Eq.16) starts

by approximating the solution u by stochastic expansion (Eq.15), and then substi-

tuting it into the stochastic differential equation

L
(

X , t, ξ;

P
∑

i=0

αi Φi

)

= f (X , t, ξ) . (18)

Next, a stochastic Galerkin projection of the above equation onto each basis Φk is

then carried out
〈

L
(

X , t, ξ;
P
∑

i=0

αi Φi

)

, Φk

〉

= 〈 f (X , t, ξ) , Φk 〉 , k = 0, 1, . . . , P, (19)

where 〈·, ·〉 denotes the inner product in the Hilbert space of the variables ξ and is

defined by

〈 g, h 〉 =
∫

Γ

g hW (ξ) dξ. (20)

In the above equation, W (ξ) is the weighting function and it is identical to the joint

probability density function of the random parameters, i.e. W (ξ) = ρ(ξ).
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In general, Equation 19 defines an implicit system of partial differential equations

describing the evolution of the expansion coefficients αi. The solution method for

the aforementioned system depends greatly on the choice of the basis function of the

expansion. The main three families of methods for the solution of the stochastic

differential equations are then reviewed.

3.3 Stochastic Galerkin method

In the stochastic Galerkin method [42] also known as the intrusive polynomial chaos,

the functional expansion is a spectral expansion of suitable orthogonal eigenfunctions

with weights associated with a particular density function. Following the work of

Wiener [108], this spectral expansion is generally referred as the polynomial chaos

expansion.

In general, the polynomial chaos expansion are defined in terms of the expansion

coefficients αi that are spectral (deterministic) coefficients, and a given basis of func-

tions, {Φi(ζ)}∞i=0, which are usually a set of multi-dimensional polynomials. These

multivariate polynomials have the property of being orthogonal with respect to the

probability density function ρ, satisfying the following orthogonality relation

〈Φi,Φj〉 = 〈Φ2
i 〉 δij =

∫

Γ

Φi(ζ) Φj(ζ) ρ(ζ) dζ, (21)

where δij is the Kronecker delta and 〈 ·, · 〉 denotes the ensemble average that is the

inner product in the Hilbert space determined by the measure of the random variables.

Therefore, the type of the orthogonal polynomial Φ is determined by the type of the

probability density function. For instance, Gaussian distributions are approximated

by Hermite polynomials [42]. Other types of distributions, e.g. uniform and beta, are

approximated by Legendre and Jacobi polynomials [112], respectively. Furthermore,

these expansions have an infinite number of terms; in practice, however, the expansion

is truncated to a finite number of terms.
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By applying a polynomial chaos expansion to the stochastic Galerkin approxima-

tion of the differential equation (Eq. 19), a fully- coupled system of P +1 differential

equations for the expansion coefficients αi is obtained.
〈

L
(

X , t, ξ;
P
∑

i=0

αiΦi

)

,Φk

〉

=

〈

f (X , t, ξ) ,Φk

〉

, k = 0, . . . , P. (22)

This resulting system should further be solved in space and time using proper nu-

merical methods for the solution of PDE’s. This in turn requires the development or

modification of solvers to handle this new larger system of differential equations.

The stochastic Galerkin method was introduced by Ghanem and Spanos [42] for

modeling uncertainty propagation in solid mechanics. A Hermite polynomial chaos

[108] expansion was used in order to model Gaussian random variables. The method

was then extended to other types of random variables by Xiu et al. [112]. A more

general group of polynomial known as the Askey family [7] were used in order to

model other types of random variables. The stochastic Galerkin methods have shown

to have exponential rate of convergence at fraction of the cost of sampling methods.

Since its introduction, intrusive polynomial chaos expansion based methods have

been subject of research in computational fluid dynamics. Applications range from

flow in porous media, thermofluids, and incompressible and compressible flow. Ghanem

and Dham [41] showed the first application of the intrusive polynomial chaos expan-

sion method to uncertain porous media by simulating the transport of water and oil in

aquifer with uncertain spatial distribution of permeability. Le Mâıtre et al. [70] stud-

ied the use of intrusive polynomial chaos to incompressible laminar flow at moderate

Reynolds numbers for two dimensional channel flow with uncertain temperature-

dependent viscosity.

Unlike incompressible flow simulation in which intrusive polynomial chaos method

have been successfully applied, application to compressible flows have shown to be

more challenging. Several authors [20, 19] have pointed out the method limitation

when the uncertain variables lead to discontinuities in the flowfield. Supersonic nozzle
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flows with uncertain in inlet conditions and geometry was studied by Mathelin et al.

[76, 20]. Other canonical problems was studied as well. Lin et al. [73] studied

supersonic flows over wedges with uncertain inflow conditions and wedge apex. In

order to account for discontinuities, the multi-element generalized polynomial chaos

was introduced. More recently, Poëtte [90] applied the polynomial chaos method

along with decomposition of the entropic variable of the flow. This technique does

not require special discretization techniques of the random space.

Other limitations of the stochastic Galerkin method have been highlighted, see

for instance [25], [8]. Convergence behavior deterioration for long term integration in

transient problems, difficulty in representing of nonpolynomial functions, large trun-

cation error in high-order polynomials, and intrusiveness are the main problems of

these approaches and are still subject of further research in the field of computa-

tional physics. For more general engineering problems, intrusiveness is certainly the

main drawback of these type of methods. The necessity of solving larger fully couple

systems of differential equations traduces on modification of current solvers or de-

velopment of new solvers. This in practice can be very cumbersome and it does not

allow to take advantage of specialize current solvers such as legacy codes. Therefore,

the main focus in the present work is in non-intrusive methods.

3.3.1 Example - one dimensional uncertain transient heat conduction

The procedure of representing and solving stochastic differential equations by the

stochastic Galerkin method is illustrated by an example of an one-dimensional tran-

sient heat condition with uncertain thermal conductivity. The equation governing

heat conduction is

∂T

∂t
− k

∂2T

∂x2
= 0, (23)

where the temperature T = T (x, t; ξ), and k = k(ξ) is the thermal conductivity which

is a random variable. The main purpose is to find the probabilistic behavior of T
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based on the probabilistic behavior of k.

According to equation 16, the differential operator L and the driving term f are

then defined as

L(x, t, ξ;T ) =
∂T

∂t
− k(ξ)

∂2T

∂x2

f(x, t, ξ;T ) = 0.

By using the polynomial chaos expansion, the thermal conductivity k, and the tem-

perature T are represented by random processes according to

k(ξ) =
P
∑

i=0

βi Φi(ζ) (24)

T (x, t; ξ) =

P
∑

i=0

αi(t, x) Φi(ζ), (25)

where ξ is the random dimension, and ξ = ξ(ζ) is a standard random variable. These

expansions are then substituted into the governing Equation 23, so the following

expression is obtained

∂

∂t

P
∑

i=0

αi(t, x) Φi(ζ)−
P
∑

i=0

βi Φi(ζ)
∂2

∂x2

P
∑

i=0

αi(t, x) Φi(ζ) = 0.

The stochastic Galerkin projection (eq. 19) of the above equation onto the poly-

nomial chaos basis can then be written as follow
〈

∂

∂t

P
∑

i=0

αi(t, x) Φi −
P
∑

i=0

βi Φi
∂2

∂x2

P
∑

i=0

αi(t, x) Φi , Φk

〉

= 0, k = 0, . . . , P,

Since the polynomial chaos basis Φ is not function of space and time, the previous

equation is then re-written as
〈

P
∑

i=0

Φi
∂

∂t
αi(t, x)−

P
∑

j=0

βj Φj

P
∑

i=0

Φi
∂2

∂x2
αi(t, x) , Φk

〉

= 0, k = 0, . . . , P.

Rearranging and taking the projection to every term of the differential operator

P
∑

i=0

∂

∂t
αi(t, x) 〈Φi,Φk〉 −

〈

P
∑

j=0

βj Φj

P
∑

i=0

Φi
∂2

∂x2
αi(t, x) , Φk

〉

= 0, k = 0, . . . , P.
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According to Eq. 21, the inner product in the first term can be expressed by the

Kronecker delta, and the norm squared of the polynomial basis; whereas the second

term can be written by a inner product of the three polynomial base.

P
∑

i=0

∂

∂t
αi(t, x)

〈

Φ2
i

〉

δik −
P
∑

i=0

P
∑

j=0

〈Φi Φj ,Φk〉βi
∂2

∂x2
αj(t, x) = 0, k = 0, . . . , P.

Finally, the stochastic Galerkin representation of the one-dimensional heat equation

is given as

〈

Φ2
k

〉 ∂

∂t
αk(t, x)−

P
∑

i=0

P
∑

j=0

eijk βi
∂2

∂x2
αj(t, x) = 0, k = 0, . . . , P, (26)

where eijk = 〈Φi Φj ,Φk 〉. 〈Φ2
k〉 along with eijk are analytically determined by using the

orthogonality property (Eq. 21). It can be noted that equation 26 defines a system

of PDE’s governing the evolution of the expansion coefficients αk, k = 0, . . . , P .

This system has a similar form than the original governing heat equation. However,

because of the coupling terms, the original equation is enlarged to a set of P+1 coupled

partial differential equations. The coefficients βi are known since it is assumed that a

probabilistic model for the thermal conductivity is given. For instance, if the thermal

conductivity has a Gaussian distribution with mean and standard deviation µk, and

σk, respectively; k can be expressed by

k(ξ) =

P
∑

i=0

βiΦi(ζ) = µk + σk ζ(ξ). (27)

By identifying terms, it is found that β0 = µk, β1 = σk, and βi = 0 for i > 1. The

above equation is simply a mapping between the Gaussian random variable of the

thermal conductivity and the standard Gaussian random variable of the polynomial

chaos expansion. The set of PDE’s (Eq. 26) still need to be solved in space and time

using proper numerical methods for this larger set of equations.

Once the set of PDE’s is solved, the polynomial chaos coefficients can be sub-

stituted back into the polynomial chaos expansion for the temperature T (x, t;ω) to
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calculate its stochastic response. The mean temperature field can then be calculated

by taking a first order expectation of the temperature expansion

µT = E[T (x, t; ξ) ] = α0. (28)

The temperature field variance is similarly calculated

σ2
T = E[ ( T (x, t; ξ)− µT )2 ] =

P
∑

i=1

α2
i 〈Φ2

i 〉. (29)

In this example, the stochastic Galerkin method was applied to a simple problem.

The focus was to highlight the formulation of this intrusive approach and also its use

in solving stochastic systems. Nonintrusive approaches are described in the next two

sections.

3.4 Stochastic collocation method

In the stochastic collocation method [76], the main idea is to represent the uncertain

quantity through interpolating functions in the random space. Therefore, the func-

tional expansion is expressed in terms of multivariate interpolating basis functions.

These basis functions are constructed on a set of strategically located nodes to gain

accuracy and they have the property of being mutually orthogonal polynomials.

Given a set of prescribed nodes in the random space, Θ = {ξi}Pi=0 ∈ Γ, and the

basis functions having the following property

Φi (ξj) = δij , i, j = 0, . . . , P, (30)

the coefficients of the expansion are determined by the values of the dependent vari-

ables at the collocation points: αi = u (x, ξi). With this choice of basis functions

and coefficients, the functional expansion results on an interpolant for the dependent

random quantity

û (x, t, ω) =
P
∑

i=0

u (x, t, ξi)Φi(ξ). (31)
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By introducing the above expansion in the stochastic Garlekin approximation (eq.

19) and approximating the integrals by quadrature methods with weights wi at the

collocation points ξi as follow

∫

Γ

[L (x, t, ω; û)− f (x, t, ω) ] Φk(ξ) ρ(ξ) dξ =

P
∑

i=0

wi [L (x, t; u (x, t, ξi))− f (x, t, ξi) ] Φk(ξi) ρ(ξi), k = 0, . . . , P.

It is noted that in the previous equation Φk(ξi) = δki (eq.30); therefore, the stochastic

Garlekin approximation is transformed to the following relationship

L (x, t; u (x, t, ξk ))− f (x, t, ξk) = 0, k = 0, . . . , P, (32)

which described a set of uncoupled deterministic solution of the differential equation

shown in eq.16. Hence, the stochastic collocation method is equivalent to solving

P + 1 deterministic problems at the respective collocation points Θ = {ξi}Pi=0 in the

random space.

The basis functions Φ are multivariate extensions of uni-dimensional basis func-

tions φ. This is usually accomplished by using tensor product of uni-dimensional

basis functions

Φi(ξ) = φi1(ξ)× . . .× φin(ξ) =
d
∏

j=1

φij(ξ).

The univariate polynomials are usually Lagrange polynomial basis, and more recently

linear hat basis functions. Early works of stochastic collocation methods [76, 106] used

tensor products of univariate quadrature as sets of collocation points. The use of full

tensor quadratures, however, is restricted to small number of random inputs due to

its exponential growth with dimensionality. In order to circumvent that problem,

sparse grids were introduced in [110] as a mean to extend the stochastic collocation

method to higher dimensions.
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3.4.1 Statistical moments

Once a sufficiently accurate interpolant is defined, the SC method can be used to

construct probability density function by sampling from the SC interpolant defined

in eq. 31. Statistics of interest such as mean and variance can also be calculated as

µ =

P
∑

i=0

u (x, ξi)

∫

Γ

Φi(ξ) ρ(ξ)dξ (33)

σ2 =
P
∑

i=0

u2 (x, ξi)

∫

Γ

Φi(ξ) ρ(ξ)dξ − µ2. (34)

It should be noted that higher moments are calculated by integrating an inter-

polant of the function to the power of the order of the respective moment. For

instance, the variance is obtained by an interpolant of the function u2 rather than

the function u.

3.5 Nonintrusive polynomial chaos

An alternative use of the polynomial chaos expansion that avoid solving set of fully

couple partial differential equations as in the stochastic Galerkin method is the non-

intrusive polynomial chaos also known as the nonintrusive spectral projection. The

main advantage of these methods is that they can use deterministic codes as a black

boxes, allowing utilization of current specialized solvers and legacy codes, and keeping

exponential convergence rates.

In these approaches, the solution of a stochastic system is approximated by a

polynomial chaos expansion as in the stochastic Garlekin method; however, the main

idea is to obtain the spectral coefficients αi by projecting the deterministic solution

u onto the PC basis Φ. As previously shown by Ghanem [42] and Xiu [112], this is

always possible given the correct basis. The first works reporting solution of stochas-

tic systems as a function of polynomial chaos expansion by projecting deterministic

outputs are those by Le Mâıtre et al. [71] and Pettit et al. [87]. The former reports
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stochastic fluid dynamic fields for natural convection in a 2D square cavity with un-

certain temperature distributions at the boundaries, and the latter analyzes the effect

of uncertain Young’s modulus in the buckling problem of an aerolastic system.

The nonintrusive polynomial chaos or nonintrusive spectral projection differs from

the stochastic Galerkin and stochastic collocation methods in that its derivation is

not directly related to the stochastic Galerkin projection of a stochastic system. Nev-

ertheless, the method can still be seen as producing a set of uncoupled differential

equations.

3.5.1 Polynomial chaos (PC) basis

In the finite dimensional random space Γ defined above, the polynomial chaos ex-

pansion consist in representing a random function by using classical orthogonal basis

of the random variables. In order to explain the PC basis, concepts of univariate

classical orthogonal polynomial are reviewed first. Then, the univariate polynomial

chaos basis is described. Finally, the multivariate basis is described.

3.5.1.1 Orthogonal polynomials

Orthogonal polynomials have a central role in representing random quantities in the

polynomial chaos expansion method. Because of this, their basic properties are re-

viewed.

Consider Qn(x) be a polynomial of exact degree n. A system of polynomials

{Qn(x), n ∈ N} is orthogonal with respect to some measure µ if the following condi-

tions is satisfied:
∫

S

Qn(x)Qm(x) dµ = h2
n δnm, (35)

where S is the support of Qn(x), and hn are nonzero constants. Additionally, the

system is called orthonormal if hn = 1. The measure µ usually has a weighting
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function w(x). Then, the previous equation is written as

∫

S

Qn(x)Qm(x)w(x) dx = h2
n δnm. (36)

Another important property of orthogonal polynomials Qn(x) is that they satisfy

a three-term recurrence relation

−xQn(x) = An Qn+1(x)− (An + Cn)Qn(x) + CnQn−1(x), n ≥ 1,

where An, Cn 6= 0 and Cn/An−1 > 0. By specifying Q−1(x) = 0 and Q0(x) = 1, any

Qn(x) can be generated for known An and Cn.

In equation 36, the weighting function w(x) defines the type of orthogonal polyno-

mials Qn(x). Some polynomial types along with their respective weighting function

are shown in table 1.

Table 1: Polynomial type and weighting function correspondence

Polynomial type weighting function Support
Qn(x) w(x) S

Hermite Hn(x) e−
1
2
x2

(−∞, ∞)
Legendre Pn(x) 1 [−1, 1 ]

Laguerre L
(α)
n (x) xα e−x [ 0,∞ )

Jacobi P
(α,β)
n (x) (1− x)α (1 + x)β [−1, 1 ]

It must be noted that the weighting functions have similar form of that of some

standard probability density functions. For instance, the weighting function of the

Hermite polynomial:

w(x) = e−
1
2
x2

,

and the probability density function (pdf) of standard normal random variable

ρ(x) =
1√
2 π

e−
1
2
x2

,
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only differs by a factor of 1/
√
2π. Similarly, the weighting function of the Laguerre

polynomial:

w(x) = xα e−x,

and the probability density function of standard gamma random variable

ρ(x) =
xα e−x

Γ(α+ 1)
,

are only different by a factor 1/Γ(α+1). The same holds for the Legendre and Jacobi

polynomials whose weighting functions have similar form to those of the standard

uniform and standard beta distribution, respectively. As it will be seen, this coin-

cidence is very important in representing stochastic processes with the polynomial

chaos expansion.

3.5.1.2 Univariate PC basis

Consider one-dimensional orthogonal polynomial basis

{φi(ζ) }pi=0 , (37)

where i is the chaos order, φi is the polynomial of chaos ith of the PC basis, and p

is the maximum chaos order. The chaos order i expresses the exact degree of the

polynomial, and thus p expresses the maximum degree of the polynomial in the basis.

These polynomials are then uniquely defined by a given univariate probability density

function ρ(ζ) according to the orthogonality relation

〈φi, φj〉 =
∫

Γ

φi(ζ)φj(ζ)ρ(ζ) dζ = 〈φ2
i 〉δij , (38)

where δij is the Kronecker delta. This orthogonal selection is optimal for the distri-

bution type since the inner product weighting function and its corresponding support

range Γ correspond to the probability density function.

Notice that the right hand side of the equation that defines the orthogonality

relation of the univariate PC basis (eq. 38) is similar to the equation that defines
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orthogonality property in orthogonal polynomials (eq. 36). Therefore, by adopting

the same polynomials in the PC basis

φi = Qn

φj = Qm,

and by re-scaling the weighting function w so this becomes the standard probability

density function

ρ = C w, C > 0

the univariate polynomial chaos basis is determined. As a result, the univariate

polynomial chaos basis is identical to the set of classical orthogonal polynomials.

The type of the polynomial depends on the type of the random variable through the

standard density function. For instance, Gaussian random variables require Hermite

polynomial basis, and Uniform random variables require Legendre polynomial basis.

