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Occupant injuries in helicopter crashes occur primarily due to vertical

loads. Mitigating those loads to the occupant is the best way to limit

injuries sustained in an impact. Using magnetorheological dampers in

the seat and landing gear can help to maximize the energy absorbed

by the helicopter and minimize the loads to the occupant in a crash.

There are a number of key interactions between the occupant models

and the landing gear that have been examined in this research. These

interactions are investigated and the control algorithms have been de-

signed to reduce the loads transmitted to the occupant throughout

the impact.
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Chapter 1: Introduction

The purpose of this chapter is to state the motivation for this research

and set up the background information needed for full understanding of the project.

This background knowledge includes helicopter crash dangers and protection system

limitations, the injury criteria by which injuries are measured, and an introduction

and summary of magnetorheological damper characteristics and behavior.

1.1 Motivation and Objectives

In the event of a helicopter crash, the occupant is placed in an extreme

amount of risk for injury or death. Identifying, assessing, and limiting these risks

are key steps that can greatly improve survivability and decrease the chance of

injury. This research focuses on lowering the impact forces to the occupant by using

an active crash protection system consisting of both a semi-active seat and a semi

active landing gear. Models for the occupant, seat, and landing gear have all been

placed together in tandem to determine how effective each system will be at lowering

these loads. The objectives of this research are as follows:

• Create a comprehensive model of an occupant in a helicopter crash, including

the occupant, seat, and landing gear
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• Sequence the landing gear and seat crushing to absorb the maximum possible

amount of energy

• Analyze the effect of occupant weight, sink rate, and load-stroke profiles on

occupant survivability

• Investigate dynamic behavior of the models during an impact

• Determine the injury criteria most applicable to vertical impact loading

Additionally, some of the design specifications for the research are listed below:

• Sink rate: 12-42 ft/s (3.7-12.8 m/s)

• Seat stroke length: 16 inches (40.8 cm)

• Landing gear stroke length: 3.25 inches (8.25 cm)

• Occupant population size: 5th percentile female, 50th percentile male, 95th

percentile male

• Helicopter: MD-500C

1.2 Helicopter Crash

Crashworthiness has been heavily researched over the past few decades [8].

As aircraft began flying faster, higher, and more frequently, crashes have become

increasingly dangerous. Technologies have since been developed to help mitigate

the hazards that arise during an impact. There are several types of these hazards
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that have been categorized using the acronym “CREEP”: Container, Restraint,

Energy absorption, Environment (local), and Post crash factors [9]. “Container”

focuses on avoiding structural collapse of the cabin and protecting from outside

penetration into the occupied space. “Restraint” considers both restraining the

occupant to their seats through harnesses or seat belts and restraining the seat

to the aircraft so it does not rip out during the impact. This is one of the most

influential aspects of crashworthiness design as it allows the occupant to receive the

full benefits of the other crashworthy systems in place. “Energy absorption” refers

to the systems in place that are designed to absorb the impact energy before it

reaches the occupant. This area is the focus of this paper and will be discussed

in depth. “Local environment” includes limiting the hazards within the occupant

strike zone. Finally, “Post crash factors” refer to accounting for external hazards,

such as fire, smoke, or water.

While all of these systems work together to decrease the potential for injury,

occupants in helicopter crashes are typically injured in three basic ways: acceler-

ation, contact, and environmental. Injuries from acceleration are caused from the

general acceleration felt across the entire body in an impact. This can largely be

mitigated by the energy absorption methods. Contact injuries are considered to be

more localized and typically occur from the part of the occupant’s body coming in

contact with a part of the helicopter during the crash. These are typically dealt

with in “Container”, “Restraint”, and “Environment”. Environment, again, is the

surroundings during and after the crash. This research focuses on the acceleration

injuries.
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As helicopters are typically lighter and smaller than most airplanes, space

for crashworthy features is limited. The three main places these systems can be

integrated are the seat, the floor, and the landing gear. These systems can be

used to collapse strategically during the impact to absorb as much of the energy

as possible. These effects can be seen in Fig. 1.1. A typical design requirement

states that the loads should be mitigated up to impacts of 12.8 m/s without major

injury [10]. This has already been achieved for the Black Hawk and Apache, and

for these systems, fatalities are rare even at 15.2 m/s [11]. In smaller helicopters,

though, it is difficult to reach this velocity safely.

