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SUMMARY 

  

Control system design serves as one of the most important areas in modern engineering. 

There are many controller design methods developed to fulfill all types of design 

objectives. Optimal Control or equivalently Linear Quadratic Gaussian (LQG) Control is 

one of the most commonly used. 

On the other side, there are several types of uncertainties generally inherent in a 

control system such as plant disturbance, sensor noise, and parameter uncertainty. While 

the first two are mitigated by LQG control, parameter uncertainty is not, and it will 

degrade a system’s performance if the controller designed for the normal plant is still 

used. In such a circumstance, designers turn to Adaptive/Robust control designs within 

various performance domains and robustness requirements. When the traditional 

quadratic performance from LQG is still used and the robustness requirement is to 

optimize the worst-case scenario, the corresponding robust controller design method is 

Minimax controller design (MCD), which assumes norm-bounded parameter uncertainty, 

augments the worst-case performance with scale factors, and solves the performance 

optimization equation under the stability constraint in the form of coupled Lyapunov 

equations. 

However, there are several gaps observed which lead to conservatism in the design.  

1. The norm bounded assumption enforces dependence between uncertainties, 

which is not necessarily true;  

2. There is an augmented term composed of scale factors added into the 

performance equation, which deviates the performance calculation from the real value;  



xvii 
 

3. There are no probability considerations associated with the uncertainty 

range. The incorporating of probability information into design relaxes the tight 

constraint and allows a tradeoff between the worst-case and other performances such 

as the most-likely or average performance. 

In this research, a two-stage methodology is developed. In the first stage, the 

properties of parameter uncertainty when a controller is given is first analyzed, followed 

by a theorem that proves the worst-case point is always located at corners from the 

uncertainty space. Due to the fact that the location of the worst-case point also changes 

from corner to corner when the controller changes, it makes the worst-case performance 

curve not differentiable everywhere. Next, a line search method that profiles the 

intersection of two performance responses’ topologies at two corners is proposed for the 

minimax controller design. An algorithm is also provided to survey all candidate corners 

to ensure that calculated minimax controller is global minimax.  

The second stage of proposed methodology re-formulates the controller design 

problem in a way so that the merit of the optimization problem is to design a controller to 

optimize the average performance under parameter uncertainty while keep the probability 

of performance failure (POF) smaller than a given value. The performance constraint 

used to calculate POF is the aforementioned minimax performance with reduced 

conservatism from the first stage. A numerical method based on local performance-

controller gradient calculations and the given probability distributions is provided to find 

a line search direction towards the optimal average performance. Instead of sampling 

method that becomes inefficient due to small POF considerations, a new discretized-

summation numerical method is provided to calculate the POF at each step along the line 
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search so that above line search shifts direction to the constant POF contour after the POF 

constraint is hit. 

Finally, a case study of an HVAC control system design, whose model contains two 

parameter uncertainties, is physically represented and then mathematically built in 

Matlab. Then the proposed methodology is fully applied to design a robust controller 

with reduced conservatism to demonstrate the whole design process.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

Control system design serves as one of the most important aspects in modern industry. It 

has wide application and is emphasized in almost all engineering fields. Over the century, 

many controller design methods have been developed by researchers towards multiple 

design objectives. 

It is also well recognized that a good system design requires an accurate mathematical 

model in the design process. It is especially true for control system design due to its 

dynamic nature: the future state is based on the current state. Thus a small, unexpected 

offset may accumulate with time and gradually destroy the whole control system even the 

system is stable initially. 

Taking the HVAC control system as an example, it is observed in real life and 

literature [1] [2] that many system designs suffer from inaccurate models. Figure 1 shows 

observed discrepancies between measured and simulated control system performance in 

multiple aspects such as stability (Figure 1. 1 (a)), transient performance (Figure 1. 1 (b)), 

discrete sampling (Figure 1. 1 (c)) and controller effort (Figure 1. 1 (d)). 
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(a) Valve position output              (b) Supply air temperature variation 

            

            (c) Pressure control                       (d) Building energy consumption 

Figure 1. 1 Discrepancy between measured and simulated for HVAC system 

When such discrepancy is observed, mainly it is caused by uncertainties in the system. 

Even if such uncertainty is observed and modeled, a system’s performance cannot always 

be guaranteed due to the uncertain nature. 

While further elaboration will be given in the next chapter, the observation here is that 

almost all types of systems suffer from uncertainties. This necessitates a method to 

systematically identify, analyze and mitigate the effects of these uncertainties to avoid 

control system performance degradation. In the next few chapters, such need will be 

addressed and the state-of-art solutions will be summarized from a literature search; gaps 

will be observed and new methodologies will be proposed to fill such gaps to improve 

current methodologies from current limitations. 
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1.2 Research Statement and Objective 

In this research, there will be a systematic procedure performed to: identify all the 

uncertainties a control system should expect, analyze their properties and survey 

literature to find the state of art solutions, and perform a gap analysis and propose 

solutions. 

It turns out that disturbance and sensor noise can be generally taken care of by 𝐿𝑄𝐺. 

However, parameter uncertainty cannot, and it can only be addressed by adaptive control 

and robust control. Further investigation shows that there are two levels of conservatism 

from the traditional norm-bounded, worst-case based robust control. The usage of 

parameter uncertainties’ probabilistic information can be used to reduce such 

conservatism.  

The research objective of this dissertation is the following: 

Built up from the traditional minimax (worst-case based) robust control system 

design methodology with avoidable conservatism, develop a two-stage probability-based 

methodology to reduce such conservatism. 

1.3 Thesis Organization 

The organization of this thesis is as follows. All research questions and corresponding 

hypotheses, as well the structure of this thesis are listed in Figure 1.2. 

A brief introduction of uncertainties in a control system is given in this chapter. 

Introductory questions are also brought out. 

Chapter 2 contains respective physical and mathematical interpretations of control 

system design, in the sequence of overview, plant, and controller. The optimal control is 

introduced in Section 2.3.2 and the emphasis of this chapter is Linear-Quadratic 

Regulators (𝐿𝑄𝑅), which defines the control system’s performance evaluation criteria, as 

well a Lyapunov equation as the mapping from a selected controller to the calculated 

performance. Parameter uncertainty is then introduced in Section 2.4. It is also 
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highlighted to distinguish from the other two types of uncertainties (disturbance and 

sensor noise) via a comparison. Next, it is briefly analyzed and leads to the conclusion 

that parameter uncertainty will affect the system’s physical nature and thus needs special 

treatment. Assumptions and nomenclatures to be used in future chapters are included in 

Section 2.5. 

Chapter 3 particularly focuses on parameter uncertainty. A deeper analysis of the 

properties of parameter uncertainty is first provided, followed by a brief introduction of 

the state of art solutions (adaptive control and robust control) to parameter uncertainty. 

Next, a minimax control design method, as a particular type of robust control design 

method, is introduced as the baseline robust control design method for future reference. 

Gap analysis can be found in Chapter 4. Two levels of conservatisms are observed 

from the traditional minimax control design. They are stated in Observation 1 and 

Observation 2. To reduce such conservatism, a two-stage conservatism reduction robust 

control design methodology is provided in Chapter 5 and Chapter 6.  

Chapter 5 proposes a Norm Extended Minimax Controller Design to extend the norm-

bounded uncertainty range with a purpose to reduce the first level of conservatism. 

Research question 1.1 and 1.2 respectively motivate the analysis about the properties of a 

performance curve over parameter uncertainty space and a worst-case performance curve 

over controller design space. The combination of the two leads to and answers research 

question 1.3 and 1.4, which concern the possible locations of minimax controller design 

point. Also based on research question 1.1 and 1.2, research question 1.5 extends research 

question 1.3 to higher dimensions and serves as the theoretical foundation of research 

question 1.6 and 1.7, which proposes a numerical gradient calculation method nested in a 

line search algorithm to calculate the global minimax controller. 

With the calculated minimax controller and associated minimax performance as the 

evaluation criteria for POF estimation, Chapter 6 proposes a POF Constrained Optimal 

Average Performance Controller Design, essentially a numerical line search method to 
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design a controller that enables a tradeoff between POF and average performance to 

reduce the second level of conservatism. Research questions 2.1 and 2.2 provide methods 

for calculating average performance and a searching direction towards the optimal 

average performance design point. Research questions 2.3 and 2.4 propose a method to 

calculate POF and the search direction along the constraint POF contour. Research 

question 2.5 describes the indicative condition when the line search reaches the desired 

design point. A comprehensive algorithm is provided to fulfill the proposed methodology. 

A comprehensive HVAC example is provided in Chapter 7, where a physical model is 

built and uncertain parameters are identified. The proposed method is then applied and a 

controller is designed to reduce the conservatisms. 
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CHAPTER 2 

BACKGROUND  

 

In this chapter, the background of the control system will be elaborated, by the sequence 

of system overview, plant, and controller. Built on this, it proceeds to the introduction of 

uncertainties in the system. The focus is then put on parameter uncertainty.  

2.1 Basic Control System 

 

Figure 2.1 Basic feedback control system 

A basic control system with feedback structure is exhibited in Figure 2.1. While open-

loop, feedforward structure exists as an alternative to a feedback structure, most control 

systems utilize the feedback structure. Compared to a feedforward structure, a feedback 

structure has multiple advantages: it achieves stability more easily, a better signal track 

performance, less dependence of model’s accuracy level, etc. [3]. 

Besides feedforward/feedback, with the variations of plant’s physical features, the 

control system can be categorized in many ways, e.g. linear/non-linear, 

MIMO/MISO/SIMO/SISO, continuous/discrete.  With variations from control objective, 

feedback, and controller type, the control system has subareas like optimal control, 

preview control, adaptive control, robust control, etc.  There are also many evaluation 

criteria associated with control systems such as system stability, time domain and 

frequency domain response performance, and control effort (energy consumption). 
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In Figure 2.1, the two boxes (Plant and Controller) are linked by multiple signals 

including controller output 𝑢, measurement 𝑦, and error signals 𝑒. The Plant models the 

physics of the monitored target. There are one or more state variables embedded in the 

plant that needs to be controlled. The Controller models the physical actuator. These two 

components are the most important in a control system and will be further introduced in 

the following sections. 

2.2 Plant 

The function of the plant is to take in output from the controller and outside disturbance 

and calculate the state variables’ values at the next time point. The state variables are 

measured from the sensor and then delivered to the controller. In real life, usually the 

control system suffers from a outside disturbance which acts on the plant and noise which 

acts on the sensor. 

The plant’s mathematical representation equation is usually derived from the physical 

law of the monitored target such as the law of energy conservation, Newton’s second law 

of motion. Generally, what happens in a linear plant can be described in the next set of 

linear equations, 

                                                     �̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐶𝑑 (2. 1)  

                                                           𝑦 = 𝐷𝑥 + 𝑤 (2. 2) 

where 𝑢 is the output signal from the controller. 𝑥 is the state variables that needs control. 

𝑑 is the disturbance. 𝑦 is the measured signal from sensor. 𝑛 is the sensor noise. The 

coefficients 𝐴, 𝐵, 𝐶, 𝐷 are derived physically to match the units and dimensions. 

2.3 Controller 

The purpose of the controller is to take in measured signal and then deliver necessary 

control effort to make the plant function as desired. Take the feedback control loop for 

example, the input into the controller is the feedback signal, i.e., the error signal between 
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the measured state variable and the reference signal. The output of the controller is then 

delivered to the actuator such as a motor, fan and valve, and the actuator then delivers 

appropriate control effort into the plant. The dynamics of the actuator is usually 

integrated into the controller’s transfer equation. 

While there are multiple controller types available, the controllers can be represented 

by the following equation, 

                                                       𝑢 = 𝐹1(𝑠)𝐹2(𝑦, 𝑟) (2. 3) 

where 𝐹1is Laplace equation in 𝑠 domain and 𝐹2 is a function of sensor measurement and 

reference signal. 

So far, how the controller works is identified which enables it to proceed to controller 

types and controller design methods. While there are many types of controller and 

associated controller design methods, PID controller and Optimal Controller are 

selected as the typical controller and the controller design method reviewed in this 

research since they are widely used. 

2.3.1. Proportional-Integral-Derivative (𝑷𝑰𝑫)/Proportional-Integral (𝑷𝑰) Control 

The 𝑃𝐼𝐷 controller dates backs to the 1900s and first got application in ship steering 

control [4]. With the appearance of electronic and programmable logic controllers, the 

𝑃𝐼𝐷 controller got wide applications in all fields such as industrial manufacture, aircraft, 

and HVAC. 

The mathematical description of 𝑃𝐼𝐷  controller is given in Equation (2.4) and 

Equation (2.5). The first one is expressed in time domain while the second one is 

transformed into Laplace domain. The three coefficients 𝐾𝑝, 𝐾𝑖 , 𝐾𝑑 represent proportional, 

integral, and derivative gain. 

                                           𝑢 = 𝐾𝑝𝑒 + 𝐾𝑖 ∫ 𝑒
𝑡

0
𝑑𝜏 + 𝐾𝑑

𝑑

𝑑𝑡
𝑒 (2. 4) 

                                                  
𝑢(𝑠)

𝑒(𝑠)
= 𝐾𝑝 +

𝐾𝑖

𝑠
+ 𝐾𝑑𝑠 (2. 5) 
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Generally, the 𝑃𝐼𝐷 controller has been considered the best controller historically. By 

tuning the three parameters in the 𝑃𝐼𝐷 controller algorithm, the controller can provide 

control action designed for specific process requirements [5]. It is also well recognized 

that in some applications not all the three parameters are needed to achieve certain system 

performance requirement. 

2.3.2 Optimal Control 

Different from 𝑃𝐼𝐷  controller, optimal control specifically focuses on minimizing a 

control cost, which is a function of state and control variables. Essentially, the method is 

to find such a control law by solving a set of differential equations. A Linear-Quadratic-

Gaussian (𝐿𝑄𝐺) control design method is widely used. 

With a control system structure defined in Equation (2.6) and Equation (2.7), 𝐿𝑄𝐺 

aims to minimize control cost of a control system suffering from additive white Gaussian 

system disturbance 𝑑 and additive white Gaussian measurement noise 𝑛 by implementing 

a quadratic cost function 𝐽 (as function of 𝐾), as shown in Equation (2.9). 

                                                      �̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐶𝑑 (2. 6) 

                                                           𝑦 = 𝐷𝑥 + 𝑛 (2. 7)  

                                                             𝑢 = −𝐾𝑥 (2. 8)  

                                 min.  𝐽(𝐾) = 𝐸(𝑥𝑇𝐹𝑥 + ∫ 𝑥𝑇𝑄(𝑡)𝑥
𝑇

0
+ 𝑢𝑇𝑅(𝑡)𝑢𝑑𝑡) (2. 9) 

where 𝑄  and 𝑅 are weight coefficients. The controller gain 𝐾  serves as the design 

variable in this research. 

One necessary step is to “filter” the real plant state variable 𝑥  and increase 

measurement’s fidelity from “polluted” sensor measurement. In this manner, the 𝐿𝑄𝐺 is 

composed by two components: a linear-quadratic estimator (𝐿𝑄𝐸), i.e., a Kalman filter 

and a linear-quadratic regulator (𝐿𝑄𝑅). The two serve as dual to each other, plus that 

𝐿𝑄𝐸 is not the primary research target in this research, no further elaboration will be 

given on this topic. 
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Sometimes the initial/final state variable is removed from Equation (2.9). Also it is 

assumed that there is no disturbance 𝑑  and sensor noise 𝑛 , 𝑄  and 𝑅  are constant, 

Equation (2.9) reduces to Equation (2.10) 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝐾) = ∫ (𝑥𝑇𝑄𝑥
𝑇

0
+ 𝑢𝑇𝑅𝑢)𝑑𝑡 (2. 10) 

The linear-quadratic performance 𝐽 has the following mathematical meaning in terms 

of performance evaluation criteria. The three are equivalent provided that the linear 

system is asymptotically stable: 

1. the 𝐿2 norm of the impulse-response function;  

2. the mean-squared stochastic response;  

3. the 𝐻2 norm of transfer function.  

𝐽(𝐾) is calculated via an Algebraic Riccati or Lyapunov equation,  shown in Equation 

(2.11), depending on whether the designers want to achieve optimality or not, 

 (𝐴 + 𝐵𝐾∗)
𝑇𝑃∗ + 𝑃∗(𝐴 + 𝐵𝐾∗) + 𝑄 + 𝐾∗

𝑇𝑅𝐾∗ = 0 (2. 11) 

where 𝑃∗ is a symmetric matrix with same dimension of 𝐴. Above equation also serves as 

the stability constraint for the system. 𝐽(𝐾) is then calculated as follows,  

 𝐽 = 𝑥0
𝑇𝑃𝑥0 (2. 12) 

where 𝑥0 is initial state variable. 

The Algebraic Riccati /Lyapunov equation can be analytically solved from Kronecker 

matrix algebra (Appendix I), which basically rewrites Equation (2.11) into a linear form 

a𝑥 = 𝑏 and solves for 𝑥. 

2.3.3 Important property of 𝑳𝑸𝑹 

After briefly introduced in above section, it is still necessary to revisit some properties of 

𝐿𝑄𝑅 which will be frequently used in future chapters. 

First, some well-known and strictly proved conclusions are visited: convexity and 

global optimality. While there are multiple ways to reach Riccati equation which 

essentially solves the 𝐿𝑄𝑅, such as dynamic programming, a Lagrange multiplier method 
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is used in this thesis. Following equations are cited directly from [6], no further 

elaborations are provided for new symbols. 

Property 1: gradient and convexity 

Let the Lagrangian be defined as 

 𝐿(𝐾, 𝑃𝑟 , 𝑄𝑟 , 𝜆0) = tr[𝜆0𝑅𝑟𝑄𝑟 + (𝐴𝑟𝑄𝑟 + 𝑄𝑟𝐴𝑟
𝑇 + 𝐷1𝐷1

𝑇)𝑃𝑟] (2. 13) 

Take the first order and second order derivatives, 

 
𝜕𝐿

𝜕𝐾
|(𝐾∗,𝑃∗,𝑄∗) = 2𝑅2𝐾∗𝑄∗ + 2𝐵𝑇𝑃∗𝑄∗ (2. 14) 

 
𝜕2𝐿

𝜕𝐾2 |(𝐾∗,𝑃∗,𝑄∗) = 2𝑅2𝑄∗ (2. 15) 

From definition, 𝑅2  is positive defined; to ensure system is stable, 𝑄∗  satisfies the 

following Lyapunov equation and is also positive defined. 

 (𝐴 + 𝐵𝐾∗)𝑄∗ + 𝑄∗(𝐴 + 𝐵𝐾∗)
𝑇 + 𝐷1𝐷1

𝑇 = 0 (2. 16) 

Thus, the RHS of Equation (2.15), or Hessian Matrix, is also positive defined. Thus 

the performance 𝐽’s response WRT controller 𝐾 is strictly convex. 

Property 2: optimality 

The definition of 𝐿𝑄𝑅  is that there exists 𝐾𝑙𝑞𝑟  who uniquely gives the optimal 

performance 𝐽. It can be directly solved from Equation (2.14) so that 

 𝐾𝑙𝑞𝑟 = −𝑅2
−1𝐵𝑇𝑃 (2. 17) 

where 𝑃 satisfies the following Lyapunov equation 

 (𝐴 + 𝐵𝐾∗)
𝑇𝑃∗ + 𝑃∗(𝐴 + 𝐵𝐾∗) + 𝑅1 + 𝐾∗

𝑇𝑅2𝐾∗ = 0 (2. 18) 

2.4 Uncertainty Identification  

The quality of a traditional control system is rooted in the validity of the mathematical 

models used in its design, the fidelity of the information it receives, and the health of its 

actuation devices. That is why in many cases, system’s performance is degraded when 

the validity of the mathematical model fails to meet the real one. Only when the model is 
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a good match to reality, the sensors and actuators are functioning as expected, uncertainty 

in the system is low, the system behaves as designed and predicted. 

However, control systems do not always perform as their models would predict — due 

to inaccurate parameters estimation, online system faults and as a result, system 

performance degrades and mission effectiveness is reduced. When the control system is 

viewed from a state-space equation point of view, there are three types of uncertainties in 

the system: disturbance 𝑑, sensor noise 𝑛 and parameter uncertainty. When the control 

system is represented in Equation (2.1), the parameter uncertainty stands for the 

parameter 𝐴, 𝐵, 𝐶  changes through the simulation time. Such system is identified as 

Time-varying Control System. 

Compared to the disturbance and noise, the parameter uncertainty is not considered in 

either 𝑃𝐼𝐷 or optimal controller design methodology. When viewed from a system level, 

such uncertainty will change the physical nature of the control system. 

Argument 1: Parameter uncertainty will change the physical nature of the control 

system.  

Proof of Concept: If a Laplace transformation of the control system in Equation (2.1) 

is performed, the two input/output equations are shown below. 

                                                                   
𝑥

𝑢
=

𝐵

𝑠−𝐴
 (2. 19) 

                                                                   
𝑥

𝑑
=

𝐶

𝑠−𝐴
 (2. 20) 

Classic control theory states that a system’s performance, which could be either 

stability, transient response, disturbance rejection or energy usage, depends on 

open/closed loop transfer equation. When the disturbance or sensor noise presents in the 

system as 𝑑, 𝑛 change with time, the RHS of Equation (2.19) and Equation (2.20) still 

keep unchanged. On the contrary, when parameter uncertainty appears as 𝐴, 𝐵, 𝐶 change, 

the RHS of Equation (2.19) and Equation (2.20) change, either in the numerator or 

denominator. In this manner, same control signal 𝑢 will yield different state variable 𝑥. 
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Therefore, parameter uncertainty changes the physical nature of the system and thus the 

performance of the system with a pre-tuned controller. 

The 𝐿𝑄𝐺 optimal control is actually suitable for a time-varying control system design 

under the premise that the values of time-varying parameters are known. The equations 

used to solve such time-varying control system are the same with Equation (2.11)-(2.12); 

the only difference is that now the controller gain is not constant through simulation, but 

is updated with the same Equation (2.17), but new values of parameters 𝐴𝑡 , 𝐵𝑡, 𝐶𝑡 at every 

time point 𝑡. No new equations will be given in this thesis to avoid redundancy. 

The premise of above statement is that the parameter uncertainty should be either 

deterministic or measurable (different from control system state’s observability). If the 

parameters are un-measurable, then the time-varying 𝐿𝑄𝐺 control is not applicable. Truth 

is, such idealized condition is rare in real life and leaves the time-varying 𝐿𝑄𝐺 control 

not a viable choice. So this method is not considered in this thesis and other solutions will 

be evaluated in the next chapter to regulate system’s performance under parameter 

uncertainty. 

2.5 Uncertainty definitions and nomenclatures 

Before any further analysis is given, several terms and nomenclatures are defined to 

fluent future chapters. Any models or examples to be analyzed in this thesis are mapped 

and represented in the form of state space (Equation (2.21) to Equation (2.22)). Note that 

to make the problem easier, neither observer equation/sensor noise nor plant disturbance 

is adopted here. It is easy to extend the conclusions derived in future chapters so that 

above ignored terms are also considered, as the commonality between 𝐿2  and 𝐻∞  has 

been proved in all textbooks [6]. For the moment, all uncertainty channels are assumed to 

be independent from each other. Controller matrix 𝐵  is assumed to be constant. The 

system is assumed to be controllable for any possible uncertain parameter. 

 �̇� = 𝐴𝑥 + 𝐵𝑢 (2. 21)  
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 𝑢 = −𝐾𝑥 (2. 22)   

 𝐽(𝐾) = ∫ (𝑥𝑇𝑄𝑥
𝑇

0
+ 𝑢𝑇𝑅𝑢)𝑑𝑡 (2. 23) 

Here the normal plant matrix is denoted as 𝐴𝑛 ∈ ℝ𝑛∗𝑛 . Controller input matrix is 

defined as 𝐵 ∈ ℝ𝑛∗𝑚. The controller given by default 𝐿𝑄𝑅 method is denoted as 𝐾𝑙𝑞𝑟 ∈

ℝ𝑚∗𝑛. The corresponding normal optimal performance is denoted as 𝐽𝑙𝑞𝑟 ∈ ℝ1 and is a 

scalar. Note that unless specified otherwise, when a performance is mentioned in future 

chapters, it refers to the quadratic performance 𝐽 from Equation (2.23). In this context, a 

better or equivalently smaller performance means a smaller value of 𝐽 ; a worse or 

equivalently larger performance means a larger value of 𝐽 ; the optimal performance 

means the smallest value of 𝐽 over all controller design space. 

The closed loop system is described as  

 𝐴𝑘 = 𝐴 + 𝐵𝐾 ∈ ℝ𝑛∗𝑛 (2. 24) 

The real plant that deviates from the normal when the parameter uncertainty is 

observed is denoted as 𝐴𝑣 ∈ ℝ𝑛∗𝑛 

 𝐴𝑣 = 𝐴𝑛 + ∑ ∆𝐴𝑖
𝑐
𝑖=1  (2. 25) 

where the parameter uncertainty matrix ∆𝐴𝑖 ∈ ℝ𝑛∗𝑛 has the following structure: for each 

∆𝐴𝑖, ∀𝑖 = 1… 𝑐, there is only one non-zero real number ∆𝑎𝑖 ∈ [𝑎𝑖
𝑙 , 𝑎𝑖

𝑢] ∈ ℝ1 in the matrix 

and the cell that contains such non-zero real number could be anywhere. 

 ∆𝐴𝑖 =

[
 
 
 
 
0 …

⋮

⋱
∆𝑎𝑖

⋱

0

⋮

0 … 0 ]
 
 
 
 

∈ ℝ𝑛∗𝑛 (2. 26) 

To distinguish it from the definition of matrix’s dimension, each parameter uncertainty 

∆𝑎𝑖 and the corresponding range [𝑎𝑖
𝑙 , 𝑎𝑖

𝑢] define a “𝑐ℎ𝑎𝑛𝑛𝑒𝑙”. 𝑐 is used to denote the total 

number of ∆𝐴𝑖, or equivalently the number of channels in matrix  𝐴. The combination of 

all channels forms the uncertainty space 𝑈, e.g., if a 2 ∗ 2 plant 𝐴𝑛 = [
𝐴11 𝐴12

𝐴21 𝐴22
] has 
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two uncertain elements 𝐴11 and 𝐴12, then it has two uncertainty channels ∆𝐴11 and ∆𝐴12. 

The uncertainty space is defined as 

 𝑈 ≡ {∆𝐴11, ∆𝐴12|∆𝐴11 ∈ [𝑎11
𝑙 , 𝑎11

𝑢 ], ∆12∈ [𝑎12
𝑙 , 𝑎12

𝑢 ]} (2. 27) 

In future chapters, for clarification purposes, sometimes the subscript of uncertainty 

channels is replaced by (𝑖, 𝑗) in the matrix when the position of uncertainty channel ∆𝐴𝑖𝑗 

is known. Also note that due to realization, the total number of uncertain elements in 𝐴 

not necessarily equals to the total number of uncertain parameters in the physics 

equations, though the two have the same physical meaning and can be easily transformed 

through realization. Since it is not the interest of this research and to avoid confusion, 

when the parameter uncertainty is mentioned in Chapters 3, 4, 5 and 6, no physics 

equations will be referred; instead, it only refers to the uncertain elements in 𝐴. 

The mathematical meaning of above structure is that all parameter uncertainties can be 

expressed as the variations offset from the normal values of one or multiple elements in 𝐴. 