Some of the polynomials-distribution function correspondence for some continuous

and discrete random variables are shown in table 7 and 3. The first six polynomials φi

and their corresponding norm squared 〈φ2
i 〉 for the Gaussian and uniform distribution

are provided in tables 4 and 5, respectively

Table 2: Continuous random variable and basis correspondence

Random variable Polynomial type Support
ζ φ(ζ) Γ

Gaussian Hermite (−∞, ∞)
uniform Legendre [−1, 1 ]
gamma Laguerre [ 0,∞ )
beta Jacobi [−1, 1 ]
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Table 3: Discrete random variable and basis correspondence

Random variable Polynomial type Support
ζ φ(ζ) Γ

Poisson Charlier {0, 1, 2, . . .}
binomial Krawtchouk {0, 1, 2, . . . , N}

negative binomial Meixner {0, 1, 2, . . .}
hypergeometric Hahn {0, 1, 2, . . . , N}

N ≥ 0 is a finite integer

Table 4: Hermite polynomials for the Gaussian random variable type

Chaos order Polynomial Norm squared
i φi(ζ) 〈 φ2

i 〉 = i !

i = 0
i = 1
i = 2
i = 3
i = 4
i = 5
i = 6

φ0 = 1
φ1 = ζ
φ2 = ζ2 − 1
φ3 = ζ3 − 3 ζ
φ4 = ζ4 − 6 ζ2 + 3
φ5 = ζ5 − 10 ζ3 + 15 ζ
φ6 = ζ6 − 15 ζ4 + 45 ζ2 − 15

〈 φ2
0 〉 = 1

〈 φ2
1 〉 = 1

〈 φ2
2 〉 = 2

〈 φ2
3 〉 = 6

〈 φ2
4 〉 = 24

〈 φ2
5 〉 = 120

〈 φ2
6 〉 = 720

3.5.1.3 Multivariate PC basis

In multi-dimensional stochastic spaces Γ, the multivariate orthogonal polynomial ba-

sis is defined by a space of d-variate orthonormal polynomial of total degree at most

p. In order to accomplish this, a univariate polynomial chaos basis is introduced on

each dimension, ζk, of the d-variate vector ζ = (ζ1, . . . , ζd), according to the type of

random variable in each dimension. A set of basis is defined as follow

{φi(ζk) }pi=0 , k = 1, . . . , d, (39)
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Table 5: Legendre polynomials for the uniform random variable type

Chaos order Polynomial Norm squared
i φi(ζ) 〈 φ2

i 〉 = 1
2i+1

i = 0
i = 1
i = 2
i = 3
i = 4
i = 5
i = 6

φ0 = 1
φ1 = ζ
φ2 = (3 ζ2 − 1)/2
φ3 = (5 ζ3 − 3 ζ)/2
φ4 = (35 ζ4 − 30 ζ2 + 3)/8
φ5 = (63 ζ5 − 70 ζ3 + 15 ζ)/8
φ6 = (231 ζ6 − 315 ζ4 + 105 ζ2 − 5)/16

〈 φ2
0 〉 = 1

〈 φ2
1 〉 = 1/3

〈 φ2
2 〉 = 1/5

〈 φ2
3 〉 = 1/7

〈 φ2
4 〉 = 1/9

〈 φ2
5 〉 = 1/11

〈 φ2
6 〉 = 1/13

where d is the number of random dimensions. As before, these polynomials are

uniquely defined by a given univariate probability density function ρk(ζk) at each

dimension as shown by the orthogonality relation Eq. 38.

The corresponding d−variate orthogonal polynomial is constructed by tensor

product of these univariate polynomials as follow

Φi = φi1 ⊗ . . .⊗ φid =

d
∏

j=1

φij , (40)

where the tensor product is taken over all combinations of the multi-index i =

(i1, . . . , id) ∈ N
d
0 satisfying

i1 + . . .+ id ≤ p. (41)

The polynomial chaos expansion has, in general, infinite number of terms. In

practice, however, the expansion must be truncated to a determined total number of

terms P + 1. This number is a function of the chaos order p ∈ N0, and the number

of random dimensions d ,

P + 1 =

(

d+ p

d

)

.
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3.5.2 PC coefficients

Unlike the stochastic Galerkin method, in the nonintrusive polynomial chaos the PC

coefficients are obtained by projecting the solution u onto the multivariate PC basis.

The first step in the calculation of the coefficients is to approximate the uncertain

system output by a polynomial chaos expansion

u (x, t, ξ) ≈
P
∑

i=0

αi Φi(ζ).

Next, the uncertain output is projected onto the polynomial chaos basis

〈

u (x , t, ξ) ,Φk(ζ)

〉

=

〈

P
∑

i=0

αiΦi(ζ),Φk(ζ)

〉

.

By applying the polynomial chaos orthogonality property (eq.21) to the above ex-

pression, the right hand side is simplified to

〈

u (x , t, ξ) ,Φk(ζ)
〉

=

P
∑

i=0

αi

〈

Φ2
i (ζ)

〉

δik.

Finally, the expansion coefficients are obtaining by using the Kronecker delta property

αk =
〈 u (x, t, ξ) ,Φk(ζ) 〉

〈Φ2
k(ζ) 〉

, k = 0, . . . , P. (42)

The calculation of every expansion coefficient involves two terms: in the numer-

ator, the projection of the random quantity, u, onto every polynomial of the PC

basis, Φk, and in the denominator, the norm squared of the multivariate orthogonal

polynomial.

The calculation of the latter is quite simple. Once the types of random variable are

defined, the univariate basis are defined according to table 7. Next, the multivariate

basis are obtained the tensor product rule (Eq. 40 ). Then, the norm squared is

obtained analytically by using the product of univariate norms squared

〈Φ2
k(ζ) 〉 =

d
∏

i=1

〈 φ2
mk

i
(ζi) 〉, (43)
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where the term φ expresses the univariate polynomial and depends on the type of

random variable.

The calculation of the former term, however, is the most computationally extensive

involving calculation of multidimensional integrals.

〈 u (x, t, ξ) ,Φk(ζ) 〉 =
∫

Γ

u(x, t, ξ) Φk(ζ) ρ(ζ) dζ, k = 0, . . . , P. (44)

Therefore, the primary computationally effort resides in evaluating the term in the

numerator. Any standard method for multivariate integrals can be applied for this

term. Some of the most common strategies are sampling methods such as Monte

Carlo, and tensor product of univariate quadratures.

A different type of methods that do not rely on the solution of multivariate inte-

grals uses linear equation system, or regression to evaluate the expansion coefficients.

The main idea is to obtain at least P + 1 deterministic solutions based on select set

of points. Then, the expansion coefficients are determined by either solving a linear

system, or by regression with the deterministic solutions, and every polynomial basis

evaluated at every point of the selected set. Hosder [54] uses this approach to study

the effect of geometrical variability in supersonic flows over wedges. More recently,

Alekseev et al. [3] uses a similar method along with adjoint approaches to quantify

functional uncertainty in one-dimensional thermal conduction models. Even though

these methods are simple and ensures an accurate representation at the set of selected

points, it lacks explicit control on the error elsewhere [79], and thus this stands as

the main drawback of these methods. Integration methods, on the other hand, allow

control of the mean-square error. For this reason, integration methods is adopted in

this research.

Integration methods, however, either require a large size sample as in the case of

Monte Carlo methods or suffer from the curse of dimensionality as in tensor prod-

ucts of univariate quadratures. This is a strong limitation for traditional integration

46



methods and thus it may render these methods unusable for practical problems. In

this work, this problem is addressed by adopting sparse grids methods. This type of

methods is discussed in detail in the next chapter.

3.5.3 PC approximation

Given a chaos order p, the pth−order and d uncertain parameters, the PC approxi-

mation of the random response u is obtained by projecting u onto the multivariate

PC basis.

u (x, t, ξ) ≈
P
∑

i=0

αi,Φi(ζ),

where

P =
(d+ p)!

d! p!
− 1.

In the previous equations, αi and Φi are defined according to equations 40 and

60, respectively. In order to illustrate how the multivariate basis is constructed for

higher stochastic dimensions, table 6 shows the terms of gPC expansion for a three-

dimensional (d = 3) stochastic space, and a chaos order up to p = 3. Note the

multi-index i of the polynomials Φi obeys the relationship defined in eq. 41 according

to the chaos order p. The univariate polynomial basis φ are defined according to each

stochastic variable type as shown in table 1

3.5.4 Statistical moments

Given a sufficiently accurate gPC approximation, an analytical representation for

the random quantity is available. Therefore, the PC method can be used to obtain

probability density functions by sampling the PC expansion. Statistical moment of

interest such as mean and variance can also be obtained by taking expectation to the

PC expansion, and are defined as

µ = α0 (45)

σ2 =

P
∑

i=1

α2
i 〈Φ2

i 〉 (46)
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Table 6: Expansion terms for three random variables

Expansion term Chaos order Polynomial
i p Φi

0

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

p = 0

p = 1

p = 2

p = 3

φ0(ζ1)φ0(ζ2)φ0(ζ3)

φ1(ζ1)φ0(ζ2)φ0(ζ3)
φ0(ζ1)φ1(ζ2)φ0(ζ3)
φ0(ξ1)φ0(ζ2)φ1(ζ3)

φ2(ζ1)φ0(ζ2)φ0(ζ3)
φ1(ζ1)φ0(ζ2)φ1(ζ3)
φ1(ζ1)φ1(ζ2)φ0(ζ3)
φ0(ζ1)φ0(ζ2)φ2(ζ3)
φ0(ζ1)φ1(ζ2)φ1(ζ3)
φ0(ζ1)φ2(ζ2)φ0(ζ3)

φ3(ζ1)φ0(ζ2)φ0(ζ3)
φ2(ζ1)φ0(ζ2)φ1(ζ3)
φ2(ζ1)φ1(ζ2)φ0(ζ3)
φ1(ζ1)φ0(ζ2)φ2(ζ3)
φ1(ζ1)φ1(ζ2)φ1(ζ3)
φ1(ζ1)φ2(ζ2)φ0(ζ3)
φ0(ζ1)φ0(ζ2)φ3(ζ3)
φ0(ζ1)φ1(ζ2)φ2(ζ3)
φ0(ζ1)φ2(ζ2)φ1(ζ3)
φ0(ζ1)φ3(ζ2)φ0(ζ3)
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CHAPTER IV

STATISTICAL MOMENTS BASED ON SPARSE GRIDS

It was seen in the previous chapter that most of the computational effort in propagat-

ing uncertainties with the non-intrusive polynomial chaos resides on the calculation

of the expansion coefficients. This usually involves calculation of multivariate inte-

grals. Conventional class of methods for integration include Monte Carlo and those

based on tensor product of univariate quadratures. The former class require large

sample size. The latter suffers from the exponential growth with dimensionality, the

so-called “curse of dimensionality.” This is a serious limitation in the applicability

of the non-intrusive polynomial chaos to practical problems such as those involving

medium or large number of uncertain parameters.

The main purpose of this chapter is to describe a strategy for reducing the com-

putational cost of calculating the coefficients of the polynomial chaos expansion. In

order to achieve this, sparse grids techniques are employed. Sparse grids are efficient

methods for representing multivariate functions. This technique prevents the expo-

nential growth with number of uncertainty parameters and thus is able to alleviate

the “curse of dimensionality.”

In this chapter, the background of sparse grids is presented first. The emphasis

here is the main aspects of its theory and implementation. Next, a strategy named

gPC-SG is developed and presented. This is based on sparse grid techniques for

calculating the expansion coefficients of the non-intrusive polynomial chaos. Finally,

results for this strategy are shown.
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4.1 Background

Conventional algorithms for numerical calculation of multivariate integrals are often

limited by the so-called curse of dimension [10, 11], which means that the compu-

tational cost of representing an approximation for a determined accuracy ǫ increases

exponentially with the number of dimensions of the considered integrand. For in-

stance, the accuracy of classical numerical quadrature methods based on product of

tensor rules scales as ǫ(N) = O(N−r/d) [89], for functions with dimensionality d and

bounded derivatives up to order r. Therefore, even for moderate number of dimen-

sions the convergence is slow and this situation is exacerbated as the dimensionality

grows.

Other methods such as Monte Carlo methods are independent of the dimensional-

ity; however, its convergence rate is extremely slow due to the fact that its accuracy

scale as ǫ(N) = O(N−1/2). Therefore, these methods require large number of sam-

ples for acceptable degrees of accuracy. Quasi-Monte Carlo methods have accuracies

that scale as ǫ(N) = O(N−1(logN)d). Although this is almost half order better rate

than the cost of crude Monte Carlo methods, the dimensionality causes convergence

problems for high dimensions [40].

The cost dependency on the dimensionality, however, can be circumvented to

some extent by restricting the class of functions under consideration. For func-

tions having bounded mixed derivatives, sparse grid techniques can overcome this

curse of dimension to a certain extent. In this technique, multivariate quadra-

ture formulas are constructed by combining tensor products of univariate formulas.

Among the possible tensor product combinations, high level tensor products in sev-

eral dimensions are avoided simultaneously. As a result, the method accuracy scales

as ǫ(N) = O(N−r(logN)(r+1)(d+1)). Under the considered mathematical assump-

tions, this technique offers better convergence than those of Monte Carlo, Quasi-

Monte Carlo, and conventional methods based on full tensor products of quadratures
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[40, 51, 65]

A brief explanation of the sparse grid technique is presented below. The focus

here is in the main aspects of the theory and its implementation. For more detailed

description, the reader is recommended to review other sources such as [14] which

provides a deep review of these methods. Because sparse grids are built by using

tensor product of one-dimensional interpolating formulas, the tensor product rule for

multivariate function representation is also reviewed. Next, formulas for statistical

moments are developed for the non-intrusive polynomial chaos, and finally results for

statistical moment calculations are shown.

4.2 The tensor product rule

The tensor product rule can be considered a technique to extend to multiple dimen-

sion univariate interpolating formulas or univariate integration quadrature rules to

multiple dimensions. In the case of interpolation formulas, consider one-dimensional

interpolation formulas for approximating a smooth univariate formulas f : [0, 1] → R

Ui (f) =

mi
∑

j=1

f(xj
i ) a

j
i (x), i ≥ 1, (47)

defined on a set of support nodes

Xi = {xj
i | xj

i ∈ [0, 1], j = 1, . . . , mi}, (48)

where the sub index i ∈ N denotes the interpolation level, mi is the number of

nodes for the interpolation level, and aji (x) ∈ C [0, 1] is the univariate basis function

associated with the node j.

The tensor product over univariate interpolation formulas with different levels of

accuracy in each dimension indicated by the multi-index |i| = (i1, . . . , id) is defined

as

(Ui1 ⊗ . . .⊗ Uid)(f) =

mi1
∑

j1=1

. . .

mid
∑

jd=1

f
(

xj1
i1
, . . . , xjd

id

) (

aj1i1 ⊗ . . .⊗ ajdid
)

, (49)
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where the tensor product of univariate basis function is defined as

aj1i1 ⊗ . . .⊗ ajdid =

d
∏

k=1

ajkik (xk) (50)

The product rule evaluates the multivariate function f at the full grid of points

Xi1 ⊗ . . . ⊗ Xid. In d dimensions, the product rule requires m =
∏d

k=1mik . This

computational cost, in general, grows exponentially with the number of dimensions;

for instance, consider the case in which the number of nodes are the same in all direc-

tions, the product rule therefore requires md
i evaluations of the multivariate function

f . This exponential growth of the computational cost with the number of dimensions

is known as ”curse of dimensionality” of multivariate function representation. In or-

der to illustrate the construction of full grid of points X1 ⊗ . . .⊗Xd, two-dimensional

product rules of univariate nodal set are shown in figure 4.

Figure 4: Full tensor grids: X3 ⊗ X2, and X3 ⊗ X3
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4.3 Sparse Grids

Sparse grids are efficient methods to represent multivariate functions. This technique

take advantage of the function smoothness and simultaneously prevents the exponen-

tial growth with dimensionality. Since its introduction by Smolyak [103], they have

been subject of study for multivariate interpolation [81, 9], multivariate integration

[39, 80], and discretization of partial differential equations (PDE’s) [1, 16]. These

methods are also known under various names, such as the Boolean method [26], and

the discrete blending method [50]. These approaches can yield several order of magni-

tude reduction in the number of points required to achieve the same level of accuracy

as the full tensor grid approach. This in turn can drastically alleviate the curse of

dimensionality.

4.3.1 Smolyak’s construction

The main idea of the Smolyak algorithm is to approximate a multivariate function

by constructing a sparse interpolant that linearly combines tensor products of one-

dimensional interpolating formulas while avoiding the use of high level interpolation

formulas on several dimensions simultaneously.

The Smolyak tensorization algorithm builds on a sequences of one-dimensional

interpolation formulas for approximating a smooth univariate function as defined by

equations 47, and 48. The Smolyak algorithm approximates a multivariate function,

f(x) : [0, 1]d → R, by a sparse interpolant Aq,d constructed by tensor products of

univariate interpolating formulas, the Smolyak construction is then given by

A(q, d) =
∑

q−d+1≤|i|≤q

(−1)q−|i|

(

d− 1

q − |i|

)

(Ui1 ⊗ . . .⊗ Uid) , (51)

with A(d−1, d) = 0, and where d is the number of dimensions and q ≥ d is a parameter

associated with sparse grid level l = q − d. The multi-index i = (i1, . . . , id) ∈ N
d
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satisfies the following relationship

|i| =
d
∑

k=1

ik, (52)

here ik ∈ N is the univariate interpolation level along the k direction. The tensor

product of univariate interpolating functions is defined as

(Ui1 ⊗ . . .⊗ Uid)(f) =

mi1
∑

j1=1

. . .

mid
∑

jd=1

f
(

xj1
i1
, . . . , xjd

id

) (

aj1i1 ⊗ . . .⊗ ajdid
)

. (53)

The smolyak construction builds a sparse interpolant by adding combination of uni-

variate interpolating formulas of level ik subject to the constrain that the multi-index,

i.e. the total sum of univariate interpolation levels across all dimensions |i| = i1+. . . id,

has values between q − d+ 1 and q.

This linear combination of tensor product of univariate formulas in the Smolyak

construction leads to an efficient interpolation method that requires significantly fewer

support nodes than conventional interpolation strategies on full tensor grids. The

difference in the number of support nodes can be several orders of magnitude with

increasing problem dimension. Furthermore, the asymptotic error decay of the full

tensor grid interpolation with increasing grid resolution is preserved up to a logarith-

mic factor.

4.3.2 Univariate basis functions

The computation of the sparse interpolant involves tensor product operations of uni-

variate basis functions of one-dimensional interpolation formulas. Several types of

univariate basis function has been proposed. Some of them are based on piecewise

functions, high-order basis function, other studied basis are interpolets and multi-

wavelets. The approximation properties of these basis function have been extensively

studied, see for instance [14, 9]. In this work, the focus is on only few types of basis

such as the Lagrangian characteristic polynomials and piecewise basis functions.
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4.3.2.1 One-dimensional nodal sets

The univariate interpolation formulas (eq. 47) are defined over sets of specified nodes

Xi = {x1
i , . . . , x

mi

i } ⊂ [0, 1]. Although several choices of nodal sets have been defined,

nested nodal sets Xi−1 ⊂ Xi are more advantageous [39] because extending the inter-

polation level from i− 1 to i only requires function evaluations at the nodes that are

unique to the level i. The node differential between levels is denoted by ∆Xi, and it

is defined as ∆Xi = Xi \ Xi−1.