Figure 1.1: Diagram of helicopter energy absorbing components before and after the

impact [1]

1.3 Injury Criteria

Humans have a long history of undergoing a wide range of impacts with

varied results. While some low velocity impacts have caused serious injuries or even

death, other high velocity impacts have been survivable [12]. Human tolerances to
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these impacts have been studied and recorded for decades [13], [3].

Modeling and assessing the accelerations is a key step in designing systems

to help protect occupants in real helicopter crashes. The models used in this project

are discussed in Chapter 2. However, these models are not the only things needed

to determine injuries. Once the simulations have been run, the accelerations and

forces must be compared to injury criteria to determine whether or not the occupant

was injured. In the past, there have been a large number of injury criteria that have

been proposed, but there are few that have been designed and validated specifically

for vertical impacts. Most tests have been performed on automobile impacts due to

the higher demand and higher rate of accidents. Unfortunately, those are usually

tested for frontal impacts and therefore do not apply well to the vertical loads seen

in helicopter crashes. However, there are a few criteria that do apply to vertical

impacts.

A long-held industry standard states that if the seat exceeds 14.5g, the oc-

cupant will have a 20% chance of injury [2]. This, then, has become the target

threshold in most design requirements. This standard originates from the 23g oc-

cupant limit for vertical impacts set in place by Eiband in 1959 [3]. Since occupant

accelerations are not directly controllable like the seat pan is, Desjardins and Har-

rison calculated that the seat pan should experience a maximum of 14.5g so that

the occupant is limited to 23g. Their process of reaching that 14.5g threshold is

summarized below.

4650 pounds is the highest force that the 95th% male can experience without

exceeding 23g [2]. That force is then divided by the combined mass of the seat and
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occupant, as shown in Eq. 1.1.

aseatLimit =
F95MaleLimit

Wseat +WEff95Male

= 14.62g (1.1)

where:

WEff95Male = 0.8W95Male +Wclothes +Wgear (1.2)

The seat in their particular test weighed 152 lbs and the effective weight of

the occupant came to 166 lbs. The missing 20% of the occupant’s weight is likely

the lower legs and feet, since those are supported by the floor and not the seat pan.

Dividing the limiting load by these combined weights gives an acceleration limit of

14.62g. Theoretically, if the seat is limited to a force that only accelerates the seat

and occupant at 14.62g, then that same force will accelerate the occupant alone

at 23g. Through a little more analysis, Desjardin and Harrison determined that

the acceleration limit needs to be slightly less. As shown in Fig. 1.2 and Eq. 1.4,

the seat pan deceleration efficiency was calculated and determined to be 0.62. By

dividing the 14.62g acceleration limit by the seat pan efficiency, the potential peak

loads to the occupant would experience can be estimated. Eq. 1.4 shows that the

estimated peak acceleration would be 23.6g, which is above the 23g limit. Therefore,

the acceleration limiting value was lowered to 14.5g.

η =

1

T

∫ t
to
Gdt

Gpeak

=

1

T

∫ t
to
LLdt

LLpeak
(1.3)

14.62g

ηseat
= 23.6g (1.4)
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Figure 1.2: Deceleration of the seat used in Desjardin’s and Harrison’s calculations

[2]

As shown in Eiband’s tolerance curves in Fig. 1.3, voluntary, uninjured,

undebilitated accelerations extend up to 14g. Above this there is a region labeled

“moderate injury,” and above that starting at 42g is a region labeled “severe injury.”