Equation (2.25) does nothing but simply decomposes all parameter uncertainties into 

individual “channel”. Such channels could have different magnitude and sign; could be 

correlated or not. The term “uncertainty structure” will be used purposely in future 

chapters to describe the positions and properties of these uncertainty parameters. 

At the same time, the controller design space can be represented as follows. The only 

requirement associated with it is that the selected controller ensures the plant is stable. 

 𝑆 ≡ {𝐾1, 𝐾2 …𝐾𝑛|𝐴 + 𝐵𝐾 < 0} (2. 28) 

From a design space exploration point of view, when the term “point in the uncertainty 

space 𝑈” or “point in the controller design space 𝑆” is mentioned in future chapters, the 

word “point” means a specified system space state matrix 𝐴𝑣 whose uncertain elements 

are defined in Equation (2.25), or one specified controller in the controller design space 𝑆 

defined in Equation (2.28). 

With above definitions, the system to be dealt with in this thesis can be written in the 

following manner, 
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 �̇� = (𝐴𝑛 + ∑ ∆𝐴𝑖
𝑐
𝑖=1 )𝑥 + 𝐵𝑢 (2. 29) 

 𝑢 = −𝐾𝑥 (2. 30) 

 𝐽(𝐾, ∆𝐴1, …∆𝐴𝑐) = ∫ (𝑥𝑇𝑄𝑥
𝑇

0
+ 𝑢𝑇𝑅𝑢)𝑑𝑡 (2. 31) 

For reference, a system who suffers from parameter uncertainty is labeled as 𝑛𝐷𝑐𝐶, 

where 𝑛 denotes a 𝑛 by 𝑛 matrix 𝐴 representing the system dynamic characteristic and 

there are 𝑐 uncertainty channels. The following 1𝐷1𝐶, 2𝐷1𝐶 and 2𝐷2𝐶 examples will be 

used frequently in future chapters to provide visual examples for hypotheses proofs. 

Their normal plants as well uncertainty channels are summarized below so that there will 

be no need to re-describe them when used. 

1𝐷1𝐶 example: 

�̇� = 𝐴𝑣𝑥 + 𝑢 = (1 + ∆𝑎)𝑥 + 𝑢 

∆𝑎 ∈ [−0.5,0.5], 𝑄 = 𝑅 = 1, 𝑥0 = 1 

𝐾𝑙𝑞𝑟 = −1.414 

For the following examples, all 𝑄 = 𝐼2∗2, 𝑅 = 1, 𝑥0 = [
1
0
]. 

2𝐷1𝐶 example1: 

�̇� = 𝐴𝑣𝑥 + 𝑢 = [
1 + ∆𝑎 1

0 1
] 𝑥 + [

1
1
] 𝑢 

∆𝑎 ∈ [−0.5,0.5] 

𝐾𝑙𝑞𝑟 = [5.0273 −0.4142] 

2𝐷1𝐶 example2: 

�̇� = 𝐴𝑣𝑥 + 𝑢 = [
1 1 + ∆𝑎
0 1

] 𝑥 + [
1
1
] 𝑢 

∆𝑎 ∈ [−0.1,0.1] 

𝐾𝑙𝑞𝑟 = [5.0273 −0.4142] 

2𝐷2𝐶 example1: 

�̇� = 𝐴𝑣𝑥 + 𝑢 = [
1 + ∆𝑎1 1 + ∆𝑎2

0 1
] 𝑥 + [

1
1
] 𝑢 
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∆𝑎1 ∈ (−1, 1.5], ∆𝑎2 ∈ [0, 0.6] 

𝐾𝑙𝑞𝑟 = [5.0273 −0.4142] 

2𝐷2𝐶 example2: 

�̇� = 𝐴𝑣𝑥 + 𝑢 = [
1 1

0 + ∆𝑎1 1 + ∆𝑎2
] 𝑥 + [

0
2
] 𝑢 

∆𝑎1 ∈ [−0.5,0.5], ∆𝑎2 ∈ [−0.5,0.5] 

𝐾𝑙𝑞𝑟 = [3.5201 −0.6180] 

For a plant with a matrix 𝐴  whose size is larger than 2 by 2, the corresponding 

performance over controller design space requires at least 3 dimensions view and is not 

viable in any plot and thus not considered as illustrative example here. However, there 

will be a high dimension HVAC control system design used as a case study in Chapter 7.  
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CHAPTER 3 

SOLUTIONS TO PARAMETER UNCERTAINTY 

 

The takeaway from Chapter 2 is that the parameter uncertainty might degrade system 

performance if not treated carefully. In this chapter, system performance’s properties 

such as curvature and monotonicity will be first examined, followed by two types of 

solutions to parameter uncertainty: adaptive control and robust control, surveyed from a 

literature search. In the end, a particular type of robust control design method, the robust 

minimax controller design method will be studied and treated as the reference in future 

research. 

3.1 Analysis of properties of parameter uncertainty 

3.1.1 Mapping between controller and uncertainty 

When considered from a closed loop controller tuning point of view, for a system 

described in Equation (2.29), its system dynamics “solely” depends on the closed loop 

dynamic matrix, as shown in Equation (3.1), 

 𝐴𝑐𝑣 = 𝐴𝑣 + 𝐵𝐾𝑙𝑞𝑟 + ∑ ∆𝐴𝑖
𝑐
𝑖=1  (3. 1) 

Argument 2: Under some circumstances (see following), parameter uncertainty and 

controller tuning are “equivalent”: there exists a mapping from uncertainty space 𝑈 to 

controller design space 𝑆 . Alternatively speaking, given the dimension of 𝐾  and the 

structure of parameter uncertainties, there exists a corresponding ∆𝐾 ∈ ℝ𝑚∗𝑛 so that the 

following equation is satisfied for each point from the uncertainty space 𝑈, 

 ∑ ∆𝐴𝑖
𝑙
𝑖=1 = 𝐵∆𝐾 (3. 2) 

Proof of concept: It’s an easy proof since their “impacts” on system dynamic matrix 

are linearly added, or it is impossible to identify whether “impacts” are contributed from 

controller or parameter uncertainty. In such case, there will be a unique “mapping” that 
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“links” the controller design space 𝑆 to the parameter uncertainty space 𝑈. The following 

example is provided to help understand. 

Example 3.1: In 2𝐷2𝐶 example 2, for any uncertainty point within the space (𝑎1 ∈

[−0.5, 0.5], ∆𝑎2 ∈ [−0.5, 0.5])  there exists one unique ∆𝐾1 ∈ [−0.25, 0.25]  and ∆𝐾2 ∈

[−0.25, 0.25]. The meaning of above statement is that for any variation contributed from 

the two uncertainty channels that acts on the normal plant 𝐴𝑛  along with normal 

controller 𝐾𝑙𝑞𝑟 , there exists a system composed of a normal plant 𝐴𝑛  with a new but 

unique controller 𝐾𝑛𝑒𝑤, as shown in Equation (3.3): the two systems are equivalent with 

each other. 

 𝐾𝑛𝑒𝑤 = 𝐾𝑙𝑞𝑟 + [∆𝐾1, ∆𝐾2] (3. 3) 

∆𝐾1 ∈ [−0.25, 0.25], ∆𝐾2 ∈ [−0.25, 0.25] 

In such case, a lot of efforts can be saved since the properties of parameter uncertainty, 

such as system’s stability, convexity, and optimality is equivalent with that of the 

controller. E.g., if a particular controller makes the system unstable, then the 

corresponding point in the parameter uncertainty space that satisfies Equation (3.3) will 

also make the system unstable; since the performance response WRT the controller is 

convex with the normal plant, then the performance response WRT the parameter 

uncertainties when a controller is given is also convex. 

However, above circumstance actually has a strong requirement that the corresponding 

𝐵 that maps controllers to parameter uncertainty is non-singular, which is not usually the 

case. A counter example is provided below. 

Example 3.2: For 2𝐷2𝐶 example1, there is no mapping, or ∆𝐾 exists in the controller 

design space to make Equation (3.19) valid, as ∆𝐾 =
∑ ∆𝐴𝑖

𝑙
𝑖=1

𝐵
= [

∆𝑎1 ∆𝑎2

0 1
] / [

1
1
] leads to 

singularity. Occasionally there exist a 𝐵′ that differs from 𝐵 in terms of dimension and 

rank, but that would easily lead to a uncontrollable system.  
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When the system dimension increases, such chance further decreases and thus efforts 

are still needed when such mapping doesn't exist. 

3.1.2 System performance WRT to parameter uncertainty 

From a closed loop point of view, both controller and parameter uncertainty will affect 

system’s performance. Due to the fact that the controller can be tuned and designed, it 

will be assumed to be “given” or at least fixed when the property of parameter 

uncertainty is analyzed, i.e., unless specified otherwise, the controller designed from the 

traditional 𝐿𝑄𝑅 method with normal plant will be used as the default controller in future 

chapters. 

Argument 3: How performance responses to parameter uncertainty depends on the 

position and sign of parameter uncertainty. 

Proof of concept: First, re-formulate the uncertainty structure so that each uncertainty 

channel can be viewed as 1𝐷 variation, 

 ∆𝐴𝑖 =

[
 
 
 
 
0 …

⋮
⋱

∆𝑎
⋱

0

⋮

0 … 0 ]
 
 
 
 

=

[
 
 
 
 
0 …

⋮
⋱

1
⋱

0

⋮

0 … 0 ]
 
 
 
 

∆𝑎 (3. 4) 

where 𝐼 is the identity matrix and ∆𝑎 is a scalar. 

Next several examples are provided to support above argument. 

Example 3.3: In 1𝐷1𝐶  example with 𝐾𝑙𝑞𝑟  pre-selected and specified parameter 

uncertainty, the closed loop system dynamic equation is shown in Equation (3.5), 

 �̇� = 𝐴𝑣𝑥 + 𝑢 = (1 + ∆𝑎)𝑥 − 2.414𝑥 = (−1.414 + ∆𝑎)𝑥 (3. 5) 

∆𝑎 ∈ [−0.5, 0.5] 

The eigen value is exactly calculated as 𝜆 = −1.414 + ∆𝑎 ∈ [−1.914, −0.914]. Thus 

even with the parameter uncertainty, the system is still stable. In terms of performance 𝐽, 

it can be expected that a positive variation will degrade the system performance while a 

negative variation improves, as shown in Figure 3.1. 
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Figure 3.1 Performance over uncertainty space 𝟏𝑫𝟏𝑪 

For system with a higher dimension, the position of parameter uncertainty matters in a 

way of affecting the dominant eigen value. E.g., in a 2*2 system dynamic matrix 

𝐴 = [
𝐴11 𝐴12

𝐴21 𝐴22
], the eigen values are given as 

 𝜆1,2 =
𝐴11+𝐴22± √(𝐴11−𝐴22)2+4𝐴12𝐴21)

2
 (3. 6) 

Given that (𝐴11 +𝐴22)  is negative to ensure stability, if (𝐴11 −𝐴22)
2 +

4𝐴12𝐴21 ≪ 𝐴11 +𝐴22 , then a positive variation in either element 𝐴11  or 𝐴22  will 

equivalently degrade the system performance, since it pushes the eigenvalue towards the 

imaginary axis; if  (𝐴11 − 𝐴22)
2 + 4𝐴12𝐴21 > 0, then the system has two poles on the 

real axis: a positive variation in either position 𝐴11 or 𝐴22 will not necessarily degrade 

system since it might decrease the value of √(𝐴11 − 𝐴22)2 + 4𝐴12𝐴21 and thus push 

the dominate eigenvalue away from the imaginary axis, as shown in the next example; for 

a variation in the element 𝐴12 or 𝐴21, how it affects the system performance depends on 

the value and sign of the other and it is possible that such effect is not monotonic. It is 

also possible that the system goes unstable due to parameter uncertainty. Thus, there is no 

general conclusion about the performance WRT parameter uncertainty. Next, a numerical 

example is given to illustrate above concept. 
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Example 3.4: For 2𝐷2𝐶 example1 with 𝐾𝑙𝑞𝑟, a sweep method is used to explore the 

uncertainty space and the result is shown in    Figure 3.2. In the ∆𝑎1 channel, the system 

performance decreases as ∆𝑎1 goes towards negative bound and even becomes unstable 

when ∆𝑎2 = 0  and ∆𝑎1 = −1 ; the system performance also degrades as ∆𝑎1  goes 

towards positive bound. On the other side, in ∆𝑎2 channel within the given uncertain 

range, the system performance improves monotonically in the given uncertainty range as 

∆𝑎2 moves towards positive bound. 

 

    Figure 3.2 Performance over uncertainty space 𝟐𝑫𝟐𝑪

One other interesting observation is, the non-monotonic trend in ∆𝑎2  channel 

gradually disappears as ∆𝑎1 increases. This again demonstrates the non-consistent feature 

of the system performance WRT parameter uncertainty. When there are more than one 

uncertainty channels, they could get coupled with each other and make the system 

performance non-consistent through the whole parameter uncertainty space. 

Above analysis yields the following facts: parameter uncertainty not necessarily 

degrades system performance; while it is a fact that parameter uncertainty is usually non-

constant but a range of values, there is no one overall answer [7]. What is worse, such 

non-consistence brings difficulty in the controller design as there is no such controller 

that could ensure both robustness and optimality. All above analysis contributes to the 
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challenge to design a controller and such challenges will be further illustrated in future 

chapters.  

In this context, adaptive control and robust control emerge as the state of art solutions 

to the parameter uncertainty. 

3.2 Adaptive Control 

As illustrated in Section 2.4, the time-varying 𝐿𝑄𝐺 controller design method is naturally 

an adaptive control as the control gain is updated at each time point. The traditional 

adaptive control method, as a solution to parameter uncertainty, has less strong 

assumption since it does not require the uncertain parameters to be known. 

The core idea of adaptive control is that every time the parameter uncertainty occurs in 

the plant and manifests itself through sensor measurement by deviating system 

performance from desired, the controller “dynamically” adjusts itself to “fit” such 

uncertainties to avoid performance degradation. 

Adaptive control has many subareas and techniques. Two frequently used techniques 

are Model Reference Adaptive Controllers (𝑀𝑅𝐴𝐶 ) [ 8 ] and Model Identification 

Adaptive Controllers (𝑀𝐼𝐴𝐶 ) [9]. Besides 𝑀𝑅𝐴𝐶  and 𝑀𝐼𝐴𝐶 , thanks to the modern 

computer and the digital programming techniques, there are multiple derivations 

developed from the concept of adaptive control such as fuzzy logic control [10], neural 

network control [11], and machine learning control [12]. 

Only the MRAC will be shown in this section since it is the most representative of the 

core concept of adaptive control. The MRAC aims to create a closed loop controller with 

a gain that can be updated to change the response of the system to “match a desired” 

model. To fulfill this, an error signal is first generated by comparing desired and actual 

model output. Then such error is penalized by performing a cost function 𝐽 as a function 

of error to “enforce” the model to output desired results. 

 𝑒 = 𝑦𝑝𝑙𝑎𝑛 − 𝑦𝑚𝑜𝑑𝑒𝑙 (3. 7) 
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 𝐽(𝜃) =
1

2
𝑒2(𝜃) (3. 8) 

where 𝜃 is the parameter that will be adapted in the controller. Such parameter adaption 

procedure is depicted as the time gradient of parameter variation as a function of output 

error 

 
𝑑𝜃

𝑑𝑡
= −𝛾

𝑑𝐽

𝑑𝜃
= −𝛾𝑒

𝑑𝑒

𝑑𝜃
 (3. 9) 

In this manner, the parameter 𝜃 is constantly tuned to generated desired results. 

3.3 Robust Control 

When such “on-line” parameter tuning is not feasible, or the model is corrupted with 

noise and disturbance, then the capability of adaptive control is limited. Consider 𝐿𝑄𝐺 

control method for example, the accurate estimation of the plant outputs from noise is 

based on an accurate knowledge of the plant parameters. If there are plant parameter 

uncertainties as well as disturbance and noise, then it is impossible that one can tell 

exactly whether the performance variations are contributed from parameter uncertainty, 

disturbance or noise. In such case, robust control is needed. 

The concept of robust control is to synthesize controllers achieving stabilization with 

guaranteed performance as long as uncertain parameters are within some sets. The most 

widely used design method is 𝐻2/𝐻∞ method based on Small Gain Theorem [13]. 

 

Figure 3.3 𝑯𝟐/𝑯∞Method 

 𝐻∞ is the space of matrix-valued functions that are analytic and bounded in the open 

right-half of the complex plane defined by 𝑅𝑒(𝑠) > 0 .  𝐻∞  norm is the maximum 
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singular value of the function over that space, which is corresponding to the worst-case 

scenario. 

                                     𝐻∞ =∥ 𝐹𝑙(𝑃, 𝐾) ∥∞= 𝑠𝑢𝑝𝜎(̅̅ ̅𝐹𝑙(𝑃, 𝐾)(j𝜔)) (3. 10) 

                                       𝐹𝑙(𝑃, 𝐾) = 𝑃11 + 𝑃12𝐾(𝐼 − 𝑃22𝐾) 
−1

𝑃21
 (3. 11) 

Robust control then minimize 𝐻∞ norm to find the maximum allowable stable margin. 

𝐻∞  technique can be used to minimize the closed loop impact of a perturbation. 

Depending on the problem formulation, the impact will either be measured in terms of 

stabilization or performance. 

But note that simultaneously optimizing robust performance and robust stabilization is 

difficult. So a lot of research is done WRT play with the balance between stability and 

performance. 𝐻∞  Loop Shaping method overshadows 𝐻∞  method by describing the 

desired performance (responsive and noise-suppression) through forcing a weight 

function into the transfer function [14]. 

  

Figure 3.4 𝑼 Synthesis and D-K iteration 

𝑈 synthesis overshadows 𝐻∞ method since there are more conservatism in the latter 

method at some specific types of problem formulation (the small gain problem has a 

block diagonal structure) [14]. It uses structured singular value to reduce such 

conservatism. Instead of minimizing 𝐻∞ =∥ 𝐹𝑙(𝑃, 𝐾) ∥∞, the structured singular value 

can be written as 

                                                  𝐻∞ =∥ 𝐷𝐹𝑙(𝑃, 𝐾)𝐷−1 ∥∞ (3. 12) 
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However, the mathematical calculation can be difficult. Usually, it is done through an 

iterative process by D-K iteration. However, the solution is not guaranteed to converge. 

3.4 Remarks about control concepts 

Note that although there are discrepancies between adaptive control and robust control, 

sometimes the two are mingled as “adaptive robust control” with tunable parameter and 

the robust performance as the control objective. In this thesis, robust control will be the 

main focus and the term such as “adaptive robust control” will not appear to avoid 

confusion. It is also worth mentioning that both adaptive control and robust control are 

controller design methods, rather than controller types, as both have applications on 𝑃𝐼𝐷 

controller and optimal 𝐿𝑄𝐺 controller [15]. 

3.4.1 Comparison between adaptive control and robust control 

It is interesting to make a comparison between adaptive control and robust control, as 

both aim to design a controller for a system with uncertain parameters, but under 

different assumptions. Such comparison is shown in Table 1. 

Table 1 Comparison between adaptive control and robust control 

Category Adaptive Control Robust Control 

Definition Designs a controller which must 

adapt to a controlled system with 

parameters varying 

Designs a controller to function 

properly so long as uncertain 

parameters are within some set 

Structure Changes control system structure Remains control system structure 

Feature Adaptive control algorithm 

dynamically adjusts to the 

changing conditions 

Robust control policy is static; rather 

than adapting to variations 

Application Effective when parameter 

uncertainty is measurable 

Effective when parameter 

uncertainty is unmeasurable 
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The discrepancy is more evident when viewed from mathematical equations. Referring 

to the Equation (2.4) and Equation (2.30), adaptive control is to let 𝐾𝑝,  𝐾𝑖and 𝐾𝑑 (𝐾 for 

𝐿𝑄𝐺 ) be changeable, so that the system can still reach desired performance even 

𝐴,  𝐵and 𝐶 change. On the contrary, robust control is to pre-select the best setting of 

𝐾𝑝,  𝐾𝑖and 𝐾𝑑  ( 𝐾  for 𝐿𝑄𝐺 ) so that the performance variation due to 𝐴,  𝐵and 𝐶 

variations is minimized. 

If the uncertainty has high and slow variation, then adaptive control is preferred [16]. 

Generally speaking, adaptive control needs constant tuning, which is effort and cost 

taking [17]. Even with digital programmable devices available, there is a need for extra 

components to output the compensation signal. Still, it has wide applications such as 

building energy systems, Adaptive Flight Control System (AFCS) [18]. 

If the uncertainty has low variation but a high frequency, then robust control is 

preferred [17]. Compare to adaptive control, robust control needs no tuning, but its 

performance is not as good as that of adaptive control. It also has wide applications such 

as robots design [19]. 

In this thesis, considering the fact that not all control systems have access to digital 

programmable devices, robust control will be used as the baseline control method and 

will be compared with the proposed control system design method later. 

3.4.2 Comparison between traditional design and control system design  

It would be easier to understand the concept of robust control through a comparison 

between traditional design method with noise variable (TDMNV) proposed in [20] and 

robust control, as shown in Table 2. 
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Table 2 Comparison between traditional design with noise variable and robust control 

Category Traditional design method 

with noise variables 

(TDMNV) 

Robust control system design 

Evaluation 

criteria 

Performance feasibility 

Viability 

Stability and others 

Identify 

design 

Variables 

Design variable range 

Noise variable distribution 

Controller type 

Parameter uncertainty range 

Evaluation 

methodology 

Modeling 

MC Sampling & POF 

 

Dynamic simulation 

System estimation  

Find response extremes 

Design space 

exploration 

Random (MC sampling) Analytical robust control design 

from response extremes 

 

For TDMNV, the noise variables which are in-deterministic in nature bring 

uncertainty into the performance response. Thus instead of using performance feasibility 

as measurement, viability or Probability of Failure (𝑃𝑂𝐹) can be used to accommodate 

the probabilistic feature. For robust control design, evaluation criteria remain unchanged. 

When it comes to the second step, the probability distributions of noise variables from 

TDMNV are needed. Robust control only needs the ranges of uncertain parameters and 

the probability information is not necessary. Actually, it increases the conservatism of the 

calculated result for robust control, which will be highlighted in Chapter 4. 

After probability distribution is investigated, designers can easily use the modeling 

and sampling techniques to calculate 𝑃𝑂𝐹  for one particular design point. For robust 
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control system design, besides dynamic simulation and system estimation which have 

been already included in traditional control design, response extreme (worst-case 

scenario) also needs to be calculated, such as the stability and performance extremes 

which are represented in the form of maximum norm 𝐻∞. 

There is a trick in the last step for TDMNV. If the evaluation criteria are still defined 

in the form of feasibility, then everything remains the same with design procedure 

without noise variables. If viability is used rather feasibility, sampling is the most 

straightforward method since it requires the least information of knowledge of the 

physical law for viability calculation. Otherwise, analytical and numerical methods can 

be applied only when a response surface equation can be built between design variables 

and corresponding viability. However for robust control, as the response extremes have 

already been located, the remaining work is only to design a controller to minimize the 

extremes. 

3.5 Minimax Controller 

Given that the parameter uncertainty could potentially degrade system’s performance, the 

need and purpose of robust control are conceptually introduced in above section. The key 

concept is that robust controller design brings in robustness by ensuring that the system 

performance meets some evaluation criteria against all possible parameter uncertainty. 

While there are many robust controller design methods developed to regulate system 

performance in various aspects, such as stability domain, frequency domain and time 

domain, the robust controller design methodology mentioned in future chapters is 

restricted to Minimax Robust Controller Design [21][22][23]. The designed controller 

from this method which guarantees system’s quadratic performance 𝐽 is consistent with 

the system performance definition utilized in Equation (2.23). A brief introduction of this 

method is given below. 
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Figure 3.5 Performance perturbation from parameter’s uncertain range 

As shown in the first graph of Figure 3.5, if there is no parameter uncertainty, when a 

controller is selected, there will be a unique performance mapped towards quadratic 

performance 𝐽 . On the contrary, when there is parameter uncertainty, if the same 

controller is applied, instead of deterministic value, now the system performances is no 

longer constant with different values of 𝐴. Instead, it has a corresponding performance 

range, as shown in the second graph of Figure 3.5. Though not deterministic, such 

performance uncertain range can still be calculated since the range of 𝐴  is bounded 

(which is an important assumption in robust control). Now define the worst-case 

performance over the uncertain range of 𝐽 as 𝐽𝑚𝑎𝑥, or equivalently the maximun value of 

quadratic performance 𝐽, 

 𝐽𝑚𝑎𝑥|𝐾 ≡ 𝑠𝑢𝑝(𝐽(𝐴𝑣, 𝐾)) (3. 13) 

where the operator 𝑠𝑢𝑝 is short for 𝑠𝑢𝑝𝑟𝑒𝑚𝑒, denotes the upper bound.  

With above definitions, the design of minimax controller is just to find the following 

 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥|𝐾𝑚𝑖𝑛𝑖𝑚𝑎𝑥
≡ 𝑖𝑛 𝑓(𝑠𝑢 𝑝(𝐽(𝐴𝑣, 𝐾))) (3. 14) 

For better reference, let the controller 𝐾 that gives 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥 denoted as 𝐾𝑚𝑖𝑛𝑖𝑚𝑎𝑥. 
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The “worst-case scenario” point 𝐽𝑚𝑎𝑥 from robust control can always be found since 

the parameter 𝐴 ’s uncertain range is bounded. Note that the value of 𝐽𝑚𝑎𝑥  is not 

necessarily limited as for a given controller, there could be a value of ∆𝑎𝑖 that leads to 

instability. 

It is also helpful to take a quick look into the challenges of finding such minimax 

controller. Nominally, the general procedure to find the minimax controller is first to find 

the “maximum”, or the worst-case performance point in the uncertainty space, then tune 

the controller in the controller design space to “minimize” it. However, as stated in 

Section 3.1, the impact of parameter uncertainty on system performance is non-consistent, 

meaning once the controller is tuned, the corresponding worst-case point also changes 

and thus the system performance. This suggests that the uncertainty space and the 

controller design space needs to be considered simultaneously, or at least iteratively. 

This concept is totally different from traditional 𝐿𝑄𝑅 method where there is only one 

controller design space to explore. Thus the complexity increases and not necessarily 

there exists analytical solutions. 

3.5.1 Traditional minimax controller design method (TMCDM) 

In fact, the traditional minimax method falls into the category of considering two spaces 

simultaneously. For the method proposed by this research with the purpose of relaxing 

the norm bounded assumption, it falls into the category of considering two spaces 

iteratively, due to the in-consistent property of the location of the worst-case performance 

point. 

The structure of the uncertainty used in TMCDM is that the norm of parameter 

uncertainty is bounded by a given factor, as described in Equation (3.15) [24], 

 || ∑ ∆𝐴𝑖
𝑐
𝑖=1 || < 1 (3. 15) 

where several scale factors 𝜏𝑖 are utilized to represent each parameter uncertainty channel. 

A theorem is strictly proved to analytically calculate an augmented and lowest bound 



33 
 

reachable by any controller through a set of modified Riccati equations, as described in 

Equation (3.16), 

 𝐽(𝐾, ∆𝑎𝑖) = 𝑠𝑢𝑝(𝑥0
T𝑃𝑥0 + ∑ 𝜏𝑖

−1∆𝑎𝑖
𝑐
𝑖=1 ) (3. 16) 

Next, a sweep method is performed through all possible combination of scale factors 

to find the contour of such augmented and lowest bound, as shown in Figure 3.6, which is 

generated from a 4𝐷2𝐶  example problem. The smallest value is then selected as the 

minimax performance and the controller can be calculated accordingly. 