One of the choices of univariate nodal sets for high-order polynomials is the Cheby-

shev Gauss-Lobatto nodes. This is because, the non-equidistant nodes are required

in order to avoid undesirable oscillations in high-order polynomials and also because

of the necessity of nesting sets.

mi =











1, if i = 1

2i−1 + 1, if i > 1

xj
i =











1
2

for j = 1, if mi = 1,

1
2

[

1− cos
(

π j−1
mi−1

)]

for j = 1, . . . , mi, if mi > 1.

Another choice for linear basis functions is the Clenshaw-Curtis nodes. This type

of nodal set is defined in equidistant nodes and also complies the nesting property,

mi =











1, if i = 1

2i−1 + 1, if i > 1

xj
i =











1
2

for j = 1, if mi = 1,

j−1
mi−1

for j = 1, . . . , mi, if mi > 1.

Both type of nodal sets have shown the slowest increase with interpolation level

compared to other nested rules [65], and thus they are adopted in this study.
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4.3.2.2 Basis functions

Lagrange basis have been shown to be effective to represent functions that are suf-

ficiently smooth. They provide high order interpolation with fast error decay with

increasing number of nodes given the correct set of nodes. Specific type of nodal sets

are required in order to avoid undesirable oscillations due to Runge’s phenomenon

such as the Chebyshev Gauss-Lobatto nodes. These polynomial basis are defined

globally, meaning that the support range is [0, 1] and that information of all the

nodes are considered to construct every basis functions. These basis functions are

shown in figure 5(a) for an interpolation level i = 3 with total number of nodes

mi = 5, observe that the value of the basis function is aji = 1 at the respective node,

and goes to zero at every node that is different from the node associated to the basis

aki = 0, for k 6= j, obeying the property aj(xk) = δjk.

aji (x) =











1, if i = 1

∏mi

k=1,k 6=j(x− xk
i )(x

j
i − xk

i ), if i > 1.

0

1

X3
3X3

1 X3
5

a3
5

X3
4X3

2

a3
1 a3

2 a3
3 a3

4

(a) Lagrange basis

0

1

X3
3X3

1 X3
5

a3
5

X3
4X3

2

a3
1 a3

2 a3
3 a3

4

(b) Linear basis

Figure 5: Basis functions at Chebyshev-Gauss-Lobatto grid fig.(a) , and Cleshaw-
Curtis grid fig.(b)
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The idea behind piecewise basis functions is to give some capabilities to the ba-

sis functions of resolving local futures due to the locality of the support. A general

approach for constructing high-order polynomial piecewise basis function was devel-

oped in [15, 17]. Among all the piecewise basis function, the linear is probably the

simplest. Although it offers slower error decay as compared to other high order poly-

nomial basis, these basis have shown to be capable of resolving local features such as

discontinuities [74]. The linear basis is shown in figure 5(b) for a interpolation level

i = 3 on equidistant Cleshaw-Curtis nodes, note that the local support of the basis

which only involves the neighboring nodes.

aji (x) = 1, for i = 1, and

aji (x) =











1− (mi − 1)|x− xj
i |, if |x− xj

i | < 1
mi−1

,

0, otherwise,
for i > 1

4.3.3 Multivariate basis functions

Multivariate basis functions are achieved by using tensor products of univariate basis

functions as given by

aj1i1 ⊗ . . .⊗ ajdid =

d
∏

k=1

ajkik (xk),

where aji is the basis function of the one-dimensional interpolation formula. The type

of multivariate basis function depends only on the type of univariate basis as defined

previously.

4.3.3.1 Multi-dimensional nodal sets

The sparse interpolant needs to be computed over a set of sparse nodes. Consider

Xi, the univariate set of points used to interpolate the one-dimensional interpolating

formula Ui. The function that defines the multivariate set of sparse nodes is then
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defined by

H(q, d) =
⋃

q−d+1≤|i|≤q

(Xi1 ⊗ . . . ⊗ Xid) . (54)

One of the most of important feature of sparse grids that allow efficient repre-

sentation of multivariate functions is the nested nature of the univariate set of nodes

defined in the construction of the sparse interpolant. The appropriate selection of the

univariate set of points can ensure that the set of points are nested Xi−1 ⊂ Xi. This

nested property of some univariate set of nodes has similar effect in multi-dimensions.

Thus, increase of the sparse set of nodes from q to q − 1, the number of nodes are

increased only by the differential nodes given by

∆H(q, d) =
⋃

|i|=q

(∆Xi1 ⊗ . . . ⊗∆Xid). (55)

As a result, the sparse of nodes can be written only by adding the differential nodes

from level to level.

H(q, d) =
⋃

|i|≤q

(∆Xi1 ⊗ . . . ⊗∆Xid). (56)

Some of the nested univariate of nodes include the Clenshaw-Curtis nodes and the

Gauss-Lobatto nodes. However, it has been shown in [65] that is the Clenshaw-Curtis

nodes that increases the least with the number of dimension and thus it is adopted

in this work.

The construction of the sparse multi-dimensional nodal set in two dimensions

(d = 2) is illustrated in figure 6. An sparse interpolation level l = 2 (q = 4) is

considered. The nodes for the sequence of univariate interpolation formulas X1,X2,

and X3 are shown in top of the figure 6. The sparse grid combine tensor products

of lower degree Xi1 ⊗ Xi2 such that the multi-index |i| = i1 + i2 has values between

q − d + 1 and q, i.e. 3 ≤ i1 + i2 ≤ 4, as shown by equation 51. The nodes of these

tensor products as well as the resulting sparse grid are shown in the lower part of the

figure
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Figure 6: Construction of a sparse grid in two dimension, q = 4, and d = 2

4.3.4 Accuracy of the sparse grid approximation

Consider multivariate functions f , f(x) ∈ R, with x = (x1, . . . , xd) defined in the

d-dimensional unit interval Ω = [0, 1]d; and function mixed derivatives

Dαf =
∂|α|

∂xα1

1 . . . ∂xαd

1

, (57)
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where α ∈ N
d
0 denotes a d-dimensional multi-index with norm |α| =∑d

i=1 αi.

4.3.4.1 Polynomial sparse grid approximation

High order basis function are usually obtained by employing Lagrange characteristic

polynomials. For this type of basis, if the function mixed derivatives are continuous,

i.e. αi ≤ r ∀ i, the approximation error is derived in [81], and is given by

||f − A(q, d)||∞ = O
(

N−r| logN |(r+2)(d−1)+1
)

, (58)

where N = N(q, d) is the number of nodes required by the sparse representation

A(q, d).

4.3.4.2 Piecewise multilinear sparse grid approximation

For the multivariate basis function based on linear functions, if the function mixed

derivatives are at most twice continuous respect to any variable, i.e. αi ≤ 2 ∀ i the

error approximation error [81] is given by

||f − A(q, d)||∞ = O
(

N−2| log2N |3 (d−1
)

(59)

where N is defined as above.

4.4 The gPC-SG strategy

The gPC-SG is introduced here as a mean to alleviate the curse of dimensionality of

traditional integration methods. The main idea behind this strategy is to represent

the gPC coefficients:

αk =
〈 u (x, t, ξ) ,Φk(ζ) 〉

〈Φ2
k(ζ) 〉

=
1

〈Φ2
k(ζ) 〉

∫

Γ

u(x, t, ξ) Φk(ζ) ρ(ζ) dζ , k = 0, . . . , P,

as a sparse representation. As a consequence the number of function (u) evaluations

in the coefficient integrand, shown in the above equation, is reduced. Once the coef-

ficients are obtained, the polynomial chaos expansion can be used to obtain statistics

of interest. For instance, independent samples can be drawn to obtain probability
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density functions (pdf) of the stochastic response u. Moreover, statistical moments

such as mean and variance can also be obtained. These quantities are a central aspect

of design under uncertainty.

There are two main aspects that allow the development of the gPC-SG strategy.

The first one is the mutual independence among random variables. Consider d inde-

pendent random variables {ξk}dk=1 with individual probability density function ρ(ξk),

and defined in the random space Γk ∈ R, then the joint probability density function

of ξ = (ξ1, . . . , ξd)
⊺ is defined as

ρ =
d
∏

k=1

ρ(ξk) (60)

with support Γ = Γ1 × . . .× Γd ∈ R
d.

The second aspect is the product tensorization structure of the generalized poly-

nomial chaos and sparse grids. The multivariate basis of both methods are extension

of univariate basis function to multivariate cases. It will be shown that both the mu-

tual independence of the random variables and the product tensorization structure

of the multivariate basis functions facilitate sparse representation of the generalized

polynomial chaos coefficients.

4.4.1 gPC-SG coefficients

In the polynomial chaos, the multivariate basis Φ is a product tensorization of the

univariate gPC basis functions φ. This in turn allows simplifications on the calculation

of the coefficients of the gPC expansion if the stochastic response is expressed by

a sparse interpolant, i.e. f(ξ) ≈ A(q, d). Then, the polynomial chaos expansion

coefficients (Eq. 60) can be expressed as follow

αl =
1

〈Φ2
l (ζ) 〉

∫

Γ

A(q, d) Φl(ζ) ρ(ξ) dξ, (61)

where Φ is the gPC multivariate basis and ρ(ξ) is the joint probability density func-

tion. Note that the argument of gPC basis and the random variables are different;
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this is because the gPC basis is defined over supports of standard random variables,

whereas the actual random variable can be defined at any arbitrary support. The

previous equation needs first to be transformed to space of the standard random

variables ζ

αl =
1

〈Φ2
l (ζ) 〉

∫

Γ

A(q, d) Φl(ζ) ρ
∗(ζ) dζ, (62)

where ρ∗(ζ) expresses the joint probability function for the standard random variables.

By substituting the expression for the sparse grid interpolant (Eq. 51), the gPC

multivariate basis (Eq. 40) and the joint probability density function (Eq. 60), the

expansion coefficient is expressed as follow:

αl =
1

〈Φ2
l (ζ) 〉

∫

Γ

∑

q−d+1≤|i|≤q

(−1)q−|i|

(

d− 1

q − |i|

) mi1
∑

j1=1

. . .

mid
∑

jd=1

f(ξi
j)×

d
∏

k=1

ajkik (η)

d
∏

k=1

φlk(ζ)

d
∏

k=1

ρ∗k(ζ) dζ. (63)

Note that the last three terms are products of the sparse grid univariate basis, the

univariate gPC basis, and the individual probability density function of the standard

random variable; therefore, these terms can be expressed as only one product of

univariate integrals comprised by the sparse grid univariate basis, the gPC basis, and

the individual probability density function. This results in

αl =
1

〈Φ2
l (ξ) 〉

∑

q−d+1≤|i|≤q

(−1)q−|i|

(

d− 1

q − |i|

) mi1
∑

j1=1

. . .

mid
∑

jd=1

f(ξij)

d
∏

k=1

Ijk
ik
, (64)

where

Ijk
ik

=

∫

Γ∗
k

ajkik (η)φlk(ζ) ρ
∗
k(ζ) dζ (65)

is a one-dimensional integral of the univariate sparse grid basis, the gPC basis and

the individual probability density function. Because the sparse grid univariate basis

in a ∈ [0, 1], the argument η needs to be mapped the support of the standard random
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variable of the gPC expansion, Γ∗
i . This can be simply accomplished by a linear

mapping. Moreover, the collocation points ξi
j at which the function is evaluated

need to be transformed to be in agreement with the standard random variables. For

instance, the following transformation

ξ = µξ + σξ ζ (66)

ξ = a+ (ζ + 1)
(b− a)

2
(67)

is needed for a normal random variable N (µ, σ), and for a uniform variable U(a, b),

respectively.

The formula developed in equations 64 and 65 for the calculation of the gPC co-

efficients are very convenient since they allow fast calculation of polynomial chaos

expansion. The individual one-dimensional integral (Eq.65) can be calculated accu-

rately given the individual probability density functions. Moreover, these calculations

can be done off-line since given the distribution of the random variable, the univariate

gPC basis is known. Moreover, for every sparse grid level, the univariate basis is also

known.

Once the polynomial chaos expansion is obtained, uncertainty can be propagated

by either obtaining probability density functions or statistical moments of any other

from the expansion. For instance, for the first two statistical moments are obtained

by taking expectations of the expansion which leads the following relationships:

µ = α0 (68)

σ2 =

P
∑

i=1

α2
i 〈Φ2

i 〉. (69)

4.5 gPC-SG statistical moments comparison

In order to show the effectiveness of the polynomial chaos expansion - sparse grid

based method (gPC-SG), a comparison between this method and other uncertainty

propagation methods is presented in this section. The other methods considered are
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the Monte-Carlo method (MC), the local expansion method (LE), and the univariate

reduction method (UDR).

The moments are calculated for certain analytical functions chosen from the Genz

test package [38]. This set of functions was developed for evaluating the performance

of multidimensional integration [39, 80], and multi-dimensional interpolation [81, 9]

schemes. It is composed of six families of functions defined on the hypercube [0, 1]d.

The parameter c = (c1, . . . , cd) increases monotonically the difficulty of the function,

whereas w = (w1, . . . , wd) acts a shift parameter. The parameters w are randomly

chosen from [0, 1]. The parameters c are chosen randomly from [0, 1] as well, but

are normalized such that
∑d

i=1 ci = b, where b depends on the function as shown in

table 7. A tenth-dimensional (d = 10) example is considered. The tenth random

variables xi are considered to be independent and identically distributed according

to a uniform distribution U(0, 1).

The uncertainty propagation approaches are set up as follows. The coefficients of

the polynomial chaos expansion are determined by a chaos order of p = 6 and the

multivariate integrals involved in their calculation are carried out by sparse grid tech-

niques with levels up to 4. For the local expansion method, the derivatives involved

in the variance calculation are performed by one sided (forward) finite difference.

The univariate reduction method are calculated by according to a three point Gauss-

Legendre quadrature for the unidimensional integration.

The relative error of the calculation of the first two statical moments for the

product peak and Gaussian test functions as a function of the number of evaluations

are shown in figures 7 and 8. For all the examined test functions, the faster decrease

of the relative error of the gPC-SG method compared to the Monte Carlo method is

evident. Indeed, this approach leads to order of magnitude reduction in the number

of evaluations compared to sampling based methods. The higher values of relative

error of the Monte Carlo method is strongly dependent on its convergence rate which
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Table 7: Genz test functions

Name Function b

Oscillatory f(x) = cos

(

2 πw1 +

d
∑

i=1

ci xi

)

9.00

Product peak f(x) =
d
∏

i=1

[

c−2
i + (xi − wi)

2
]−1

7.25

Corner peak f(x) =

(

1 +

d
∑

i=1

ci xi

)−(d+1)

1.85

Gaussian f(x) = exp

[

−
d
∑

i=1

c2i (xi − wi)
2

]

7.03

Continuous f(x) = exp

(

−
d
∑

i=1

ci |xi − wi|
)

20.04

Discontinuous f(x) =

{

0 if x1 > w1 or x2 > w2,

exp
(

∑d
i=1 ci xi

)

, otherwise.
4.30

always scale as O(N−1/2).

It can also be noticed that low computational cost approaches such as the UDR

and LE lead the highest relative error among all approaches. The local expansion

method although is the cheapest computationally requiring only d+1 function evalua-

tions (as defined by the one-sided finite difference) is the most inaccurate. The reason

for this is that the local validity of these method prevent them of giving more accurate

results for complicated functions and larger degrees of uncertainty. Although it has

been suggested that for more complicated responses the accuracy of the method can

be improved by considering higher order derivatives, these higher order derivatives
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Figure 7: Statistical moment comparison: Product peak function figs. (a) & (b)

do not ensure improvement of the variance due to the local assumption [43]. In the

univariate decomposition reduction method, the three point quadrature considering
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Figure 8: Statistical moment comparison: Gaussian functions figs. (a) & (a)

leads to a computational cost of 2d+ 1. This expense is the same as the first sparse

grid level considered for the gPC-SG method. In spite of having the same cost, the
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gPC-SG has a lower relative error. An explanation for this lies in the fact that even

though the UDR moments take into consideration the individual density function by

assuming, in this case, Gauss-Legendre quadrature for the uniform random variables,

the method still relies on simple quadrature calculations. The gPC-SG formulation

explicitly considers the individual density functions, in this case by the Legendre chaos

basis, and approximate the moments through efficient multidimensional integration

of the expansion coefficients. The accuracy on the UDR method can be improved

by considering more points in the one-dimensional quadratures; however, since the

method is based on one-dimensional representation of multi-variate functions, it can

not deal with more complicated functions, and thus is restricted to lower dimen-

sionality functions, i.e. functions whose simplicity is such that allows them to be

represented by a linear combinations of one-dimensional functions only.
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CHAPTER V

STOCHASTIC EXPANSION-BASED ROBUST

OPTIMIZATION

In the previous chapter, an uncertainty propagation strategy based on stochastic

expansions called gPC-SG was presented. In this chapter, this UP is used with an

adaptive sampling formulation for multi-objective problems in order to develop two

strategies for robust design: 1) a single level robust optimization strategy and 2) a

bi-level robust optimization strategy.

The first strategy uses the gPC-SG approach with an adaptive sampling formula-

tion for multi-objective problems. Adaptive sampling is a technique to sequentially

select each sample point based on information from previously sampled data. This

approach is especially efficient when dealing with expensive simulations. This effi-

ciency makes adaptive sampling a promising method to be incorporated into design

under uncertainty.

The second strategy is similar, but uses two levels of fidelity of the uncertainty

propagation method. The use the above strategy is promising since it combines an

efficient UP method for the uncertain parameters and an efficient method for sam-

pling the design space, high computational expenses of propagating uncertainties for

highly non-linear cost functions and large degrees of uncertainty is unavoidable. In

order to mitigate this possible scenario, a bi-level gPC-SG based robust optimization

strategy is developed. The main idea behind this strategy is that the optimization

objectives are obtained by propagating uncertainties with two different levels of ac-

curacy (fidelity). Such a bi-level accuracy strategy is then included within a robust

design formulation.
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In general, uncertainties can be propagated by using different methods featuring

different degrees of accuracy (fidelity) and computational cost. A low-fidelity method

is cheaper to evaluate, but less accurate. Conversely, a high-fidelity method is com-

putationally intensive, but accurate. By using a bi-level strategy in a robust design

formulation, more can be learned about the statistics of interest by additionally cal-

culating them with a less accurate uncertainty propagation method. This in turn

may reduce the use of the high fidelity uncertainty propagation method and hence

can decrease the overall computational cost.

The process of representing an output model by using lower-fidelity information

is usually called a multi-fidelity or variable-fidelity method. This approach has been

mostly applied to deterministic optimization with expensive analysis and, to lesser

extent, to surrogate modeling of computational and experimental data. In this thesis,

the multi-fidelity idea is applied to a different problem: design under uncertainty.

It is emphasized that multi-fidelity modeling is applied to the propagation method

in robust design rather than the fidelity of physics modeling. Unlike deterministic

optimization which only requires one evaluation of the cost function per design, ro-

bust design optimization may require moderate or high number of samples of the cost

functions at every design point. This is because the optimization objectives usually

involves the first two statistical moments which are an outcome of propagating un-

certainties through the cost function. The computational cost can even be higher if

the degrees of uncertainty are large, the cost function is highly non-linear, or the cost

function is evaluated by expensive analysis codes. Therefore, managing two different

levels of accuracy of the uncertainty propagation method can be useful for reducing

the overall number of calls of the involved cost function.