One can reasonably assume that there is an unspecified region immediately above

the 14g threshold where mild injury occurs. When this paper was written in 1959,

ejection seats were accelerating their occupants at 23g without frequent or severe

injury. Therefore, 23g was accepted as the upper tolerance for a human occupant

experiencing upward acceleration. If the occupant experiences accelerations above

14g, they will likely experience some form of injury, though it could be fairly mild.

Once above 23g, the severity of the injuries will likely increase to moderate or even

severe levels depending on the pulse duration. Therefore, the 14.5g remains the

target for seat accelerations during a vertical impact.

Several other injury criteria were also examined but were discarded for a

7



Figure 1.3: Acceleration human tolerance curves [3]

variety of reasons. The Dynamic Response Index (DRI) was investigated as it is a

military injury criterion designed for determining damage to the lumbar portion of

the spine from spinal compression in impacts [14], [15]. Unfortunately, this criterion

had to be excluded because it is designed for impacts resulting in over 100g. Most of

the impacts this research looked at peaked at 50g at their worst before any energy

absorbing devices were included to mitigate the loads.

Several automotive injury criteria were considered as well. Federal Motor

Vehicle Safety Standard (FMVSS) 208 offers specific force limitations for each com-

ponent of the body [16]. These forces have been expanded upon by Wereley and

Choi [17], but they were excluded from this research because they are designed

primarily for frontal loading instead of vertical loading.
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1.4 Magnetorheological Damper Behavior

In order to achieve an active energy absorbing system, a magnetorheological

(MR) damper model was used. Dampers have long been used as energy absorbing

devices, but typical viscous dampers are passive and cannot accommodate multiple

impact conditions. MR dampers, as shown in Fig. 1.4, work just like viscous

dampers by pushing a fluid through an orifice in the piston head to resist the motion

of the piston rod. The viscosity of the fluid and the size of the orifice have a direct

effect on the damper’s force output.

Figure 1.4: Typical viscous damper

MR dampers follow bingham plastic behavior, as seen in Fig. 1.5, but they

have an adjustable yield stress because they use MR fluid instead of typical damper
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fluids, like oil, water, or air. Magnetorheological fluid is a solution of microscopic

magnetic particles (0.3-10 micron diameter) suspended in a hydrocarbon based car-

rier fluid [18]. These carbonyl iron particles form chains in the presence of a magnetic

field, which increases the viscosity of the fluid and creates a yield stress, as shown in

Fig. 1.5. As the magnetic field increases, so does the viscosity of the fluid. There-

fore, the magnetic field can be varied to any value in order to control the yield force.

This allows the damper’s output force to reach a much wider range of forces and

not be solely dependent on the piston velocity. When the magnetic field is turned

off, the damper acts as a normal passive damper; the fluid flows through an open

orifice, resisting the motion as the piston moves through the cylinder.

Figure 1.5: Bingham plastic model [4]

There is a short time delay between the change in current and the fluid’s

behavior change. This delay can be up to 10 ms, and for some MR applications,

this must be considered. For helicopter crashes, however, this delay can be ignored.

The most crucial moments of the crash are the first dozen or so milliseconds, and

the MR damper can be tuned to the needed value based on the other sensors on the
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helicopter having alerted the damper to the imminent crash.

This semi-active system allows for greater force controllability than a passive

system without the complexity or weight of a fully active system. This versatile

system is ideal for helicopter crash load attenuation.
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Chapter 2: Models

The purpose of this chapter is to introduce the models used in this research.

This research pairs one occupant model with one landing gear model for simulated

crashes, though there are multiple options within each of those categories. The rigid

occupant model and the compliant occupant model are discussed in Sec. 2.1 and 2.2

respectively. The landing gear models are discussed in Sec. 2.3. Interactions within

and between models of this helicopter are the core of this research. Fig. 1.1 helps

to visualize how the helicopter collapses under the occupant in the event of a crash.

Fig. 2.1 shows how the models interact with each other, using the rigid model as

described in Sec. 2.1.