 

Figure 3.6 Sweep method for the augmented performance 
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CHAPTER 4 

GAP ANALYSIS 

 

4.1 Gap Analysis 1: First level of conservatism of TMCDM 

4.1.1 Relax norm constraint 

As stated in Section 3.3, a key assumption of the structure of uncertainty in TMCDM is 

that the norm of uncertainty is within certain specified bound. The consequence 

associated with this assumption is over conservatism. In real life, it is a very strong 

assumption since not necessarily uncertainties in multiple channels interact with each 

other. Most system representations try to decouple modes; in the physical plant, 

uncertainties could emerge anywhere and be uncorrelated at all. A more reasonable 

assumption should relax above norm-bound assumption but simply isolate and specify 

the range for each uncertainty channel to reduce the conservatism. 

After the norm-bounded parameter uncertainty is removed, now the uncertainty 

structure is relaxed to exactly what is defined in Section 2.5. In this circumstance, the 

uncertainty space is expanded from a circle in two channels structure to a square, a sphere 

in three channels structure to a cuboid respectively, as shown in Figure 4.1. Such concept 

is easily extendable to higher dimensional cases. 

  

Figure 4.1 Relax norm bounds 
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The key difference distinguishes above two structures is: taking 2𝐷2𝐶  case as 

example, instead of smooth boundary conditions, the extended structure now has multiple 

“corners” 𝑉𝑖,𝑗
𝑢𝑙 to shape extremes. These corners represent the intersection point of two 

bounds in two channels 𝑖and𝑗(𝑖 ≠ 𝑗) over the uncertainty space. The superscript 𝑢𝑙 

specifies whether the intersection points is from upper or lower bound of two channels. 

For a 2𝐷2𝐶 case, it has four corners: 

𝑢𝑙 ∈ ([𝑢𝑝𝑝𝑒𝑟, 𝑢𝑝𝑝𝑒𝑟], [𝑢𝑝𝑝𝑒𝑟, 𝑙𝑜𝑤𝑒𝑟], [𝑙𝑜𝑤𝑒𝑟, 𝑢𝑝𝑝𝑒𝑟], [𝑙𝑜𝑤𝑒𝑟, 𝑙𝑜𝑤𝑒𝑟]) 

Without loss of generality, for 𝑐 uncertainty channels, there will be 2𝑛 corners, should 

there are no degenerated ones. 

4.1.2 Remove scale term 

On the other side, in Equation (3.16) the augmented and lowest bound with term 

∑ 𝜏𝑖
−1∆𝑎𝑖

𝑐
𝑖=1  brings an extra level of conservatism into consideration, though the scale 

term’s sign could be either positive or negative. In order to reduce the conservatism, such 

scale term should be removed from the optimization equation and leave the pure 

quadratic performance 𝐽 = 𝑥0
𝑇𝑃𝑥0 to be optimized. But very likely the removal of scale 

term will jeopardize the structure of Equation (3.16) and rule out the derived analytical 

solution. 

The proposed norm extended minimax controller, to be introduced in the next chapter, 

particularly focuses on reducing such conservatisms, which is summarized in 

Observation 1. 

Observation 1: In Traditional Minimax Control Design Method, there are two 

sources of conservatism to be removed: norm-bounded uncertainty range and a scale 

term from the augmented optimization equation. 
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4.2 Gap Analysis 2: Second level of conservatism of TMCDM 

Not limited to above minimax control design method, the drawback of any worst-case 

based robust control design is that all uncertain values are given an equal likelihood of 

occurrence. Within these methods, the worst-case point is weighted equally with the most 

likely points in the uncertainty space. When designs are developed using norm-bounded 

uncertainties, systems often lack the performance characteristics that could be achieved 

for the most likely cases. The consequence of such design is another level of overly 

conservative. 

A similar gap is observed by Brett A. Smith. In his NASA technical paper 

“Probabilistic Parameter Uncertainty Analysis of Single Input Single Output Control 

Systems” [25], he argues: 

“The drawback of this approach (Robust Control) is that all uncertain values are 

given an equal likelihood of occurrence. Realistically most physical random variables 

have some sort of probabilistic distribution.” 

                    -------Brett A. Smith etc. 

In this context, a control system with a controller particularly designed for the worst-

case scenario is also unnecessary if the chance of a worst-case scenario is rare. In a word, 

incorporating probability information has the potential to reduce such conservation. A 

notional example of a controllers comparison depicted in Figure 4.2 and           Figure 4. 3 

would be helpful to make above concept intuitively clear. 

 

      (a) Performance with controller 1                         (b) Performance with controller 2 

Figure 4.2 Performance range with no parameter probability information 



37 
 

Example 4.1: It is assumed that both controller 1 and 2 are applied in a system under 

variant values of 𝐴 and the resulted 𝐻∞ performance ranges are plotted in Figure 4.2(a) 

and (b). The point highlighted with red circle in Figure 4.2(a) corresponds to the worst-

case performance or largest value over the performance uncertain range with controller 1. 

It can be guaranteed that all possible performance variations will always meet the 

evaluation criteria of 12.5. It suggests that should 12.5 is used as the evaluation criteria, 

controller 1 is robust against parameter uncertainty. 

Similarly, with the same assumption, it is evident in Figure 4.2(b) that system’s 

performance cannot always meet evaluation criteria with controller 2 applied as there are 

“outliers” at the right side of evaluation criteria, should the same 12.5 is used. Another 

way to interpret such concept is that to ensure that the performance meets criteria, the 

allowable parameter uncertain range of 𝐴 would be potentially reduced. In this context, it 

can be claimed that controller 1 is better than controller 2 since it is more “robust”. 

On the other side, if the probability distribution of uncertain parameter 𝐴  is known, 

then in terms of performance evaluation, not only the performance uncertain range can be 

calculated, but also its probability distribution. Such extra information is exhibited in the 

form of cumulative distribution function (𝐶𝐷𝐹) curve and is shown in           Figure 4. 3. 

 

(a) Performance distribution with    

controller 1 

(b) Performance distribution with 

controller 2

          Figure 4. 3 Performance distribution with parameter probability information 

In this way, the probability that the calculated performance doesn’t meet the 

evaluation criteria or equivalently probability of failure ( 𝑃𝑂𝐹)  can be calculated 
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accordingly. In           Figure 4. 3(a) where controller 1 is used, with the assumption that 

uncertain parameter 𝐴 has certain type of probability distribution, it can be expected that 

𝐶𝐷𝐹 curve crosses the performance evaluation criteria threshold right at 100% on the 

vertical axis. In           Figure 4. 3(b) where controller 2 is applied, the 𝐶𝐷𝐹 curve and 

evaluation criteria threshold intersect each other at 97% on the vertical axis. So it can be 

claimed that with controller 2 applied, 𝑃𝑂𝐹 = 3% = 0.03.  

With the probability information available, it is also observed from           Figure 4. 3 

that the average performance equals to 9.9 with controller 1 and it equals to 9 with 

controller 2. So the averaged performance of controller 2 is better than that of controller 1. 

As long as the performance failure won’t cause catastrophe, such as the quadratic 

performance, maximum overshoot value, it is reasonable to soften the “hard” evaluation 

criteria and instead, evaluate the performance in the form of 𝑃𝑂𝐹. If it happens that 𝑃𝑂𝐹 

is small, e.g., 3% in the previous example, a tradeoff between 𝑃𝑂𝐹  and average 

performance becomes reasonable and it is fair to argue that controller 2 is better than 

controller 1 since it provides a better average performance. 

Similar examples can be easily found in many system designs, considering the fact 

that except for stability, the majority of evaluation criteria are not “hard” requirement. 

For example, one of the evaluation criteria for HVAC design is the steady-state error. 

Though it might cause slight uncomfortableness to the occupants due to the offset in the 

steady-state when parameter uncertainty is presented, a small tracking error of room 

temperature, e.g., 2 degree won’t cause catastrophe or system to break down. Thus, a 

robust controller that tightly regulates the steady-state error is over conservative and 

unnecessary if the resulted 𝑃𝑂𝐹 is small. 

Above analysis is summarized into the second observation: 

Observation 2: In robust control method, all uncertain values are given an equal 

likelihood of occurrence, so it lacks the performance characteristics that could be 
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achieved for the most likely cases. The consequence of such design without probability 

consideration is overly conservative. 

4.3 Proposed methodology 

In the next two chapters, multiple steps will be presented to establish a comprehensive 

two-stage methodology to reduce such conservatisms, composed of a Norm Extended 

Minimax Controller Design (NEMCD) and a 𝑃𝑂𝐹  Constrained Optimal Average 

Controller Design (PCOACD), as shown in Figure 4.4.  

 

Figure 4.4 Proposed methodology 

The purpose of NEMCD is to reduce the conservatism brought from the norm-

bounded uncertainty assumption and the deliverable from this stage is a minimax 

controller and associated minimax performance with reduced conservatism, which will be 

feed into the second stage whose aim is to design a controller to optimize average 

performance under the constraint that 𝑃𝑂𝐹 is smaller than or equal to a given number. 

In this context, the research statement of this thesis is described as follows: 

Research statement: Based on traditional overly conservative minimax robust 

controller design, develop a two-stage conservatism reduction methodology, composed 

of Norm Extended Minimax Controller Design (NEMCD) and POF Constrained 

Optimal Average Performance Controller Design (PCOAPCD). 
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The two-stage method will be presented in the sequence of problem’s properties 

analysis, solutions proposed based on properties analysis and the exhibition of proposed 

solutions via numerical examples. When the properties are analyzed, concerns include 

existence, uniqueness, optimality, convexity, and stability; solution techniques will be 

investigated in the preference of analytical, numerical and sampling method. Complexity, 

computation time when dimensions increases and achievability will also be mentioned 

for the proposed solution. For each hypothesis, proof, and proposed method, there will be 

corresponding numerical examples, selected from 1𝐷1𝐶 to 2𝐷2𝐶 examples described in 

Section 2.5, in an order of increasing complexity. Finally, a comprehensive example of 

HVAC system will be provided to test the proposed methodology. 
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CHAPTER 5 

NORM EXTENDED MINIMAX CONTROLLER DESIGN METHOD 

(NEMCDM) 

 

In this chapter, a Norm Extended Minimax Controller Design (NEMCD) method, as the 

first stage of the proposed methodology will be introduced to reduce the first level of 

conservatism brought from the traditional minimax controller design method by 

extending the norm-bounded parameter uncertainty range, as stated in Observation 1. 

5.1 Design objective and problem formulation 

The general solution procedure of NEMCD is shown in Figure 5. 1. Notionally, after a 

controller is selected, e.g., 𝐾 = 1, the performance curve over the parameter uncertainty 

space can be plotted, as highlighted in red in the upper plot. The worst-case design point 

with the worst-case performance, or equivalently the largest point on the curve can be 

found accordingly and is highlighted in a red dot. In above case where 𝐾 = 1, the worst-

case point is located on the leftmost bound. The controller design point and 

corresponding worst-case performance can be easily mapped into the lower plot whose 

horizontal axis is the controller design space.  

Above procedure can be repeated in a continuous fashion until all points from the 

controller design space are visited, and thus the worst-case performance curve over 

controller design space can be plotted in a continuous fashion as well, as shown in the 

lower plot in Figure 5. 1. Then the best worst-case point, or equivalently the smallest 

point on the curve can also be found. Such controller and performance are exactly the 

minimax controller and minimax performance to be found. Such concept can be easily 

extended to higher dimensions, i.e., if the parameter uncertainty space is a 2𝐷 space, then 

the corresponding worst-case point is the largest point on the performance response 

surface over parameter uncertainty space. 
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Figure 5. 1 General solution procedure for NEMCD 

With above analysis, there are several questions to be answered:  

1. What are the properties of such performance curve over parameter uncertainty 

space, so that the worst-case point can be located?  

2. What are the properties of such worst-case performance curve over controller 

design space, so that the best worst-case performance point can be located?  

3. How to calculate such best worst-case point? 

5.2 Properties of worst-case point over parameter uncertainty space 

RQ 1.1: what are the worst-case point’s properties in terms of location, existence, 

uniqueness, etc.? 

To answer RQ 1.1, Theorem 1, Theorem 2 and Theorem 3 are provided to introduce 

Hypothesis 1.1, which is the key element for NEMCD. Figure 5. 2 illustrates the proof 

process. 
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Figure 5. 2 Proof of Hypothesis 1.1 

Theorem 1: For a given controller 𝐾, for any particular uncertainty channel ∆𝐴𝑖 (other 

uncertainty channels are fixed with pre-selected values), for any given value 𝐽𝑔, there are 

at most two different values in this uncertainty channel that make 𝐽(∆𝐴𝑖, 𝐾) = 𝐽𝑔 . 

Geometrically speaking, for a given controller 𝐾 and above specified conditions, if any 

horizontal line 𝐽 = 𝐽𝑔  is drawn, there are at most two intersection points with the 

performance curve over parameter uncertainty space. 

Proof of concept: proving above theorem is equivalent with examining the number of 

real solutions of the following set of equations (Equation (5.1) and (5.2)), in which there 

is only one unknown element in ∆𝐴. 

 (𝐴 + ∆𝐴 + 𝐵𝐾)𝑇𝑃 + 𝑃(𝐴 + ∆𝐴 + 𝐵𝐾) + 𝑄 + 𝐾𝑇𝑅𝐾 = 0 (5. 1) 

 𝑥0
𝑇𝑃𝑥0 = 𝐽𝑔 (5. 2) 

Equations (5.1) is the standard Lyapunov equation, serving as the stability constraint. 

Equation (5.2) regulates the calculated performance equals to the desired value 𝐽𝑔. 

Apply Kronecker operations (see Appendix I) on Equations (5.1), it converts above 

matrix equation into a system of second degree polynomial equations. Note that 

Kronecker operations convert a 𝑛 by 𝑛 matrix to a systems of equations with 𝑛2 rows. 

Due to symmetry, it reduces to 𝑛(𝑛 + 1)/2 unknowns and equations. The last unknown 

is introduced from the only unknown in the uncertainty channel, i.e., ∆𝐴11. Equation (5.2) 
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serves as the last balance equation. In this way, the total 
𝑛(𝑛+1)

2
+ 1 unknowns match 

exactly the total 
𝑛(𝑛+1)

2
+ 1 balance equations and thus Equation (5.1)-(5.2) can be solved 

directly. 

Example 5.1: using 2𝐷1𝐶 example 1 for reference and let the element in the 𝑖𝑡ℎ row 

and 𝑗𝑡ℎ  column in matrix 𝑃  denoted as 𝑃𝑖𝑗 . Note that due to symmetry 𝑃12 = 𝑃21 . 

Controller 𝐾 = [𝐾1, 𝐾2] and 𝐽𝑔  are given. There are four unknowns (𝑃11 , 𝑃12 , 𝑃22  and 

∆𝐴11) and four balance equations, and thus it is solvable. 

 (2 − 2𝐾1 + 2∆𝐴11)𝑃11 − 2𝐾1𝑃12 = −𝐾1
2 − 1 (5. 3) 

 (1 − 𝐾2 + ∆𝐴11)𝑃11 + (2 − 𝐾1 − 𝐾2)𝑃12 − 𝐾1𝑃22 = −𝐾1𝐾2 (5. 4) 

 (2 − 2𝐾2)𝑃12 + (2 − 2𝐾2)𝑃22 = −𝐾2
2 − 1 (5. 5) 

 𝑃11 = 𝐽𝑔 (5. 6) 

Definition: the concept of topology manifold is introduced here to help the proof. It 

locally resembles the real n-dimensional space. E.g., a 2𝐷 space is a curve; a 3𝐷 space is 

a surface. Let the term unique manifold denotes that for any given 𝑛 − 1 dimensions, 

there is at most one value from the unknown dimension that makes the point be located 

on the topology space. It is easy to know that any closed manifold is not unique manifold. 

A notional example of a unique 2𝐷 space is plotted in Figure 5. 3(a). In Figure 5. 3(b), 

though the space is open, it is not unique since for a given value of 𝑦 > 0, there are two 

value of 𝑥 make the point (𝑥, 𝑦) rides on the curve. 
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                                         (a)𝑦 =
𝑐

𝑥
                                    (b) 𝑦 = 𝑥2 

Figure 5. 3 Unique manifold vs non-unique manifold  

Theorem of Transversality: in differential topology, the intersection of any two 𝑛 

dimensional topology spaces, if exists, is a 𝑛 − 1 dimensional topology space [26]. 

Proof of concept: see reference [26]. 

Theorem 2(extension of Theorem of Transversality): the intersection of any two 

unique 𝑛 dimensional topology spaces, if exists, is a unique 𝑛 − 1 dimensional topology 

space. 

Proof of concept: assuming that the 𝑛 − 1 dimensional intersection topology space is 

non-unique. Then due to the fact that the whole intersection space must be located on 

both of the original topology spaces, it leads to the conclusion that the two 𝑛 dimensional 

spaces are non-unique as well, which is against the initial definition. 

(End of proof of Theorem 2) 

Next Theorem 1 is to be proved. Turn back to the system of equations (5.3)-(5.6), 

except for the last linear equation, all others are second degree polynomials. There are no 

square terms such as ∆𝑎𝑖
2 or 𝑃𝑖𝑗

2 , but only interaction and linear terms. It can be extended 

to higher dimensions and above statement still holds true. That means for any given 

values of 𝑃𝑖𝑗, all terms become linear and there is only one solved value of ∆𝑎𝑖. Thus 

these topology spaces but last one are open and unique. When the system of equations are 
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solved via the concept of topology space intersection, it reduces one dimension with the 

elimination of one second degree polynomial equation. Without loss of generality that 

there is no degenerated case, such system of equations will finally reduce to a two 

dimensional unique space, such as the one shown in Figure 5. 3(a) along with a two 

dimensional linear equation from last equation and the two have at most two intersection 

points and leads to Theorem 1. 

(End of proof of Theorem 1) 

Theorem 3: for any controller with gain limited, if the bounded parameter uncertainty 

expands to infinity, then at least one extreme will lead to infinity value of 𝐽. 

Proof of concept: to calculate the eigen value of 𝐴 + ∆𝐴 + 𝐵𝐾 ∈ 𝑅𝑛∗𝑛  where 

∆𝑎 → ±∞, the 𝑛  degree polynomial contains at least one term (𝜆𝑖 − 𝑓(∆𝑎)) or (𝜆𝑖
2 +

𝑔(∆𝑎)𝜆𝑖 + ℎ(∆𝑎)). Here 𝑓(∆𝑎), 𝑔(∆𝑎) and ℎ(∆𝑎) are functions of ∆𝑎 and ∆𝑎  doesn’t 

appear on the denominator. Thus at least one of the eigen values will go to +∞. 

Hypothesis 1.1: with the uncertainty structure defined in Section 2.5, for any 

controller, the worst-case point within a given parameter uncertainty space is always 

located on corners (or bounds if 1𝐷). 

Proof of concept: it is assumed that one point (𝐴 + ∆𝐴𝑖) within the uncertainty space 

other than corner or boundary points yields the worst-case performance, or a global 

maximum 𝐽𝑚𝑎𝑥, then for sure it is a local maximum. That suggests that there exists two 

points 𝐴 + ∆𝐴𝑖
𝑙  and 𝐴 + ∆𝐴𝑖

𝑟  on the left and right hand side of the point 𝐴 + ∆𝐴𝑖 

respectively and the two give the same and smaller value of 𝐽(𝐴 + ∆𝐴𝑖
𝑙 , 𝐾) =

𝐽(𝐴 + ∆𝐴𝑖
𝑟 , 𝐾) = 𝐽′ < 𝐽(𝐴 + ∆𝐴𝑖 , 𝐾) = 𝐽𝑚𝑎𝑥. Thus the three points form a “mountain”, 

as shown in Figure 5. 4. 

Combine Theorem 3 and the fact that given stable, performance curve over parameter 

uncertainty space is continuous [27], there must be another point ∆𝐴𝑖
′ between [−∞, 𝐴 +

∆𝐴𝑖
𝑙] or [𝐴 + ∆𝐴𝑖

𝑟 , +∞] makes 𝐽(𝐴 + ∆𝐴𝑖
′ , 𝐾) = 𝐽′. Thus for a value of 𝐽′, there are three 



47 
 

points over [−∞,+∞]  in the uncertainty channel that yield the same calculated 

performance value 𝐽′, which is against Theorem 1. Thus the assumption that there is a 

local maximum is not valid; equivalently, the initial assumption that worst-case point 

doesn’t ride on corners or bounds is not valid either. 

 

Figure 5. 4 Conceptual proof of Hypothesis 1.1 

(End of proof of Hypothesis 1.1) 

There might exist other proof, such as taking second order derivative 
𝜕2𝐽

𝜕∆𝐴2 , or 

equivalently Hessian matrix, but above term ends up to a three-dimensional matrix if ∆𝐴 

has more than one row or column and the concept of positive definite is no longer 

applicable here [28]. Additional effort is needed and will be addressed in future research. 

In this context, the potential spots of the worst-case to be examined are located at the 

boxed corners or bounds. E.g., for 2𝐷2𝐶 example1 in Figure 3.1, there are four corners to 

be examined.   

[∆𝑎1 = −1, ∆𝑎2 = 0], [∆𝑎1 = −1, ∆𝑎2 = 0], [∆𝑎1 = −1, ∆𝑎2 = 0], [∆𝑎1 = −1, ∆𝑎2 = 0] 

For 𝑐 channels, there are 2𝑐 potential corners. Note that due to the fact that neither the 

range of uncertainty nor the behaviors is symmetry in terms of normal plant, both upper 

and lower bounds in any uncertainty channel need to be examined and there is no 

implication from one to the other, i.e., when controller is tuned, the corner that gives the 
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worst-case point might change from one to others and thus every corner needs to be 

considered to make sure that there are no left overs. 

5.3 Properties of best worst-case point over controller design space 

5.3.1 Inconsistence of worst-case point  

Hypothesis 1.1 hugely reduces the potential locations of the worst-case point to 

corners/bounds and brings out the next research question.  

RQ 1.2: Whether such worst-case point is always located on one corner/bound 

consistently? 

If RQ 1.2 holds true, then the uncertainty space and controller design space can be 

decoupled and thus the minimax controller design problem reduces to the taditional 𝐿𝑄𝑅 

design problem as long as the normal plant is replaced with the corresponding plant on 

that corner/bound where the worst-case point is located. 

Hypothesis 1.2: The location of the worst-case point is not consistently on one 

corner/bound when 𝐾 changes. 

Instead of mathematical proof, an intuitive example is given below to illustrate 

Hypothesis 1.2. 
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Figure 5.5 Performance curves at two bounds WRT 𝐾 

 

Figure 5.6 Worst-case performance WRT 𝐾 

Example 5.2: In Figure 5.5, 2𝐷1𝐶 example 1 is shown where 𝐾 = [𝐾1, 𝐾1] ∈ ℝ1∗2, 

𝐾2  is fixed at 𝐾2 = −0.1  and 𝐾1  sweeps from 2.8  to 6.3 . The red and blue curves 

respectively represent the performance curves at bound ∆𝑎 = −0.5 and ∆𝑎 = 0.5. At the 
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bound where ∆𝑎 = −0.5 and 𝐴𝑣 = [
0.5 1
0 1

], the value of 𝐽 increases, or equivalently the 

performance degrades as 𝐾1  increases while the other bound where ∆𝑎 = 0.5 behaves 

differently. The two curves intersect each other at a point where 𝐾1 ≅ 3.5 (pointed to by 

the arrow), so that the following equation is true at the intersection point, 

 𝐽(𝐴 + ∆𝐴1|∆𝑎=0.5, 𝐾1, 𝐾2 = −0.1) = 𝐽(𝐴 + ∆𝐴1|∆𝑎=−0.5, 𝐾1, 𝐾2 = −0.1)(5. 7) 

Above analysis also yields that given 𝐾2 = −0.1, for 𝐾1 < 3.5, the worst-case point or 

the “maximum” value of 𝐽 to be captured in the minimax design is located at the corner 

where ∆𝑎 = 0.5; while 𝐾1 > 3.5, the worst-case point switches to the corner ∆𝑎 = −0.5. 

Such fact of inconsistent location of worst-case point brings in the biggest challenge in 

NEMCDM. This feature is labeled as the inconsistency of the worst-case point and 

naturally distinguishes this method from TMCDM. 

For a given controller 𝐾 and a specified uncertainty space, assuming that there are no 

instable points from the uncertainty space, there is a curve of the worst-case performance 

𝐽𝑚𝑎𝑥 , as highlighted in light green in Figure 5.6 which shows nothing but the 

combination of the worse performance between two corners’ performances from Figure 

5.5. The case that both 𝐾1 and 𝐾2 are allowed to change is a more complicated and will 

be discussed in the next research question. 

Note that such inconsistent worst-case point makes 𝐽𝑚𝑎𝑥 naturally different from the 

quadratic performance 𝐽, which is continuous in both controller design and parameter 

uncertainty space. 

5.3.2 Potential location of best worst-case point 

Another interesting and helpful fact from above 2𝐷1𝐶 example is that, given 𝐾2 =

−0.1, clearly 𝐾1 = 3.5 gives a minimum point on the 𝐽𝑚𝑎𝑥 curve with 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥 = 15.5 

and it is exactly the minimax performance to be found within 𝐾1 design space exclusively. 
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Hypothesis 1.2 (continued): one potential solution of 𝐾𝑚𝑖𝑛𝑖𝑚𝑎𝑥  is the intersection 

point of two corners/bounds’ performance curves over the controller design space.  

How to calculate such intersection point and the properties such as existence and 

uniqueness of such type of intersection point will be addressed in the next few sections. 

Note that the assumption that the intersection point is exactly where the worst-case 

point located is only valid when the local slopes of the two performance curves at the 

intersection point are of different signs. Otherwise, the local “trends” of two curves are 

the same and the intersection point is not a valid candidate of the worst-case point. Such 

concern will be added into check list when it comes to the local NEMCDM in Section 5.5.  

5.4 Calculations and properties of performance intersection point/curve 

5.4.1 Calculations of intersection point 

RQ 1.3: For any selected pair of corners/bounds 𝐴 + ∆𝐴1 and 𝐴 + ∆𝐴2, if there is(are) 

intersection point(s), how to calculate it(them)? 

Hypothesis 1.3: Depends on the knowledge of controller, e.g., should the controller 

𝐾 ∈ ℝ𝑚∗𝑛  has 𝑚 ∗ 𝑛 − 1  values given, then the corresponding intersection point (the 

only remaining unknown value in the controller) can be calculated by solving a set of 

Lyapunov equations, 

 (𝐴 + ∆𝐴1 + 𝐵𝐾)𝑇𝑃1 + 𝑃1(𝐴1 + ∆𝐴1 + 𝐵𝐾) + 𝑄 + 𝐾𝑇𝑅𝐾 = 0 (5. 8) 

 (𝐴 + ∆𝐴2 + 𝐵𝐾)𝑇𝑃2 + 𝑃2(𝐴1 + ∆𝐴2 + 𝐵𝐾) + 𝑄 + 𝐾𝑇𝑅𝐾 = 0 (5. 9) 

 𝑥0
𝑇𝑃1𝑥0 = 𝑥0

𝑇𝑃2𝑥0 (5. 10) 

Proof of concept: The first two equations are just modified from the original 

Lyapunov Equation (5.1) at two corners when part of 𝐾  is given. The last equation 

denotes that at the intersection point, performances at two corners equal to each other. 