The main idea of multi-fidelity approaches is to correct the low fidelity data with

as little high fidelity data as possible. In deterministic design optimization, several

methods have been proposed for multi-fidelity modeling. Some methods are based
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on local approximations and others on global modeling [63]. Local approximation-

based methods correct the low fidelity model so agreement is achieved with the high

fidelity model in the vicinity of a single design point. Conversely, global methods

seek to provide a global representation of the system model by constructing global

calibration models. Some of these approaches include sequential kriging [55] and co-

kriging [36], both of which were derived from the autoregressive method [64]. A third

class includes methods based on space mapping [12]. These methods are better suited

for problems in which the different fidelity models are defined in different input spaces

[100].

In this chapter, the background of adaptive sampling is presented first. In the

first section, the necessary elements such as Gaussian process (GP) modeling, and

sampling criteria such as expected improvement are reviewed. In addition, dependent

or correlated Gaussian process are reviewed and discussed as a mean for multi-fidelity

modeling. Then, robust design strategies are developed and presented. Finally, the

usefulness of these strategies are tested in canonical problems.

5.1 Adaptive sampling

In a typical design problem decisions such as how and where to sample are made

and fixed in advance. Such a criteria may require dense sample of points over the

entire design space for acceptable quality of surrogate models. This, however, can

be wasteful if the objectives of the design problem are expensive. Moreover, the

surrogate models can be either unnecessarily accurate in unpromising regions of the

design space, or inaccurate in promising regions. In contrast, adaptive sampling is

a sample technique that uses the acquired data (observations) in order to adjust or

infer the next sample points as the design problem is being run. As a result, this

technique is able to concentrate points in regions of interest.

In design, there are two main components in adaptive sampling. The first is the
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representation (surrogate) of the output model as a predictive distribution. The use

of predictive distribution in turn allows the development of criteria for sampling which

is the second component.

A brief explanation of the necessary methods for adaptive technique is presented

next. Gaussian processes are defined first as a mean to model outputs as predic-

tive distributions. Expected improvement is then next reviewed as a criteria for

placing sample adaptively. These two concepts are the main constituents of the

multi-objective optimization part of the single level gPC-SG based robust optimiza-

tion strategy. Dependent Gaussian processes are also reviewed as mean to combine

output models of different fidelity. This is technique is used in the multi-objective

optimization part of the bi-level gPC-SG based robust optimization strategy in which

outputs of two different uncertainty propagation method are used.

5.1.1 Gaussian process modeling

Gaussian process (GP) modeling is a technique for inferring likely values of an output

model f for a new input x∗. Unlike surrogate models which predict a single value

for the output model f , this technique represents the output model as a predictive

distribution.

Consider training data D consisting of N input vectors paired with responses :

{(xi, yi), i = 1, . . . , N}, a Gaussian process expresses uncertainty over the value of

the response variable by using a normal distribution with mean, and variance equal

to f̂(x), and ŝ2(x), respectively.

f(x) ∼ N (f̂(x), ŝ2(x)), (70)

where f is GP model for the output. This type of modeling is illustrated in figure 9

for a one-dimensional training data set consisting of five points shown as red circles.

At any arbitrary point x∗, the model is given by a predictive Gaussian distribution as
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shown by the blue solid line. This predictive feature of GP model can also be visual-

ized in the entire range of the independent variable by plotting the mean prediction

and a confidence interval of 99.7%, f̂ ± 3ŝ(x); these are expressed by the solid and

dashed lines, respectively. It must be noted that the variance of the model represents

the uncertainty in the value of the model output based on the current data. There-

fore, the variance value is zero at the training data points in the absence of noise in

the training data responses.

x

f(
x
)

x
*

Figure 9: Gaussian process (GP)

Although the study of Gaussian processes may seem new due to its use in the

machine learning community, its origin date backs to the 1940s with the works of

Wiener-Kolmogorov in prediction theory and time series analysis [75, 97]. Later,

approaches known as kriging [77] were developed in the geostatistics field for data in-

terpolation [24]. Although kriging derivation and interpretation is somewhat different
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to the methods considered by the machine learning community, kriging is identical

to a Gaussian process regression. In the statistical community, the use of Gaus-

sian processes to define prior distributions over functions dates back to 1978, when

O’Hagan [84] applied the theory to one-dimensional curve fitting. More recently, in

the machine learning field, Gaussian processes have been studied and developed for

supervised learning [109].

Although several formulations for Gaussian process models exist, the GP process

adopted in this study is kriging. This method has been scrutinized within the design

optimization community and it is now a well established method for data regression

and interpolation. In many works, kriging has been strictly applied as an interpolator;

see for instance references [22, 21]. However, the main advantage of kriging and other

Gaussian process models is their predictive capabilities [35] which allow adaptive

sampling. It is precisely this capability of GP modeling that makes them an important

element in this work. The kriging model is in explained in greater detail.

5.1.1.1 Kriging model

There are several types of kriging model, but this thesis will focus on a simple type

used in engineering design literature. The kriging model can be expresses as follows

f̂(x) = β + z(x), (71)

where β is a constant and z is a stationary Gaussian random function. z(x) gives a

localized deviation from the global model and has zero mean and covariance

Cov
[

z(xi), z(xj)
]

= σ2R(xi,xj), (72)

where

R(xi,xj) = exp

(

−
d
∑

m=1

θm |xi
l − xj

l |2
)

. (73)
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In the above equation, R is the correlation function between two sampled data points.

Then, the Gaussian process as shown in Eq. (70) is given as

f̂(x) = β̂ + rT R−1
(

Y − 1β̂
)

(74)

ŝ(x) =
[

1− rT R−1 r +
(

1− 1TR−1r
) (

1TR−11
)−1
]

σ2, (75)

where Y is the column vector of the response data, 1 is a column vector filled with

ones. R is the correlation matrix whose elements, Rij = R(xi,xj), are defined by

the correlation function. rT is the correlation vector between the point x and the

sampled data. Its elements ri = R(x,xi) are also defined by the correlation function.

The value of β is calculated by maximizing the natural log of the likelihood function

L =
1

(2πσ2)n/2 |R|1/2
exp

[

−(Y − 1β)T R−1 (Y − 1β)

2σ2

]

, (76)

resulting in

β̂ =
(

1TR−11
)−1 (

1TR−1Y
)

(77)

σ̂2 = (Y − 1β)T R−1 (Y − 1β) /n. (78)

θ is a vector of element θm from Eq.73. These are called the hyper-parameters, and

are found by maximizing the concentrated log in-likelihood function

lnL = −
(

n ln σ̂2 + lnR
)

/2. (79)

5.1.2 Expected Improvement

Given a data set of current sample points a kriging model can be used to find the

most promising point to evaluate next in a adaptive sampling scheme.

If the model constructed to represent our data provides a predictive distribution

for the response at any location, then it can be used to quantify the improvement over

our current best sample. Such a criterion is known as the expected improvement [61],
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and it was initially developed in the context of gradient-free optimization of black-box

functions with probabilistic surrogate models.

The general idea behind expected improvement is to take advantage of the re-

sponse predictive distribution to find the best new point on which conduct the next

analysis, given the current data. Consider the problem of minimizing: y(x) respect

to x given the data D = {(yi, xi) | i = 1, . . . , n}. For a Gaussian process model, at

any test point x∗, a predictive normal distribution with mean ŷ and variance ŝ2 is

available as shown in the vertical direction of Fig. 10. It is noted that significant

part of the predictive distribution falls below the current best sample as shown by

the shaded area. The expectation of the prediction at any location x respect to our

current best sample can be quantified. This is known as the expected improvement

criterion, E[I].

If ymin is our current best response, the improvement at any arbitrary point x is

defined as

I(x) = max(ymin − f, 0). (80)

Then, the expected improvement is simply the expectation of I and it is given as

follow

E[I(x)] = E[ max(ymin − f, 0) ] =

∫ ymin

−∞

(ymin − f) N (f̂ , ŝ2) df +

∫ ∞

ymin

(0) N (f̂ , ŝ2) df.

where N is a normal probability density distribution with mean and variance f̂ , and

ŝ2, respectively. Further developing the previous equation, it becomes

E[I(x)] =

∫ ymin

−∞

(ymin − f)
1

ŝ
φ

(

f − f̂

ŝ

)

df +

∫ ∞

ymin

(0)
1

ŝ
φ

(

f − f̂

ŝ

)

df.

In the previous equation, the second integral in the above equation vanishes. Then,

the equation has the following closed form:

E[I(x)] =
(

ymin − f̂
)

Φ

(

ymin − f̂

ŝ

)

+ ŝφ

(

ymin − f̂

ŝ

)

, (81)
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where Φ and φ are the standard normal cumulative distribution and the standard

normal density function, respectively.

φ(t) =
1√
2π

exp

(

−t2

2

)

Φ(t) =
1

2

[

1 + erf

(

t√
2

)]

.
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Figure 10: Expected improvement

The expected improvement expresses how much the current best point can be

improved at any location x. Therefore, it is of interest to find the location where the

expected improvement is maximum. This location in turn serves as a new sample

point xei. As a result, this criteria guides the sampling process towards more likely

regions while searching for a global minimum. This situation is also illustrated in

Figure 10 where the E[I(x)] is plotted in the lower part of the figure, and its maximum

location is shown. It must also be noted that the expected improvement is maximum
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when the value of the mean prediction of the model, f̂ , is less than or close to

the current best response, fbest, and the predictive standard deviation, ŝ, is large.

Conversely, the expected improvement is almost negligible if the mean of the model

prediction is higher and the predictive standard deviation is small.

Another interpretation of the expectation of improvement is from a geometrical

standpoint. Let f̂ represent the centroid distance from the current best response fbest,

and P [I] represent the shaded area; these are shown in Fig.10. Then, E[I(x)] can

be seen as the first moment of the shaded area respect to the horizontal line through

the current best response. This first moment can be calculated as the product of the

shaded area and its centroid distance from the current best response

E[I(x)] = f̄ P [I]. (82)

The shaded area, P [I], expresses the probability of improving over the minimum value

of the current data at the location, and it is expressed as

P [I(x)] = P (f(x) < fmin ) =

∫ fmin

−∞

1

ŝ
φ

(

f − f̂

ŝ

)

df. (83)

This integral has also a closed form

P [I(x)] = P (f(x) < fmin ) = Φ

(

fmin − f̂

ŝ

)

. (84)

This geometrical interpretation will be important in the next section to understand

the derivation of the expected improvement criteria for multi-objective problems.

5.1.3 Multi-objective expected improvement

So far, the expected improvement has been explained only for single objective prob-

lems, but recall that the robust design formulation is multi-objective: maximize mean

and minimize the variance.

The multi-objective expected improvement (MO-EI) is a measure for adaptive

sampling that involves two objectives. It was developed by Keane [62] and is also
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adopted in this work. Consider an initial Pareto set, D∗ = {(f ∗
i , g

∗
i ) | i = 1, . . . , m},

from an initial data set of two different objectives functions f and g. By assuming

independence between the two objectives, they can be modeled by the prediction of

Gaussian processes. The join probability distribution function ρ(f, g) for the pre-

dicted responses is then simply defined as the product of the individual distributions

as follow

g(x)

f(
x
)

m

1

2

3

Figure 11: Multi-objective expected improvement

ρ(f, g) = ρ(f) ρ(g) = N (f̂ , ŝ2f )N (ĝ, ŝ2g ). (85)

The probability of a single point ( f(x), g(x) ) of augmenting or dominating the current

Pareto set is defined as

P [I(x)] = P (f(x) < f ∗ ∪ g(x) < g∗) . (86)

The right hand side of the previous equation is defined by integrating the joint prob-

ability distribution function ρ(f, g) over the shaded area located at the left of the
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current Pareto set as shown in figure 11.

P [I(x)] =

∫ f∗
1

−∞

∫ ∞

−∞

ρ(f, g) dfdg +

m−1
∑

i=1

∫ f∗
i+1

f∗
i

∫ g∗i

−∞

ρ(f, g) dfdg

+

∫ ∞

f∗
m

∫ f∗
m

−∞

ρ(f, g) dfdg. (87)

The above integrals have closed form as shown below

P [I(x)] = Φ(zf∗
1
) +

m−1
∑

i=1

[

Φ(zf∗
i+1

)− Φ(zf∗
i
)
]

Φ(zg∗i )

+ [ 1− Φ(zfm) ] Φ(zgm), (88)

where Φ(.) represents the standard normal cumulative distribution, whereas zf and

zg are defined as follow

zf∗
k

=
f ∗
k − f̂

ŝf
(89)

zg∗
k

=
g∗k − ĝ

ŝg
. (90)

Similar to the single objective expected improvement, the multi-objective improve-

ment is defined as the product of the probability of improvement and the distance to

the centroid area as follow

E[I(x)] = P [I(x)]
√

(f̄(x)− f ∗
min)

2 + (ḡ(x)− g∗min)
2, (91)

where (f ∗
min, g

∗
min) is the closet member of the Pareto set D∗ to the centroid; f̄ and

ḡ are the coordinates, in objective space, of the centroid and are defined as

f̄(x) =

(

∫ f∗
1

−∞

∫ ∞

−∞

f̂ ρ(f, g) dfdg +
m−1
∑

i=1

∫ f∗
i+1

f∗
i

∫ g∗i

−∞

f̂ ρ(f, g) dfdg

+

∫ ∞

f∗
m

∫ f∗
m

−∞

f̂ ρ(f, g) dfdg

)

/ P [I] (92)
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ḡ(x) =

(

∫ f∗
1

−∞

∫ ∞

−∞

ĝ ρ(f, g) dfdg +

m−1
∑

i=1

∫ f∗
i+1

f∗
i

∫ g∗i

−∞

ĝ ρ(f, g) dfdg

+

∫ ∞

f∗
m

∫ f∗
m

−∞

ĝ ρ(f, g) dfdg

)

/ P [I] (93)

This situation is illustrated in figure 12 in which the centroid coordinate as well

as its distance to closest member are shown. Working out the integrals in the above

equation, the centroid coordinates have the following closed form

f̄(x) =
{

f̂ Φ(zf∗
1
)− ŝf φ(zf∗

1
) +

m−1
∑

i=1

[

f̂ ( Φ(zf∗
i+1

)− Φ(zf∗
i
) )− ŝf (φ(zf∗

i+1
)− φ(zf∗

i
) )
]

Φ(zg∗i )

+
[

f̂ ( 1− Φ (zfm) ) + ŝf φ (zfm)
]

Φ (zgm)
}

/ P [I], (94)

ḡ(x) =
{

ĝΦ(zf∗
1
) +

m−1
∑

i=1

[

Φ(zf∗
i+1

)− Φ(zf∗
i
)
]

[

ĝΦ(zg∗
i
)− ŝg φ(zg∗

i
)
]

+
[

1− Φ(zf∗
m
)
] [

ĝΦ(zg∗m)− ŝg φ(zg∗m) ] } / P [I], (95)

where φ(.) and Φ(.) represent the standard normal distribution function and its cumu-

lative distribution, respectively; whereas zf and zg are defined according to equations

89 and 90, respectively.

5.1.4 Dependent or correlated Gaussian process

The Gaussian processes discussed above considers a single output. Nevertheless,

there may be cases in which a model have several outputs, or a single output can

be described by several models. The latter, for instance, can be the case in which

a physical model can be described by several level of fidelity. One mean to deal

with these cases is to treat every output independently and model each of them with
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Figure 12: Multi-objective expected improvement

a Gaussian process. Such a treatment is known as multi-kriging [97]. However, a

model that assumes independence can not exploit any similarities. For those cases,

formulations that are capable of correlating model outputs are advantageous. Such

as formulation are known as dependent or correlated Gaussian processes.

Dependent Gaussian processes has been recently introduced in the machine learn-

ing community [13]. Most of the work in this field relay on convolution processes for

defining the covariance functions [13, 5]. Although this framework is mathematically

elegant, there are parameters and functions to be defined, and thus this may limit

its practicality for more general problems. An early type of methods that correlates

model outputs are those from the geostatistics community. Most of the methods

are based on the linear model of coreogionalization (LMC) [49]. In these methods,

the outputs are assumed to be linear combinations of a set of one or more “random

functions”. Methods like co-kriging [24] are formulated by this approach.
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In the present study a specific implementation of co-kriging by Forrester et al. [36]

is adopted. This implementation has been successfully applied before to deterministic

optimization of a civil aircraft wing [36], and to the blending of experimental and

computational data [66]. A brief description of this co-kriging formulation is next

presented.

5.1.4.1 co-kriging model

Consider two different output functions : a high fidelity, yh, and a low fidelity, yl with

data defined over points X h and X l , respectively. The combined set of data for these

two model is represented as follow :

X =







X l

X h






,

with responses

Y =







Y l

Y h






.

It is assumed that the locations of the high fidelity data is a subset of the low fidelity

data, X h ∈ X l .

By assuming an additive scaling model, the high fidelity data can be represented

by a sum of the low fidelity model “l” multiplied by a scaling factor ρ and another

process y∆ which expresses the difference between “yh” and “ρ yl.” This is represent

as follow :

yh = ρ yl + y∆. (96)

A central difference with kriging is that in the co-kriging model the covariance

matrix between the Gaussian processes for the outputs yh and yl has a more complex

structure. This involves not only auto-covariance matrices, but also cross-covariance
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matrices

C =







C l l C lh

C hl C hh






,

where the auto-covariance matrices are defined by

C l l = σ2
l Rl(X l ,X l) (97)

C hh = ρ2 σ2
l Rl(X h ,X h) + σ2

∆
R∆(X h ,X h), (98)

and the cross-covariance matrix

C lh = ρ σ2
l Rl (X l ,X h). (99)

In the above expression Rl and R∆ are the correlation matrices. The elements of

these matrices are defined similar as for Kriging (Eq. 73); however, the subscripts l

and d refer to the hyperparameters θl and θ∆ of the model l and ∆, respectively.

Independence is assumed between the Gaussian processes for the model of the low

fidelity and the difference model. The parameters of the former model, βl and σ2
l , are

found by maximizing its log likelihood function

lnLl = −1

2

(

nl ln σ
2
l + ln |Rl(X l ,X l)|

)

− (100)

1

2
[Y l − 1 βl ]

T
R−1

l (X l ,X l) [Y l − 1 βl ] σ
−2
l , (101)

resulting in

β̂l =
[

1T R−1
l (X l ,X l) 1

]−1 [
1TR−1

l (X l ,X l)Y l

]

(102)

σ̂2
l =

[

Y l − 1 β̂l

]T

R−1
l (X l ,X l)

[

Y l − 1 β̂l

]

n−1
l . (103)

Substitution of the above two expressions for β̂l and σ̂2
l into the log likelihood function

gives the concentrated ln-likelihood

lnLl = −1

2

(

nl ln σ̂
2
l + ln |Rl(X l ,X l)|

)

. (104)
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The vector of hyperparameters θl is found by maximizing this equation. The Gaussian

process for the difference model is defined by data of the model “h” and “l” at the

common locations X h as follow:

Y ∆ = Y h − ρY l(X h). (105)

The ln-likelihood is then defined as

lnL∆ = −1

2

(

nh lnσ
2
∆
+ ln |R∆(X h ,X h)|

)

−
1

2
[Y ∆ − 1 β∆ ]T R−1

∆
(X h ,X h) [Y ∆ − 1β∆ ] σ−2

∆
.