There are two occupant models examined in this paper: the rigid occupant

model and the compliant occupant model. Both models are designed for vertical

impacts and have the same seat suspension system parameters. The rigid model is

a simplified system while the compliant occupant model allows the analysis to look

at individual components to offer a more complete picture of the accelerations and

interactions within the occupant. Both occupant models have three different sizes:

5th percentile female, 50th percentile male, and 95th percentile male, whose total

masses and designations can be seen in Table 2.1. These three masses correspond
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Figure 2.1: Helicopter and rigid occupant model

to the average and two extremes of the population that the crashworthiness system

would be likely to see. The weight description is broken down and further explained

in Sec. 2.2. It is worth noting, though, that these masses are likely an underesti-

mation of typical military pilots as certain components have been excluded and no

additional gear or equipment is included in the overall mass.

Table 2.1: Occupant Masses and Designations

Size Mass Weight Designation

5th percentile Female 49 kg 108 lbs 5F

50th percentile Male 72 kg 158 lbs 50M

95th percentile Male 101 kg 223 lbs 95M

The landing gear model is described in Sec. 2.3. This landing gear is based

on the MD-500C helicopter, seen in Fig. 2.2 in its test set up for a full drop

test [5], and is used in this research to support the entire weight of the helicopter
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and occupant. The floor is considered to be rigid and does not collapse during the

impact. The landing gear skids spread apart as the helicopter crashes.

Figure 2.2: MD-500 helicopter test set up [5]

2.1 Rigid Occupant Model

Occupant models are an integral part of simulating helicopter crashes and

determining if a new design will function as expected. There are many human occu-

pant models that have been designed over the decades of crashworthiness research.

The automotive industry has some very in depth, accurate models for many differ-

ent types of collisions. However, most of those models are designed for frontal or

lateral impacts. Very few car accidents, if any, send large vertical loads through

the occupant like those that would be seen in a helicopter crash. Within vertically

loaded models, there are two categories: vibratory models and impact models. In

the event of a crash, human bodies stiffen significantly. This provides more support

to the internal organs than in the relaxed body that the vibratory models are based
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off, which severely changes their motion profile. This means that vertically loaded

vibratory models are not a good representation of an occupant in a helicopter crash.

The models are too soft and show much more motion than what happens in reality.

Therefore, a different model must be used.

Often, a rigid occupant model is used instead of a compliant vibratory

model. This model, as seen in Fig. 2.3(a), with its accompanying governing equa-

tion in Eq. 2.1, assumes that the entire occupant and seat are a single mass and

that there are no dynamic interactions between the occupant and seat suspension

system. This model is very simplistic and lacks the details and some of the accu-

racy afforded by the compliant occupant model. Springs are typically included in

vibratory models as they are the sole method of returning energy to allow the seat

to reach its original position before experiencing another vibratory cycle. However,

springs are not desired in crash seats because they will cause the occupant to re-

bound, which forces the spine to go into tension. The human spine has a much

lower injury threshold for tension than in compression and is therefore very unde-

sirable. Sometimes a seat cushion is included in the model. This addition, seen in

Fig. 2.3(b), adds a stiff spring.

M(z̈ − ÿ) + C(ż − ẏ) + fyield = −Mg (2.1)

where M , C, and K are the mass, damping constant, and stiffness constant respec-

tively and g is the acceleration of gravity.

The cushion’s mass is not included because it is so small when compared
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(a) Without cushion (b) With cushion

Figure 2.3: Rigid occupant model with and without cushion

to the rest of the system. Additionally, the cushion mass exhibits high frequency

motion, which has very little effect on the low frequency motions on which these

injury criteria are focusing. Therefore, the cushion mass is overlooked in favor of

simplicity. The cushion parameters are C = 159 Ns/m and K = 37.7 kN/m [19].

M(z̈ − ÿ) + Ctotal(ż − ẏ) + fyield +K(z − y) = −Mg (2.2)

where Ctotal is found in Eq. 2.3.