Note that different from Equation (5.1) and (5.2), there is an extra Lyapunov equation in 

above system of equations and the extra unknown comes from the unknown value in the 
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controller instead of the parameter uncertainty channel. That leaves total 𝑛(𝑛 + 1) + 1 

unknowns and balance equations. Thus the system of equations is still solvable. 

Note that except for the last linear equation, all other rows in the system of equations 

have quadratic terms. There is one unknown 𝐾𝑖  in 𝐾  and it appears in the system of 

equations via the term 𝐾𝑇𝑅𝐾, in the form of 𝐾𝑖
2. It contributes to another difference from 

Equation (5.1) where there are no square but only interaction terms. An example of such 

system of equations will be provided later. 

5.4.2 Existence and uniqueness of intersection point 

RQ 1.4: If there is only one unknown in the controller, will there always be an 

intersection point for any pair of corners? What are the necessary conditions and 

implications for those cases? 

Hypothesis 1.4: There could be multiple cases and the number of intersection points 

ranges from 0, 1. It depends on the range of uncertainty, sign of first order derivative, 

initial condition, etc. 

Proof of concept: Similar to the analysis in Section 5.2, after further simplification 

and elimination, one will end up with one quadratic equation with one unknown variable. 

Then all that matters is the discriminant √𝑏2 − 4𝑎𝑐 (𝑎, 𝑏 and 𝑐 here are just placeholders, 

not to be confused with previously used notations) [29] which also determines the 

number of solutions. Next few cases list all possibilities of the discriminant. 

Case1: 𝑏2 − 4𝑎𝑐 < 0, or the system of equations ends up with a pair of complex 

conjugate solutions and thus the complex controller makes no physical sense. In such 

case, there is no intersection point at all. Alternatively, if it happens that the solved 

intersection point(s) fall outside of the uncertain range, then there will be no intersection 

point either, even it does exist. 
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Example 5.3: A simple 1𝐷1𝐶 example is shown to support above analysis. Substitute 

all known parameters into Equation (5.8) to (5.10) and the system of equations reduces to 

the following, 

 2(1.5 + 𝐾)𝑃1 + 𝐾2 + 1 = 0 (5. 11) 

 2(0.5 + 𝐾)𝑃2 + 𝐾2 + 1 = 0 (5. 12) 

 𝑃1 = 𝑃2 (5. 13) 

It further reduces to 𝐾2 + 1 = 0 and the only solution to above equation is 𝑃1 = 𝑃2 =

0, 𝐾 = ±𝑖, which makes no physical sense. Thus there is no such intersection point exists. 

It can also be viewed graphically. For each bound, a sweep is performed and the results 

are shown in Figure 5.7 (a). It can be seen that when the value of 𝐾 decreases towards the 

LHS bound, system goes unstable quickly and there is no intersection point on LHS of 

𝐾𝑙𝑞𝑟 = 1.414. On the RHS of 𝐾𝑙𝑞𝑟, the two performance curves increase with 𝐾 at almost 

the same rate towards infinity, thus there will be no intersection point either towards 

positive infinity. 

Actually, an extension from above example is that for any 1𝐷1𝐶 case with variant 𝐴, 

there will be no intersection point and for any value of the controller since 𝑅 is always 

non-negative defined. 

 

(a) 1𝐷1𝐶 example                                             (b) 2𝐷1𝐶 example 

Figure 5.7 No intersection point of two performance curves at two bounds 
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Example 5.4: The 2𝐷1𝐶 example 1 is examined: now there are two elements in the 

controller to be taken care of. Set 𝐾2 constant at 𝐾2 = −0.1. 𝐾1 sweeps from 2 to positive 

infinity. It can be seen from Figure 5.7 (b) that as 𝐾1 approaches 2, 𝐽 increases sharply 

and the system becomes unstable. On the other direction, the value of 𝐽 at the bound 

𝐴12 = 0.9 increases much quicker than that of bound 𝐴12 = 1.1. Visually inspect, it is 

intuitive to draw the conclusion that there is no intersection point from the two curves 

either. Mathematically, in this example above system of equations ends up with 𝐾1 =

0.108 ± 0.036𝑖, a complex conjugate pair of solutions which makes no physical sense 

and implies that there is no intersection point. 

When there is no intersection point, one implication is that the performance at one 

corner is always better than the other. So if it is the case in the minimax controller search 

process, the corner with better performance can be ignored when searching for the worst-

case point, though there is still need to examine both corners to confirm which corner is 

the better one to be ignored. 

Case2: 𝑏2 − 4𝑎𝑐 = 0. In such circumstance, there is only one solution exists and it 

suggests that there is only one intersection point for the two curves. In fact, such case 

seldom occurs. It requires a strong premise that the curvatures of two are exactly the 

same. 

Case3: 𝑏2 − 4𝑎𝑐 > 0. Such circumstance doesn’t exist due to its special structure. 

The main reason is that, there is only one unknown with square term. For other quadratic 

terms, they are all interactions between different unknowns.  

Example 5.5: Similar to Example 5.1, the 2𝐷1𝐶  example 1 and the corresponding 

system of equations from Kronecker operation is used. Also it is assumed that the 

unknown comes from one specified element 𝐾1 from the controller, 𝐾2 is held constant at 

𝐾2 = −0.1. 

 (2 − 2𝐾1)𝑃111
− 2𝑃112

𝐾1 = −𝐾1
2 − 1 (5. 14) 
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 𝑃111
+ (2.1 − 𝐾1)𝑃112

− 𝐾1𝑃122
= −0.1𝐾1 (5. 15) 

 2𝑃112
+ 2.2𝑃122

= −1.01 (5. 16) 

 (2 − 2𝐾1)𝑃211
− 2𝑃212

𝐾1 = −𝐾1
2 − 1 (5. 17) 

 1.2𝑃211
+ (2.1 − 𝐾1)𝑃212

− 𝐾1𝑃222
= −0.1𝐾1 (5. 18) 

 2.4𝑃212
+ 2.2𝑃222

= −1.01 (5. 19) 

 𝑃111
= 𝑃211

 (5. 20) 

As mentioned above, the term 𝐾1
2 only exists in the first and forth equation. All other 

quadratic terms are the product of 𝐾1 and elements in 𝑃1 and 𝑃2. In such case, after all 

unknowns in 𝑃  are substituted with expressions of 𝐾1 , it remains a third degree 

polynomial with only 𝐾1 to solve. Theoretically saying there is a real solution, along with 

a pair of conjugate solutions. If there are two intersection points, or two real solutions 

from above system of equations, then one of the two solutions must come from the pair 

of conjugate solutions and it is real. That suggests that the other one in the conjugate pair 

is also real and thus there are three real solutions in total. However, when the point is 

fixed in the uncertainty space and there is a controller given, there is uniquely calculated 

performance, thus the performance curve is open WRT controller. From Theorem 1, there 

are at most two intersection points. Then there is a contradiction and implies that initial 

assumption that there are two real solutions from above system of equations is wrong. 

5.4.3 Extensions to high dimension cases 

All above analysis is based on the assumption that there is only one unknown in the 

controller, which is seldom the case. When the given values in the controller, e.g., 

𝐾2 = −0.1 in 2𝐷1𝐶 example changes, for sure above condition will be changed. Next 

research question will expand the controller design space to high dimensions and make 

preparations for NEMCDM to be introduced in next section. 

RQ 1.5: What if there are multiple unknowns in the controller in Equation (5.1)-(5.2)? 
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Hypothesis 1.5: There will be infinite solutions and the intersection topology will 

change. 

Proof of concept: When there are multiple unknowns in 𝐾, then there will be extra 

unknowns in the system of equations. Then numerically the system of equations can only 

be reduced to a single polynomial equation with multiple (more than one) unknowns. In 

such circumstance, for sure there will be infinite solutions. Graphically, other than an 

intersection point, there will be a different topology, i.e., an intersection curve, depends 

on the numbers of unknowns. 

 

(a) 3D view                                                     (b) Bird view 

Figure 5.8 Intersection curve of two performance surfaces at two bounds 

Example 5.6: Again, the 2𝐷1𝐶 example 1 is used as an illustrative example: instead 

of intersection point, now there is an intersection curve of the two response surfaces of 

two bounds where 𝐴11 = 0.5 and 𝐴11 = 1.5, whose 2𝐷 projection into controller design 

space is just the single polynomial equation simplified from Equation (5.8)-Equation 

(5.10) with two variables (𝐾1  and 𝐾2 ) to solve.  Note that the zigzag shape of the 

intersection curve is due to the granularity used in the sweep method to generate Figure 

5.8 (a): the response surface is not continuously but discretely sampled; though in fact it 

should be smooth and the intersection curve should be also smooth everywhere. 
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5.5 Local Minimax Controller Design 

In this section, the intersection of higher manifolds will be first examined and profiled, 

followed by a Triangle Based Gradient Method to find a local minimax controller for a 

pre-selected pair of corners, on the premise that the two performance topologies at two 

corners intersect. 

5.5.1 Existence of worst-case point 

The challenge brought from the higher manifolds intersection is that the controller design 

points who are located on the intersection curve are no longer unique, i.e., any controller 

design point that rides on the intersection curve in Figure 5.8 makes the performances at 

two corners equal to each other and thus satisfies Equation (5.1)-(5.2). Next, stick to the 

2𝐷1𝐶 example 1, a closer look is taken to yield properties of such intersection curve. 

  

Figure 5.9 Intersection point shifts with 𝑲𝟐 

Figure 5.9 (a) extends from Figure 5.5 in the sense that 𝐾2 shifts from the default 

value 𝐾2 = −0.1, e.g., now 𝐾2 = −0.2. Now the performance curves of two bounds in 

terms of 𝐾1 changes and there will be a new intersection point so that following equation 

still holds true, 

 𝐽(𝐴 + ∆𝐴1, 𝐾1, 𝐾2 = −0.2) = 𝐽(𝐴 + ∆𝐴2, 𝐾1, 𝐾2 = −0.2) (5. 21) 
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Similarly, when 𝐾2 further shifts to −0.3, there will be another new intersection point 

and following equation still holds true: 

 𝐽(𝐴 + ∆𝐴1, 𝐾1, 𝐾2 = −0.3) = 𝐽(𝐴 + ∆𝐴2, 𝐾1, 𝐾2 = −0.3) (5. 22) 

A finer view from Figure 5.9 (b) yields that when such deviation moves in a 

continuous fashion, the intersection points shape a curve and it is exactly the intersection 

curve of the two surfaces in Figure 5.8 and whose projection on the controller design 

space [𝐾1, 𝐾2] is mathematically described in RQ 1.5. Now let 𝑆𝑖𝑛𝑡 ⊆ 𝑆 denotes the set 

within the controller design space, so that for all points [𝐾1, 𝐾2 …𝐾𝑛]  in 𝑆𝑖𝑛𝑡 , the 

following equation is true: 

 [𝐾1, 𝐾2 …𝐾𝑛] ∈ 𝑆𝑖𝑛𝑡|𝐽(𝐴 + ∆𝐴1, 𝐾1, 𝐾2 …𝐾𝑛) = 𝐽(𝐴 + ∆𝐴2, 𝐾1, 𝐾2 …𝐾𝑛) ∈ 𝐽𝑖𝑛𝑡  

  (5. 23) 

In above example where 𝑛 = 2, the topology of 𝑆𝑖𝑛𝑡 is a curve. When the dimension 𝑛 

further increases, e.g., 𝑛 = 3, the topology becomes an surface. The corresponding set of 

such performance is denoted as 𝐽𝑖𝑛𝑡. 

 

Figure 5.10 Side view of intersection curve of two response surfaces at two bounds 

Though constrained by Equation (5.23), but there are still infinite combinations of 

[𝐾1, 𝐾2 …𝐾𝑛] meets such constraint and each combination gives a unique 𝐽𝑖𝑛𝑡 . There 

exists a minimum value of 𝐽𝑖𝑛𝑡, notionally  𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥, with definition 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥 ≡ inf(𝐽𝑖𝑛𝑡) 
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and is shown in Figure 5.10 (a) and (b) who are the side views (𝐾2𝐽 and 𝐾1𝐽) of Figure 

5.8. Though disturbed by zig-zag, there is still a clear evidence of the existence of 

𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥 on the intersection curve, which is the exact the design objective of NEMCDM. 

That brings the most challenging part, which is formally stated in the next research 

question. 

5.5.2 Properties of worst-case point 

RQ 1.6: How to calculate 𝐾𝑚𝑖𝑛𝑚𝑎𝑥 and the corresponding 𝐽𝑚𝑖𝑛𝑚𝑎𝑥? 

This research question is equivalent to the following question, which is described 

geometrically in terms of Figure 5.8: i.e., in 2𝐷1𝐶  example 1, the two performance 

surfaces of two corners intersection each other and profile a curve, how to find the lowest 

point on that curve? 

Hypothesis 1.6: A similar concept from Equation (2.14) can be borrowed so that when 

𝐾𝑚𝑖𝑛𝑚𝑎𝑥 is selected, 
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾
|𝐾𝑚𝑖𝑛𝑖𝑚𝑎𝑥

= 0. 

Hypothesis 1.6 can be directly proved as long as it can be proved that such local 

minimum is also a global minimum. 

Proof of concept: Similar to the proof of Hypothesis 1.1, by assuming that there is 

another global minimum 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥
′ other than the local minimum 𝐽𝑚𝑖𝑛𝑚𝑎𝑥, it implies that 

the following equation holds true: 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥
′ < 𝐽𝑚𝑖𝑛𝑚𝑎𝑥. Then for the two adjacent points 

around 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥 and one other point between 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥
′  and 𝐽𝑚𝑖𝑛𝑚𝑎𝑥, the three will give 

the same performances, which is against Theorem 1. Thus the initial assumption is not 

valid, which means that for a 𝐾 that makes 
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾
= 0, it is a global minimax controller for 

this pair of corners. 

The key concept can be graphically viewed from Figure 5.10 where 𝐽𝑖𝑛𝑡 is mapped 

against all 𝐾1, 𝐾2 …𝐾𝑛  where [𝐾1, 𝐾2 …𝐾𝑛] ∈ 𝑆𝑖𝑛𝑡 . Suppose that there is a small 
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increment in all 𝐾𝑖, if the corresponding increment of 𝐽𝑖𝑛𝑡 equals 0, then a local minimum 

is found. With above analysis, RQ 1.6 reduces to the following.  

5.5.3 Calculations of worst-case point 

RQ 1.7: How to calculate the gradient 
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾𝑖
 and [𝐾1, 𝐾2 …𝐾𝑛] ∈ 𝑆𝑖𝑛𝑡 so that 

𝜕𝐽𝑖𝑛𝑡

𝜕𝐾𝑖
= 0?  

Note that 𝐽𝑖𝑛𝑡 is totally different from traditional quadratic performance 𝐽 in Equation 

(2.31). So the gradient in Section 2.3.3 cannot be used. Next a new method is proposed to 

answer this research question. 

Hypothesis 1.7: A Triangle based gradient method can be used to calculate 
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾𝑖
. 

Before any further analysis, some notations are provided. Let 𝐽𝐴+∆𝐴1|𝐾1,𝐾2
denotes the 

performance when the parameter uncertainty is known as 𝐴𝑣 = 𝐴 + ∆𝐴1, the controller as 

𝐾 = [𝐾1, 𝐾2] ∈ 𝑆𝑖𝑛𝑡. Essentially, it is the same with previously used expression 𝐽(𝐴 +

∆𝐴1, 𝐾1, 𝐾2), only with newly added superscript and subscript for linearization notations. 

Also let ∆𝐾𝑛 denotes a small increment in the value of 𝐾𝑛. 

 

Figure 5.11 Local linearization of two performance curves of two bounds 

Again, use the 2𝐷1𝐶 example 1 for reference. Same with Figure 5.5, in Figure 5.11 

there are two light solid curves in above plot, corresponding to the performances curves 

3 3.5 4 4.5 5
10

12

14

16

18

20

22

24

26

28

30

K1

J

 

 

A11=0.5

A11=1.5

Local gradient of A11

Local gradient of A12

O



61 
 

at two bounds 𝐽𝐴+∆𝐴1 and 𝐽𝐴+∆𝐴2 as a function of 𝐾1 exclusively (𝐾2 = −0.1, constant). 

Their intersection point is denoted as 𝑂. The bold solid lines denote the local gradients of 

the two curves after linearization and can be expressed as follows, 

 𝐽𝐴+∆𝐴1|𝐾1+∆𝐾1
= 𝐽𝐴+∆𝐴1|𝐾1,𝐾2

+
𝜕𝐽𝐴+∆𝐴1

𝜕𝐾1
|𝐾1,𝐾2

∆𝐾1 (5. 24) 

 𝐽𝐴+∆𝐴2|𝐾1+∆𝐾1
= 𝐽𝐴+∆𝐴2|𝐾1,𝐾2

+
𝜕𝐽𝐴+∆𝐴2

𝜕𝐾1
|𝐾1,𝐾2

∆𝐾1 (5. 25) 

 

                                      (a)                                                              (b) 

Figure 5.12 Triangle based gradient method 

 𝑌 =
𝜕𝐽𝐴+∆𝐴1

𝜕𝐾1
|𝐾1

∆𝐾1 (5. 26) 

 𝑍 =
𝜕𝐽𝐴+∆𝐴2

𝜕𝐾1
|𝐾1

∆𝐾1 (5. 27) 

When there is a small increment ∆𝐾2, there will be two brand new curves with local 

gradients, highlighted as dashed lines in Figure 5.12 (a) and the new intersection point 

moves to 𝑂′. In this context, let the two points 𝑌 and 𝑍 denote the value of 𝐽 at [𝐾1, 𝐾2 +

∆𝐾2]. Their respective vertical distances (in 𝐽 direction) from the initial intersection point 

𝑂 , or equivalently the distances between solid and dashed line are ∆𝑌 = 𝑌 − 𝑂  and 

∆𝑍 = 𝑂 − 𝑍, 

 ∆𝑌 = 𝑌 − 𝑂 =
𝜕𝐽𝐴+∆𝐴1

𝜕𝐾2
|𝐾1,𝐾2

∆𝐾2 (5. 28) 
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 ∆𝑍 = 𝑂 − 𝑍 = −
𝜕𝐽𝐴+∆𝐴2

𝜕𝐾2
|𝐾1,𝐾2

∆𝐾2 (5. 29) 

Also, note that the vertical distance between 𝑂′  and 𝑂 , or ∆𝑂 = 𝑂′ − 𝑂  is exactly 

𝐽𝑖𝑛𝑡’s change due to small increment in 𝐾2. Thus the term 
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾𝑖
 can be written as follows, 

 
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾𝑖
=

𝑂′−𝑂

∆𝐾2
 (5. 30) 

From Figure 5.12 (b) it can be further seen that the two dashed lines and vertical line 

form a triangle. The slopes of the two lines are the performance 𝐽 in terms of 𝐾1 at the 

point 𝑂′ . Though 𝐾1  at new intersection point 𝑂′  also change from 𝑂 , due to small 

increment assumption, the slopes of new curves are assumed to be unchanged, 

 tan(𝛼) =
𝜕𝐽𝐴+∆𝐴1

𝜕𝐾1
|𝐾1,𝐾2

≅
𝜕𝐽𝐴+∆𝐴1

𝜕𝐾1
|𝐾1+∆𝐾1𝐾2

 (5. 31) 

 tan(𝛽) = −
𝜕𝐽𝐴+∆𝐴2

𝜕𝐾1
|𝐾1,𝐾2

≅ −
𝜕𝐽𝐴+∆𝐴2

𝜕𝐾1
|𝐾1+∆𝐾1𝐾2

 (5. 32) 

Using ∆𝐾1 to denote the increment in 𝐾1 due to change from 𝐾2, the distance between 

𝑌 and 𝑍 can also be calculated trigonometrically: 

 𝑌 − 𝑍 = [tan(𝛼) + tan(𝛽)]∆𝐾1 = (
𝜕𝐽𝐴+∆𝐴1

𝜕𝐾1
|𝐾1,𝐾2

−
𝜕𝐽𝐴+∆𝐴2

𝜕𝐾1
|𝐾1,𝐾2

)∆𝐾1  

  (5. 33) 

Combine Equation (5.28), (5.29) and (5.33), 

 𝑌 − 𝑍 = ∆𝑌 + ∆𝑍 = (
𝜕𝐽𝐴+∆𝐴1

𝜕𝐾2
|𝐾1,𝐾2

−
𝜕𝐽𝐴+∆𝐴2

𝜕𝐾2
|𝐾1,𝐾2

)∆𝐾2 = (
𝜕𝐽𝐴+∆𝐴1

𝜕𝐾1
|𝐾1,𝐾2

−

𝜕𝐽𝐴+∆𝐴2

𝜕𝐾1
|𝐾1,𝐾2

)∆𝐾1  (5. 34) 

Now ∆𝐾1 can be written as function of ∆𝐾2, 

 ∆𝐾1 =
𝑎−𝑏

𝑐−𝑑
∆𝐾2 (5. 35) 

where 𝑎, 𝑏, 𝑐, 𝑑 have the following expressions, 

 𝑎 =
𝜕𝐽𝐴+∆𝐴1

𝜕𝐾2
|𝐾1,𝐾2

 (5. 36) 

 𝑏 =
𝜕𝐽𝐴+∆𝐴2

𝜕𝐾2
|𝐾1,𝐾2

 (5. 37) 
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 𝑐 =
𝜕𝐽𝐴+∆𝐴1

𝜕𝐾1
|𝐾1,𝐾2

 (5. 38) 

 𝑑 =
𝜕𝐽𝐴+∆𝐴2

𝜕𝐾1
|𝐾1,𝐾2

 (5. 39) 

In this manner, the final target can be written as  

 ∆𝑂 = 𝑂′ − 𝑂 = tan(𝛼) ∆𝐾1 − ∆𝑍 (5. 40) 

Substitute Equation (5.35) into (5.40), 

 
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾𝑖
=

∆𝑂

∆𝐾2
=

𝑂′−𝑂

∆𝐾2
=

tan(𝛼)∆𝐾1−∆𝑍

∆𝐾2
=

(𝑐
𝑎+𝑏

𝑐+𝑑
−𝑏)∆𝐾2

∆𝐾2
= 𝑐

𝑎−𝑏

𝑐−𝑑
− 𝑏 (5. 41) 

Above equation can be used as the stopping criteria for the local minimax controller 

line search. When 
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾2
 approaches zero within a small enough distance, 𝐾2 can be solved 

and 𝐾1 can be calculated accordingly via Equation (5.8)-(5.9). 

Note that similar to any other gradient search method, 
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾2
 has the same mathematical 

meaning of that in Equation (2.31). Thus it is totally reasonable to use the absolute value 

of 
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾2
 to speed up the search process: i.e., the search step length is set to be relatively 

large when the value of |
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾2
| is large. 

For a controller with more than two unknowns, above steps for each pair of 𝐾𝑖 and 𝐾1 

can be repeated iteratively to get a 𝑚 ∗ 𝑛 − 1 dimensional search direction with elements 

[
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾2
,
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾3
…

𝜕𝐽𝑖𝑛𝑡

𝜕𝐾𝑚∗𝑛
]. For each search step, with all others updated from the line search, 

𝐾1 is the only unknown value to be solved from Equation (5.8)-(5.9) in the controller 

design space. 

Now there is a way to calculate 
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾𝑖
 to profile the intersection manifold, the next 

research question concerns about the validity of the assumption that the minimax 

controller is always located on the lowest point on the intersection manifold. 

RQ 1.8: Is it always the case that the minimax controller is located on lowest point on 

the intersection manifold?  
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Hypothesis 1.8: No, e.g., if the two response surfaces intersect each other with the 

same “trend”, then even there exists a lowest point on the intersection curve, it is not the 

worst-case point. Actually, only when the two manifolds have two local gradients of 

different directions (a positive and a negative) at the intersection point, then it is a 

minimax controller design point. A notional counterexample is provided in Figure 5. 13. 

The existence of such “counter example” will be further examined in future research. 

 

Figure 5. 13 A counter example of the worst-case point is always located on 

intersection manifold 

Under such circumstance, the minimax controller actually goes to the default 𝐿𝑄𝑅 of 

one corner/bound who yields a worse performance. A quick validity check can be made: 

first calculate 𝐾𝑙𝑞𝑟  and corresponding performances at two corners. If for the two 

calculated 𝐾𝑙𝑞𝑟, performances of one corner/bound are always worse than the other, then 

the minimax controller of this pair of corners/bounds equals to the default 𝐿𝑄𝑅 at this 

corner/bound. 

5.5.4 Algorithm to local minimax controller 

Given any pair of corners/bounds, combining above analysis, the line search algorithm to 

find a local minimax controller is summarized below. The merit of the algorithm is to 

numerically profile the intersection curve and keep tracking the value of 
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾𝑖
. When the 
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value approaches 0, then a local/global minimum design point on the intersection curve 

of the selected pair of corners is reached. 

Algorithm 1 Line search to a local minimax controller 

Step 1 Calculate 𝐾𝑙𝑞𝑟 and corresponding performances at both corners 

Step 2 With two 𝐾𝑙𝑞𝑟, if performances of one corner are always better than 

the other corner’s, then this corner can be ignored. Algorithm stops as 

the worst-case point is located at the corner with worse performance 

exclusively. 

Step 3 Otherwise, treat one element from the controller, e.g., 𝐾1 as unknown 

and all others [𝐾2 …𝐾𝑚∗𝑛]as known, use the method in Section 5.2 to 

calculate 𝐾1 so that Equation (5.8)-(5.10) hold true. 

Step 4 Calculate [
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾2
,
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾3
…

𝜕𝐽𝑖𝑛𝑡

𝜕𝐾𝑚∗𝑛
]  by using Triangle based gradient 

method in Section 5.4 and use this as a search direction to update 

[𝐾2 …𝐾𝑚∗𝑛]. 

Step 5 Repeat step 3 and step 4 until the norm of gradient 

[
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾2
,
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾3
…

𝜕𝐽𝑖𝑛𝑡

𝜕𝐾𝑚∗𝑛
] is within certain small value. 

 

 

Example 5.7: Utilize above line search method on the 2𝐷1𝐶 example 1 and the result 

is shown in Table 3 and Figure 5. 14. At the first step, the initial 𝐾2  is selected as 

𝐾2 = −0.1 . 𝐾1  and 
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾2
 are then solved as 𝐾1 = 3.525 , 

𝜕𝐽𝑖𝑛𝑡

𝜕𝐾2
= 1.56  by using the 

Triangle based gradient method. Since the optimization direction is to minimize, the 

search direction is the opposite of local gradient: ∆𝐾2 = −
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾2
= −1.56. A scale factor 

of 0.2 is selected to regulate the step length. Table 3 lists the value of  𝐾1, 𝐾2 and 
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾2
 at 

each line search step. 

Table 3 Line search steps for Algorithm 1 

Step No 𝑲𝟏 𝑲𝟐 𝝏𝑱𝒊𝒏𝒕

𝝏𝑲𝟐
 Step No 𝑲𝟏 𝑲𝟐 𝝏𝑱𝒊𝒏𝒕

𝝏𝑲𝟐
 

1 3.525 -0.1 1.5625 6 3.883 -0.3680 -1.75e-4 
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0 1 

2 3.942
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-0.4125 -0.1775 7 3.883

1 

-0.3680 -2.9e-5 

3 3.895

0 

-0.3770 -0.0373 8 3.883

1 

-0.3680 -5e-6 

4 3.885
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-0.3695 -6.464e-3 9 3.883

1 

-0.3680 -1e-6 

5 3.883

4 

-0.3682 -1.068e-3 10 3.883

1 

-0.3680 -1e-7 

 

 

Figure 5. 14 𝟐𝑫 controller line search 

It can be seen that at step 2, there is a slight overshoot. This is mainly due to the search 

step length is relatively large, though it can be easily proved that the line search algorithm 

is globally stable. The line search is then pushed back and after 6 steps and the line search 

converges at [𝐾1 = 3.8831, 𝐾2 = −0.3680], gradient 
𝜕𝐽𝑖𝑛𝑡

𝜕𝐾2
 gradually approaches 0.  