The parameters β∆ and σ2
∆
which are found by maximizing the above function, and

results in the following expressions :

β̂∆ =
[

1T R−1
∆
(X h ,X h) 1

]−1 [
1TR−1

∆
(X h ,X h)Y ∆

]

σ̂2
∆

=
[

Y ∆ − 1 β̂∆

]T

R−1
∆
(X h ,X h)

[

Y ∆ − 1 β̂∆

]

n−1
h .

The vector of hyperparameters θ∆ and the scaling factor ρ̂ are found by maximizing

the concentrated ln-likelihood function which found by substituting the parameters

β̂∆ and σ̂2
∆
into the ln-likelihood function

lnL∗
∆
= −1

2

(

nh ln σ̂
2
∆
+ ln |R∆(X h ,X h)|

)

. (106)

5.1.4.2 co-kriging prediction

Predictions at new points are obtained by evaluating the following expression for the

function mean and variance

f̂h = β̂ + cT C−1
[

Y − 1β̂
]

(107)

ŝ2h = ρ2 σ2
l + σ2

∆
− cT C−1 c, (108)

where the parameter β is calculated as follows

β̂ =
[

1T C−1 1
]−1 [

1TC−1Y
]

, (109)
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C is the co-kriging covariance matrix

C =







σ̂2
l Rl(X l ,X l) ρ̂ σ̂2

l Rl(X l ,X l)

ρ̂ σ̂2
l Rl(X h ,X l) ρ̂2 σ̂2

l Rl(X h ,X h) + σ̂2
∆
R∆(X h ,X h)







and the vector r is defined as

r =







ρ̂ σ̂2
l r l (X l ,X )

ρ̂2 σ̂2
l r l(X h ,X ) + σ̂2

∆
r∆(X h ,X )







5.2 gPC-SG based robust optimization

Several formulations for robust design optimization have been proposed [86]. Among

them, one method for achieving robustness is to treat the optimization problem as

multi-objective problem: maximizing some measure of mean performance and at the

same time minimizing its variation. This type of formulation necessarily leads to

study and construction of Pareto sets.

Currently, there are two popular approaches for constructing Pareto sets. The

first and most simple method considers a weighting function to combine the mean

performance and its variation into a single quantity. This quantity is next defined

as the objective of a single optimization problem. Then, an optimization process is

carried out to determine the design that satisfy the problem. By repeating this process

several times with different values of the weighting functions, a Pareto set can be

constructed. Although this approach take full advantage of well establish methods for

deterministic optimization, it also present some problems. The weighting function is

not know a priori. Moreover, it is difficult to know how to alter the weighting function,

so enough spread in the Pareto front is achieved. The second more popular approach

is those based on multi-objective genetic algorithms. Although these methods are

able find the Pareto front accurately, the main drawback is that large numbers of

evaluations of the objectives are needed.
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In the presented gPC-SG based robust optimization strategies, a relatively more

recent approach based on adaptive sampling for multi-objective problems is consid-

ered. More specifically, the multi-objective expected improvement [62] described in

the previous section is adopted as a mean to efficiently approximate the Pareto front.

Under a multi-objective formulation, a robust design problem can be written as

follow

Minimize F = [−µJ , σJ ]T ,

Subject to

P [C(X , ξ) ≤ 0] ≥ p

Xl ≤ X ≤ Xu

where F is the vector objectives which is composed of the mean and standard devi-

ation of the cost function J , X is the vector of design variables whereas ξ is the

vector of uncertain parameters, C is any constrain that, in general, can be not only

function of the design variables, but also of the stochastic variables. If this is the

case, the constrain must be expressed as inequality of the probability of the constrain

be greater than a certain threshold value p. Finally, Xl and Xu are the lower and

upper limits of the design vector, respectively.

5.2.1 Single level gPC-SG based robust optimization

In the single level gPC-SG based robust optimization strategy, the optimization ob-

jectives are approximated by Gaussian processes modeling the mean performance and

variation of the cost function J , i.e

µJ ∼ N ( µ̂J , ŝ
2
µJ

),

σJ ∼ N ( σ̂J , ŝ
2
σJ

),

where µ̂J and σ̂J are the mean predictor of the GP describing the mean and standard

deviation of the cost function, whereas ŝµJ
and ŝ2σJ

express the uncertainty of the

respective GP.
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The data of these statistical moments (µJ and σJ ) are obtained by the gPC-SG

uncertainty propagation approach described in the previous chapter. In these ap-

proach the cost function J (X , ξ) is represented by a generalized polynomial chaos

expansion and the first two moments are obtained by taking expectation of the ex-

pansion, resulting in

µJ = α0,

σ2
J =

P
∑

i=1

α2
i 〈Φ2

i 〉.

The Pareto front approximation method is carried by the the multi-objective

expected improvement criterion (MO-EI) described earlier in this chapter. The two

objectives f and g as defined in the MO-EI section are taken as the mean and the

standard deviation of the cost function, i.e. :

f = µJ

g = σJ .

By using the predictive capabilities of the Gaussian processes for both objectives, the

MO-EI function is maximized. The coordinate in design space having this maximum

is the most likely point to increase or dominate the current Pareto set, and hence it is

taken as the next sample point. The procedure involved in this strategy is summarized

in algorithm 1.

5.2.2 Bi-level gPC-SG based robust optimization

In the bi-level gPC-SG based robust optimization approach, two uncertainty prop-

agation methods with different levels of accuracy are considered. A low fidelity UP

may be inaccurate, but its computational cost is low. In contrast, a high fidelity UP

is accurate; however, its computational cost can be high. The main idea is that the

use of data from a low UP method can help to correct the data of high fidelity UP.
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As a result, less use of the high fidelity UP is expected. This in turn may reduced

the number of function calls of analysis codes compared to the single level strategy.

A bi-fidelity representation of the mean and standard deviation of the cost function

J is achieved via an additive scaling model for each moment as follow

µJh
= ρ µJl

+ µ∆, (110)

σJh
= ρ σJl

+ σ∆, (111)

where the subindex h and l express the source of the data either from the high or

low UP method, the subindex ∆, however, expresses the difference between the high

fidelity data and the low fidelity data times a scaling factor ρ. Note that the above

equations are the equivalent to the data modeling for the co-kriging model (Eq.96).

Next, four Gaussian processes are defined for approximating the data of the low

fidelity UP (l) and the difference data (∆).

µJl
∼ N ( µ̂Jl

, ŝ2µJl
),

σJl
∼ N ( σ̂Jl

, ŝ2σJl
),

∆µJ ∼ N ( ∆̂µJ , ŝ
2
∆µJ

),

∆σJ ∼ N ( ∆̂σJ , ŝ
2
∆σJ

).

These Gaussian process are related to the high fidelity h data by the co-kriging

formulation. This results in another Gaussian process for the high fidelity data :

µJh
∼ N ( µ̂Jh

, ŝ2µJh
),

σJh
∼ N ( σ̂Jh

, ŝ2σJh
),

where µ̂Jh
and ŝ2µJh

are the predictor and data error of the cost function mean µJ ,

whereas σ̂Jh
and ŝ2σJh

are the predictor and data error of the cost function deviation

σJ . These predictors and data error are calculating according to co-kriging prediction

equations (equations 107 and 108).

The high fidelity data, in general, can be obtained from any accurate method

such as Monte Carlo. In this work, however, a UP strategy based on the generalized
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polynomial chaos (gPC) was presented. This approach was shown to accurately

propagate uncertainties, but a fraction of computational cost of Monte Carlo methods.

Because of these, the gPC-SG strategy is chosen as the high fidelity UP. Again the

first two moments are giving by the following expressions:

µJh
= α0,

σ2
Jh

=
P
∑

i=1

α2
i 〈Φ2

i 〉.

There are several choices for the low fidelity uncertainty propagation method. The

choice of the low UP method should consider the computational cost. It desirable to

keep this cost as low as possible. Because of this, local expansion (LE) based method

stands as the best choice since its cost depends only on the cost of computing the

derivatives respect to the stochastic variables. However, other choices are also possible

such as the unidimensional reduction method (UDR) described in chapter 2. The main

point is to keep the cost close to the cost of the local based methods. In this work,

a LE method is used to usefulness of the bi-level approach with canonical function

in the next section. In chapter VI, the gPC-SG approach with level one (l = 1) of

the sparse grid integration method is considered as the low fidelity UP. This level

of the sparse grid integration ensure its lowest computational cost that is similar to

calculating derivatives with a central difference scheme. The main advantage of using

the gPC-SG with l = 1 of the SP integration technique is that no extra computation

are needed for the low level UP as is the case with the LE method. This is due to

the nested nature of the sparse grid integration method.

Similar to the single level approach, in the bi-level approach, the Pareto front

approximation method is carried by the the multi-objective expected improvement

criterion (MO-EI). The robust optimization objectives f and g section are taken as
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the mean and the standard deviation of the cost function, i.e. :

f = µJh

g = σJh
.

Since the moments are modeled by using Gaussian processes, the MO-EI function

can be maximized. The coordinate in design space having this maximum is the most

likely point to increase or dominate the current Pareto set, and hence it is taken as

the next sample point. Algorithm 2 summarizes the procedure of performing robust

design with the bi-level strategy.

5.2.3 Stopping criteria

Several strategies for stopping optimization problems have been proposed. For in-

stance, a threshold based criteria was defined in [61] in which the expected maximum

improvement function falls below a determined value. This criteria, however, can

be deceived if the particular data leads to a very thin variance and hence to a very

small value of the expected improvement. Therefore, the algorithm can be terminated

prematurely.

Instead of a general stopping rule, one may find more useful to adopt a criteria

based on the particular problem of interest. For instance, the expected improvement

can be run until a limit number of samples is reached. This is argument was made in

[67] as a more realistic stand for early design since the interest is to glean information

about favorable regions of the design space from a limit computational budget rather

than the global optimum itself.

The latest criteria is adopted in the presented work since very often designers are

constrained by the available computational power, or a time frame for completing

analysis.
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Algorithm 1: Single-level robust design strategy

1. Set chaos order, p, and sparse grid level, l.

2. Set initial sample for design space:

x = {x1, . . . , xn}

3. Calculate objectives for the initial design set by propagating uncertainties (ξ)

µJ = {µJ1
, . . . , µJn

}
σJ = {σJ1

, . . . , σJn
}

where

µJk
= µJ (xk, ξ) = α0,

σJk
= σJ (xk, ξ) =

(

P
∑

i=1

α2
i 〈Φ2

i 〉
)1/2

, k = 1, . . . , n,

is obtained by gPC-SG.

4. While Niter < Nitermax

(a) Build independent GP models for µJ and σJ

(b) Maximize multi-objective expected improvement, MO−EI(x), for finding
the next sample point xn+1

(c) Propagate uncertainties (ξ) for the new design point

µJn+1
= µJ (xn+1, ξ) = α0,

σJn+1
= σJ (xn+1, ξ) =

(

P
∑

i=1

α2
i 〈Φ2

i 〉
)1/2

.

(d) Add new design point xn+1 to the design set

x = {x1, . . . , xn+1}
µJ = {µJ1

, . . . , µJn+1
}

σJ = {σJ1
, . . . , σJn+1

}

(e) Niter = Niter + 1

5. End
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Algorithm 2: Bi-level robust design strategy

1. Set chaos order, p, and sparse grid level, l.

2. Set initial sample for the design space, (xh ∈ xl) :

high fidelity (h) low fidelity (l)
xh = {x1, . . . , xnh} xl = {x1, . . . , xnl}

3. Calculate objectives for the initial design set by propagating uncertainties (ξ)

high fidelity (h) low fidelity (l)
µh
J = {µh

J1
, . . . , µh

Jnh
} µl

J = {µl
J1
, . . . , µl

Jnl
}

σh
J = {σh

J1
, . . . , σh

Jnh
} σl

J = {σl
J1
, . . . , σl

Jnl
}

where the high fidelity UP is gPC-SG:

µh
Jk

= µJ (xk, ξ) = α0,

σh
Jk

= σJ (xk, ξ) =

(

P
∑

i=1

α2
i 〈Φ2

i 〉
)1/2

, k = 1, . . . , n.

and the low fidelity UP is either the LE method or gPC-SG (l = 1)

4. While Niter < Nitermax

(a) Build independent correlated GP models for µh
J and σh

J

(b) Maximize MO − EI(x) for finding the next sample point xn+1

(c) Propagate uncertainties (ξ) for the new design point

µh
Jn+1

= µJ (xn+1, ξ) = α0,

σh
Jn+1

= σJ (xn+1, ξ) =

(

P
∑

i=1

α2
i 〈Φ2

i 〉
)1/2

.

(d) Add new design point xn+1 to the design set

high fidelity (h) low fidelity (l)
xh = {x1, . . . , xnh+1} xl = {x1, . . . , xnl+1}

µh
J = {µh

J1
, . . . , µh

Jnh+1
} µl

J = {µl
J1
, . . . , µl

Jnl+1
}

σh
J = {σh

J1
, . . . , σh

Jnh+1
} σl

J = {σl
J1
, . . . , σl

Jnl+1
}

(e) Niter = Niter + 1

5. End
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5.3 Canonical problems

In this section the performance of the proposed approaches is addressed on some pre-

liminary canonical problems. An algebraic function subjected to random coefficients

is considered as a test problem. This choice is made based on its simplicity on im-

plementation and time of execution. In the next chapter, the approaches are applied

to engineering test cases such as the robust optimization problem of an airfoil at low

Reynold number and the robust design of transonic wing of bussines jet.

Firstly, the performance of the gPC-SG approach is addressed by comparing the

first two moments with those obtained by a quasi-Monte Carlo (quasi-MC) method.

Moreover, the Pareto fronts obtained with both approaches are also compared.

Secondly, the single and bi-level gPC-SG based robust optimization method per-

formance are compared. Finally, the performance of the bi-level approach for different

degrees of uncertainty and non-linearity the random coefficients is presented. The aim

here is to give support to the third research question: “how is the bi-level strategy

affected by levels of non-linearity and uncertainty?”.

The algebraic test problem is two-dimensional in spacial variables, X , and stochas-

tic variables, ξ. The algebraic test problem is shown in equation 112, and is based

on a test problem for multi-objective problems presented in [34]; however, linear,

quadratic, cubic and mixed terms are added to the original test problem.

J (X , ξ) = a0 + a1 x1 x2 + a2 [ C1 x1 + C1 x2 ] + a3 [ C1 x2
1 + C2 x2

2 ]

+ a4 [ C1 ( x1 − 0.5 )3 + C1 ( x2 − 0.5 )3 ]

+ a5 C1 exp(−1

4

[

(x1 − 1.25)2 + (x2 − 1.00)2
]

)

+ a6 C2 exp(−1

4

[

(x1 + 1.25)2 + (x2 + 0.75)2)
]

) (112)

where ai are constants. Randomness is introduced into the function, f , by uncertain

coefficients C1(ξ1) and C2(ξ2) which are functions of the random variables.
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5.3.1 Computational cost comparison

In order to measure the effectiveness of the single and bi-level strategies, two metrics

are defined to quantify the proximity of the non-dominated designs to the actual

Pareto front. The actual Pareto front is always assumed to be obtained by a quasi-

Monte Carlo method and multi-objective genetic algorithm (MO-GA). These two

metrics are defined as follow :

1. The first one is the distance d of a non-dominated design to the actual Pareto

front. This distance is defined as the minimum of the distances between a non-

dominated design and the designs comprising the actual Pareto front. For a

non-dominated design (µk
J , σ

k
J ), the distance is defined as

dk = min
√

(µk
J − µi

J )
2 + (σk

J − σi
J )

2, i = 1, . . . , Na, (113)

where Na is the number of designs comprising the the actual front as calculated

by the quasi-MC method.

2. The second metric is the average distance of the non-dominated set of designs

to the actual Pareto front.

davg =
1

N∗

N∗

∑

k=1

dk, (114)

where N∗ is the number of non-dominated design.

A non-dominated design is considered to lay on the actual Pareto front if its

distance to the actual front is lower than a certain threshold. For this problem, the

threshold is set to d ≤ δ.

5.3.2 gPC-SG performance

The gPC-SG strategy ability for estimating the statistical moments is first tested.

Next, its accuracy for robust optimization is addressed. In order to avoid any effect of
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the Pareto front approximation, the gPC-SG strategy is coupled to a multi-objective

genetic algorithm.

The uncertain coefficients, C(ξ), of the analytical test case function are defined by

the following functions :

C 1
i = ξ2i +

1

2
[ 1 + sin(12 ξi) ] , i = 1, 2. (115)

The above function are dependend on ξ which are uniform random variables defined

according to

ξi = U(µξi −
√
3σξi , µξi +

√
3 σξi ),

where µξ and σξ are the random variable mean and the standard deviation with values

given by

µξi = 0.25 π

σξi = 0.15 π.

Comparisons between the gPC-SG and the quasi-Monte Carlo method are shown

in figure 13. In this figure, contours of the mean (left column) and standard deviation

(right column) of the analytical test function J (X , ξ) are shown. The contours

calculated by the gPC-SG are shown in figures 13(a) and 13(b) for a chaos order

p = 10 and sparse grid integration level of l = 3. These parameters requires a

number of sample points of 29 at every point of the X space. The quasi Monte

Carlo contours are shown in figures 13(c) and 13(d) for a number of 2×103 sample

points using a Halston sequence at every location in the X space. The cost for these

approaches are also shown in table 8. It can be noticed that there is a good agreement

between both the contour plots of the moments. Indeed, the contour plots seem to

be almost identical. However, the gPC-SG is able obtain the moments at a fraction

of the computational cost of the quasi-MC.

In order to quantify the agreement between the approaches, the percent error of

the gPC-SG respect to the quasi-MC method is shown in figures 13(e) and 13(f). The
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Figure 13: Comparison of the mean (left column) and standard deviation (right
column) of J using a quasi-MC and the gPC-SG approaches
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contour of the mean of the test function has an average percent error 0.0070 %, while

its maximum percent error is 0.9 %. The standard deviation has a mean percent error

of 0.40 % and maximum percent error of 0.50 %. It is noticed that standard deviation

has larger errors. This in general true for the gPC method as higher moments requires

either higher chaos order, p, or higher integration levels, l. Nevertheless, as it will be

seen next. The accuracy of the gPC-SG is accurate to approximate the Pareto front

for multi-objective problems based on the mean and the standard deviation of the

given cost function, J .

Table 8: Computational cost of propagating uncertainties

UP method Scaling Computational
cost cost

quasi-MC – 2×103

gPC-SG (p = 10, l = 3) – 29
LE (FOFM and FOSM) d+ 1 3

5.3.2.1 gPC-SG and MO-GA for robust optimization

Previously, it was shown the usefulness of gPC-SG to propagate uncertainties accu-

rately at low computational cost compared to more expensive methods such as Monte

Carlo. However, the main purpose in this work is to use the proposed UP strategy

for robust design as formulated as a multi-objective optimization problem. Because

of this, the gPC-SG method has to necessarily be tested for this type of problems.

In order to isolate the effect of the Pareto front approximation method, the gPC-SG

strategy is used in conjunction with a multi-objective genetic algorithm (MO-GA).

The multi-objective optimization problem is formulated as described earlier in-

volving the simultaneous minimization of the negative of the mean and standard
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deviation of the cost function J

Minimize F = [−µJ , σJ ]T (116)

Subject to

X l ≤ X ≤ X u .