Ctotal =
CcCs
Cc + Cs

(2.3)

This cushion model was included in a few early simulations but was eventually

excluded for simplicity. However, it was again included in the simulations performed

in Ch. 6.
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2.2 Compliant Occupant Model

The compliant occupant model is a more complete solution as it includes the

responses from the seat pan, pelvis, viscera, chest, and head. While there are many

vibratory models that have been developed [20], [21], [22], none of them apply well to

impacts as they are all too soft to accurately model the forces within the occupant.

Therefore, a multi degree of freedom model was developed by Singh and Wereley [23]

and validated against the Sikorsky Advanced Composite Airframe Program (ACAP)

test crash data gathered by Jackson et al. [24]. The masses originally used for this

model were obtained from the Hybrid II 50th percentile Male Test Dummy [25]

and have been updated to the Hybrid III 50thpercentile Male Test Dummy, both of

whose values are shown below in Table 2.2. The Hybrid III 5th percentile Female

Test Dummy masses and the Hybrid III 95th percentile Male Test Dummy masses

are also shown, as analysis has been done on these occupant sizes as well. The seat

pan mass was taken from Choi and Wereley [17].

Table 2.2: Test Dummy Component Masses

Occupant Head, kg Chest, kg Viscera, kg Pelvis, kg Seat, kg Total, kg

M1 M2 M3 M4 M5

Hybrid II 50th% Male 5.08 33.7 1.40 16.69 13.5 70.37

Hybrid III 5th% Female 4.65 24.31 1.00 6.27 13.5 49.73

Hybrid III 50th% Male 6.08 38.83 1.40 12.0 13.5 71.83

Hybrid III 95th% Male 6.62 50.57 2.00 16.42 13.5 89.1

The arms were excluded from these masses because they are not rigid or

secured during impact and are difficult to model. The lower legs were excluded as
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they are assumed to be supported by the floor and not the seat suspension system.

Additionally, the viscera masses were taken out of the chest mass and corresponds to

a single organ about the size of the liver. The Hybrid III Test Dummies have a higher

proportion of their weight distributed in their chests than the Hybrid II Dummies.

Most of the changes between the two models came from moving about 5 kg from

the pelvis to the chest. The head also increased in mass, while the anthropomorphic

test dummy’s (ATD) lower legs, not included in this model, decreased. While this

redistribution causes higher forces to be reported from the chest, the accelerations

from each component experienced no significant changes when using the Hybrid III

masses.

Singh’s model was validated for the 50th percentile male, but not the 5th

percentile female or the 95th percentile male. This research has done some analysis

on the 5th percentile female and 95th percentile male occupants by substituting the

appropriate masses in for the chosen occupant and scaling the viscera mass to an

approximate, reasonable size. An attempt was made to scale the spring stiffnesses

and damping constants as well, but this became complicated by their nonlinear

nature. As such, the springs and dampers were left at their original values and only

the masses were changed when evaluating other sized occupants.

The compliant occupant model is shown below in Fig. 2.4, along with the

governing equations in Eqs. 2.4-2.8.

M1z̈1 = −FK1,2 − FC1,2 (2.4)
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Figure 2.4: Compliant occupant model without cushion

M2z̈2 = FK1,2 + FC1,2 − FK2,3 − FC2,3 − FK2,4 − FC2,4 (2.5)

M3z̈3 = FK2,3 + FC2,3 − FK3,4 − FC3,4 (2.6)

M4z̈4 = FK3,4 + FC3,4 + FK2,4 + FC2,4 − FK4,5 − FC4,5 (2.7)

M5z̈5 = FK4,5 + FC4,5 − FK5,6 − FC5,6 (2.8)

FKi,j
= Ki,j(zi(t)− zj(t)) (2.9)
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FCi,j
= Ci,j(żi(t)− żj(t)) (2.10)

where stiffness and damping coefficients are nonlinear values whose equations are

shown below:

Ki,j = αi,j + βi,j|zi(t)− zj(t)|γi,j (2.11)

Ci,j = φi,j + χi,j|żi(t)− żj(t)|ψi,j (2.12)

The spring and damper constants for these equations are shown in Table 2.3.