The side view of the intersection curve from Figure 5.10 can be used to visually 

validate the results from above method. It can be seen that the calculated minimax 

controller [𝐾1 = 3.8831, 𝐾2 = −0.3680] is the same with the visually observed one who 

gives 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥 from Figure 5.10. The minor error could be contributed from granularity 

in Figure 5.10 and the linearization in the Triangle based gradient method. 
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5.6 Global Minimax Controller Design 

So far, for any pair of corners/bounds, there is a method provided in Section 5.5 to profile 

the intersection curve and thus find a controller that yields a global best worst-case 

performance. The calculated controller can be treated as the global minimax controller, 

but only for this pair of corners/bounds. Thus, it is still a “local” minimax controller 

when viewed from the whole uncertainty space point of view. The next research question 

and hypotheses try to extend Algorithm 1 to cover all corners/bounds in the uncertainty 

space. 

RQ 1.9: How to expand above design to find the global minimax controller? 

Hypothesis 1.9: Due to the discontinuity between corners/bounds, each pair of them 

needs to be checked. There is even a chance that one corner has no intersection point with 

any other corners and yields the worst-case performance exclusively. In such case, the 

traditional 𝐿𝑄𝑅 method can be applied at this corner to find the minimax controller. 

Next, a comprehensive procedure of finding such global minimax controller over the 

whole uncertainty space is summarized below. 

 

Algorithm 2 Method towards a global minimax controller 

Step 1 Calculate 𝐾𝑙𝑞𝑟 for all corners and corresponding performances at all 

corners. 

Step 2 If with all 𝐾𝑙𝑞𝑟, performances of one corner are always worse than the 

other, then the worst-case point is located at the corner exclusively. 

Minimax controller is exactly 𝐾𝑙𝑞𝑟 at this corner. Algorithm stops. 

Step 3 Select a pair of corners, calculate whether there is intersection point, 

or if there is real solution from Equation (5.8)-(5.10). If yes, name one 

corner as an initial corner and the other corner as the most recent 

corner. Calculate a local minimax controller by using Triangle based 

gradient method from Section 5.4. 

Step 4 If there is no intersection point, then pick any controller, e.g., the 

initial controller and check which corner is worse and discard the one 

with better performance. Apply traditional 𝐿𝑄𝑅  method on the 
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selected corner, treat it as the local minimax controller for this pair of 

corners. 

Step 5 With calculated local minimax controller, calculate performances at 

other corners. If no larger ones, then it is global minimax controller. 

Otherwise, reselect new pairs of corners, e.g., a pair composed of the 

worst performance violating corners. 

Step 6 Repeat step3 to step5 until there are no corners yield worse 

performance. 

 

A comprehensive example will be provided in Chapter 7. 

5.7 Complexity analysis 

Note that though the system of equations (5.8) to (5.10) is analytically solvable, it is also 

important to check the computational cost. To solve the traditional Lyapunov equation, 

numerical method usually gives a better computational efficiency. Haddard also proposed 

a two-stage iterative method to solve pairs of Riccati equations [30]. On the other side, 

analytical solution requires a large number of eliminations and becomes inefficient when 

the matrix dimension increases. Thus, not necessarily that the analytically method is 

favored. Unfortunately, numerical method to solve such pair of Lyapunov equation is not 

the research interest of this thesis. 

For NEMCDM, a lot of computational time will be spent on solving (coupled) 

Lyapunov equations. How to solve is not limited to Kronecker operations method only, 

though a lot of proofs used in this research is performed in this manner. In fact, if 

standard linear Lyapunov equation is solved using Kronecker operations as a system of 

𝑛 ∗ (𝑛 + 1)/2 equations and 𝑛 ∗ (𝑛 + 1)/2 variables, the cost is 𝑂(𝑛6). Other methods, 

such as Bartels and Stewart’s algorithm, Schur or upper Hessenberg form can also be 

used and they are more efficient with 𝑂(𝑛3) [31]. However, as NEMCDM requires the 

inverse of a matrix and when there is an unknown variable in the matrix to be inversed, 

aforementioned algorithms are no longer applicable.  
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In terms of the line search, a relatively large search step can be used to speed up the 

process, since even an overshoot can be corrected due to the continuous and convex 

nature of the performance response manifold WRT controller. A linearization method, to 

be introduced in Chapter 6 can also be used to speed up the search process though it is 

not necessary at all. 

It is interesting to compare the two methods (TMCDM and NEMCDM) in terms of 

computational time. Note that it makes no sense to compare the calculated minimax 

controller or performance since the two uncertainty structures/spaces are totally different 

from each other. 

For the traditional method, though it “combines” the parameter uncertainty space and 

the controller design space, it still needs to sweep the parameter uncertainty space 

numerically. When the dimension increases, the workload of sweeping exponentially 

increases since the parameter uncertainty space is continuous. Though the parameter 

uncertainty space of extended method is even larger than that of the traditional method, 

thanks to Hypothesis 1.1, the potential locations of worst-case points are actually hugly 

reduced. Thus given that the two methods take the same complexity for one-time 

calculation of coupled Lyapunov equation, NEMCDM has less overall complexity. 

On the other side, imagine an extreme case of the extended method that there are 

infinite uncertainty channels, then NEMCDM converges to TMCDM. 

5.8 Extensions 

This methodology is also applicable to the cases where there is discrete parameter 

uncertainty space, e.g., in the real plant, some physical entities have discrete settings, 

leaving the matrix 𝐴 with discrete values. These values in different uncertainty channels 

could be even correlated and dooms the definition of “bound” used in NEMCDM, i.e., 

the corner of two discrete uncertainty channels happens to be unreachable due to strong 

correlation, then how do the designers move the new corner to the next available point? 
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In such circumstance, one extra step is needed to formulate the problem into a 

structure where NEMCDM can be applied by screening out bound/corner points. A 

Pareto Frontier method [ 32 ] can be used. As shown in Figure 5.15, this method 

particularly profiles a state of allocation of resources in which it is impossible to make 

any one individual better off without making at least one individual worse off. Due to the 

easy concept and page length, no further analysis will be given here. 

 

Figure 5.15 Pareto frontier of corners selection [33]  
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CHAPTER 6  

POF CONSTRAINED OPTIMAL AVERAGE PERFORMANCE 

CONTROLLER (PCOAPC) 

 

In Chapter 5, the first level of conservatism is reduced by relaxing the norm constraint. In 

this chapter, the second stage will be introduced to further reduce the conservatism by 

incorporating uncertain parameters’ probability information into consideration. The 

proposed controller design method is labeled as 𝑃𝑂𝐹  Constrained Optimal Average 

Performance Controller (PCOAPC) method. 

6.1 Design objective and problem formulation 

With Observation 2 in mind, this chapter starts from the following overall research 

question. 

RQ 2: How to incorporate probability information into performance consideration? 

Hypothesis 2: Use average performance instead of the normal performance; introduce 

the concept of 𝑃𝑂𝐹  as the extra evaluation criteria. The introduction of probability 

information into the design relaxes the tight constraint and allows a tradeoff between the 

worst-case (𝑃𝑂𝐹) and other performances such as the average performance. 

Their definitions, mathematical expressions, properties, and the procedures of finding 

a desired controller will be given in the next few sections. 

6.1.1 Average performance over parameter uncertainty 

The formal definition and mathematical expression of the average performance are given 

below, 

 𝐽𝑎𝑣𝑒 = 𝐸(𝐽) = ∫ …∫ 𝑃𝑟(∆𝑎1 …∆𝑎𝑛)𝐽𝑑∆𝑎1 …𝑑∆𝑎𝑛
𝑎𝑛

𝑢

𝑎𝑛
𝑙

𝑎1
𝑢

𝑎1
𝑙  (6. 1) 

where 𝑃𝑟(∆𝑎1 …∆𝑎𝑛)  denotes the probability of a particular point ∆𝑎1 …∆𝑎𝑛  in the 

uncertainty space 𝑈 and is assumed to be given. Such information could be retrieved 
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from physical observations, sampled results etc. How the probability information is 

derived is not of interest in this research. 

Above definition is not to be confused with 𝐻∞ , who is the expected value of 

quadratic performance over random noise or random initial value, as referred in many 

𝐿𝑄𝑅 or 𝐿𝑄𝐺 design methods, where a strong assumption of a normal distribution with a 

mean equals to 0 is needed. The expected value in Equation (6.1) is the integration over 

parameter uncertainty space 𝑈 , whose bound should be specified. The probability 

distribution could be any and there is no associated requirement. 

Next, a new controller 𝐾𝑎𝑣𝑒 is given, with a aim to optimize the average performance 

𝐽𝑎𝑣𝑒, , 

𝐸(𝐽(𝐴𝑖, 𝐾𝑎𝑣𝑒)) ≡ min(𝐽𝑎𝑣𝑒) 

Note that 𝐾𝑎𝑣𝑒  always stabilizes the system no matter what value the uncertain 

parameter has. Should there is a value ∆𝑎𝑖 ∈ [∆𝑎𝑖
𝑙, ∆𝑎𝑖

𝑢] that makes the system unstable 

with 𝐾𝑎𝑣𝑒, 𝐽(𝐴𝑖, 𝐾𝑎𝑣𝑒) approaches +∞ and drives 𝐽𝑎𝑣𝑒 towards +∞ as well, as long as the 

associated probability at ∆𝑎𝑖 is not 0, which is against the definition of 𝐾𝑎𝑣𝑒. 

Example 6.1: The 1𝐷1𝐶 example problem is used as an example for the existence of 

such controller. To make it easier, uniform distribution is assumed within the uncertainty 

range ∆𝑎1 ∈ [−0.5, 0.5]. A mathematical expression of average performance is given 

below so that further analysis such as derivatives could be performed analytically. 

With uniform distribution assumed, Pr(∆𝑎) =
1

∆𝑎𝑢−∆𝑎𝑙
= 1 . Thus Equation (6.1) is 

now as follows: 

 𝐽𝑎𝑣𝑒 = ∫
1+𝐾2

𝐴+𝐾

1.5

0.5
𝑑𝐴 = −(𝐾2 + 1)[log(𝐾 + 0.5) − log(𝐾 + 1.5)] (6. 2) 

With the integration gone, it is easy to take first order derivative of above equation 

WRT 𝐾 and solve for 𝐾𝑎𝑣𝑒 by setting the derivative equals to 0, so that at least a local 

minimum can be found. Since it’s a 1𝐷 problem, an 1𝐷  non-linear scalar equation is 

finally reached. 
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𝜕𝐽𝑎𝑣𝑒

𝜕𝐾
= −(𝐾2 + 1) (

1

𝐾+0.5
−

1

𝐾+1.5
) − 2𝐾[log(𝐾 + 0.5) − log(𝐾 + 1.5)] = 0  

  (6. 3) 

Though there is no analytical solution, above equation can still be solved numerically, 

e.g., Newton’s method [34]. It turns out that with 𝐾 = −2.61 uniquely, Equation (6.3) 

holds true. Second order derivative also yields a positive value which suggest a convexity 

and a global minimum. Also note that 𝐾𝑎𝑣𝑒 ≠ 𝐾𝑙𝑞𝑟 , which is calculated as 𝐾𝑙𝑞𝑟 =

−2.414. This simple example shows the fact: when the probability distribution is given, 

there exists a controller 𝐾𝑎𝑣𝑒 who yields an optimized average performance and is not 

necessarily the same with 𝐾𝑙𝑞𝑟. 

However, the bad news is that when the probability distribution gets more complicated 

than a uniform distribution, there seldom exists an analytical solution even the 

distribution can be expressed analytically. Not to mention if the probability distributions 

are discrete. Thus, numerical methods is left alone to find 𝐾𝑎𝑣𝑒. Also note that the bottom 

line is, by using sweep method one can exhaust the whole design space and use sampling 

method to count for the randomness of probability distribution and thus always find a 

desired controller. But as mentioned in the beginning of this thesis, computational time is 

also an important consideration. With this being said, there will be analysis in next two 

sections focusing on the inefficiency of sampling method and instead how to numerically 

calculate the average performance and thus find a desired controller. 

6.1.2 POF calculation via probability information 

It is also clear that though 𝐾𝑎𝑣𝑒  takes advantage of probability information, the 

robustness is sacrificed as it takes no consideration of the worst-case point. A good way 

to retain the robustness is to fulfill the robustness requirement in a relaxed manner of 

constraining the 𝑃𝑂𝐹  smaller than a given number, as described in Chapter 4 Gap 

analysis 2 and is shown in Equation (6.4): 
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 𝑃𝑂𝐹|𝐽>𝐽𝑐 < 𝑒 (6. 4) 

It is also important to select the proper performance criteria 𝐽𝑐. A value of 𝐽𝑐 that is too 

large would bring conservatism while a small one would lead to infeasibility. The 

minimax performance derived from the last chapter is the perfect one by guaranteeing 

feasibility and zero possible conservatism. Unless specified otherwise, it will be used as 

the default evaluation criteria in this and following chapters. 

6.1.3 Problem definition 

With above definitions, the problem to be solved in this chapter, labeled as 𝑷𝑶𝑭 

Constrained Optimal Average Performance Controller (PCOAPC) is formally 

formulated as below, 

To find a controller 𝑲𝒑𝒄𝒐 that optimizes the average performance 𝑱𝒂𝒗𝒆|𝑲 while meets 

the 𝑷𝑶𝑭 constraint: 

                            𝑚𝑖𝑛𝐽𝑎𝑣𝑒|𝐾 

𝑃𝑂𝐹|𝐽>𝐽𝑐 < 𝑒 

Also, note that though the average performance is now the prime optimization 

objective, it doesn’t suggest that the robustness is out of the consideration. Actually the 

linkage between the average performance and the robustness is: if stability alone is used 

as the evaluation criteria and the definition of robustness, very likely there will be infinite 

controllers fulfill such requirement; only when the minimax robustness is used as design 

objective, usually there exists a unique minimax controller; when the performance 

evaluation criteria reduces to above 𝑃𝑂𝐹 constraint solely, again there tends to be infinite 

controllers meet such criteria; only with optimizing the average performance as an extra 

optimization objective, there usually exists a unique controller that gives optimized 

average performance while meets 𝑃𝑂𝐹 constraint and this is the one to be found in this 

chapter. Here the 2𝐷1𝐶 example is used to illustrate above concept. 
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Figure 6. 1 𝑷𝑶𝑭 notation 

Example 6.2: From Section 5.4, it is calculated that the minimax controller is 

𝐾𝑚𝑖𝑛𝑖𝑚𝑎𝑥 = [3.8830,−0.3680]  and 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥 = 15.608 . The performance over 

parameter uncertainty space curve is plotted in red in Figure 6. 1. It can be visually 

validated that the two calculated performances at two bounds equal each other at 15.608. 

When 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥  is used as the evaluation criteria, 𝑃𝑂𝐹 = 0 with 𝐾𝑚𝑖𝑛𝑖𝑚𝑎𝑥  since it is a 

tight constraint. 

When 𝐾𝑛𝑒𝑤  deviates from 𝐾𝑚𝑖𝑛𝑖𝑚𝑎𝑥 , e.g., 𝐾𝑛𝑒𝑤 = 𝐾𝑚𝑖𝑛𝑖𝑚𝑎𝑥 + [0.4,0.4] =

[4.2880, −0.3280], a new performance curve can be generated and is highlighted in 

yellow. Now the 𝑃𝑂𝐹 will be greater than 0 with contributions from the shadowed region 

near 𝐴11. Such 𝑃𝑂𝐹 can also be calculated as long as the probability distribution is given, 

e.g., a truncated normal distribution highlighted in blue whose vertical axis is 𝑃𝐷𝐹. Then 

𝑃𝑂𝐹  is equivalent with the 𝑃𝐷𝐹  integrated area, or the 𝐶𝐷𝐹  of the shadowed region. 

Finding a controller that makes 𝑃𝑂𝐹  meet the constraint is equivalent with finding a 

controller that makes the 𝑃𝐷𝐹 integrated area of the shadowed region exactly equals to or 

smaller than the given constant. 
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6.1.4 Solution procedures 

Since analytical solution barely exists, there is a need for numerical solutions. Broadly 

speaking, the problem depicted in above section is a traditional non-linear constraint 

optimization problem. Many methods are provided to solve this type of problem, such as 

Lagrange multiplier, penalty method [35], if both target equation and constraint can be 

analytically expressed. When there are no such analytical expressions available, 

numerical methods such as line search are preferred: a free line search can be first 

performed towards better performance until the constraint is hit; then search along the 

constraint until the feasible and useful directions go against each other. 

Figure 6. 2 shows how to translate above general solution procedures into the context 

of this problem: keep searching towards a direction that improves the average 

performance (black line search trace), stop when the 𝑃𝑂𝐹 constraint is reached. Then 

keep searching along the direction that makes 𝑃𝑂𝐹 ride exactly on the constraint while 

improves the average performance simultaneously (purple search trace). Stop when the 

product of two search directions is negative. 

 

Figure 6. 2 General solution procedure for PCOAPCD line search 

With above formulated problem and preliminary solution procedure analysis, there are 

five questions to be answered:  
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1. How to calculate average performance? 

2. How to find a search direction towards better performance?  

3. How to calculate 𝑃𝑂𝐹? 

4. How to find the search direction along the 𝑃𝑂𝐹 constraint? 

5. When to stop the line search? 

These five search questions will be sequentially answered in the following sections. 

The last section of this chapter will address other considerations such as the global 

optimality and the steepest search direction. 

6.2 Numerical method for average performance calculations 

This section concerns about the average performance related calculations. 

RQ 2.1: How to numerically calculate the average performance?  

Hypothesis 2.1: A discretized-summation method can be used by incorporating each 

segment’s performance and discretized probability. 

Proof of concept: The parameter uncertainty space can always be discretized, or 

averagely divided into 𝑑  small segments. Each segment’s discretized probability, or 

equivalently 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚𝒐𝒇𝒐𝒄𝒄𝒖𝒓𝒓𝒆𝒏𝒄𝒆(𝑷𝑶𝑶)   can also be calculated from the 

given probability distribution. The following equation always holds true according to the 

definition of 𝑃𝑂𝑂. 

 ∑ 𝑃𝑂𝑂(∆𝐴1, … ∆𝐴𝑐)
𝑑
𝑖=1 = 1 (6. 5) 

The average performance can be roughly expressed as the sum of the product of each 

section’s performance and 𝑃𝑂𝑂, 

 𝐽𝑎𝑣𝑒 = ∑ 𝐽(𝐾, ∆𝐴1, …∆𝐴𝑐) 𝑃𝑂𝑂(∆𝐴1, … ∆𝐴𝑐)
𝑑
𝑖=1  (6. 6) 

where 𝑃𝑂𝑂 is calculated as below, 

 𝑃𝑂𝑂(∆𝐴1, … ∆𝐴𝑐) =
𝑃𝑟(∆𝐴1,…∆𝐴𝑐)

𝑑
 (6. 7) 
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It is obvious that the more segments the parameter uncertainty space are divided into, 

the more accurate the calculated average performance is. How many segments there 

should have changes from case to case and is not of the interest of this research. 

RQ 2.2: How to find a search direction towards a better performance?  

Hypothesis 2.2: Discretize the whole uncertainty space and sum the product of each 

segment’s local gradient and 𝑃𝑂𝑂. 

Proof of concept: Given above discretized-summation method and borrow the concept 

of the steepest descent direction, a similar derivative can be performed about the local 

gradient of average performance WRT controller. Since 𝑃𝑂𝑂 is independent of controller, 

there is only a need to take derivative of the performance 𝐽 in terms of controller. 

 
𝜕𝐽𝑎𝑣𝑒

𝜕𝐾
= ∑

𝜕𝐽(𝐾,∆𝐴1,…∆𝐴𝑐)

𝜕𝐾
𝑃𝑂𝑂(∆𝐴1, … ∆𝐴𝑐)

𝑑
𝑖=1  (6. 8) 

Thus, a line search method with a search direction calculated as below can be used, 

 𝑠𝑒𝑎𝑟𝑐ℎ𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = −
𝜕𝐽𝑎𝑣𝑒

𝜕𝐾
 (6. 9) 

The mathematical meaning of above discretized-summation gradient equation is 

straightforward: when the corresponding 𝑃𝑂𝑂  of one discretized segment is large, a 

search direction that makes the performance of this segment better is more desirable 

compared to other search directions, even though this search direction might not benefit, 

even penalize other discretized segments. Thus the overall search direction that improves 

the average performance most should lean towards the larger contributors, or weight from 

the discretized segment that has the larger 𝑃𝑂𝑂. It’s also helpful to two extremes as 

reference: if the uncertain parameter has uniform distribution, then there shouldn’t be any 

weight on each section’s steepest descend direction as each section’s importance is 

equivalent with other. Alternatively, if one segment dominates 𝑃𝑂𝑂 and leave others 

trivial, then the controller search direction should be dominated by the steepest descend 

direction from that segment. Thus the search direction at each iteration can be expressed 

as the sum of the product of each segment’s 𝑃𝑂𝑂 and local gradient. 



79 
 

Next research question brings out common concerns which apply to any traditional 

line search method. 

RQ 2.2.1: How to ensure the line search won’t end up to a local minimum instead of a 

global minimum? 

Hypothesis 2.2.1: No matter what the probability distribution is, the average 

performance manifold WRT to the controller is always convex. Thus, a local optimal 

average performance controller is also a global optimal average performance controller. 

Proof of concept: Take a second order derivative of Equation (6.6), 

 
𝜕2𝐽𝑎𝑣𝑒

𝜕𝐾2 = ∑
𝜕2(𝐾,∆𝐴1,…∆𝐴𝑐)

𝜕𝐾2 𝑃𝑂𝑂(∆𝐴1, … ∆𝐴𝑐)
𝑑
𝑖=1  (6. 10) 

From above equation, according to the properties of quadratic performance 𝐽 ,  

𝜕2(𝐾,∆𝐴1,…∆𝐴𝑐)

𝜕𝐾2 > 0  for any value of 𝐴  and 𝐾 , the other term 𝑃𝑂𝑂(∆𝐴1, … ∆𝐴𝑐) ≥ 0  as 

well. Thus the sum of their product  
𝜕2𝐽𝑎𝑣𝑒

𝜕𝐾2 > 0 anywhere. Thus the average performance 

in terms of controller 𝐾 is strictly convex globally. Thus the line search will always lead 

to a global minimum. 

Example 6.3: The 2𝐷1𝐶 example is used to illustrate above concept. The uncertain 

range 𝐴11 ∈ [0.5,1.5] is averagely divided into 21 segments (shown in Table 4) and the 

following discrete probability distribution is assumed. 

Table 4 Uncertainty discretization 

𝑨𝟏𝟏 𝟎. 𝟓 𝟎. 𝟓𝟓 𝟎. 𝟔 𝟎. 𝟔𝟓 𝟎. 𝟕 𝟎. 𝟕𝟓 𝟎. 𝟖 0.85 0.9 0.95 1 

𝑷𝑶𝑶 0.0676 0.0656 0.0636 0.0616 0.0596 0.0576 0.0556 0.0536 0.0516 0.0496 0.0476 

𝑨𝟏𝟏 𝟏. 𝟎𝟓 𝟏. 𝟏 𝟏. 𝟏𝟓 𝟏. 𝟐 𝟏. 𝟐𝟓 𝟏. 𝟑 𝟏. 𝟑𝟓 𝟏. 𝟒 𝟏. 𝟒𝟓 𝟏. 𝟓 sum 

𝑷𝑶𝑶 0.0476 0.0496 0.0516 0.0536 0.0556 0.0576 0.0596 0.0616 0.0636 0.0656 1 

 

With a scale fact of 0.2, the line search method uses less than 100 iterations to find the 

optimal average performance controller. When it stops at [𝐾1 = 5.1651, 𝐾2 = −0.4738], 

the gradient norm reduces to 1𝑒 − 6 . Align the line search trace with the average 
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performance contours mapped by sweep method (no sampling necessary since 𝑃𝑂𝑂 is 

given) in Figure 6. 3, the line search method gives a quite satisfying result. 

 

Figure 6. 3 Optimal average performance controller search 

6.3 𝑷𝑶𝑭 calculations and considerations 

This section concerns about the 𝑃𝑂𝐹 related calculations. 

RQ 2.3: How to calculate 𝑃𝑂𝐹? 

Hypothesis 2.3.1: A sampling method can be used to calculate 𝑃𝑂𝐹 . It is easy to 

program, but is extremely inefficient. 

6.3.1 Inefficiency in sampling method 

When there is no analytical method available, one commonly used method in this 

context is the sampling method, due to the fact that it is easy to program as long as 

probability distribution is known [36]. However, it becomes extremely inefficient in 

small 𝑃𝑂𝐹 considerations. 
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Proof of concept: When the 𝑃𝑂𝐹  is incurred from a small range within a large 

sampling space, which is very common, there is a need to sample intensively within this 

small range to achieve certain level of estimation accuracy. But it is impossible that any 

of the sampling method knows in advance where the small range is located. 

Another way to understand the concept is via conceptual examples: it is assumed that 

±10% error is allowed for the small 𝑃𝑂𝐹 estimation, e.g., for a target 𝑃𝑂𝐹 = 0.01, the 

allowable sampling error is −0.001 < ∆𝑃𝑂𝐹 < 0.001, which requires a relatively high 

fidelity of “absolute” 𝑃𝑂𝐹 estimation, which has to be compensated via a large sampling 

size. 

Compared to the case where the same ±10%  error is allowed for a large 𝑃𝑂𝐹 

estimation, e.g., target 𝑃𝑂𝐹 = 0.5, then allowable sampling error is −0.05 < ∆𝑃𝑂𝐹 <

0.05 , which is much larger than the ∆𝑃𝑂𝐹  in above case. The required fidelity of 

“absolute” 𝑃𝑂𝐹 estimation hugely reduces. 

Example 6.4: An intuitive example of capturing a 𝑃𝑂𝐹 = 0.01 is provided. Using the 

sampling method to capture the 𝑃𝑂𝐹  around 𝐾𝑚𝑖𝑛𝑖𝑚𝑎𝑥  within a target range whose 

𝑃𝑂𝑂 = 0.01, the ideal case is that there is exactly 1 out of 100, or 10 out of 1000 … total 

sampling points fall within this target range and thus incur performance failures. 

However, when uniform sampling method is used, not necessarily there will be 

desired number of points fall within the target range, i.e., there will be a high chance that 

more than 1 or 0 out of 100 sampling points fall within the range and thus the calculated 

𝑃𝑂𝐹 will be offset from the desired value. Such concern will be alleviated when the 

number of sampling points increases. The following table, whose calculation is based on 

Binomial distribution [37], shows the chance that there is 0.01 ∗ (1 ± sampling error) of 

total sampling points fall into target range, e.g., with 10000 sampling points of uniform 

distribution from 0-100, the chance that there are 95-105 points fall into range 0-1 is 

0.4195. 
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It turns out that to reach a 90% confidence of accurate (sampling error< 0.05) 𝑃𝑂𝐹 

calculation, at least 100000 sampling points are needed, which introduces huge 

inefficiency in the process. On the contrary, if there is a large 𝑃𝑂𝐹 to be captured, e.g., 

𝑃𝑂𝐹 = 0.5, there only needs 1000 sampling points to reach a 90% confidence.  