In addition to gPC-SG and quasi-MC, a local expansion method (LE) such as FOFM

and FOSM is considered. The set-up of the multi-objective genetic algorithm consists

of an initial population of 800 samples in the X space, the population is 1000 and

the number of generations is 200 for all the different UP methods considered.

The Pareto fronts and the non-dominated designs as calculated by MO-GA in con-

junction with the three UP methods are shown in figure 14(a) and 14(b), respectively.

It is noticed that the gPC-SG front lays the closest to the quasi-MC front which is

considered to be the actual Pareto front. Indeed, the gPC-SG front, shown in red,

overlays the actual front that is shown in black. This result is not coincidence, but

rather expected since the contours of the first and second moment, shown in fig.13,

for both UP methods are in good agreement.

The local expansion (LE) method, however, departs the most from the actual

Pareto front. This method tends to overpredict the mean of the test function for any

value of the standard deviation. It is clear that for this test case function the degree

of non-linearity of the random coefficients, C (equation 115), is high enough to make

invalid the locality assumption (Taylor expansion) in which the LE method is based

on. As result, this UP method is not able to place more non-dominated points closer

to the actual Pareto front.

5.3.3 Single-level and Bi-level gPC-SG performance

The main purpose of the above results was to shown the ability of the gPC-SG strategy

for reproducing the results obtained by the quasi-MC for a robust design optimization

problem. Although accurate, the use of multi-objective genetic algorithm (MO-GA)
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Figure 14: MO-GA based robust optimization of J
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suffer from long run times due to the large size of the population and also number

of generations needed to find the Pareto front. Therefore, its cost can easily become

intractable if the optimization objectives are expensive to evaluate.

In order to reduce the high computational cost in which robust design may in-

cur, the single and bi-level approach proposed earlier are tested. Both strategies use

the gPC-SG for uncertainty propagation and the multi-objective expected improve-

ment (MO-EI) formulation for approximating the Pareto front. However, the bi-level

strategy considers two levels of fidelity of the UP method.

The search of the Pareto front by employing both approaches is shown in figure

15 after 5, 10, and 20 adaptive samples. As a reference the Pareto front found by the

quasi-MC and the MO-GA from the previous section is also shown and is considered

the actual front. The single-level strategy has an initial number of points of 4 obtained

by the gPC-SG approach with a chaos order p = 10, and sparse grid integration level

l = 3. The bi-level strategy is initialized with the same 4 points of the single-level for

the high fidelity UP, additionally 20 points of the low fidelity UP. These are obtained

by a LE method (FOFM and FOSM) using a one-sided finite difference. The cost of

propagating uncertainties for these three methods are shown in table 8. The kriging

models for both, the single and bi-level strategies, are tuned after every new sample

update by maximizing the corresponding likelihood function with a genetic algorithm.

From figure 15, it is noted that as the number of adaptive samples increases both

strategies are able to place points closer to the actual Pareto front. For instance,

by 5 adaptive samples as shown in fig. 15(a), the single-level strategy has already

placed one sample in a near location of the actual front. By 10 adaptive samples,

fig 15(c), there are 2 samples in a very near location of the actual front. Moreover,

the non-dominated set symbolized by the blue circles is located closer to the Pareto

front. By 20 adaptive samples, fig 15(e), there are a couple of samples lying exactly

at the Pareto front and the non-dominated set is even closer to the actual front.
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For the bi-level strategy, the non-dominated set are shown for adaptive samples of

5, 10, and 20 in figures 15(b), (d), & (f), respectively. At 5 adaptive samples, the bi-

level strategy is able to place two samples exactly at the Pareto front. By 10 adaptive

samples, the number of non-dominated design at the actual front has increased to 5,

and the non-dominated set is located close to the actual front. Finally, for 20 adaptive

samples there are 8 member of the non-dominated set lying at the actual Pareto front.

In general, it is noticed that the bi-level strategy places more samples in the proximity

of the actual Pareto front for any number of adaptive iterations.

5.3.3.1 Computational cost

Even though it was shown that the bi-level strategy approximates the actual Pareto

front with fewer number of adaptive samples that the single-level strategy, this con-

clusion may turn out to be unfair since the bi-level strategy has initially more infor-

mation than the single-level. Therefore, what actually needs to be measured is the

computational cost which is given by the total number of function calls.

In order to quantify this cost, the two metrics:

i. Number of non-dominated designs lying at the actual Pareto front,

ii. Average distance of the non-dominated set to the actual Pareto front,

as defined in section 5.3.1 are used. For this problem the threshold for considering a

non-dominated design as lying at the actual Pareto front is δ = 0.1.

The number of non-dominated designs at the actual Pareto front as a function of

the computational cost (number of function calls) is shown in figure 16(a). It must

be noted that the bi-level has a higher initial cost since in addition to the high UP

samples, it requires a larger samples of the low fidelity UP. Moreover, every adaptive

sample has a slighlty higher cost due to the expense of calculating the objective with

both levels of fidelity. Both strategies tend to place more non-dominated points as

the number of adaptive samples increases. Nevertheless, it can be seen that for any
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Figure 15: Non-dominated designs found by the single and bi-level gPC-SG based
UP (figs. (a), (c), (e)), and the single level approach only (figs. (b), (d), (f))
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determine budget (number of function calls), the bi-level strategy has more non-

dominated points lying at the Pareto front.

Function calls

D
es

ig
ns

 a
t t

he
 P

ar
et

o 
fr

on
t

0 200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

8

10

12

14

16

18

20

22

24
Single-level UP
Bi-level UP
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Figure 16: Single and bi-level computational cost comparison for the random coeffi-
cients C1

Another mean to measure the effectiveness of the single and bi-level strategy

is the average distance of the non-dominated set to the actual Pareto front. The

average distance as a function of the computational cost is shown in figure 16(b). It

is noticed that the general trend of this quantity is to decrease as the computational
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cost of sampling adaptively increases although some variation can be seen for the

fewer first adaptive samples. It is also noted that for the most part of the plot the

average distance of the bi-level strategy is shorter than that of the single-level strategy.

There is sudden increase of the average distance at the 4th adaptive sample. Behavior

like this can happen with both approaches when a non-dominated point is placed in

unexplored area of the objective space. If the point is still far from the actual Pareto

front, the average distance increases.

5.3.4 Performance with degree of non-linearity and uncertainty

In this subsection the performance assessment with cost function, J , non-linearity

and degree of uncertainty is addressed. These tests serve as a mean to corroborate

theoretical expected trends, and aim to give support to the predictions of the third

research question: “how is the bi-level strategy affected by levels of non-linearity and

uncertainty?”.

5.3.4.1 Degree of non-linearity

In order to test the performance with non-linearity, in addition to the random coeffi-

cient C1 defined previously in equation 115, the two following random coefficients:

C 2
i =

1

4
(ξi − b0)

3 − 4 (ξi − b0) + 1 (117)

C 3
i = ξi (118)

are defined. The coefficient, C2, is a third order polynomial in the random variable ξ,

whereas C3 is linear. Three different robust optimization cases are carried out with

the analytical test function defined previously (equation 112) with each of these three

coefficients.

The single level strategy only uses the gPC-SG UP method whereas the bi-level

uses not only the gPC-SG, but also a LE method. For both strategies, the gPC-SG was
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Table 9: gPC-SG computational cost

SG level Computational cost

l = 3 29
l = 2 13
l = 1 5

set up according to a chaos order of p = 10; however, the sparse grid integration level

was set l = 3, l = 2, and l = 1 for the random coefficients C1, C2 and C3, respectively.

The cost of the integration level, i.e. cost of the high fidelity propagator, is shown in

table 9.

The effects of non-linearity with the computational cost are shown in figure 17 and

18. Similar to the previous test, the actual Pareto front was obtained by using a multi-

objective genetic algorithm and quasi Monte Carlo method with the same settings

of the previous example. The number of non-dominated points for the different

coefficients, C, are shown in figure 17. It is noted that as the non-linearity is decreased,

the number of designs points at the Pareto front tend to get closer together for

both strategies. For instance, for C1, the most non-linear coefficient shown in figure

17(a), the distance between the curves of the single and bi-level approach can be

as high as 300 functions calls, whereas for the coefficient C2 shown in 17(b), the

distance can be as high as 180 functions calls. For these two random coefficients,

the computational cost of running the high fidelity propagator is such that bi-level

approach offers the advantage of approximating the Pareto faster than the single

level, i.e. fewer function calls are needed in order to place the same number of non-

dominated points. Conversely, for the linear coefficient C3 shown in 17(c), the curves

are located closer together, and both strategies seem to perform similarly.

The average distance from the non-dominated set to the actual Pareto front is

shown in figure 18. A shorter average distance of the bi-level strategy is observed for
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Figure 17: Number of non-dominated designs at the Pareto front for different C
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Figure 18: Average distance to the Pareto front for different C
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the case of the most non-linear coefficient C1 as shown in figure 18(a). The difference

between the distance of both strategies is the largest for computational cost lower

than 600 function calls. Although this difference decreases for larger computational

cost, the distance of the bi-level strategy is still shorter than that of the single level

strategy. A similar trend can be observed for the cubic coefficient C2 although the

discrepancy of the average distance is much shorter for computational budgets larger

than 350 function calls. For the linear coefficient C3, there distance of the bi-level

strategy is still shorter; however, the discrepancy is much smaller.

5.3.4.2 Degree of uncertainty

The effects of the level of uncertainty are tested by varying the standard deviation.

The results for the coefficient C1 obtained from the gPC-SG performance part (section

5.3.2) are taken as the baseline case, and two other cases consisting of 30% and 8%

of the standard deviation are considered here.

The UP of the single-level and the high fidelity UP of the bi-level strategy is the

gPC-SG with a chaos order of p = 10. However, each of these cases are carried

out with different integration levels of the sparse grid. Levels of l = 3, 2, and 1 are

considered for the 100%, 30%, and 8.5% cases, respectively. This choice of integration

levels lead to computational costs that was already described in table 9.

The computational cost in which the two strategy incur are assessed in terms of

the two metrics described earlier. For this purpose, it is considered that the actual

Pareto front is that obtained by a multi-objective genetic algorithm and the quasi-

Monte Carlo method.

The effects of the level of uncertainty with the computational cost is shown in

figures 19 and 20. The number of non-dominated designs for the different cases are

shown in figure 19. In general, as the level of uncertainty is decreased, the number of

points at the Pareto front (curves) for each strategy tend to get closer. The average
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(b) Uncertainty level: 30%
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Figure 19: Non-dominated designs at the Pareto front for different uncertainty levels

110



Function calls

A
ve

ra
ge

 d
is

ta
nc

e

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6

7

8
Single-level UP
Bi-level UP

(a) Uncertainty level: 100%

Function calls

A
ve

ra
ge

 d
is

ta
nc

e

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6

7

8

(b) Uncertainty level: 30%

Function calls

A
ve

ra
ge

 d
is

ta
nc

e

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6

7

8

(c) Uncertainty level: 8%

Figure 20: Average distance to the Pareto front for different uncertainty levels
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distance is shown in figure 20 and it is observed that as the level of uncertainty

decreases, the average distance of these two strategy approach each other. For the

levels of uncertainty of 100% and 30% shown in figures 20(a) and 20(b), the distance of

the bi-level strategy is noticeable shorter than that of the single level. However, for the

smallest level of uncertainty shown in figure 20(c), both strategies have comparable

average distance.

In summary, it can be concluded that the trend for levels of uncertainty as well as

for non-linearity is similar. As a result, the benefit of the bi-level strategy decreases as

the non-linearity of the cost function J and the levels of uncertainty in the stochastic

variables decreases.

It must be point out that this behavior is not expected to be continuous. First,

for the study of the effect of non-linearity, it is difficult to find a mean to vary non-

linearity continuously. Even if this could be done, the performance of the bi-level

strategy would not be gradual. This is because the performance mostly depends on

the relatively cost between of the high and low fidelity UP. While the cost of the low

fidelity UP depends on the dimensionality of the stochastic space for the LE method,

the cost of the high fidelity UP, which is the gPC-SG, depends on the level of the

sparse grid integration (l) which by definition discrete. Consequently, changing from

one level to another involves a discrete change on the computational cost.

A similar explanation applies to the levels of uncertainty study. Although the

uncertainty level can be vary continuously, the performance of the bi-level strategy is

not expected to change gradually. Again, this is because of the sparse grid level which

is discrete. As a result, there must be certain range in uncertain that may require a

determine sparse grid level, while other ranges may a require a different level.
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CHAPTER VI

ROBUST AERODYNAMIC DESIGN

In this chapter, the polynomial chaos - sparse grid (gPC-SG) based UP strategy

detailed in Chapter IV and the two strategies for robust optimization described in

Chapter V are applied to aerodynamic robust design. The main purpose is to achieve

minimum sensitivity of the optimal aerodynamic performance with respect to uncer-

tain operating conditions.

The strategies are successfully tested in a low Reynolds number airfoil robust opti-

mization. It is found that results found by the gPC-SG strategy are in good agreement

with that of more expensive methods such as the quasi-Monte Carlo method. How-

ever, The gPC-SG accomplish this at smaller cost. Furthermore, it is verified that

the two robust optimization strategies are able to approximate well the actual Pareto.

Both approaches are able to place designs at the actual front as well as reduce the

average distance of the non-dominated set to the Pareto front.

Finally, the results of the robust design of a transonic wing are presented. The

main purpose of this last test case is to show the applicability of the methods to

practical design applications. Since this last test case involves more expensive analy-

sis, comparisons with the actual solution such as that given by a quasi-Monte Carlo

method and a multi-objective genetic algorithm are not given here. Nevertheless, this

does not contradict the studies of the research hypothesis and predictions performed

earlier.
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6.1 Formulation of the robust optimization problem

The robust optimization problem is formulated as multi-objective optimization prob-

lem

Minimize F = [ f1 , f2 ]
⊺ (119)

Subject to

X l ≤ X ≤ X u

where F is the vector of objectives, and X is the vector of design variables whose

upper and lower bounds are X l , and X u , respectively. In robust optimization, the

main purpose is the maximization of some average performance and simultaneously

the minimization of the performance variation. As result, the vector of objectives is

defined as

F =







−µJ

σJ






,

where J is a functional expressing some cost function. These objective are generally

defined as the first statistical moments of the cost function

µJ =

∫

Γ

J (X , ξ) ρ(ξ) dξ,

σ2
J =

∫

Γ

(J (X , ξ)− µJ )
2 ρ(ξ ) dξ

where ξ ∈ Γ represents a vector containing the uncertain parameters that are consid-

ered mutually independent, and ρ(ξ) is the joint probability density function of the

uncertain parameters.

6.2 Airfoil case

As a first test case, the robust optimization of a low Reynolds number airfoil is

considered. The cost function is assumed to be lift over drag coefficient, i.e. J = L/D.

An AG-24 sailplane airfoil is used as a baseline airfoil for the optimization process.
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Geometrical airfoil parameters such as thickness and camber locations, and others

are considered as design variables. These variables are contained in the vector of

design variables, X . In order to create new airfoils, these parameters are adjusted

in the geometry design module of XFOIL. Operating conditions such as Reynolds

number and the lift coefficient cl are considered uncertain, and they are contained in

the vector of stochastic variables, ξ. These two vectors are defined as follow

X =







max. camber location

max. thickness location






, ξ =







cl

Re






.

The lower and upper bound vectors of the design variables, expressed as percentage

of the airfoil chord, are X l = [ 35 , 20 ]⊺ and X u = [ 70 , 33 ]⊺. The stochastic

variables have uniform distributions with variations of ± 0.08, and ± 0.25× 105 over

the mean values of 0.6 and 2.5× 105, respectively.

6.2.1 Deterministic code

The deterministic solver used in this study is XFOIL [28]. It is an interactive code

for the analysis and design of low Reynolds number airfoils. It is a two-dimensional

potential flow solver with boundary layer interaction, having the capability of com-

puting both inviscid and coupled viscous-inviscid boundary layer flows. It is based

on a boundary layer integral formulation that employs a two-equation lagged dissi-

pation integral method for both laminar and turbulent flows. The laminar viscous

layer formulation involves a transition prediction based on the spatial amplification

theory in which a linear model that accounts for the growth of the amplitude n of the

most amplified Tollmien-Schlichting wave is employed. The wake is modeled by using

the same two-equation formulation of the boundary layers. The inviscid flowfield,

however, is calculated by using a linear-vorticity panel method. The drag is obtained

by using the wake momentum thickness of the downstream region. The velocity at

any point of the airfoil surface and its wake is corrected by using the Karman-Tsien
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compressibility factor. This is in turn incorporated into the viscous formulation yield-

ing a nonlinear elliptic system which is further solved by a full-newton method. A

more detailed description of XFOIL and its mathematical formulation is presented in

appendix A.

6.2.2 Results

In this section, results for the robust optimization of low Reynolds number airfoil

are presented. The results are divided in two parts. In the first part, the main

purpose is to test the accuracy of the proposed generalized polynomial chaos-sparse

grid (gPC-SG) based UP strategy for a Robust design problem without having any

influence of the Pareto front approximation method. In order to accomplish this,

the Pareto front approximation is carried out by employing a multi-objective genetic

algorithm (MO-GA), and the optimization objectives F = [−µJ , σJ ]⊺ are calculated

by four different uncertainty propagation methods: a quasi-Monte Carlo (quasi-MC)

method, a local expansion-based method (LE), the univariate dimension-reduction

method (UDR), and the proposed gPC-SG strategy.

In the second part, the single-level and bi-level robust design strategies are applied

to the same robust design problem. In order to quantify their effectiveness the two

metrics: (1) number of designs at the Pareto front and (2) the average distance of the

non-dominated set to the actual front are used. The actual Pareto front is assumed

to be that one found by the quasi-MC and the MO-GA method.

6.2.2.1 MO-GA based robust optimization

The accuracy of the gPC-SG strategy is studied here. In order to isolate the influ-

ence of the robust optimization method, the Pareto front is approximated by using a

multi-objective genetic algorithm (MO-GA). The set up of the multi-objective genetic

algorithm is 200 generations and a population of 500 for all cases. In addition, an

initial population of 250 is considered. Among all the methods considered, methods
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such as the local expansion (LE) based method and univariate dimension-reduction

method (UDR) can be the most inaccurate; however, they have the lowest compu-

tational cost. For instance, the cost of the LE method depends only on the cost of

calculating the derivatives with the uncertain parameters. These derivatives can be

calculated by one-side finite differences which for this two-dimensional case leads to 3

function calls per design. The univariate integration method used for UDR is a three

point Gauss-Legendre quadrature which leads to a cost of 5 function calls per design.

The most accurate and at the same time the most expensive method considered

is the quasi-Monte Carlo method. Due to its theoretical better convergence for few

number of uncertain parameters, the quasi-MC is preferred instead of the crude Monte

Carlo method. The number of samples (function calls) considered is 103. The pro-

posed gPC-SG strategy is set to a chaos order p = 6, and sparse grid integration

level of l = 3. These values give a computational cost of 29 function calls per design.

The computational cost per design of propagating uncertainties is summarized in the

table 10 for the four considered methods.

Table 10: Computational cost of propagating uncertainties

UP method Scaling Function
cost calls

LE (FOFM and FOSM) d+ 1 3
UDR 2d+ 1 5

gPC-SG – 29
quasi-MC – 103

The corresponding Pareto fronts are shown in figure 21(a). For comparison pur-

poses, it is assumed that the Pareto front found by the quasi-MC method is the

actual Pareto front. It is noted that among all the UP methods the front found by

the LE method is located the farthest from the actual Pareto front. This method

117



tends to overpredict the mean performance for any value of the standard deviation.