Table 2.3: Stiffness and Damping Constants

Biodynamic χ,

Parameter α,N/m β,N/m1+γ γ ψ,N · s/m N · s1+ψ/m1+ψ ψ

Head-Chest α1,2 5.12e+ 6 β1,2 101 γ1,2 1.658 φ1,2 102 χ1,2 103 ψ1,2 5.592

Chest-Viscera α2,3 9.77e+ 6 β2,3 1.47e+ 6 γ2,3 4.279 φ2,3 104 χ2,3 1.23e+ 4 ψ2,3 1

Chest-Pelvis α2,4 2.45e+ 6 β2,4 9.09e+ 6 γ2,4 0.489 φ2,4 3.76e+3 χ2,4 6.99e+ 4 ψ2,4 1.195

Viscera-Pelvis α3,4 4.88e+ 6 β3,4 5.56e+ 6 γ3,4 3.962 φ3,4 104 χ3,4 1.51e+ 4 ψ3,4 1.145

Pelvis-Seat Pan α4,5 105 β3,4 3.32e+ 6 γ3,4 0.816 φ3,4 110 χ3,4 112 ψ3,4 2.034

This model, like the rigid model, can also include a seat cushion. The addition

is shown below in Fig. 2.5. The only equations to change are Eq. 2.7 and Eq. 2.8,

which become Eq. 2.13 and Eq. 2.14 respectively.

M4z̈4 = FK3,4 + FC3,4 + FK2,4 + FC2,4 − FKtotal,4,5
− FCtotal,4,5

(2.13)

M5z̈5 = FKtotal,4,5
+ FCtotal,4,5

− FK5,6 − FC5,6 (2.14)

20



Figure 2.5: Compliant occupant model with cushion

Ctotal,4,5 =
C4,5Cc
C4,5 + Cc

(2.15)

Ktotal,4,5 =
K4,5Kc

K4,5 +Kc

(2.16)

Unfortunately, Singh’s model is not perfect. While it does have more degrees

of freedom and therefore more specificity than the rigid occupant model, this model

has only been validated with the 50th percentile male in a single helicopter test

crash. Without additional testing, there is no way to know how far that validity

extends in terms of occupant size or initial helicopter sink rate. This model is much

too stiff to be used for low g impacts, as seen in vibratory tests, and no other sized

occupants have been tested. Additionally, this model is not as simple as the rigid
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model and is accompanied by the computational time burden typical with more

complex systems.

2.3 Landing Gear Model

The landing gear on a helicopter is one of the primary locations that energy

absorption equipment can be added. Helicopter crashes occur over a large sink rate

range, with large payload variations, and across a wide variety of ground conditions

[26]. All of these factors can have an impact on the effectiveness of the landing gear

systems. A passive damping system is not capable of adapting to all of these different

factors and a great deal of energy may be transmitted to the occupant rather than

being absorbed by the systems in place. An active or semi-active landing gear can

account for many of these conditions, adapt in real time to absorb a much larger

amount of energy, and not transmit excess energy to the occupant.

A new, semi-active model was developed for the landing gear in a 2250 lb

MD-500C helicopter, pictured in Fig. 2.2. The MD-500 helicopter is a lightweight

helicopter that has been used in previous modeling and testing [27]. This model

was originally created by Choi et al. in 2016 and it was designed to work over a

sink rate range of 6-12 ft/s [6]. This theoretical landing gear outputs 4000 pounds

of force for each of the four dampers on landing gear and strokes for 8.25 cm. As

seen in Fig. 2.6, at low sink rates the combined MR and viscous forces are not

high enough to reach the target force. The MR force is turned up to its maximum

possible force, but the additional viscous force is still needed, and the target force
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is not reached until a sink rate of 6 ft/s. At this point, the MR force is decreased

as the viscous force increases in order to maintain the target net force. At 12 ft/s,

the MR force is turned off completely and the damper force is completely viscous

based. This design and its control algorithms were tested at low sink rates using

ramp displacement inputs on a servo-hydraulic testing machine and at high speeds

using single drop damper tests.