Table 5 List of sampling method accuracy requirement 

Sampling 

error=0.1 

𝑷𝑶𝑭 = 𝟎. 𝟎𝟏 𝑷𝑶𝑭 = 𝟎. 𝟓 Sampling 

error=0.05 

𝑷𝑶𝑭 = 𝟎. 𝟎𝟏 𝑷𝑶𝑭 = 𝟎. 𝟓 

100 0.3697 0.7287 100 0.3697 0.3827 

1000 0.3657 0.9986 1000 0.3657 0.8933 

10000 0.7089 1 10000 0.4195 1 

100000 0.9986 1 100000 0.8915 1 

   1000000 1 1 

 

6.3.2 Probability truncate method 

Now the sampling method is ruled out, leaving only numerical methods to be explored. 

Next, a probability truncate method is proposed. 

Hypothesis 2.3.2: A probability truncate method can be used to profile the intersection 

manifold and thus discretize the performance violation region and sum up each segment’s 

𝑃𝑂𝑂 to get the 𝑃𝑂𝐹. 

Proof of concept: The core idea of this probability truncate method is that due to the 

continuity of performance response in both uncertainty and controller design space, when 

a controller is selected, the geometry topology of the set of the parameter uncertainty that 

makes performance fails to meet requirement can be quantitatively profiled via Equation 

(5.1) and (5.2). Then the 𝑃𝑂𝑂 of this region can be calculated either through integration 

or discretized-summation method, as long as the probability distribution is given. While a 

2𝐷1𝐶 example is already shown in Example 6.2 and Figure 6. 1, another 2𝐷2𝐶 example 

is shown below to further illustrate above concept. 
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(a) 3𝐷 view                                                          (b) Bird view 

Figure 6. 4 Probability truncate method 

Example 6.5: In the 2𝐷2𝐶 example shown in Figure 6. 4, a controller is randomly 

selected and the corresponding performance response surface is plotted in red. The 

performance evaluation criteria is further selected as 𝐽𝑐 = 14 and is plotted as the green 

horizontal plane. The performance response surface intersects the performance constraint 

plane. Thus the 𝑃𝑂𝐹 is greater than 0. 

Within the specified parameter uncertainty space, the two intersection curves of the 

response surface and the constraint plane, along with the 2𝐷  parameter uncertainty 

bounds, shape two shadowed regions in Figure 6. 4 (b). Any point falls into the two 

shadowed regions will make the performance fail to meet the constraint and contribute to 

𝑃𝑂𝐹. As long as the intersection curve can be profiled, then the 𝑃𝑂𝑂 of the shadowed 

regions can be calculated via discretized-summation method again. Note that such region 

is not limited to one. Now RQ 2.3 reduces to the following research question. 

RQ 2.3.1: How to profile the intersection curve(s) when a controller is given? 

Hypothesis 2.3.1: First, discretize 𝑐 − 1 channels in the parameter uncertainty space 

averagely into small segments. For each segment, besides the𝑐 − 1 channels, the only 

unknown value from the remaining uncertainty channel that makes the point locate on the 

intersection curve can be calculated by solving Equation (5.1)-(5.2). 
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Proof of concept: Though the dimension increases, the 𝑐 − 1 uncertainty channels can 

still be discretized. For each segment in the parameter uncertainty space, the values of 

∆𝐴𝑖  from 𝑐 − 1  channels are known. The only unknown uncertainty channel can be 

solved via Equation (5.1) and (5.2), as described in Section 5.1. No further explanations 

are needed here. 

The following method significantly reduces the numerical complexity of profiling the 

intersection curves. 

Linearization of system of second degree polynomials 

This method linearizes the system of second degree polynomials from Kronecker 

operations method and profiles along the intersection curve via accumulating the local 

gradient. The merit can be easily elaborated by the following simple example: 

Example 6.6: To profile the following polynomial, 

 𝑥2 + 𝑦2 = 1 (6. 11) 

It is assumed that the start point [𝑥′, 𝑦′] is given on the curve, the next point to be 

profiled [𝑥′ + ∆𝑥, 𝑦′ + ∆𝑦] can be calculated from the next equation, 

 (𝑥′ + ∆𝑥)2 + (𝑦′ + ∆𝑦)2 = 1 (6. 12) 

where one of ∆𝑥 and ∆𝑦 is given as a small increment. The other one is to be calculated. 

With the assumption that both ∆𝑥 and ∆𝑦 are small, the terms (∆𝑥)2 and (∆𝑦)2 can be 

ignored. Next, subtract Equation (6.11) from Equation (6.12), Equation (6.12) reduces to 

the linear Equation (6.13), where 𝑥′ and 𝑦′ are from previously profiled point and riding 

exactly on the curve. 

 
∆𝑥

∆𝑦
= −

2𝑦′

2𝑥′
= −

𝑦′

𝑥′
 (6. 13) 

There exists extension such as remembering and incorporating results from previous 

steps to avoid singularity.  

Apply above method on a system of equations from Kronecker operations method, e.g., 

Equation (5.3)-(5.6). It is assumed that an initial step is performed and the start value of 
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𝐴11 and 𝐴12 is solved and stored. For the adjacent segment 𝐴12 + ∆𝐴12, where ∆𝐴12 is 

given and small, there is an exactly calculated new value 𝐴11 + ∆𝐴11  that makes the 

point [𝐴11 + ∆𝐴11, 𝐴12 + ∆𝐴12] still ride on the intersection curve exactly. Then ∆𝐴11 

can be solved from following equation. 

 𝐽(𝐾, 𝐴11 + ∆𝐴11, 𝐴12 + ∆𝐴12) = 𝐽𝑐 (6. 14) 

The linearization method can be applied after Equation (6.14) is written in the form of 

a system of second degree polynomials after Kronecker operations, shown in the 

following example. 

Example 6.7: Use the 2𝐷2𝐶 example, where 𝐾 = 𝐾𝑙𝑞𝑟 = [5.0273,−0.4142]. 

 (2𝐴11 − 10.0546) ∗ 𝑃11 − 10.0546𝑃12 = −26.2741 (6. 15) 

 (𝐴12 + 0.4142) ∗ 𝑃11 + (𝐴11 − 05.0273 + 1.4142) ∗ 𝑃12 − 5.0273 ∗ 𝑃22 = 2.0824 

  (6. 16) 

 (2𝐴12 + 0.8284) ∗ 𝑃12 + 2.8284 ∗ 𝑃22 = −1.1716 (6. 17) 

 𝑃11 = 14 (6. 18) 

Here 𝑃21  is ignored due to symmetry. Incorporate ∆  terms into above system of 

equations so that the new solution point with a small increment still rides on the 

intersection curve. 

 (2𝐴11 + 2∆𝐴11 − 10.0546) ∗ (𝑃11 + ∆𝑃11) − 10.0546(𝑃12 + ∆𝑃12) = −26.2741 

  (6. 19) 

 (𝐴12 + ∆𝐴12 + 0.4142) ∗ (𝑃11 + ∆𝑃11) + (𝐴11 + ∆𝐴11 − 05.0273 + 1.4142) ∗

(𝑃12 + ∆𝑃12) − 5.0273 ∗ (𝑃22 + ∆𝑃22) = 2.0824 (6. 20) 

 (2𝐴12 + 2∆𝐴12 + 0.8284) ∗ (𝑃12 + ∆𝑃12) + 2.8284 ∗ (𝑃22 + ∆𝑃22) = −1.1716  

  (6. 21) 

 𝑃11 + ∆𝑃11 = 14 (6. 22) 

Also, it is assumed that all ∆  terms are small so that high order terms such as 

∆𝐴11∆𝑃11 are neglected. Expand above system of equations (6.19)-(6.22) and subtract 



86 
 

from original system of equations (6.15)-(6.18), leaving the following system of 

equations 

 2𝑃11
′ ∆𝐴11 − 10.0546∆𝑃12 = 0 (6. 23) 

 𝑃12
′ ∆𝐴11 + 𝑃11

′ ∆𝐴12 + (𝐴11
′ − 5.0273 + 1.4142)∆𝑃12 − 5.0273∆𝑃22 = 0  

  (6. 24) 

 2𝑃12
′ ∆𝐴12 + (2𝐴12

′ + 0.8284)∆𝑃12 + 2.8284∆𝑃22 = 0 (6. 25) 

In above equations, all terms are linear and there are no crossing terms between ∆𝐴11, 

∆𝐴12 and ∆𝑃 (∆𝑃11 equals to 0 and is ignored). All terms with ′ on superscript denotes 

the solved value from the previous step. The value of ∆𝐴12 is given as a small number, 

e.g., ∆𝐴12 = 0.01, leaving three unknowns to be solved: ∆𝐴11, ∆𝑃12 and ∆𝑃22. Note that 

due to the special structure of initial condition, only 𝑃11 is left from Equation (6.22); 

otherwise, there should be a forth linear equation composed of initial condition and ∆𝑃 

terms only and this equation regulates that the calculated quadratic performance equals to 

𝐽𝑐. In this context, above system of equations can be solved directly from the traditional 

linear algebraic, e.g., Gaussian elimination method.  

Again, the merit of this method is to profile such “slope” [∆𝐴11, ∆𝐴12] instead of 

[𝐴11, 𝐴12] and it can be repeated step by step to profile the whole curve, as long as an 

initial point is given, e.g., from Figure 6. 4 (b) and upper half curve, 𝐴11 = 2.0168 and 

𝐴12 = 1. Figure 6.5 (a) plots two profiled curves: the blue curve is solved from the exact 

quadratic calculations for every segment of 𝐴12  with increment ∆𝐴12 = 0.01; the red 

curve is profiled from linearization method with the same increment. It can be seen that 

the two curve have the same trend and the discrepancy is trivial.  Given that with the start 

value 𝐴12 = 1, there are two values of 𝐴11  which make the point [𝐴11, 𝐴12] rides on 

intersection curve, another plot is shown below in Figure 6.5 (b) with a new start point 

𝐴11 = 0.6580. 
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                  (a) Upper curve                                    (b) Lower curve 

Figure 6.5 Profiled curve from linearization method 

Due to the fact that a small increment is assumed between adjacent segments, the step 

length has to be small and the number of segments increases. It is advised that the 

profiling process is “reset” after several steps by using the traditional Kronecker 

operations method and solving the systems of second degree polynomials. How many 

steps between each reset changes from case to case, i.e., a good idea is to constantly 

monitor the accumulated slope change of [∆𝐴11, ∆𝐴12]. If the change between each step 

is small, meaning the curve is leaning toward linear, then there can be more steps allowed 

until the accumulated curvature goes beyond certain threshold, e.g., 1 degree. 

Also, note that this method is also applicable in Chapter 5 where a line search method 

is used for the controller search, but is not advised there since for the case in Chapter 5, a 

large step length could be used, making the linearization inaccurate. For application in 

this section, the increment in 𝐴12 uncertainty channel is selected to be small and constant, 

thus the linearization has certain guaranteed level of accuracy. For the application to be 

mentioned in Section 6.4.1, the controller search path is relatively short due to small 𝑃𝑂𝐹 

considerations and thus the step size would also be small and thus won’t degrade 

linearization’s accuracy. 

(End of linearization of system of second degree polynomials) 
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Thus after the intersection curve(s) are profiled, 𝑃𝑂𝐹 can be calculated accordingly by 

integrating 𝑃𝑂𝑂 of the shadow region in Figure 6. 4. An example is given below to 

illustrate such concept. 

Example 6.8: First, a two dimensional joint probability distribution is created in the 

following way: shrink the uncertainty space from above example to 𝐴11 ∈ [0.5,1.5] and 

𝐴12 ∈ [0.5,1.5] so that a small 𝑃𝑂𝐹 can be captured, let 

 Pr(𝐴11, 𝐴12) = −3 ∗ [(𝐴11 − 1)2 + (𝐴12 − 1)2)] + 1.5 (6. 26) 

The 𝑃𝐷𝐹 surface plot is shown in Figure 6.6. To validate, perform a double integral 

over 𝐴11 and 𝐴12 to cover the whole uncertainty space and the resulted integration equals 

to 1. 

 ∫ ∫ (−3 ∗ [(𝐴11 − 1)2 + (𝐴12 − 1)2)] + 1.5)𝑑𝐴11𝑑𝐴12
1.5

0.5

1.5

0.5
= 1 (6. 27) 

 

Figure 6.6 𝟐𝑫 joint probability distribution 

Using the joint probability distribution created above, the calculated 𝑃𝑂𝐹 is shown 

below, 

 𝑃𝑂𝐹𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒 = 0.0478 ≅ 𝑃𝑂𝐹𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 = 0.0471 (6. 28) 
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Note that for 2𝐷2𝐶 example, the 2𝐷 region can be discretized and summed easily by 

discretizing one uncertainty channel, e.g., channel 𝐴12  in above case; for high 

dimensional cases, it could be costly to calculate 𝑃𝑂𝐹 , e.g., for a 3𝐷3𝐶  case with 

uncertainty channels in [𝐴11 , 𝐴12 , 𝐴13] , there is a need to discretize and sweep the 

[𝐴11,𝐴12] uncertainty space and calculate 𝐴13 on the intersection point for each segment 

in [𝐴11,𝐴12]. The next step is to integrate the calculated volume of each 2𝐷 segment 

over the 3𝐷 uncertainty space and thus leads to 𝑃𝑂𝐹. However, it would be still more 

efficient compared to the sampling method with small 𝑃𝑂𝐹 to be captured. 

Since there is a need to discretize the uncertainty space and integrate, an initial point 

selection is very important and a lot of information can be revealed after the first-time 

solution of Kronecker equations. A good selection of start point helps to avoid sweeping 

the whole uncertainty space. E.g., in above 2𝐷2𝐶 example, if one starts from the bound 

𝐴12 = 1 and sweep in 𝐴12 channel towards the other bound 𝐴12 = 1.5, it would be way 

more efficient, as it stops right around point 𝐴12 = 1.14 , compared to the case of 

selecting the start point from the other bound 𝐴12 = 1.5 and sweep backwards the whole 

uncertainty range. 

RQ 2.3.2: How to effectively select an initial point? 

Hypothesis 2.3.2: Always starts from the pair of corners/bounds that gives 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥. 

Proof of concept: As long as the controller deviates from 𝐾𝑚𝑖𝑛𝑖𝑚𝑎𝑥, it is always one 

from above mentioned pair of corners/bounds that yields performance violations first, 

since the constraint is tight initially. 

RQ 2.3.3: How to select which dimensions to discretize and sweep through? 

Hypothesis 2.3.3: There is no particular preference. Discretize the uncertainty channel 

with a relatively smaller uncertainty range would be favorable since there will be fewer 

segments with the same discretization granularity. 

Thus the overall process of calculating 𝑃𝑂𝐹 is summarized below: 
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Algorithm 3 𝑷𝑶𝑭 calculation 

Step 1 With a given controller, first select 𝑐 − 1 uncertainty channels from 

the parameter uncertainty space and discretize them. 

Step 2 Sweep these channels. For each discrete segment, solve Equation 

(6.14) by using Kronecker method to calculate the value of unknown 

uncertainty channel. Check its validity such as whether the calculated 

value falls into uncertainty space. 

Step 3 Calculate corresponding 𝑃𝑂𝑂  for each segment according to given 

probability distribution, sum up each segment’s 𝑃𝑂𝑂 to get 𝑃𝑂𝐹. 

6.4 Controller search direction considerations 

6.4.1 Constant 𝑷𝑶𝑭 contour search method 

As briefly mentioned in Section 6.1, the line search could be further executed for better 

average performance by searching along the constraint 𝑃𝑂𝐹  contour after the 𝑃𝑂𝐹 

constraint is hit for the first time. It brings out the next research question. 

RQ 2.4: How to find the search direction along the constraint and constant 𝑃𝑂𝐹 

contour? 

Hypothesis 2.4: A delta 𝑷𝑶𝑭 based method can be used to find a search direction 

along the constraint and constant 𝑃𝑂𝐹 contour. 

The merit of this method is to calculate the increment of 𝑃𝑂𝐹 from the increment in 

the controller. Recall that in the 2𝐷2𝐶 case, for each segment in Figure 6. 4 (b), the value 

of 𝐴12, 𝐾1  and 𝐾2  are given and 𝐴11  is calculated accordingly. When there is a given 

small increment ∆𝐾2 in the value of 𝐾2 and another small increment ∆𝐾1 in the value of 

𝐾1, the increment of calculated value of 𝐴11, denoted as ∆𝐴11 is a function of ∆𝐾1 and 

∆𝐾2 for each segment where 𝐴12 is known. The new value of 𝐴11 + ∆𝐴11 profiles a new 

intersection curve, as shown in the dashed red curve in Figure 6.7. 
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Figure 6.7 New intersection curve with increment of 𝑲𝟐 

The multiplications of each segment’s 𝑃𝑂𝑂 and the calculated ∆𝐴11 summed up to the 

increment of 𝑃𝑂𝐹 (∆𝑃𝑂𝐹). Let it be assumed that ∆𝐾2 is small and given, then the value 

of ∆𝐾1 that makes ∆𝑃𝑂𝐹 = 0 can be calculated accordingly. 

From mathematical point view, the task of above method is that for each segment, 

calculate ∆𝐴11𝑖
 as a function of ∆𝐾1 when ∆𝐾2 is given as a small increment, so that the 

following equations hold true 

 𝐽(𝐴11𝑖
, 𝐴12𝑖

, 𝐾1, 𝐾2) = 𝐽(𝐴11𝑖
+ ∆𝐴11𝑖

, 𝐴12𝑖
, 𝐾1 + ∆𝐾1, 𝐾2 + ∆𝐾2) = 𝐽𝑔∀𝑖 = 1…𝑑 

  (6. 29) 

Then the ∆𝑃𝑂𝐹 due to ∆𝐾1 and ∆𝐾2 is calculated via the following equation, where 

∆𝑃𝑂𝐹𝑖 = ∆𝐴11𝑖
∆𝐴12 𝑃r(𝐴11𝑖

, 𝐴12𝑖
) is the calculated ∆𝑃𝑂𝐹 for each segment. Regulating 

the following sum of ∆𝑃𝑂𝐹𝑖 equals to 0 enables ∆𝐾1 be solved as a function of ∆𝐾2, and 

the normalized combination of ∆𝐾1 and ∆𝐾2, which essentially forms a search direction, 

is a valid one that makes the line search along the constant 𝑃𝑂𝐹 contour. 

 ∆𝑃𝑂𝐹 = ∑ ∆𝐴11𝑖
𝑑
𝑖=1 ∆𝐴12 Pr(𝐴11𝑖

, 𝐴12𝑖
) = 0 (6. 30) 
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Note that the linearization method can still be applied here, the only difference is that 

there is an extra unknown ∆𝐾1  in the equations, along with an extra linear equation 

∆𝑃𝑂𝐹 = 0. So the total unknowns and equations in the system are still balanced. 

Example 6.9: For each segment with 𝐴12 constant and given, Equation (6.29) reduce 

to the following after linearization. 

 2𝑃11
′ ∆𝐴11 − 10.0546∆𝑃12 + 2𝐾1∆𝐾1 = 0 (6. 31) 

 𝑃12
′ ∆𝐴11 + (𝐴11

′ − 5.0273 + 1.4142)∆𝑃12 − 5.0273∆𝑃22 + 𝐾2∆𝐾1 + 𝐾1∆𝐾2 = 0 

  (6. 32) 

 (2𝐴12
′ + 0.8284)∆𝑃12 + 2.8284∆𝑃22 + 2𝐾2∆𝐾2 = 0 (6. 33) 

Note that due to the value of controller changes, thus there will be linearized terms 

containing ∆𝐾1 and ∆𝐾2 from the term 𝑄 + 𝐾𝑇𝑅𝐾. Similar to the previous case, in above 

linear equations, the value of ∆𝐾2 is given as a small number, i.e., ∆𝐾2 = 0.01, leaving 

four unknowns ∆𝐴11 ,∆𝐾1 , ∆𝑃12  and ∆𝑃22  to be solved from three equations. In such 

circumstance, there are infinity solutions since the equations are underdetermined, but 

∆𝐴11 can be expressed as a linear function of ∆𝐾1. Note that due to special structure of 

initial condition, only 𝑃11 is left from last equation; otherwise, there should be a forth 

linear equation composed of the initial condition and ∆𝑃 only to regulate the calculated 

quadratic performance equals to the given value. 

Repeat above calculation for each discretized segment of 𝐴12𝑖
 with the same value of 

∆𝐾2, the sum of ∆𝐴11𝑖
 is still a linear function of ∆𝐾1 solely and thus a unique value of 

∆𝐾1  can be solved from equation (6.30). The direction of [∆𝐾1, ∆𝐾2]  is the one that 

enables the line search go along the constraint and constant 𝑃𝑂𝐹 contour. 

Still use the 2𝐷2𝐶 example, but some simplifications are made so that the plot shown 

below can be visually validated: a uniform distribution, or 𝑃𝑟(𝐴11, 𝐴12) = 1 is assumed 

over the whole uncertainty range, so that the 𝑃𝐷𝐹 integrated area, or simply the area of 

region shaped by the intersection curve and two axes is equivalent with 𝑃𝑂𝐹 ; the 



93 
 

uncertainty range is further shrinked to 𝐴11 ∈ [0,0.5] and 𝐴12 ∈ [1,1.1] so that only left 

lower part of shadowed uncertainty region in Figure 6. 4 (b) will lead to performance 

violation. With the same controller, calculated 𝑃𝑂𝐹 = 0.1796. Though it is against initial 

assumption of small value, but this example only serves with an illustrative purpose, thus 

it is reasonable that 𝑃𝑂𝐹 has a relative large value. 

Now let ∆𝐾2 = 0.1 and ∆𝐴12 = 0.01 . Perform one step of above search direction 

calculation, the calculated ∆𝐾1 = 0.02728. Figure 6.8 plots the intersection curves of 

two response surfaces with the constraint plane together. It can be observed that from a 

bird view, the two intersection curves form two quasi-triangle regions and they overlap 

each other in the middle. Visually inspect and it reveals that the areas of two regions are 

the same with each other. Numerical result shows that 𝑃𝑂𝐹(𝐾1, 𝐾2) = 0.1796 ≅

0.1801 = 𝑃𝑂𝐹(𝐾1 + 0.02728, 𝐾2 + 0.01). 

 

Figure 6.8 New intersection curve with an increment of 𝑲𝟐 (calculated result) 

One interesting property to check is that, after linearization, the geometrical 

interpretation of such search direction along the constant 𝑃𝑂𝐹 contour is the local slope, 
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which should yields two search directions who are opposite with each other along the 

local slope. 

Hypothesis 2.4.1: If the sign of ∆𝐾2 is changed but the absolute value is kept constant, 

the new calculated value of ∆𝐾1 should also be the same, but only with a different sign.  

Proof of concept: The LHS of Equation (6.31)-(6.33) are linear combinations of 

constants and variables, and the RHS is 0 for all rows. That means as long as one of the 

variables in the solution changes its sign, all other variables in the new solution keep the 

same absolute value, but with different signs. The search direction from the newly 

calculated results is equivalent with the previously calculated search direction shifts 180 

degrees. 

Also, note that above conclusion is only valid after linearization. With original 

quadratic equations, changes of sign won’t lead to above conclusion. 

6.4.2 Stopping criteria 

RQ 2.5: When to stop line search along the constraint and constant 𝑃𝑂𝐹 contour? 

Hypothesis 2.5: The line search stops when the product of the average performance’s 

steepest descent direction and the constant 𝑃𝑂𝐹 search direction is negative. Equivalently, 

the projection of one direction on the other is negative. 

Proof of concept: The concept is easy to understand via the useful and feasible 

directions. No numerical example but a notational example is shown in Figure 6.9. 

Utilization of such concept through a comprehensive case study can be found in the next 

chapter. 
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Figure 6.9 Notational example of two directions against each other 

In above example, from the geometry point of view, the line search stops when the 

feasible direction and the usable direction go against each; algebraically, the product of 

the two research directions’ vectors is negative, or the projection of one vector on the 

other is in an opposite direction [38]. 

It has been proved before that the average performance over controller design space is 

strictly non-concave, thus for sure the optimal point being found is also global optimal. 

6.4.3 Extension to high dimension case 

The generalized procedure from above method is that for a controller with 𝑚 ∗ 𝑛 

dimensions, pre-determine 𝑚 ∗ 𝑛 − 1 dimensions and calculate the unknown one so that 

it goes along the constant and constraint 𝑃𝑂𝐹  contour. E.g., for a controller with 3 

dimensions, the 2𝐷 contour of circles shown in Figure 6. 2 expands to a 3𝐷 contour of 

spheres shown in Figure 6. 10.  
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Figure 6. 10 3D POF and performance contour 

For any point on the sphere, there are infinite tangent lines, highlighted in red arrows. 

Though above method guarantees a search direction towards better performance, it 

cannot guarantee the steepest descent direction, which exists uniquely from pre-selected 

controller’s 𝑚 ∗ 𝑛 − 1 dimensions. Such concern leads to the next research question. 

RQ 2.6: How to find the best combination of controller’s pre-determined 𝑚 ∗ 𝑛 − 1 

dimensions? 

Hypothesis 2.6: The 𝑚 ∗ 𝑛 − 1 dimensions can be “borrowed” from steepest descend 

search direction towards optimal average performance. An example is used to illustrate 

above concept. 
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Figure 6.11 𝟑𝑫 controller line search 

 

Figure 6.12 𝟑𝑫 controller line search-side view 

Example 6.10: Figure 6. 10 shows two spheres, denoting the constant 𝑃𝑂𝐹 and the 

average performance contour, intersect each other. To make it easier, it is assumed that 

the controller who gives the optimal average performance is located exactly on the center 

point of RHS sphere and all other constant average performance contours are all spheres. 

Thus the optimal point to be found who optimizes average performance while rides on 

the 𝑃𝑂𝐹 = 0.01 contour is located exactly on the intersection point of the line connecting 
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the center points of two spheres and the 𝑃𝑂𝐹 = 0.01 contour. Also it is assumed that the 

start line search point is located on the highest point on the intersection circle. 

The steepest descent direction at the start point is [∆x = 0.5, ∆y = −0.5, ∆z = 0] . 

Thus, the two dimensions of ∆y = −0.5and∆z = 0  are borrowed and the calculated 

unknown dimension is ∆x = 0.1. Thus the combined initial search direction is [∆x =

0.1, ∆y = −0.5, ∆z = 0.0] . Keep using the two dimensions borrowed from steepest 

descent direction, the path of line search is plotted in red arrows in Figure 6.11. Note that 

since ∆z always equals to 0 through all steps, thus it is always valid to scale ∆y to 0.5. 

Compare to another search path highlighted in blue who deviates from the red one, it 

turns out that from Figure 6.12 who is the side view of Figure 6.11, though the path in 

blue still rides on constant 𝑃𝑂𝐹 contour and leads to the optimal point in the end, it is not 

as efficient as the line search path in red. 

RQ 2.7: For high dimension cases, which dimensions to “borrow” from the steepest 

descent direction? 

Hypothesis 2.7: There is no guaranteed answer. One possible answer would be to find 

the largest sum of 𝑚 ∗ 𝑛 − 1 dimension’s local gradient. 