Moreover, most of the variation in the mean performance occurs in a very small re-

gion for values µL/D ≈ 81. In that region, the mean performance becomes extremely

sensitive to variations in the operating conditions. In contrast, the mean performance

is pretty insensitive for mean performance values µL/D ≤ 81. By comparing to the

actual Pareto front, it is clear that for this particular problem the local validity of the

Taylor expansion prevents this approach from placing non-dominated designs that

approximate more accurately the actual front.

The Pareto front found by the UDR method is the second to be located the

farthest from the actual Front. Although there is a small region in which it is closer

to the actual front, for mean performance values in the range between 76.5 ≤ µL/D ≤

78, anywhere else the UDR misses the actual front. Moreover, in those regions the

UDR front lays closer to the LE front. The UDR assumption of approximating a

multivariate function by univariate ones works only in some regions of the design space

in which the simplicity of the cost function, L/D, with the stochastic parameters is

such that this assumption holds, for instance the region in which the non-dominated

design closer to actual front. However, in other locations in the design space this

assumption is not longer valid.

Conversely, the Pareto front calculated by the gPC-SG strategy is located the

closest to the actual Pareto front. Indeed, the gPC-SG front seems to overlay the

Pareto front found by the quasi-MC. Therefore, there is a good agreement between

these two methods. Similar to the quasi-MC, the gPC-SG strategy leads to more

modest performance, having a more gradual variation of the mean performance with

the standard deviation. This gradual variation is actually an expected trend since the

objectives are outcomes from statistical moments (average values) that are calculated

in the space of the uncertain operating parameters. This is in contrast to the LE and

UDR method in which the statistics are defined locally or by univariate representation
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Figure 21: MO-GA based robust design
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of the cost function.

The non-dominated designs for the uncertainty propagation methods are shown in

figure 21(b). The non-dominated designs for the LE method tend to be clustered in

very small regions of the design space, including the right boundary of the maximum

camber location. Moreover, their locations differ significantly front those of the actual

non-dominated designs (quasi-MC). The UDR non-dominated design also differ from

the actual ones except for a small region for high values of the maximum thickness.

In contrast, the quasi-MC and the gPC-SG methods predict designs that are located

in the same region. Also these designs are more spread out over the design space.

Local expansion-based (LE) methods such as the FOFM-FOSM method allow

cheap calculation of robust objectives and for this reason they have been extensively

used in robust design optimization. However, the presented airfoil robust design

problem shows that the underlying assumptions of these methods make them prone

to be inaccurate for some types of problems. Therefore, more general methods for

uncertainty propagation are needed. The proposed gPC-SG strategy was shown to

give results that are in good agreement with highly cost UP methods such as the

quasi-Monte Carlo method, whereas at a considerable lower computational cost.

6.2.2.2 Single-level and Bi-level gPC-SG based robust optimization

The main purpose of MO-GA robust optimization was to shown the efficiency of

the gPC-SG strategy for propagating uncertainties for a robust design problem of an

engineering application. Although very effective, the use of multi-objective genetic

algorithms is usually expensive due to long run times resulting from high number

of designs and generations needed. The computational cost is even increased if the

analysis function are expensive to evaluate. Moreover, if the calculation of the opti-

mization objectives requires several samples as in the case of design under uncertainty,

the cost can be even higher and it may render these methods unusable. Therefore, in
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addition to efficient uncertainty propagation methods, robust design requires efficient

formulations to sample the design space.

The single-level and bi-level robust design strategies proposed in the previous

chapter are applied to the low Reynold airfoil case as a mean to tackle the high

computational cost in which robust design may incur. The single-level strategy only

uses a high fidelity uncertainty propagation method that is the gPC-SG. The bi-level

strategy, however, uses two different levels of accuracy of the UP method. It also uses

the gPC-SG as the high fidelity UP, but in addition considers the information of a

lower fidelity UP which, in general, drives the efficiency.

Unlike the analytical test cases in the previous chapter in which the LE method

was used as the low fidelity UP, the airfoil case considers the gPC-SG method as the

low UP, but at a sparse grid integration level of l = 1 which the lowest integration

level. The main idea behind this is not only to attempt different alternatives for the

low UP, but also avoiding the computational cost (function calls) of the low UP while

performing adaptive sampling. This is always possible with the gPC-SG because of

the nested nature of sparse grid node distribution. This means that an integration

level l = n + 1 uses all the points of lower integration levels, l = n, n − 1, . . . , 1.

Therefore, the function calls of the low UP can be used by the high UP. There is,

however, an initial higher cost of the low UP. An integration level l = 1 requires

2d + 1 points for “d” uncertain parameters. This cost is higher than the cost of the

LE if one-sided finite difference is considered for the calculation of the derivatives.

However, the cost is the same of the derivatives if a central difference is considered.

As a result, it can be said that the gPC-SG with l = 1 as the low UP has similar cost

of the LE method if central finite difference for the derivatives calculation is used.

The search of the Pareto fronts by employing the single-level and bi-level is shown

in figure 22, after 5, 10, and 20 adaptive samples. As a reference the Pareto front

found by using a quasi-MC method and the MO-GA from the previous section is also
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shown. Again, this front is considered as the actual Pareto front. The single-level

strategy is initialized with 4 points in the design space, whereas the bi-level strategy

in addition is initialized with 24 points for the low fidelity UP. The high fidelity initial

points are shown by green diamonds. The kriging and co-kriging models of the single-

level and bi-level strategies are tuned after every new sample update by maximizing

the likelihood function with a genetic algorithm.

It is easily noted that both strategies are able to place designs closer to the Pareto

front as the number of adaptive samples increases. In the case of the single-level

approach, initially it will try to explore the design space by augmenting the current

non-dominated set; however, the location of these designs are not yet close to the

actual front, see figure 22(a). As the adaptive sampling process progresses, few non-

dominated designs can be seen at the actual front, for instance at 20 samples (figure

22(e)) there are three samples. Moreover the non-dominated set, symbolized by the

blue circles, is located in the near region of the actual front.

For the bi-level strategy, after exploring regions that are no close to the actual

Pareto front, one design is placed near the actual front at 5 adaptive samples as seen

in figure 22(b). As the adaptive process continues more regions are explored; however,

by 10 adaptive samples not only two designs are exactly located at the actual front,

but also the non-dominated design is very close to the actual front (figure 22(d)). In

general, the bi-level strategy has a higher rate of placing non-dominated design near

the Pareto front than the single-level. This is confirmed after 50 adaptive samples as

shown in figure 23. It is noticed that the bi-level strategy explores less areas of no

interest and thus is able to place samples in the nearby regions of the actual Pareto

front.
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Figure 22: Search of Pareto front by the single-level and bi-level robust design strate-
gies after 5, 10, and 20 adaptive samples
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Figure 23: Search of Pareto front by the single-level and bi-level robust design strate-
gies after 50 adaptive samples

6.2.2.3 Computational cost comparison

It was shown that as a function of adaptive samples the bi-level strategy performs

better than the single-level. An explanation for this is that initially the bi-level has

more information since it has not only data of the high fidelity UP, but also data

of the low fidelity UP. Therefore, comparisons should be made as a function of the

computational cost (function calls) rather than adaptive samples. In order to assess

this, the metrics:

i. Number of non-dominated designs lying at the actual Pareto front,

ii. Average distance of the non-dominated set to the actual Pareto front,

defined in the previous chapter are employed. A non-dominated design is considered

to be located on the actual Pareto front if its distance to the actual front is lower

than a certain threshold. For this problem, the threshold is set to δ ≤ 0.1.

The number of non-dominated designs at the actual Pareto front as a function of

the computational cost (number of function calls) is shown in figure 24(a). It must

be noted that the bi-level strategy has a higher initial cost the single level since it

requires a larger sample of the low fidelity propagator in addition to the sample of
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Figure 24: Designs at the Pareto front (Fig.(a)) & Average distance (Fig.(b))

the high fidelity propagator. Nevertheless, from figure 24(a), it can be seen that for

any determine budget (number of function calls) the bi-level strategy places more

non-dominated designs in the proximity of the actual Pareto front.
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The second mean to measure the effectiveness is the average distance of the non-

dominated set to the actual Pareto front. The average distance as a function of

function calls is shown in figure 24(b). For both strategies, the average distance

tends to decrease with function calls. However, it is noted that, in general, the bi-

level strategy gives a shorter average distance to the actual Pareto front. For large

computational budgets, the average distance of both strategies is small; however, for

the bi-level the distance is slightly shorter.

6.3 Transonic wing case

In this section, the robust design of a transonic wing is addressed. During aircraft

operation, conditions such as Mach number and cargo weight are subject to variability

and random fluctuations. The first one is likely to change due to weather conditions

or variation in the cruise speed, while the latter can change due to different number

of passengers, cargo weight, and variation of the fuel weight. Therefore, there is a

need to incorporate the effects of operating conditions variability at a design stage.

The present transonic wing design case is developed for early design stages; there-

fore, low order analyses are adopted. Nevertheless, there is no limitation to apply

the developed methods to later design stages, including detail design, although high

fidelity analysis such as computational fluid dynamics (CFD) will be needed.

At transonic speeds, the effects of compressibility leads to more complicated fea-

tures in the flow field such as shocks. Therefore, analysis than can accurately capture

such as features may be needed. One alternative is the use of high fidelity analysis

such as computational fluid dynamics (CFD). However, this analysis is mostly re-

served for later stages of design after large-scales variables such as aspect ratio and

area have been selected. In this work, an alternate analysis that combines a vor-

tex lattice method and a compressible solver for airfoils is adopted. Athena vortex

lattice (AVL) [32] is used for 3-dimensional wing flowfield. MSES [30] is used for
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compressible profile drag

The vortex lattice method tend to be most accurate for high aspect ratio wings,

while the compressible effects on aerodynamic quantities can be captured accurately

for low transonic flow with the Euler equations in MSES [102]. Therefore, the focus

of this test case is high aspect ratio wing at low transonic speeds. Despite of the

simplicity of the analysis, it will be shown that predictions of aerodynamic quantities

can be reasonably well captured for early sizing of a robust design wing

6.3.1 Deterministic codes

The aerodynamic analysis is performed with Athena Vortex Lattice (AVL) [32]. AVL

is an extended vortex-lattice model program for aerodynamic analysis, trim calcula-

tions, dynamic stability analysis, and aircraft configuration development. The viscous

effects in the boundary layer are accounted by including drag profile information. This

profile drag is then added to the induced drag computed by the vortex lattice code.

Although this assumes independence between the profile drag and induce drag, it is

a reasonable approximation for high aspect ratio wings.

The airfoil drag information is obtained fromMSES [30]. This is a two-dimensional

analysis and design code for multi-element airfoils. It employs a steady state Euler

formulation on a streamline grid for solving the inviscid outer flow. The boundary

layer, however, is simulated by an integral boundary layer formulation based on two-

equation integral and the coupling with the inviscid flow is attained by using the

displacement thickness.

Although originally the AVL code assumes a quadratic fit for the profile drag, in

this study the viscous drag is explicitly given to AVL from the MSES codes, so no fit

is assumed.
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6.3.2 Validations

Previous to the use AVL and MSES for transonic wing calculations, validations are

needed to demonstrate their applicability to this problem. First validations of MSES

to capture aerodynamic quantities of airfoil sections at transonic speed are shown.

This is done by comparing with experimental data. Then, AVL and MSES are vali-

dated against CFD data for a transonic wing.

6.3.2.1 Transonic airfoils

In order to assess the accuracy of MSES for transonic profiles, validations are per-

formed by comparing with experimental data by Cook et al. [23] for the RAE 2822

airfoil. Since the experimental data is reported in term of the normal coefficient, the

following implicit equation :

cn = cl cosα + cd sinα, (120)

needs to be solved for the angle of attack, α. MSES is used to determine the value of

lift coefficient, cl, drag coefficient, cd and angle of attack, α, that matches the given

cn. Equation 120 is solved iteratively until a threshold of 10−6 is attained. Once these

values are determined, the drag coefficients predictions given by MSES are compared

to those from the experiments.

The values obtained from MSES as well as the experimental data are shown in

table 11 for the thirteen cases reported in the experiment. The highest percent

error found in the drag prediction is 16 % for the case 3. However, most of the

validated cases are below 9%. Most importantly, for the highest Mach number cases,

the disagreement in the drag prediction is not larger than 6%. This is particular

important since this study focuses in Mach numbers in that range.

The predicted pressure distribution for the highest Mach number (case 10) is

shown is figure 25. This calculation, however, was carried out by matching the pres-

sure distribution. This procedure given by Huff, Wu and Sankar [56] compensates
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Table 11: RAE 2822 airfoil drag validations

Experiment MSES

Case M∞ Re Transition cn cd cd Drag error
(×10−6) x/c (%)

1 0.676 5.7 0.11 0.566 0.0085 0.00830400 2.306
2 0.676 5.7 0.11 - 0.121 0.0079 0.00798500 1.076
3 0.600 6.3 0.03 0.522 0.0101 0.00843400 16.495
6 0.725 6.5 0.03 0.743 0.0127 0.01156000 8.976
7 0.725 6.5 0.03 0.658 0.0107 0.00978900 8.514
8 0.728 6.5 0.03 0.802 0.0175 0.01512600 13.566
9 0.730 6.5 0.03 0.803 0.0168 0.01598800 4.833
10 0.750 6.2 0.03 0.743 0.0242 0.02284200 5.611
12 0.730 2.7 0.03 0.721 0.0133 0.01385700 3.798

13A 0.740 2.7 0.03 0.733 0.0188 0.01841500 2.048

the effect of the wind tunnel interference which is not easily determined from the

experimental data. A “matched” pressure distribution is the best agreement between

the experimental data and the analysis predictions. This is achieved by adjusting the

Mach number and angle of attack. In the present study, however, the Mach number

is fixed to the experimental value and the adjustments are made only by varying the

angle of attack. This results in a lift coefficient and angle of attack of 0.74274 and

2.6443o, respectively. Although the pressure distribution obtained by MSES does not

match exactly the experimental data, it is considered to be in good agreement with

the experiment. Moreover, this prediction seems to be comparable with a previous

validation using a two-dimensional, Reynolds-averaged, compressible Navier Stokes

solver [56].

6.3.2.2 Transonic wing

The accuracy of AVL / MSES for calculating the aerodynamic quantities of transonic

wings is assessed here. The results given by AVL / MSES are compared to those
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Figure 25: RAE 2822 pressure distribution comparison, M∞ = 0.75, Re = 6.2× 106

given by OVERFLOW, a NASA CFD code. These comparisons are performed for a

transonic wing of bussines jet whose details are given in the next section.

The CFD data [68] comprises three cases at different Mach numbers which condi-

tions are shown in table 12. These values of Mach number are representatives of the

range of Mach number that are used in the robust optimization problem given in the

next section.

The OVERLOW code solves the Navier-Stokes equations in overset structured

grids. It was used with a Roe upwind scheme, a Beam-warming block diagonal

scheme, and one equation Spalart-Allmaras turbulence model. For all cases, the

boundary layer mesh size was set by considering a flat plate with y+ = 1 estimate

based on the wing average chord Reynolds number, and the grid consist of 16 millions

cells. Every case required 600 CPU hours in a linux cluster.
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Table 12: Validation cases for transonic wing

Case Altitude M∞ Re (*) CL

1 35000 0.710 10600000 0.44035
2 35000 0.720 10769789 0.42820
3 35000 0.728 10900000 0.41884
4 35000 0.740 11068946 0.40542
5 35000 0.750 11200000 0.39463
5 35000 0.758 11300000 0.38634
6 35000 0.770 11517691 0.37442

* Based on the wing average chord

The lift to drag ratio, L/D, obtained by AVL / MSES, and OVERFLOW is shown

in figure 26(a). It is noticed that AVL / MSES overpredicts this ratio for all the cases.

Nevertheless, the pattern of the lift to drag ratio with Mach number is well captured

by AVL / MSES. The quantification of the disagreement of this ratio between these

analysis codes, as percent error, is shown in figure 26(b) along with the percent error

of the drag coefficient CD. For both aerodynamic quantities, the error is lower than

4% for Mach numbers up to 0.74; however, the percent error can be as high as 9% for

a Mach number of 0.77. More details of the calculated aerodynamic quantities and

the percent errors are shown in tables 13, 14, and 15, respectively.

For any real design application the result of AVL / MSES may not be reasonable.

However, in spite of the error, AVL / MSES are able to capture general trends of the

aerodynamic quantities of interest. Most importantly, in this work this type of anal-

ysis is preferred due to computational feasibility. This is because the computational

cost of more sophisticated analysis such as CFD demands more resources, and thus

they are too costly.
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Figure 26: Wing aerodynamic quantities validation
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Table 13: AVL/MSES calculated aerodynamic quantities

Case M∞ CL CD L/D

1 0.710 0.440343 0.01565944 28.119996
2 0.720 0.428202 0.01515596 28.253095
3 0.728 0.418862 0.01480589 28.290247
4 0.740 0.405421 0.01428888 28.373222
5 0.750 0.394631 0.01396417 28.260259
6 0.758 0.386360 0.01384986 27.896356
7 0.770 0.374422 0.01395972 26.821442

Table 14: OVERFLOW calculated aerodynamic quantities

Case M∞ CL CD L/D

1 0.710 0.440350 0.01615 27.259
2 0.720 0.428200 0.01567 27.321
3 0.728 0.418840 0.01529 27.398
4 0.740 0.405420 0.01489 27.227
5 0.750 0.394630 0.01473 26.784
6 0.758 0.386340 0.01480 26.108
7 0.770 0.374420 0.01527 24.514

Table 15: Percent error of calculated aerodynamic quantities

Percent error (%)

Case M∞ CL CD L/D

1 0.710 0.001487 3.037510 3.158576
2 0.720 0.000655 3.280403 3.411644
3 0.728 0.005326 3.166182 3.256614
4 0.740 0.000393 4.037067 4.209874
5 0.750 0.000258 5.199127 5.511719
6 0.758 0.005326 6.405647 6.849839
7 0.770 0.000016 8.580718 9.412752
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6.3.3 Design implementation

The aircraft configuration used in this test is based on a medium-range business jet

aircraft, the Learjet 60, manufactured by Bombardier. The aircraft has a long-range

cruise Mach number of 0.74 at altitude of 35,000 ft.

Table 16: Specification for the business jet

Performance

Long-range cruise Mach number 0.74
Take-off gross weight 23500 lb
Operating weight 14000 lb
Maximum payload weight 2109 lb
Maximum fuel weight 7910 lb

Wing geometry

Reference area 264.50 ft2

Wing span 43.79 ft
Sweep angle∗ 16 deg
Taper ratio∗ 0.397

* : based on drawings

In this test case, only the cruise condition is considered for the robust optimization

problem. The geometry of the business jet has been simplified for the purposes of

solving the robust design problem. Moreover, due to the lack of technical information,

some geometry parameters has been approximated from drawings. Therefore, this

case only represents a proof-of-concept problem to demonstrate the usefulness of

the presented methods, and is by no means intended to represent a realistic full-

configuration case. Information of this aircraft is shown in table 16.