Figure 2.6: Passive and MR damper force components [6]

This work was then expanded upon by Powell et al. [7] when a passive relief

valve was added to the damper to increase the effective sink rate maximum up to

26 ft/s. With the addition of the spring assisted passive relief valve, the relief valve

opens when the sink rate reaches 12 ft/s, which lets more fluid through without

increasing the output force. This allows the maximum sink rate to increase up to

26 ft/s before the seal cannot open any further and the damper force exceeds the

target force. Powell’s model’s output, shown in Fig. 2.7, includes the force from the

piston motion, the MR force, and the transition between the “On”and “Off” states
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of the damper. This model is very complex and requires more computing time than

the rest of the combined models. Therefore, several other simplified models have

been proposed to be used in place of Powell’s model for this research.

Three other simplified models were investigated, all seen in Fig. 2.8. The first

is a constant stroking load model. This idealized model provides a constant force of

72 kN (4000 lbs from each of the four dampers) across the entire stroke. The second

model is the hyperbolic tangent model, which is similar to the constant stroking load

model, but includes a more realistic “ramp up” period. Finally, the third model is

the sinusoidal model. This model most closely matches Powell’s model without the

additional computing time. Each of these models reaches the desired 72 kN , but

with varying load stroke profiles. Since the constant stroking load landing gear is

nearly 50% more efficient than the more realistic sinusoidal landing gear, seen in

Fig. 2.9, it was used to determine the best-case scenario for the occupant in most

of the simulations in Ch. 4 and Ch.5.

Figure 2.7: Powell’s landing gear model [7]
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Figure 2.8: Three simple landing gear options

Figure 2.9: Energy absorbed by each landing gear model
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Chapter 3: Seat Damper Forces

The purpose of this chapter is to investigate several different load-stroke

profiles for the seat damper. These options include completely passive methods,

like the viscous damper and fixed load damper, and semi-active methods, like the

adjustable fixed load damper and variable load damper. These semi-active behaviors

are achieved by introducing a magnetorheological damper into the seat’s suspension

system. This controllable damper can be adjusted to output the minimum necessary

force throughout the impact to lower the loads to the occupant, as explained in Sec.

1.4.

Active seats are integral to improving helicopter crash survivability and

increasing the maximum survivable impact velocity. Passive seats, while simple

and well-studied, have a narrow range of maximum efficiency conditions, and their

inefficiencies lead to a higher probability of injury for atypical occupants. That

is, occupants above or below the designed weight are progressively more in danger

during an impact. Previous seat energy absorbers have been passive and designed

for a single mass and velocity combination.
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3.1 Viscous Forces

Viscous energy absorbers are very simple devices and have long been used as

energy absorbers in helicopter seats. These passive dampers were designed for the

50th percentile male (50M) at a specific impact velocity. Fig. 3.1 shows the effects

of imperfect conditions. These following simulations use a 16 inch seat stroke length,

no landing gear model, and the rigid occupant model. When the 50M impacts at

7.25 m/s, the system works at its maximum efficiency; the occupant uses exactly

the entire stroke length and his peak loads are at his injury threshold. When the

50M impacts at lower velocities, however, he does not use the full stroke length.

This wastes some of the energy absorption capabilities of the damper and therefore

increases the peak loads on the occupant. Finally, if the sink rate is greater than 7.25

m/s, the 50M clearly exceeds his injury threshold and exhausts the stroke. Since

the damper cannot dissipate enough energy before it bottoms out, a large stopping

force is imparted to the occupant. This stopping force are extremely dangerous and

can easily cause injuries. Impact velocities above 7.25 m/s require longer stroke

lengths to absorb enough energy.