Proof of concept: As shown in Equation (6.34), geometrical meaning of the following 

equation is to maximize potential performance improvement at the next step of line 

search. 

 max        𝑠𝑢𝑚 = ∑
𝜕𝐽𝑎𝑣𝑒

𝜕𝐾𝑖

𝑚∗𝑛−1
𝑖=1  (6. 34) 

It is not guaranteed since there is variation introduced from the calculated unknown 

dimension, as it is derived from the 𝑃𝑂𝐹 contour, which is totally independent from the 

constant performance contour. Since it is not of the priority, further discussion of this 

topic will be addressed in the future. 
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6.5 𝑷𝑶𝑭 constraint optimal average performance controller design 

So far, Section 6.2 provides a method to search and update a controller consistently 

towards a better average performance. Section 6.3 provides a method to calculate 𝑃𝑂𝐹 

for a given controller. Section 6.4 provides a method to search along the constraint 𝑃𝑂𝐹 

contour and a stopping criteria. The combination all above fulfill a complete numerical 

line search method for the problem formulated in Section 6.1.3. Next a comprehensive 

procedure is provided so that a 𝑃𝑂𝐹  Constrained Optimal Average Performance 

Controller can be found to reduce the conservatism. 

 

Algorithm 4 Line search to a 𝑷𝑶𝑭 constrained optimal average performance 

controller 

Step 1 Start from 𝐾𝑚𝑖𝑛𝑖𝑚𝑎𝑥  with a performance equals to the evaluation 

criteria 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥 = 𝐽𝑐, calculate a steepest descent direction towards 

the optimal average performance controller. 

Step 2 Perform the line search and calculate current controller’s 𝑃𝑂𝐹 at each 

search step, repeat until the constraint 𝑃𝑂𝐹 is reached. 

Step 3 Find a new search direction along the constant 𝑃𝑂𝐹 contour by using 

the ∆𝑃𝑂𝐹  method; make sure the direction goes towards the better 

average performance; keep performing line search until the two 

directions from step 2 and step 3 go against each other. 

Step 4 Check average performance, stability, etc. 

 

6.6 Complexity analysis 

As addressed in Section 5.6, the complexity of solving the Lyapunov equation will no 

longer be analyzed in this section. Instead, the focus will be shifted to analyze the 

complexity of the line search method. 

Since there is no analytical method available, above numerical line search method will 

be compared to the sampling method. Given that the probability generations and 

calculations for both methods have the same complexity, the only thing left for 
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comparison is the size of discretized segments and the complexity of each line search step 

against the sampling method. 

Should both methods aim to design a controller with an accuracy within 5% error 

around target 𝑃𝑂𝐹 = 0.01, as analyzed in RQ 2.3, there needs 100000 samples in each 

uncertainty channel. Also it is assumed that there are 𝑐 uncertainty channels, total the 

number of samples increases exponentially and is of the order of magnitude 1 ∗ 𝑒5 ∗ 𝑐, or 

equivalently 𝑐 ∗ 𝑒5 times of Lyapunov equation calculation. The complexity is of the 

order 𝑂(𝑛𝑐). Should one consider both uncertainty space and controller design space 

with 𝑚 ∗ 𝑛  dimensions to sample to design an optimized controller, the complexity 

increases to 𝑂(𝑑𝑐+𝑚∗𝑛). 

It is assumed that discretization have the same granularity of sampling in the 

uncertainty channel, when the number of uncertainty channel increases, only the 

dimension of search direction increases linearly, or 𝑂(𝑟(𝑚 + 𝑛)𝑑𝑐). Thus even it takes 

extra 𝑟 numerical steps to find the controller search direction compared to sampling, it is 

still numerically efficient when the number of uncertainty channels increases. 

Undeniable, sampling method is much easier to program as the discretization and line 

search method require attentions all the time to decide the validity of the calculated 

results, which channels and dimensions to choose from, etc. 

6.7 Extensions 

A useful extension of the linearization method in Section 6.3.2 is its direct application in 

the matrix calculations, i.e., in Lyapunov equation without Kronecker operations.  

Start from the following Lyapunov equation, assuming that 𝐾 is given. Instead of ′, 

use ° to denote the previously calculated value of each variable. 

 ([
𝐴11

° 𝐴12
°

𝐴21 𝐴22
] + 𝐵𝐾)

𝑇

𝑃° + 𝑃° ([
𝐴11

° 𝐴12
°

𝐴21 𝐴22
] + 𝐵𝐾) + 𝑄 + 𝐾𝑇𝑅𝐾 = 0(5. 42) 

 𝑥0
T𝑃°𝑥0 = 𝐽𝑐 (5. 43) 
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With an increment of ∆𝐴11 and ∆𝐴12, the Lyapunov equation becomes the following 

([
𝐴11

° 𝐴12
°

𝐴21 𝐴22
] + [

∆𝐴11 ∆𝐴12

0 0
] + 𝐵𝐾)

𝑇

(𝑃° + [
∆𝑃11 ∆𝑃12

∆𝑃21 ∆𝑃22
]) + (𝑃° +

[
∆𝑃11 ∆𝑃12

∆𝑃21 ∆𝑃22
]) ([

𝐴11
° 𝐴12

°

𝐴21 𝐴22
] + [

∆𝐴11 ∆𝐴12

0 0
] + 𝐵𝐾) + 𝑄 + 𝐾𝑇𝑅𝐾 = 0 (5. 44) 

 𝑥0
T(𝑃° + [

∆𝑃11 ∆𝑃12

∆𝑃21 ∆𝑃22
])𝑥0 = 𝐽𝑐 (5. 45) 

By assuming that ∆𝐴11 , ∆𝐴12  and all ∆𝑃  terms are small, expand above equation, 

ignore high order terms and eliminate from Equation (5.42)-(5.43), the following system 

of equations is finally reached, 

[
∆𝐴11 ∆𝐴12

0 0
]
𝑇

𝑃° + (𝐴° + 𝐵𝐾)𝑇 [
∆𝑃11 ∆𝑃12

∆𝑃21 ∆𝑃22
] + 𝑃° [

∆𝐴11 ∆𝐴12

0 0
] +

[
∆𝑃11 ∆𝑃12

∆𝑃21 ∆𝑃22
] (𝐴° + 𝐵𝐾) = 0  (5. 46) 

 𝑥0
T [

∆𝑃11 ∆𝑃12

∆𝑃21 ∆𝑃22
] 𝑥0 = 0 (5. 47) 

All terms in above system of equations are linear. Without loss of generality, there are 

two unknowns from uncertainty channels, four from matrix 𝑃 and five balance equations. 

Thus as long as either one of ∆𝐴11 or ∆𝐴12 is assumed to be known, the other unknowns 

can be solved accordingly. In this context, above method is equivalent with the method 

provided in Section 6.3.2.  
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CHAPTER 7  

CASE STUDY: HVAC CONTROL SYSTEM DESIGN 

 

In this chapter, a case study of HVAC control system design will be provided. First, a 

physical model is built, followed by the state space representations, simplification, and 

linearization. Uncertainty channels will be identified next. Corresponding probability 

distributions are retrieved from observed sensor data. The state of art solutions, mainly 

adaptive and robust control will be surveyed. Then the proposed NEMCD and 

PCOAPCD will be used in a sequence to design a controller to reduce the conservatism. 

A comparison will be made between multiple controllers visited previously to highlight 

each controller’s feature and fulfilled design objective. In the end, two other potential 

case studies, an airplane control and a financial control will be briefly mentioned. 

The following flow chart diagram is provided to illustrate the solution procedure of the 

whole case study. It starts from building a model with normal 𝐿𝑄𝑅 , identifying 

uncertainty parameters’ ranges and thus designing a traditional robust minimax controller.  

Next, Experiment 1 will be carried out by utilizing the Norm Extend Minimax 

Controller Design method. Thus, a minimax controller can be designed so that the first 

level of conservatism from traditional minimax method can be reduced. 

With the incorporation of uncertain parameters’ probability distribution information 

and applying 𝑃𝑂𝐹 Constrained Optimal Average Performance Controller Design method, 

a free line search (Experiment 2) will be implemented towards the optimal average 

performance controller. Experiment 3 will focus on designing a new controller so that the 

tight performance constraint is relaxed and a tradeoff between average performance, 

worst-case performance and 𝑃𝑂𝐹  can be initiated. With the achievements from 

Experiment 2 and Experiment 3, the second level of conservatism can be reduced. 
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7.1 HVAC system introduction  

HVAC (heating, ventilation, and air conditioning) is the technology of indoor and 

vehicular environmental comfort. It represents an important share of the electricity 

consumption (about 30%) in a building [39]. Considering the fact that buildings consume 

approximately 40% of total US energy [40], HVAC’s share of total US energy is around 

12%. This fact implies that important energy and economic savings can be achieved by 

improving the efficiency in HVAC system and therefore, a substantial reduction in the 

environmental impacts can be also achieved. 

While an HVAC system involves many aspects such as design, construction, operation 

and maintenance, design is the foundation. For the HVAC system, the main goal is to 

ensure indoor and vehicular environmental comfort. Along with technology development, 

energy consumption and environmental friendly [41] have been used as other evaluation 

criteria. The HVAC industry is now regulated by standards organizations such as 

ASHRAE, International Mechanical Code. A series of regulations [ 42 ] have been 

established to support the industry and encourage high standards and achievement. 

With above analysis and the following reasons, HVAC system design is selected as 

the case study in this research: 

1. It is relatively simple compared to other high dimension/order systems. 

2. The quadratic performance 𝐽 has a flexible weight on controller’s effort (energy 

usage), compare to other controller design criteria. 

3. When room temperature is treated as the tracking target, performance deviates in 

both directions are not favored, which fits the quadratic performance evaluation criteria 

used in this research. 

4. Has sensor data available 

From the physical aspect, a complete HVAC system has multiple variations serving 

different design objects but is usually composed of an Air Handling Unit (AHU) and a 

conditioned room. Figure 7.3 shows the structure of a traditional AHU. Its function is to 
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provide the desired amount of chilled or heated air to the monitored room to maintain a 

comfortable environment. The cooling coil in AHU serves as a heat exchange platform so 

that heat contained in return air can be absorbed by cooling medium and delivered to the 

air-cooled condenser. In this research, only cooling will be considered. 

  

Figure 7.3 Air Handling Unit (AHU) structure [43] and monitored room 

The monitored room is shown in Figure 7.3, i.e. a fully occupied classroom. It can be 

considered as a thermal model that obeys the energy conservation law. To simplify the 

model, all the air in the room is considered to have the same temperature, which is 

affected by the gained heat or lost heat. The heat gained or lost is determined by the room 

heat load, which is a function of supply air temperature, flow rate, and other heat sources. 

The corresponding equation will be given in next section. Other monitored metrics 

include humidity, CO2 density, and pressure. Some of them are heavily coupled with 

room temperature [44], but these metrics are not considered to simplify the system. 

With above two physical plants defined, there is a control system embedded. For 

example, the particular air flow rate needed to maintain a constant room temperature is 

decided by the controller Variable Air Volume (VAV) [45]. The desired cooling medium 

is controlled by a Variable Speed Compressor so that the supply air has a regulated 

temperature. While there are multiple cooling medium and strategies available for the 

cooling purpose, cooling refrigerant and DX evaporator is used in this case study.  
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7.2 Traditional/robust/adaptive control applications in HVAC 

In this section, a literature survey will be performed WRT to traditional PID control, 

optimal control, adaptive control, and robust control applications in HVAC system design. 

7.2.1 PID/PI Controller Application in HVAC 

It is proved that PI controller (without derivative term) is sufficient enough for HVAC 

system design [46]. 

To get a desired HVAC performance, tuning PID controller parameters is the most 

important. Since stability is not a critical point in the HVAC control system, the 

controller gain is usually set to be low. But it also leads to tedious and inaccurate 

response [46]. While there are many well-developed parameters tuning algorithms 

available in the modern industry, they are not necessarily applicable to HVAC controller 

design. A lot of research and papers were published to address such challenge. Nesler [47] 

provided a method to select PI parameters in the digital control of discharge air 

temperature. Hittle [48] also provided a solution in terms of parameter tuning. 

As the control theory develops, the PI controller is gradually replaced by more 

advanced controllers due to its limitation such as energy inefficient, poor robust 

performance to disturbances. Nowadays many HVAC controller design papers with 

research purposes only use PI controller as a reference for a performance comparison to 

their proposed controllers. 

7.2.2 Optimal Control Application in HVAC 

Optimal control also has wide application in HVAC systems, especially considering that 

it takes over 12% of total US energy consumption. Yahiaoui [49] utilized 𝐿𝑄𝐺 controller 

for an integrated building system. The objective function included both state variables 

and control effort. It proved that with 𝐿𝑄𝐺  controller applied, the objective of 

simultaneously optimizing room comfort and energy consumption could be accomplished.  
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Similar results were observed by Zaheer-Uddin [50] by comparing 𝐿𝑄𝐺 controller and 

traditional PI controller, though his objective function focused on disturbance rejection. 

Other effort was contributed from Kasahara, et al. [51]. Instead of a physics model, they 

built a multivariable autoregressive (AR) HVAC model from the experimental data. 

Optimal preview controller was used with an objective function of maintaining the room 

comfortableness. Their results were calculated through computer simulation and were 

validated by experiment. 

7.2.3 Adaptive Control Application in HVAC 

The key concept of adaptive control is that the controller gains are automatically tuned 

“on-line”. When it is applied on HVAC, its benefit is evident as the discrepancy from 

desired performance can be compensated. Thus, performance degradation is recovered. 

Nesler [47] developed an evolutionary approach in a effort of automated tuning 

methods for a traditional PI controller. Similar work was done by Park [52] as his work 

presented a recursive least-squares algorithm. Instead of PI controller, adaptive control 

can also be applied to optimal control, such as the work done by Wang [53]. 

For the derivations from traditional adaptive control, Sheikholeslami [54] used a brain 

emotional learning algorithm to control a multivariable HVAC system. Soyguder [55] 

added the fuzzy logic into a traditional PID type adaptive control. The neural network 

techniques applications in HVAC system are presented in many papers. Ferreira [56] 

adopted a neural network to obtain the room thermal comfort as well the energy saving. 

Saboksayr [57] used a similar approach to reach the energy saving for a system with 

decentralized controllers. 

7.2.4 Robust control application in HVAC 

The applications of robust control in HVAC systems are surveyed in this section. A basic 

application of traditional robust control method was done by Underwood [46]. The 
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results proved that though there was a loss of performance, the robust control did increase 

the stable margin when the plant had a varying gain. 

Chen and Lee [2] proposed an adaptive robust controller to take into account of the 

uncertainties including thermal storage effect, heat, and moisture generation, or outside 

temperature and humidity changes. The assumption was that the uncertainty was bounded, 

but the bound was unknown. A comparison was made between the proposed controller 

and on/off control. 

Kasahara, et al. [51] developed a “two-disk type, mixed sensitivity method” to solve 

PID parameters and got a robust design for an HVAC system with different lag time and 

percentage of parameter variation. A comparison was made between the proposed 

solution and a traditional PID parameter tuning method using Ziegler-Nichols rule. 

7.3 System Modeling 

In this section, an physical HVAC system will be modeled, followed by the realization, 

simplification, and linearization which convert it to a linear state space equation so that 

Experiment 1, 2 and 3 can be performed respectively. 

7.3.1 Physical Modeling 

The model to be used in this section is referred from [58] [59], in which a model was 

built from physics and validated against experiment data. In this research, simplifications 

of the model will be made, followed by assigning several parameters with new values 

from local sensor data. In this way, the uncertainties collected from sensors could be 

mapped into the model. The physical model is shown below. 

In terms of the conditioned room, with the assumption of a perfect air mixing and the 

thermal inertia of indoor air leading to slow changes, the first equations is derived from 

the principle of energy conservation: the heat gained, including VAV delivered via the 

thermal difference between the supply air temperature 𝑇1 and the room temperature 𝑇2, 
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the space sensible heat load 𝑄𝑙𝑜𝑎𝑑 and the heat gain of the supply fan 𝑄𝑙𝑜𝑎𝑑, drive the 

room temperature variation 
𝑑𝑇2

𝑑𝑡
, 

 𝐶𝑝𝜌𝑉
𝑑𝑇2

𝑑𝑡
= 𝐶𝑝𝜌𝑓(𝑇1 − 𝑇2) + 𝑄𝑙𝑜𝑎𝑑 + 𝑄𝑠𝑝𝑙 (7. 1) 

where 𝐶𝑝 is the thermal capacity, 𝜌 is the air density and is assumed to be constant, 𝑉 is 

the volume of conditioned space, 𝑓 is the air volumetric flow rate. 

The heat gain of supply fan increases with air flow rate, and can be written as  

 𝑄𝑠𝑝𝑙 = 𝑘𝑠𝑝𝑙𝑓 (7. 2) 

where 𝑘𝑠𝑝𝑙 is a coefficient. 

 

Figure 7.4 DX evaporator 

The DX evaporator is shown in Figure 7.4. Free energy exchange is assumed between 

air and refrigerant. It is also assumed that the wall temperature 𝑇𝑤 is the same through the 

whole wall due to a large thermal conductivity and small region on the wall. Again the 

principle of energy conservation is applied, 

 𝐶𝑝𝜌𝑉ℎ1
𝑑𝑇1

𝑑𝑡
= 𝐶𝑝𝜌𝑓(𝑇2 − 𝑇1) + 𝛼1𝑍1(𝑇𝑤 −

𝑇2+𝑇1

2
) (7. 3) 

where 𝑍1 is the air side heat transfer area of evaporator. 𝑉ℎ1 is the air side volume of 

evaporator and is calculated as follows, 

 𝑉ℎ1 = 𝑍𝑠1𝐿1 (7. 4) 

where 𝐿1 is the length of the region on the air side of evaporator. 𝑍𝑠1 is the air side cross 

area of the evaporator. 
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The air side convective heat transfer coefficients 𝛼1 for the louver-finned evaporator 

[60] is evaluated as follows, 

 𝛼1 = 𝑗𝑒1𝜌𝜈
𝐶𝑝

𝑃𝑟
2
3
 (7. 5) 

where 𝑗𝑒1 is the Colburn factors, 𝑃𝑟 is the Prandtl number, 𝜈 is the air velocity. 

Due to the significant difference of the thermal inertia between refrigerant and air, the 

dynamic responses to the changes on the air side is much slower than that on the 

refrigerant side. When the air side waits for a long time to fully respond, the refrigerant 

side is already in its steady-state for a quite a while. Thus, the same refrigerant mass flow 

rate at both inlet and outlet of the DX evaporator is assumed and written as follows, 

 𝑀𝑟𝑒𝑓 =
𝑠𝑉𝑐𝑜𝑚

𝜈𝑠
{1 − 0.015 [(𝑃𝑐/𝑃𝑒)

1

𝛽 − 1]} (7. 6) 

where 𝑠 is the compressor speed, all other variables are thermal constants and are not 

further elaborated. 

With all above assumptions, the energy balance equation for the evaporator wall can 

be written as follows, 

 (𝐶𝑝𝜌𝑉)𝑤
𝑑𝑇𝑤

𝑑𝑡
= 𝛼1𝑍1 (

𝑇2+𝑇1

2
− 𝑇𝑤) − 𝑀𝑟𝑒𝑓(ℎ𝑟2 − ℎ𝑟1) (7. 7) 

In this manner, there are three state variables 𝑥 = [𝑇1, 𝑇2, 𝑇𝑤]𝑇 , two input signals 

𝑢 = [𝑓, 𝑠]𝑇 , along with the disturbance 𝑄𝑙𝑜𝑎𝑑 , corresponding to the last paragraph in 

Section 7.1. The state space equation’s parameters are listed below. 

𝐴 =

[
 
 
 
 
 
 

1

𝐶𝑝𝜌𝑉ℎ1
(−𝐶𝑝𝜌𝑓 −

1

2
𝛼1𝑍1)

1

𝐶𝑝𝜌𝑉ℎ1
(𝐶𝑝𝜌𝑓 −

1

2
𝛼1𝑍1)

1

𝐶𝑝𝜌𝑉ℎ1
𝛼1𝑍1

1

𝐶𝑝𝜌𝑉
𝐶𝑝𝜌𝑓

1

(𝐶𝑝𝜌𝑉)
𝑤

(
1

2
𝛼1𝑍1)

−
1

𝐶𝑝𝜌𝑉
𝐶𝑝𝜌𝑓 0

1

(𝐶𝑝𝜌𝑉)
𝑤

(
1

2
𝛼1𝑍1) −𝛼1𝑍1

]
 
 
 
 
 
 

 

The controller matrix 
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𝐵 =

[
 
 
 
 

0 0

𝑘𝑠𝑝𝑙

0

0

−
𝑉𝑐𝑜𝑚

𝜈𝑠
{1 − 0.015 [(

𝑃𝑐

𝑃𝑒
)

1
𝛽

− 1]}(ℎ𝑟2 − ℎ𝑟1)

]
 
 
 
 

 

Disturbance matrix 

𝑑 = [
0

𝑄𝑙𝑜𝑎𝑑

0
] 

The values of constants are listed in Table 6. 

Table 6 Constants 

𝑪𝒑 𝟏. 𝟎𝟎𝟓𝒌𝑱
/𝒌𝒈 

(𝑪𝒑𝝆𝑽)
𝒘

 𝟐𝟗𝒌𝑱 

𝝆 1.2𝑘𝑔/𝑚3 𝑨𝟏 4.14𝑚3 

𝑽 120𝑚3 𝑽𝒉𝟏 0.04𝑚3 

 

7.3.2 Linearization 

Since the model contains a lot of interaction terms and thus is non-linear, it needs to be 

linearized before 𝐿𝑄𝑅 design can be applied. 

In majority of the cases of linearization, the system is designed to be operated in the 

vicinity of an operation set point. As long as the control system can properly regulate the 

dynamic deviation of the controlled objectives from their set points, the controlled system 

can be well represented by a linearized model around the set points. Hence, the state 

variables 𝑥 and control inputs 𝑢 can be expressed as follows, respectively, 

 𝑥 = 𝑥0 + ∆𝑥 (7. 8) 

 𝑢 = 𝑢0 + ∆𝑢 (7. 9) 

where 𝑥0 and 𝑢0 are the state and input variables evaluated at the steady-state operation 

point. At the same time, due to the fact that the load disturbance changes very slowly, it is 
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assumed to be a constant and thus disappears after the linearization. The change in the 

compressor speed is much slower than that of the supply fan speed and thus ∆𝑠 is also 

removed. 

By implementing above linearization, the system is linearized to the following 

equations, 

 𝐶𝑝𝜌𝑉ℎ1
𝑑∆𝑇1

𝑑𝑡
= 𝐶𝑝𝜌𝑓𝑠(∆𝑇2 − ∆𝑇1) + 𝐶𝑝𝜌(𝑇2𝑠 − 𝑇1𝑠)∆𝑓 + 𝛼1𝑍1(∆𝑇𝑤 −

∆𝑇2+∆𝑇1

2
)  

  (7. 10) 

 𝐶𝑝𝜌𝑉
𝑑∆𝑇2

𝑑𝑡
= 𝐶𝑝𝜌𝑓𝑠(∆𝑇1 − ∆𝑇2) + 𝐶𝑝𝜌(𝑇1𝑠 − 𝑇2𝑠)∆𝑓 + 𝑘𝑠𝑝𝑙∆𝑓 (7. 11) 

 (𝐶𝑝𝜌𝑉)𝑤
𝑑∆𝑇𝑤

𝑑𝑡
= 𝛼1𝑍1 (

∆𝑇2+∆𝑇1

2
− ∆𝑇𝑤) (7. 12) 

Now, the new state space representations are as follows, given that the new state 

variables are 𝑥 = [∆𝑇1, ∆𝑇2, ∆𝑇𝑤]𝑇, and the controller output variables 𝑢 = [∆𝑓]𝑇. 

𝐴𝑠 =

[
 
 
 
 
 
 

1

𝐶𝑝𝜌𝑉ℎ1
(−𝐶𝑝𝜌𝑓𝑠 −

1

2
𝛼1𝑍1)

1

𝐶𝑝𝜌𝑉ℎ1
(𝐶𝑝𝜌𝑓𝑠 −

1

2
𝛼1𝑍1)

1

𝐶𝑝𝜌𝑉ℎ1
𝛼1𝑍1

1

𝐶𝑝𝜌𝑉
𝐶𝑝𝜌𝑓𝑠

1

(𝐶𝑝𝜌𝑉)
𝑤

(
1

2
𝛼1𝑍1)

−
1

𝐶𝑝𝜌𝑉
𝐶𝑝𝜌𝑓𝑠 0

1

(𝐶𝑝𝜌𝑉)
𝑤

(
1

2
𝛼1𝑍1) −𝛼1𝑍1

]
 
 
 
 
 
 

 

𝐵𝑠 = [

𝐶𝑝𝜌(𝑇2𝑠 − 𝑇1𝑠)

𝑘𝑠𝑝𝑙 + 𝐶𝑝𝜌(𝑇1𝑠 − 𝑇2𝑠)

0

] 

For the DX HVAC system, system is operated at the point 𝑇1 = 13.25℃, 𝑇2 = 24℃, 

𝑇𝑤 = 13℃ and 𝑓 = 0.347𝑚3/𝑠. 𝐴𝑠 and 𝐵𝑠 are calculated as follows, 

𝐴𝑠 = [
−7.1177 −0.7177 7.8354
0.0017
0.0065

−0.0017 0
0.0065 −0.3780

] 

𝐵𝑠 = [
12.9645
−9.0111

0
] 
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7.3.3 Normal controller design 

With the normal model built, a normal controller can be designed to regulate the system’s 

performance by using 𝐿𝑄𝑅 . The selection of weights 𝑄  and 𝑅  in the performance 

equation is available from many methods. They can be decided directly if the preference 

between system’s transient performance and control efforts is known in advance; a pole 

placement method can be used if there is desired performance already in mind. The 

method used in this case study is try and error [61], i.e., a set of values of 𝑄 and 𝑅 are 

first selected and a 𝐿𝑄𝑅 is calculated. The simulated performance is plotted and other 

evaluation criteria such as maximum overshoot value are examined. Then the weights are 

tuned accordingly to get the desired performance. 

In this research, the selection of 𝑄 and 𝑅 is not of the interest and is selected only to 

properly scale the transient performance and controller effort: 𝑄 = [
1 0 0
0 1 0
0 0 1

]   and 

𝑅 = 1000 . The calculated 𝐿𝑄𝑅  is 𝐾 = [0.00093,−0.0314, 0.00127]  with 𝐽𝐿𝑄𝑅 =

6.5359. The transient performance and controller output are plotted against an initial 

room temperature disturbance of ∆𝑇2 = 1 degree. 
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Figure 7. 5 Transient performance with 𝑲𝑳𝑸𝑹 

It can be seen that system is first-order and the response time is about 20 seconds, 

which is satisfying; since the model is assumed to be linear, controller saturation, if exists, 

is not within the concern in this research. Also note that a lot of 𝐿𝑄𝑅 design purposely 

add an integrator to ensure 𝐿𝑄𝑅’s signal tracking performance. However, since the signal 

tracking performance is not the priority in HVAC design, it is not adopted in this research. 

7.4 Uncertainty identification 

For the monitored room model as shown in Equation (7.10)-(7.12), it suffers from all 

three types of uncertainties identified in Section 2.4 and only parameter uncertainty is 

considered in this research. 
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7.4.1 Uncertainty channels identification 

Through linearization, the supply air flow rate 𝑓𝑠  is assumed to be constant at an 

operation point. However, it deviates when the operation point shifts. Thus the associated 

elements (𝐴11, 𝐴12, 𝐴21, 𝐴22)  in matrix 𝐴  have associated uncertainty ranges and 

corresponding probability distributions. Note that the value of 𝑓𝑠 is always the same for 

all the four elements and the four elements can be treated as a single uncertainty channel. 