The optimization problem to ultimately be solved is the robust design problem
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described in section 6.1, i.e.,

Minimize F = [−µL/D , σL/D ]
T (121)

Subject to

X l ≤ X ≤ X u ,

where F is the objective vector which is composed by the mean and the standard

deviation of the wing lift to drag coefficient, X is the design variable vector whose

element are wing planform variables :
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The lower and upper limits of the design variables, X l andX u , are shown in table 17

Table 17: Wing design variables and ranges

Design variable Units Lower limit Upper limit
X l X u

Wing area ft2 220 350
Aspect ratio 7 9
Sweep angle deg 10 20
Taper ratio 0.3 0.5

In addition, a constrain in the wing volume is imposed

198.5 ft3 ≤ Vw ≤ 344.3 ft3
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The stochastic variables are uncertain operating conditions:

ξ =




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.

The description of the stochastic variables are shown in table 18.

Table 18: Uncertain parameters

Uncertain parameter Units Distribution Support
a b

Mach number U(a, b) 0.71 0.77
weight lb U(a, b) - 2000 2000

The uncertain weight, w, considers weight variation on the payload and fuel

weight. This weight is added to the weight of the aircraft which is calculated ac-

cording as follow :

W = wo + ww + w,

where the weight wo = 15736 lb includes the weight of the fuselage, systems, and fuel,

these are considered to be fixed since no change in this part of the aircraft is allowed.

The weight of the wings, ww, is calculated according to the statistical group weights

method [98].

6.3.4 Results

In all previous test cases presented in this dissertation, the actual Pareto front was

assumed to be the front calculated by a multi-objective genetic algorithm (MO-GA)

and the quasi-Monte Carlo (quasi-MC). However, in the present test case due to
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the significant higher cost of the analysis codes this Pareto front is not obtained.

Consequently, no comparisons for different UP methods with multi-objective genetic

algorithm are given.

It was previously observed that the Pareto fronts calculated by a MO-GA and

the gPC-SG was in good agreement with those of MO-GA and the quasi-MC. For

the present test case, advantage is taken of the ability of the gPC-SG to reproduce

results of more expensive methods such as quasi-MC, and thus the actual Pareto front

is considered to be that of the MO-GA and the gPC-SG.

6.3.4.1 Single-level and bi-level gPC-SG based robust optimization

In order to avoid the computational burden of approximating Pareto front with multi-

objective genetic algorithm, the single and bi-level robust design strategies proposed

in the previous chapter are applied here for the robust design of the business jet

transonic wing. The single-level strategy employs only one level of fidelity of the

uncertainty propagation method, a high fidelity UP that is the gPC-SG. The bi-level

strategy considers a second level of fidelity of the UP method. This additional UP is

a low fidelity method.

Similarly to the airfoil case, the gPC-SG with a sparse integration level l = 1 is

considered as the low UP. This choice avoids the additional computational cost of the

low UP while performing adaptive sampling due to the nested nature of the sparse

grid node distribution. The high fidelity UP is also the gPC-SG, whereas at a sparse

integration level of l = 3.

The search of the Pareto front is shown in figure 27 after 25, 50, and 100 adaptive

samples. As a reference the Pareto front calculated by the MO-GA and the gPC-SG

are also shown and it is considered to be the actual front. The single level is initialized

with 10 designs, whereas the bi-level strategy in adition is initialized with 100 designs

for the low fidelity UP. However, due to the constrain only 8 and 79 designs are
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feasible for the high and low fidelity UP, respectively. Similar to the previous test

cases, the kriging, and co-kriging models of the single and bi-level strategies are

updated and tuned after every new adaptive sample by maximizing their respective

likelihood function with a genetic algorithm.

Both strategies are able to place more designs either at the Pareto front or in its

the near region as the number of adaptive samples increases. This can be seen, for

instance, for the single level approach after 25 adaptive samples in which its current

non-dominated set, symbolized by blue circles, is approaching the actual front, and 3

designs are placed at the Pareto front. As the number of adaptive samples increases,

the non-dominated set does not seem to move close to the Pareto front although the

number of non-dominated designs at the actual front has increased to 6 as shown in

figure 27(c) for 50 adaptive samples. Instead, areas that are not in the near region

of the Pareto front are explored, and thus most of the samples are placed in regions

away from the actual front. However, in spite of continuing exploring these areas, the

single-level strategy is able to place more designs at the Pareto front as seen in figure

27(e) for 100 adaptive samples. In this figure, 13 designs can be seen at the actual

front.

The bi-level approach seems to explore less areas of no interest, and thus is able

of placing more design at the Pareto front as seen in figure 27(b) for 25 adaptive

samples at which 8 designs are located at the Pareto front. As the number of adaptive

samples increases, the exploration of regions of no interest occurs as well; however,

more designs are still placed at and in the near region of the actual front, for instance

at 50 adaptive samples, 14 design are found at the Pareto front as shown in figure

27(d). This situation continues and at 100 adaptive samples iterations, 23 designs

are located at the actual Pareto front as shown in figure 27(f).

It must be noticed that for both approaches the exploration of areas of no inter-

est is much higher compared to the airfoil case and the analytical test cases. This
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Figure 27: Search of Pareto front by the single-level and bi-level robust design strate-
gies after 25, 50, and 100 adaptive samples
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is inevitably a consequence of the higher dimensionality of the design space of the

transonic wing case.

6.3.4.2 Computational cost comparison

Previously it was shown that for the same number of adaptive iteration, the bi-level

robust design strategy performs better than the single level strategy. This follows a

similar trend to what was found for the airfoil case and the analytical test function

cases. This result is, however, no surprising since information from the low fidelity

UP is provided to the bi-level approach in addition to the high fidelity UP. There-

fore, the bi-level strategy always starts with more information. Because of this, the

correct mean to measure the performance of both approaches is by comparing the

computational cost (function calls) instead of adaptive iterations.

In the previous chapter, the following criteria :

i. Number of non-dominated designs located at the actual Pareto front,

ii. Average distance of the non-dominated set to the actual Pareto front,

were defined for measuring effectiveness and they are employed here. At a determine

adaptive sample iteration, a member of the current Pareto set is considered to be at

the actual Pareto front if its distance is lower than a threshold, for the present case

of δ < 0.0175.

The performance as function of the computational cost of the single and bi-level

strategies is shown in figure 28. It must be noticed that the initial cost of the bi-level

strategy is much higher for this case than for all the previous test cases. This in turn

increases the difference of the initial computational cost of both strategies. This is

a direct consequence of the higher dimensionality (4 design variables) in the design

space which in turn requires a larger sample for the low fidelity UP of the bi-level

strategy.
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The number of non-dominated designs at the actual front is shown in figure 28(a).

It is noticed that this plot can be divided in two regions. In the first one, for com-

putational budgets smaller than approximately 1050 function calls, the single-level

strategy performs better than the bi-levels strategy, by placing more designs at the

Pareto front. This region is strongly influenced by the initial computational cost of

both strategies. The single-level counts with the difference of the budget between

both approaches to place designs at the Pareto front. In the present case, this differ-

ence is 355 function calls. Furthermore, in addition to the difference in computational

cost, the single-level has about 435 function calls (16 adaptive samples) before the

bi-level strategy equates its number of non-dominated designs at the Pareto front. In

the second region, for computational budgets larger than 1050 function calls, the bi-

level strategy is able to place more non-dominated designs at the actual Pareto front

than the single level for the computational budget. Consequently, in that region the

bi-level strategy performs better.

The second metric, the average distance to the actual Pareto front, is shown in

figure 28(b). During the first adaptive samples, both strategies decrease considerably

the average distance. For instance, it takes approximately 174 function calls (6 adap-

tive samples) for the single-level strategy to decrease the average distance from 0.28

to 0.08, and for the bi-levels strategy, it takes about 203 function calls (7 adaptive

samples) to reduce the average distance from 0.30 to 0.03. Similar to the first metric,

this plot can be divided in two regions.

In the first one, for budgets lower than 812 function calls, the average distance of

both approaches is strongly influenced by the initial computational cost. Therefore,

in this region the bi-level strategy does not offer any advantage, and it takes some

computational budget for the bi-level strategy to attain comparable average distance

of the single-level; this occurs at a budget of approximately 812 function calls. In the

second region, for budgets greater than 812 function calls, the bi-levels strategy has a
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Figure 28: Designs at the Pareto front Fig. (a) & Average distance Fig. (b)

slightly shorter distance than the single-level strategy although in the range of 1515

to 1980 function calls the average distance for both approaches is almost the same
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and equal to 0.02. However, for larger computational budgets the bi-level strategy

again gives a slightly shorter distance.

In summary, although the rate of placing designs at the Pareto front is higher for

the bi-level strategy, there is considerable range of function calls in which the single-

level strategy performs better than the bi-level strategy. This results from the fact

that initially there is a considerable difference in the cost between both approaches.

Therefore, there is a number of adaptive samples required for the bi-level strategy

to attain the same number of designs at the Pareto front of the single-level. In the

present case, due to low rate of placing design at the Pareto front of the single-level

strategy, this occurs at computational budget of approximately 1050 function calls.

For computational budgets greater than that, the bi-level strategy places more designs

at the actual front.

6.4 Considerations and limitations

There are some considerations and limitations to be accounted when applying the

proposed strategies to design under uncertainty.

6.4.1 gPC-SG UP strategy

This strategy is subjected to the mathematical requirements of the polynomial chaos

method as well as the sparse grids. The most important requirement for the gPC-SG

strategy is smoothness in the stochastic space. Although the sparse grid integration

technique is able to deal with discontinuous integrand given the proper basis such

as multilinear or wavelet basis, the polynomial chaos (PC) basis requires smoothness

in the stochastic space. This is a consequence of the spectral nature of the gPC

representation. Therefore, as long as the cost function, J , is continuous although it

can be highly non-linear, the gPC-SG strategy can be used.

Another consideration is the order “p” of the polynomial chaos. Theoretically, the

higher the chaos order, the more accurate the gPC approximation. Previous studies
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in stochastic PDE’s have shown that chaos of third or fourth order are enough to

represent a second order stochastic process. However, unlike the intrusive gPC in

which the chaos order affects directly the size of the PDE’s system to be solved, the

non-intrusive gPC is affected differently by the chaos order. The chaos order influences

the number expansion coefficients and hence the number of calculations. However,

for the non-intrusive polynomial chaos the main limitation is not the number of terms

of the gPC expansion, but the number of evaluation of the cost function J (function

calls) since it is considered that the computational cost of the cost function (analysis)

is more expensive than the computation of the expansion coefficients. Therefore, in

the present strategy higher chaos order can be used without compromising the the

overall computational cost of the UP strategy.

The last consideration is the sparse grid level “ l.” This is a very important param-

eter of the gPC-SG strategy since it controls the number of cost function evaluations

(the computational expense). High levels of the sparse grid integration leads to more

accurate calculations of the gPC expansion coefficients. However, for practical use,

it is not recommendable to increase the sparse grid level too high. This is because

the computational expense increases with the level as well as the dimensionality of

the stochastic space. In practice, it is desirable to maintain low levels of 2 or 3. This

can be done by setting up a threshold in the level. In addition, the level can also

be controlled by setting a threshold in the approximation of the statistical moments

with the level.

In all the robust optimization problems, it was shown that an sparse grid level of

l = 3, and polynomial chaos order of p = 6 were enough to approximate the results

obtained by the quasi-Monte Carlo method.
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6.4.2 Single-level gPC-SG based robust optimization strategy

The single-level strategy is restricted by the limitation of the gPC-SG strategy as well

as those of the multi-objective expected improvement (MO-EI), and the Gaussian

processes (GP). The gPC-SG limitations were already mentioned and not repeat

here for brevety. A common limitation of the MO-EI along with any other adaptive

sampling technique is the lack of a stopping criteria. In this work, it was chosen to

stop the adaptive sampling process at a determine budget which is set up by the user.

Regarding the GP process, the main limitation is the number of data that can be

used. Interpolation GP processes such as kriging requires inversion of N×N matrices,

where N is the size of the data. Inversion have a computational cost that scales with

O(N)3, and thus this cost can grow quickly for data of large size. In this work, the

size of data has not been an issue since the data for all the test cases were of relatively

small size. However, for more realistic problems other types of approaches may be

considered, for instance regression type of GP such as the relevance vector machine

(RVM).

6.4.3 Bi-level gPC-SG based robust optimization strategy

Among the three approaches presented in this dissertation, it is the bi-level strategy

that requires the most consideration. In addition to all the consideration and limi-

tation of the gPC-SG, the MO-EI, and GP, other aspects must be considered for its

use.

The first aspect to consider is the relative computational cost between the low and

the high fidelity uncertainty propagation methods. In general, large cost ratios favors

the bi-level strategy. There are two cases in which this ratio increases. The first case

is for large degree of non-linearity of the cost function and uncertainty. This was the

object of study in chapter V and gave support to the third research question: “how is

the bi-level strategy affected by levels of non-linearity and uncertainty?”. Large ratios
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are also found as the number of uncertain parameters increases. This occurs because

the computational cost of the high fidelity UP grows faster than the low fidelity UP.

The cost as a function of the uncertain parameters is shown in figure 29(a) for the

gPC-SG and the LE method, whereas the cost ratio between the gPC-SG and the LE

method is shown in figure 29(b).
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Figure 29: Computational cost (a) and cost ratio (b) for the gPC-SG strategy

The second aspect is the initial computational cost of the bi-level strategy com-

pared to that of the single-level strategy. In general, this cost is always higher for

the bi-level strategy due to the information of the low fidelity UP. The main reason

for any increase of the amount of data required for the low fidelity UP is the dimen-

sionality of the design space. As this dimensionality increases, so does the size of

initial sample of the low fidelity UP. This is unavoidable since any useful information

of the low fidelity UP comes from having a global information of the design space.

This ultimately affects the performance of the bi-level strategy. For instance, in the

case of the low Reynold airfoil case, the bi-level strategy outperform the single level

strategy. For this case the dimensionality in design space and stochastic space was

2. However, in the transonic wing case, the dimensionality of the design space was 4,
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whereas the stochastic space remained the same, i.e. 2. This increase in the dimen-

sionality demanded a larger amount of data for the low fidelity UP. As a consequence,

the advantage of the bi-level strategy was only seen for large computational budgets

since at lower budgets the single-level outperformed the bi-level strategy. A possible

mean to alleviate the influence of the initial cost of the low fidelity UP is to have

large ratio of the high to the low fidelity computational cost. This in turn makes the

initial cost of the low UP less significant than the cost of the high fidelity UP.
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CHAPTER VII

CONCLUSIONS

An approach for robust design based on stochastic expansions was investigated. The

research is divided in two parts : 1) stochastic expansions for uncertainty propaga-

tion and 2) adaptive sampling for Pareto front approximation. For the first part, a

strategy based on the non-intrusive generalized polynomial chaos (gPC) expansion

method is developed. Second, in order to alleviate the computational cost of approxi-

mating the Pareto front, two strategies based on adaptive sampling for multi-objective

problems are presented. The first one is based on the two aforementioned methods,

whereas the second one considers, in addition, two levels of fidelity of the uncertainty

propagation method. The proposed approaches were tested successfully in the robust

optimization of a low Reynolds number airfoil and a transonic wing with uncertain

operating conditions. The gPC-based method is able to find the same Pareto front

as a reference Monte Carlo-based strategy but with lower computational cost. The

bi-level strategy shows further computational efficiency. Based on this research, the

following conclusions are drawn.

The primary research question in this dissertation was to investigate a common

challenge in design under uncertainty: how can uncertainty be propagated efficiently

for robust design purposes so the computational burden of simulated-based design un-

der uncertainty is reduced? Common past approaches rely on either methods that are

computationally cheap, such as local expansion based methods, or expensive methods

such as Monte Carlo. In order to address this general problem, this thesis investigated

specific implementations which accomplished reduction of the computational burden

by improving the efficiency of (1) the uncertainty propagation method and (2) the
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robust optimization formulation.

First, a stochastic expansion-based strategy for uncertainty propagation was pre-

sented. It employs the non-intrusive generalized polynomial chaos (gPC) expansion.

The computational cost of calculating the expansion coefficients is alleviated by adopt-

ing a sparse grid (SG) integration technique. This is an advantage for propagating

uncertainties, especially as the number of uncertain parameters increases. It is also

the main difference between the presented gPC-SG strategy and previous approaches

that employed the chaos expansion. Comparisons with expensive UP methods such

as those based Monte Carlo showed the usefulness of this strategy.

Second, in the robust optimization part, two strategies were presented. The first

strategy combines the above UP strategy and adaptive sampling techniques for multi-

objective optimization in order to efficiently approximate the Pareto front. The sec-

ond strategy considers two levels of fidelity of the uncertainty propagation method.

In the latter strategy, the optimization objectives are calculated by two UP methods

having different levels of fidelity. The main idea is that information from a less accu-

rate but cheap UP method alleviates the use of a more accurate but expensive method.

The proposed gPC-SG strategy is used as the high fidelity UP method, whereas a

less sophisticated method is adopted as the low fidelity. In order to efficiently sample

the design space, adaptive sample techniques are also used.

The two robust design strategies were successfully tested on the robust optimiza-

tion problem of a low Reynolds number airfoil. Both strategies were able to gradually

place designs at the actual Pareto front and to reduce the average distance of the

non-dominated set to the actual front as the number of adaptive sample increases.

However, the bi-level strategy showed better performance than the single level strat-

egy leading to more designs at the Pareto front and shorter average distances from

the non-dominated set to the actual front for the same computational cost
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Nevertheless, effective use of the bi-level strategy requires much more consider-

ation. First, in order to achieve a benefit over the single-level method, the relative

ratio of the cost of the high fidelity and low fidelity UP needs to be high. This ratio

increases because of the degree of nonlinearity, uncertainty and number of uncertain

parameters. Second, there needs to be a balance between the number of stochastic

and design variables. This was shown in the transonic wing case. Although the rela-

tive cost ratio between the low and the high fidelity UP was the same as in the airfoil

case, it was shown that the performance of the bi-level strategy was dependent on

the total computational budget. This is an unavoidable consequence of the higher

dimensionality of the design space which in turn increases the initial cost of the low

fidelity UP.

Recommendations for future work

Although this dissertation contributes to the mitigation of the computational cost

of design under uncertainty, it must be pointed out that all strategies presented are

preliminary. Design under uncertainty poses many challenges and opportunities that

require intensive future research.

First, alleviating the cost of propagating uncertainties still requires further re-

search. Although the use of sparse grids reduces the computational cost, this still

suffers from the curse of dimensionality. A potential improvement on this is the use

of sensitivity information from the adjoint method. In design, adjoint methods have

been mostly used for gradient based optimization, but these methods are potentially

useful in uncertainty propagation since the sensitivity information can be obtained at

a cost that is independent of the number of uncertain parameters. The main idea is

to extend the use of adjoint methods to more general UP method such as stochastic

expansions and not merely its immediate and simple application to methods such as

local expansion.

150



The second area for future research is in efficient multifidelity methods for approx-

imating the Pareto front. Such research could focus on either on its traditional use

for modeling the fidelity of physics or as presented in this dissertation, by modeling

the fidelity of the uncertainty propagation method. Multi-fidelity methods seem very

promising since optimization objectives can be an outcome of a large size sample of

the cost function. This computational burden is aggravated if the cost function is

computationally expensive, e.g. those resulting from high fidelity analysis codes. A

multi-fidelity strategy using global surrogate modeling was developed in this work.

However, a different path could be to explore the application multi-fidelity approaches

from a local perspective.
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