On the other side, the air side convective heat transfer coefficient 𝛼1 is decided by the 

louver fin’s material. Both erosion, rust and potential wearing will degrade the coefficient. 

Thus there is also uncertainty associated with it and the affected elements include 

(𝐴11, 𝐴12, 𝐴13, 𝐴31, 𝐴32, 𝐴33) . Similarly, they can be treated as a single uncertainty 

channel. 

Thus, the system to be dealt with in this case study is a 3𝐷2𝐶 system. Note that the 

two channels are independent from each other. 

7.4.2 Probability incorporation 

The probability distribution of 𝑓𝑠 is collected from around 2000 sampled sensor data with 

a sampling frequency a quarter hour within a time span about a month. The 𝑃𝐷𝐹  is 

shown in Figure 7.6 (a). 

 

(a)                                                                        (b) 

Figure 7.6 Probability distribution of 𝒇𝒔 and 𝜶𝟏 
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The two separated clusters are due to the different settings in the day and night 

schedule. According to the ASHRAE handbook [62], for a classroom there is a need of 4-

10 air change per hour. Thus the maximum value of 𝑓𝑠 ≅ 0.441𝑚3/𝑠 corresponds to 

about 13 air change per hour at fully occupied hours while the minimum value of 

𝑓𝑠 ≅ 0.128𝑚3/𝑠 corresponds to about 4 air change per hour at night. Thus the value of 𝑓𝑠 

has the following uncertain range 𝑓𝑠 ∈ [0.128,0.441]. 

Although a polynomial fit can be used to profile the probability distribution, this 

research uses a lookup table with a high granularity and linear interpolation if the value to 

be looked up falls between two discrete values, instead of profiling the 𝑃𝐷𝐹 curve. The 

reason is, no analytical method will be used when the probability information is involved, 

thus a lookup table not only provides a calculation efficiency, but also preserves the 

accuracy. 

The probability distribution of 𝛼1 is not directly measurable, but the degradation level 

can be estimated [63]. Given the normal convective heat transfer rate is calculated as 

𝛼1 = 0.0913, the degraded worst-case rate is selected as 𝛼1 = 0.06. The degradation 

curve (against time) is plotted in Figure 7.6 (b). It is assumed that degradation is slow in 

the beginning and accelerated when it approaches the end of life circle. Thus the value of 

𝛼1 has the following uncertain range 𝛼1 ∈ [0.06,0.0913]. 

7.5 Experiment 1: NEMCD 

For the 3𝐷2𝐶  uncertainty system, there are two channels and four corners [𝑓𝑠, 𝛼1] ∈

[0.128,0.0913], [0.441,0.0913], [0.128,0.06], [0.441,0.06] to be examined. Name above 

four corners 1,2,3,4 respectively for easier reference.  

To apply NEMCD, first step (Step 1 in Algorithm 2) is to calculate each corner’s 𝐿𝑄𝑅 

(let 𝐾𝐿𝑄𝑅𝑖
 denotes 𝐾𝐿𝑄𝑅 at corner 𝑖) and make a comparison (Step 2 in Algorithm 2). The 

result is shown in Table 7. 
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Table 7 Experiment 1: 𝑳𝑸𝑹 for all four corners 

Corner [𝟎. 𝟏𝟐𝟖, 𝟎. 𝟎𝟗𝟏𝟑] [𝟎. 𝟒𝟒𝟏, 𝟎. 𝟎𝟗𝟏𝟑] [𝟎. 𝟏𝟐𝟖, 𝟎. 𝟎𝟔] [𝟎. 𝟒𝟒𝟏, 𝟎. 𝟎𝟔] 

𝑱(𝑲𝑳𝑸𝑹𝟏
) 6.5359 6.6450 8.1149 7.7624 

𝑱(𝑲𝑳𝑸𝑹𝟐
) 6.6489 6.5201 8.1383 7.5025 

𝑱(𝑲𝑳𝑸𝑹𝟑
) 6.5534 6.5669 8.0891 7.6099 

𝑱(𝑲𝑳𝑸𝑹𝟒
) 6.7241 6.5305 8.1928 7.4908 

 

It turns out that this corner 3 has the worst performance for all four calculated  

𝐿𝑄𝑅𝑖. Thus the worst-case point is located at this corner exclusively. In this context, there 

is only a need to calculate 𝐿𝑄𝑅  at corner 3. Thus 

𝐾𝑚𝑖𝑛𝑖𝑚𝑎𝑥 = 𝐾𝐿𝑄𝑅3
= [0.0009773,−0.03179,0.00199] . The calculated 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥 =

𝐽([0.128,0.06], 𝐾𝐿𝑄𝑅3
) = 8.0891. 

Remark: Though there is no need to apply Algorithm 2 Step 3-6 on above case study 

and makes it less interesting, but it will make PCOAPCD easier as when it comes to the 

performance violation, there is only one corner who yields performance violation when 

the controller doesn’t deviate from 𝐾𝑚𝑖𝑛𝑖𝑚𝑎𝑥 too much. Anyway, the numerical examples 

in Chapter 5 should be sufficient enough to demonstrate NEMCD. 

7.6 Experiment 2: PCOAPC, free search 

With the calculated 𝐾𝑚𝑖𝑛𝑖𝑚𝑎𝑥 and 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥 and the probability distribution information, 

this section starts from a free line search towards 𝐾𝑎𝑣𝑒 without the 𝑃𝑂𝐹 constraint. The 

line search trace is plotted in Figure 7.7. 
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Figure 7.7 Experiment 2: free search towards optimal average controller 

With 𝐵𝑠 ∈ ℝ3∗1, the controller search space is 3𝐷. But there is no way to view a 3𝐷 

contour plot. Thus only a 2𝐷 contour plot is shown with 𝐾3 = 0.0361 constantly, which 

is exactly the value from 𝐾𝑎𝑣𝑒. It can be seen from Figure 7.7 that the controller search 

does yield a satisfying result, as the line search converges right to the center of the 

contour. Also note that when the line search starts (left bottom corner), the value of 𝐾3 is 

far different from 0.0361  and thus the contour plot is totally different from the one 

shown in Figure 7.7. This is why the contour and the line search direction are not 

perpendicular with each other at the left bottom corner. 

7.7 Experiment 3: PCOAPC, 𝑷𝑶𝑭 constrained search 

To validate PCOAPC, the 𝑃𝑂𝐹 constraint is set to 0.01 with the evaluation criteria from 

Experiment 1 𝐽𝑚𝑖𝑛𝑖𝑚𝑎𝑥 = 8.0891 . The uncertainty channel 𝑓𝑠  is averagely discretized 

into 100 segments and each time 𝑃𝑂𝐹 is calculated, it is the uncertainty channel 𝛼1’s 

value being solved as the unknown with the value of 𝑓𝑠  given for each discretized 

segment. 
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For each step in the free line search towards 𝐾𝑎𝑣𝑒, 𝑃𝑂𝐹 is consistently monitored. It 

turns out that at the point 𝐾 = [0.0078,−0.0201, −0.0280], constraint 𝑃𝑂𝐹 is reached. 

Then a line search along the constraint and constant 𝑃𝑂𝐹 contour is performed via ∆𝑃𝑂𝐹 

method. The new line search trace is shown in Figure 7.8. 

 

Figure 7.8 Experiment 3: free search and search along constraint POF contour 

By using PCOAPC, the direction of 𝐾3 is “borrowed” from the steepest descent search 

direction. The corresponding ∆𝛼1  for each segment of 𝑓𝑠  is calculated with given 

∆𝐾2 = 0.00001 and as a function of ∆𝐾1. Then each segment’s 𝑃𝑂𝑂 is calculated based 

on ∆𝛼1 and summed up to get ∆𝑃𝑂𝐹 so that ∆𝐾1 is solved for each line search step by 

regulating ∆𝑃𝑂𝐹 = 0 . For a validation purpose, similar to Figure 6.8, a probability 

truncate plot with two intersection curves is shown in Figure 7. 9. 
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Figure 7. 9 POF truncate plot 

The two intersection curves from left middle to right bottom shape two quasi-triangle 

regions, whose mathematical meaning is that any point falls into these regions violates 

the performance constraint and contributes to 𝑃𝑂𝐹 for a given controller. Though the 

detailed probability distribution is not shown in the plot, and also note that the 

uncertainty space is not the whole uncertainty space (Figure 7. 9 only shows 𝑓𝑠 ∈

[0.128,0.2] and 𝛼1 ∈ [0.006,0.007]), the calculated 𝑃𝑂𝐹 of the two regions all equals to 

the 𝑃𝑂𝐹 constraint of 0.01, which is exactly the geometrical meaning of searching along 

the constant and constraint 𝑃𝑂𝐹. 

It can be seen that the two curves intersect each other in the middle (around 𝑓𝑠 =

0.152, 𝛼1 = 0.0618 ). There is another intersection curve generated from the two 

performance response surfaces and comes from the left bottom to the right middle. It 

plays no role and thus no more analysis is given. 

Also, note that there is no 𝑃𝑂𝐹  contour shown in Figure 7.8 since it is very 

numerically expensive to profile the whole 𝑃𝑂𝐹 contours. 
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Figure 7.10 Two search directions perpendicular to each other 

It turns out that the line search stops at 𝐾 = [0.0064,−0.0145,−0.0303] . From 

Figure 7.10 it can be seen that the two search directions, highlighted in red arrows, are 

perpendicular with each other and thus the line search stops as there is no useful and 

feasible direction further exists. 

7.8 Results analysis 

A summary of comparisons between visited controllers is listed in Table 8. Three metrics 

are used: the worst-case performance 𝐽𝑚𝑎𝑥, average performance 𝐽𝑎𝑣𝑒 and 𝑃𝑂𝐹.  

Table 8 Controllers comparison 

 𝑲 𝑱𝒎𝒂𝒙 𝑱𝒂𝒗𝒆 𝑷𝑶𝑭 

Normal 𝑳𝑸𝑹 [0.00093,−0.0314, 0.00127] 8.1160 4.6013 0.06 

Minimax (robust) [0.00098,−0.0319,−0.0020] 8.0891 4.6122 0 

Optimal average [0.0161,−0.0176,−0.0361] 8.1437 4.5697 0.07 

𝑷𝑶𝑭 constraint [0.0064,−0.0145,−0.0303] 8.3761 4.5791 0.01 
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With normal 𝐿𝑄𝑅(𝐾𝑛) , it gives a mediocre performance: neither best nor worst 

among the three metrics. With the minimax robust controller (𝐾𝑚𝑖𝑛𝑖𝑚𝑎𝑥), as expected it 

yields the best worst-case performance 𝐽𝑚𝑎𝑥 = 8.0891, and thus 𝑃𝑂𝐹 strictly equals to 0. 

With the optimal average performance controller (𝐾𝑎𝑣𝑒) , it gives the best average 

performance 𝐽𝑎𝑣𝑒 = 4.5697 , though it has the largest 𝑃𝑂𝐹  as well a relatively poor 

worst-case performance. Further analysis yields that though 𝐾𝑎𝑣𝑒  further degrades the 

worst-case point, which is located on the corner 3 where (𝑓𝑠, 𝛼1) = [0.128,0.06], but it 

also improves the performance at corner 2 where (𝑓𝑠, 𝛼1) = [0.441,0.0913], which has a 

larger probability distribution weight compared to corner 3 and thus is more favorable in 

terms of the average performance improvement. The 𝑃𝑂𝐹 constrained optimal average 

performance controller 𝐾𝑝𝑐𝑜  gives an even worse worst-case performance, but it also 

takes advantage of the probability distribution weight at other corners and thus gives the 

second best average performance while makes sure that the 𝑃𝑂𝐹 still meets the constraint. 

In this context, with the incorporation of probability information and the tradeoff 

between worst-case performance, average performance and 𝑃𝑂𝐹 , the conservatisms 

brought from the traditional worst-case based robust control are reduced. 

7.9 Other applications 

Besides the HVAC system, the proposed methodology can be applied to any control 

system exposed to parameter uncertainties, as long as the system can be written in the 

form of a linear state space equations and the quadratic performance 𝐽 is used as the 

evaluation criteria. 

7.9.1 Aircraft Control 

Aircraft control is another good case study, where there are more uncertainties: aircraft 

weight which decreases as fuel is consumed, CG location [64], aerodynamic force and 

moment, airplane’s attitude and corresponding control mode [65], etc. They are contained 
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in the following simplified dynamic equations as uncertain parameters [ 66 ], which 

include 𝜇, 𝐶𝐿 , 𝐶𝐷 , 𝐶𝑊, 𝑖𝑦𝑦 , 𝜎, 𝜂. 

 

Figure 7. 11 Airplane in flight [66] 

 

 

 

Commonly, the airplane’s performance regulations are contained in the transient 

performance domain such as overshoot value, rise time, settling time, and steady-state 

error. Thus, the quadratic performance 𝐽 can be well applied in this case, as long as a 

relatively large value is selected for weight matrix 𝑄 . What makes it even more 

interesting is that stability would become critical evaluation criteria. Even 0.01% stability 

𝑃𝑂𝐹 is not acceptable.  

Note that above equations are simplified from real physics, which contains high order 

and non-linear terms. Thus, airplane case study is not selected in this research. Another 

reason that it is not selected is due to the lack of data, thus the uncertain parameters’ 

ranges and probability distribution information cannot be retrieved accurately enough. 
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7.9.2 Financial Control 

In non-physical field, such as financial control, the uncertainties and variations can be 

amplified even it is small at the beginning since the response process is slow and many 

things could trigger the occurrence of parameter uncertainty. 

The stock market is an example of the system prone to oscillatory "hunting", governed 

by positive and negative feedback resulting from cognitive and emotional factors among 

market participants [67]. For example, when stocks are rising (a bull market), the belief 

that further rises are probable gives investors an incentive to buy (positive feedback—

reinforcing the rise); but the increased price of the shares, and the knowledge that there 

must be a peak after which the market falls, ends up deterring buyers (negative 

feedback—stabilizing the rise). 

Once the market begins to fall regularly (a bear market), some investors may expect 

further losing days and refrain from buying (positive feedback—reinforcing the fall), but 

others may buy because stocks become more and more of a bargain (negative feedback—

stabilizing the fall). 

How to predict investors’ behavior is very important in the stock market as it produces 

huge uncertainty in the market. Since it is occupant related, Agent-Based Modeling 

would be a good method to predict uncertainty parameter’s probability distributions. The 

merit of the proposed methodology could get well applied in the financial control model. 

However, it is not selected neither due to the author’s lack of expertise in the financial 

area. 
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CHAPTER 8 

CONCLUSION 

 

This chapter concludes this thesis with conclusions, a summary of originality and 

contributions, and potential extensions to be performed in the future. 

8.1 Conclusion 

In this thesis, the research objective is first proposed, followed by the introduction of 

the plant and control system design. After the introduction of three types of uncertainties, 

especially the parameter uncertainty who changes the system’s performance, the research 

objective is then highlighted. A literature survey is performed and yields that 

robust/adaptive controls are the state-of-art solutions. 

However, it is also observed that the main gap in robust control, mainly minimax 

control, is that the designed controller is over-conservative since it has a norm bounded 

uncertainty range (first level of conservatism) and is based on the worst-case scenario and 

thus lacks the performance characteristic that could be achieved for the most likely cases 

(second level of conservatism). 

In order to reduce such conservatisms, several research questions and hypotheses are 

proposed. The deliverable is a Two-stage Conservatism Reduction Methodology 

including a Norm Extended Minimax Control Design method to reduce the first level of 

conservatism and a 𝑃𝑂𝐹 Constrainted Optimal Average Performance Controller Design 

method to reduce the second level of conservatism. The validations of these hypotheses 

to the research questions are discussed in detail in each chapter and summarized in Table 

9.  
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Table 9 Summary of research questions and hypotheses 

Index Core content Validation method Section 

1.1 The worst-case point is always located 

on bound/corner 

Theoretical 5.2 

1.2 Intersection point of two performance 

curves is a candidate 

Observation led  5.3.2 

1.3/1.4 Intersection point can be analytically 

calculated when there is one unknown 

in the controller 

Mathematical equations 5.4.1/5.4.2 

1.5 There will be infinite intersection 

points when there are more than one 

unknowns in the controller 

Mathematical equations 5.4.3 

1.6/1.7 Use the Triangle based gradient 

method and line search to find a global 

minimax controller 

Mathematical 

equations/numerical 

algorithm 

5.5/5.6 

2.1 Discretize the whole uncertainty space 

to calculate average performance 

Mathematical equations 6.2 

2.2 Discretize whole uncertainty space to 

find a direction towards optimal 

average performance 

Mathematical equations 6.2 

2.3 Discretize the regions profiled by 

intersection curves to calculate the 

POF 

Mathematical 

equations/numerical 

algorithm 

6.3.2 

2.4 Discretize the regions profiled by 

intersection curves to calculate a 

search direction along constraint the 

POF contour 

Mathematical 

equations/numerical 

algorithm 

6.4 

2.5 Stop the line search when useful and 

feasible directions are against each 

other 

Theoretical proof 6.4 

A case study of HVAC control system design is given to demonstrate the whole 

design method. The HVAC control system design is selected due to the fact that it has 

relatively simple physical representations and mathematical equations; the energy save is 
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much favored due to HVAC system’s high portion in total US energy consumption; there 

is real sensor data available. 

After the physical model is built, simplified, and linearized, a normal 𝐿𝑄𝑅 is 

calculated as the normal controller. Next, the uncertain parameters within the plant are 

further identified. Their uncertain ranges and the associated probability distributions are 

created from the sensor data. 

Next, several experiments are carried out in the case study in a sequence to fulfill the 

proposed methodology so that the conservatisms from traditional worst-case based robust 

control design method are reduced. These experiments are summarized in the following. 

Experiment 1 utilizes the Norm Extend Minimax Controller Design method. First, all 

corner points within the parameter uncertainty space are identified, followed by 

calculating 𝐿𝑄𝑅 and corresponding performance for each corner point. A comparison is 

made and yields that the worst-case point is located at one corner point exclusively. Thus 

the Norm Extend Minimax Controller is equivalent with the 𝐿𝑄𝑅 at this corner. 

After the worst-case performance with reduced conservatism is derived from 

Experiment 1 and used as the performance evaluation criteria, Experiment 2 and 

Experiment 3 can be performed by using the 𝑃𝑂𝐹  Constrained Optimal Average 

Performance Controller Design method after the incorporation of uncertain parameters’ 

probability distribution information.  

After the whole parameter uncertainty space is averagely discretized and each 

discretized segment’s 𝑃𝑂𝑂  is calculated from the probability distribution, a free line 

search is performed in Experiment 2. The search direction is updated at every step via 

calculating the local gradient of the average performance WRT most current controller. 

The start point of the line search is exactly the minimax controller from Experiment 1. 

The line search ends at the optimal average performance controller. 

Experiment 3 focuses on designing a new controller so that the tight performance 

constraint is relaxed and a tradeoff between the average performance, worst-case 
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performance and 𝑃𝑂𝐹 can be initiated. Beyond the procedures used in Experiment 2, 

Experiment 3 extends it further by constantly monitoring the 𝑃𝑂𝐹 for each search step. 

After the 𝑃𝑂𝐹  constraint is met for the first time, a new search direction along the 

constraint and constant 𝑃𝑂𝐹 contour is calculated by using the ∆𝑃𝑂𝐹 method. The line 

search stops when the two directions from previous steps go against each other. The 𝑃𝑂𝐹 

constrained optimal average performance controller is then reached as the final 

deliverable.  

A comparison of visited controller is given to highlight each controller’s fulfilled 

design objective. The normal 𝐿𝑄𝑅 gives a mediocre performance, as it is only designed 

for the normal plant, without considering any parameter uncertainty. As expected, the 

minimax robust controller from Experiment 1 yields the best worst-case performance 

among all visited controllers and a 𝑃𝑂𝐹 strictly equals to 0. Without the 𝑃𝑂𝐹 constraint, 

the optimal average performance controller from Experiment 2 gives the best average 

performance at a cost of the largest 𝑃𝑂𝐹 as well a relatively poor worst-case performance. 

As the final deliverable, the 𝑃𝑂𝐹  constrained optimal average performance controller 

from Experiment 3 gives the second best average performance while makes sure that the 

𝑃𝑂𝐹 still meets the constraint. 

In this context, the feature and advantage of the 𝑃𝑂𝐹  constrained optimal average 

performance controller is evident: with the incorporation of probability information and 

the tradeoff between worst-case performance, average performance and 𝑃𝑂𝐹, the two 

levels of conservatisms brought from the traditional worst-case based robust control are 

reduced. 

8.1 Originality and Contribution 

A summary of proposed methodology is listed in Table 10 by comparing to the robust 

controller design method, in terms of the selection/method of evaluation criteria, 

design/noise variables identification, and the methods for design space exploration. 
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Table 10 Comparison between Robust Control Method and Proposed Method 

Category Robust Control System 

Design 

Proposed Method 

Evaluation 

criteria 

Stability 

Others (viability) 

𝑃𝑂𝐹 and average performance 

 

Identify design 

variables, noise 

variables 

Controller type 

Parameter uncertainty range 

Controller type 

Parameter probability distribution 

Evaluation 

methodology 

Dynamic simulation 

System estimation 

Find response extremes 

Norm extended minimax 

performance 

Tradeoff between average 

performance/𝑃𝑂𝐹 

Design space 

exploration 

Robust control design from 

response extremes 

 

Properties analysis 

Gradient based and numerical line 

search method 

 

In terms of the evaluation criteria, the “hard” constraint is relaxed to “soft” the 

constraint in the form of 𝑃𝑂𝐹 . In terms of the design variables identification, both 

methods consider the controller as the design variables, which is true for any type of 

control system design. In terms of the noise variables identification, robust control only 

cares about their uncertain ranges, but the proposed method needs uncertain parameters’ 

probability distributions besides uncertain ranges. Robust control only seeks the system’s 

response extreme (worst-case scenario) from the specified uncertain range while the 

proposed method uses numerical methods to calculate 𝑃𝑂𝐹. The proposed method also 

provides line search methods to find a norm extended minimax controller as well a 𝑃𝑂𝐹 

constrained optimal average performance controller. 
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To summarize, some concepts are innovatively applied in the control system design, 

such as extending the norm-bounded uncertainty space, optimal average performance 

controller, the tradeoff between 𝑃𝑂𝐹 and average performance. While it is true that some 

of the techniques utilized are not new and many of them are well studies over the century, 

such as the line search, discretized-summation, linearization, but it is unique and original 

to integrate aforementioned techniques into a control system design methodology. Such 

organized and integrated methodology is the originality and the major contribution from 

this thesis. 

8.2 Future work 

In this thesis, there are several topics briefly mentioned but not expanded due to the size 

of the thesis, or not research interest, such as a possible proof of position of the worst-

case point via Hessian Matrix, the mathematical proof of necessary and sufficient 

conditions for an intersection point to be the worst-case point. They will be covered in the 

future research work. More case studies will be addressed, should there are real data and 

models available. 

So far the uncertainty is limited to the system characteristic matrix 𝐴 . Such 

assumption can be expanded to controller matrix 𝐵, even observer matrix 𝐶, 𝐷, as the 

𝐿𝑄𝐸 is of dual with 𝐿𝑄𝑅. The extension also covers weight matrix 𝑄, 𝑅, if the designer 

has a non-constant preference between the transient performance and controller effort. 

For example, in the HVAC example, there could be different weights in 𝑄, 𝑅 at different 

time, i.e., at day time, system’s performance in time domain is emphasized while at night, 

transient performance requirement is not of great importance while the energy save is 

more preferred. Thus there will be a large value in 𝑄 at day time and a large value in 𝑅 at 

night time, if proposed method extends to weight matrix 𝑄, 𝑅. 

The concept of the tradeoff between the average quadratic performance and 𝑃𝑂𝐹 can 

be extended to other domains, e.g., stability, as long as a mapping can be created from the 



131 
 

controller to the selected performance evaluation criteria. Correlations between 

uncertainties can also be brought into consideration. 
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APPENDIX I 

KRONECKER MATRIX ALGEBRA 

 

Let vec operator is given as below 

 vecA ≜ [
col1(𝐴)

⋮
col𝑚(𝐴)

] ∈ ℝ𝑛𝑛 I.1 

Let 𝐴 ∈ ℝ𝑛∗𝑚 and 𝐵 ∈ ℝ𝑙∗𝑘. Then the Kronecker product 𝐴 ⊗ 𝐵 ∈ ℝ𝑛𝑙∗𝑚𝑘 of 𝐴 and 𝐵 is 

the partitioned matrix 

 𝐴 ⊗ 𝐵 ≜ [

𝐴(1,1)𝐵 𝐴(1,2)𝐵 … 𝐴(1,𝑚)𝐵

⋮ ⋮ ⋱ ⋮
𝐴(𝑛,1)𝐵 𝐴(𝑛,2)𝐵 … 𝐴(𝑛,𝑚)𝐵

] I.2 

Let 𝐴 ∈ ℝ𝑛∗𝑛 and 𝐵 ∈ ℝ𝑚∗𝑚. Then the Kronecker sum 𝐴 ⊕ 𝐵 ∈ ℝ𝑛𝑚∗n𝑚 of 𝐴 and 𝐵 is 

 𝐴 ⊕ 𝐵 ≜ 𝐴 ⊗ 𝐼𝑚 + 𝐼𝑛 ⊗ 𝐵 I.3  

Let 𝐴, 𝐵, 𝐶 ∈ ℝ𝑛∗𝑛. Then, there exists a unique matrix 𝑋 ∈ ℝ𝑛∗𝑛 satisfying 

 𝐴𝑋 + 𝑋𝐵 + 𝐶 = 0 I.4 

If and only if 𝐵𝑇 ⊕ 𝐴 is nonsingular. If 𝐵𝑇 ⊕ 𝐴 is nonsingular, then 𝑋 is given by  

 𝑋 = −vec−1[(𝐵𝑇 ⊕ 𝐴)−1vec𝐶] I.5 

If, in addition, 𝐵𝑇 ⊕ 𝐴 is asymptotically stable, then 𝑋 is given by 

 𝑋 = ∫ 𝑒𝐴𝑡𝐶
∞

0
𝑒𝐵𝑡𝑑𝑡 I.6  

Proof of first statement: first, note that equation (I.4) is equivalent to 

0 = vec(𝐴𝑋𝐼 + 𝐼𝑋𝐵) + vec 

                        = (𝐼 ⊗ 𝐴)vec𝑋 + (𝐵𝑇 ⊗ 𝐼)vec𝑋 + vec𝐶 

              = (𝐼 ⊗ 𝐴 + 𝐵𝑇 ⊗ 𝐼)vec𝑋 + vec𝐶 

                                                     = (𝐵𝑇 ⊕ 𝐴)𝐵𝑇 ⊕ 𝐴 + vec𝐶 I.7  

Thus equation (I.7) has a unique solution vec𝑋 if and only if 𝐵𝑇 ⊕ 𝐴 is nonsingular, 

which confirms the first statement. 

Next, it is assumed that 𝐵𝑇 ⊕ 𝐴 is nonsingular, and it follows from equation (I.7) that  

vec𝑋 = −(𝐵𝑇 ⊕ 𝐴)−1vec𝐶 
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That proves equation (I.5). 

The proof of the second statement is not shown as it is not of interest here. 
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