These inefficiencies also affect other occupant sizes. Fig. 3.2 shows three

occupants each impacting at 7.25 m/s on a viscous system. The 50th percentile

male uses the exact stroke length and his peak force does not exceed his injury

threshold. The 5th percentile female, however, has a lower injury threshold due to

her smaller mass. Her loads exceed her injury threshold and the damper stops her

too early, wasting stroke length. Had the system been able to adapt to her smaller
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Figure 3.1: 50M impacting at three velocities on viscous damping system

mass, she could have used the full stroke length and potentially lowered her peak

loads to below her injury threshold. Finally, the 95th percentile male is too heavy

for the viscous system to handle at 7.25 m/s and he exhausts his stroke length.

This means that he is very likely to be injured by the stopping force, even though

he never reaches his injury threshold up until that point.

It is clear that the viscous damping system has many shortcomings. While

it is simple, well tested, and lightweight, it also cannot adapt to multiple occupants

or sink rates, and even at its most efficient, the viscous damper can absorb less than

half of the available energy. To solve some of these problems, a fixed load energy

absorber was designed and implemented, as described in Sec. 3.2.

3.2 Fixed Load Energy Absorber

The fixed load energy absorber (FLEA) is a device designed to supply a

constant load to the seat throughout the crash [28]. This system is typically designed
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Figure 3.2: Three occupant masses impacting at 7.25 m/s using viscous damping

system

to stroke at the 50th percentile male’s injury threshold. This maximizes the energy

absorption possible by providing the maximum force to the occupant across the

entire stroke. This increased efficiency allows the maximum safe sink rate to increase

from the viscous system’s 7.25 m/s up to 10.7 m/s.

However, some of the fixed load energy absorber’s shortcomings can be seen

in Figs. 3.3 and 3.4. Fig. 3.3 shows the 50th percentile male at three different sink

rates. The fixed load energy absorber works perfectly for the 10.7 m/s sink rate;

this sink rate uses exactly the full stroke length and then brings the occupant to a

gentle stop. However, this system exacerbates the problems the viscous system had

at lower sink rates. Since the fixed load energy absorber strokes at a specific force,

this means that it both wastes some of the stroke length and does not reduce any

of the loads. Additionally, sink rates higher than 10.7 m/s will exceed the stroke

length and the occupant will experience a dangerous stopping force.
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Fig. 3.4 shows the larger problem with fixed load energy absorbers: they

cannot adapt to different occupant masses. This figure shows all three rigid occu-

pants impacting at 10.7 m/s. While the 50th percentile male experiences a soft

landing and does not exceed his injury threshold, the 5th percentile female and 95th

percentile male do not have such a smooth ride. The 5th percentile female wastes

stroke length and exceeds her injury threshold by nearly 45%. The 95th percentile

male never hits his injury threshold, but he exhausts his stroke if his sink rate is

above 9.6 m/s.

Figure 3.3: 50M at three speeds using fixed load system

These shortcomings and dangers can be mitigated at lower impact velocities

by using an active system to absorb the energy.

3.3 Magnetorheological Damper

By incorporating an MR damper into the seat’s energy absorber, the loads to

the occupant can be greatly reduced. Fig. 3.5 shows the forces of a 50th percentile
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Figure 3.4: Three occupant masses using fixed load system at 10.7 m/s

male impacting at 7.25 m/s, which was the maximum safe sink rate of a purely

viscous system. However, the added MR force combines with the viscous force to

help create a net force much lower than the 50th percentile male’s injury threshold.

By setting the MR force to the maximum allowable force and having it vary inversely

with the viscous force, the two can be added together to produce a constant net

force much lower than the injury threshold across the entire stroke.

Figure 3.5: 50M using active MR system at 7.25 m/s
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Since a semi-active system effectively transforms a viscous system into an

adjustable fixed load system, the next logical step is applying it to all three occu-

pants. While traditional fixed load energy absorbers are set to one output force,

using an MR force can help to mitigate these limitations. Rather than having the

viscous damping set to the 50th percentile male’s threshold, the system should be

designed such that the viscous damping does not exceed the 5th percentile female’s

injury threshold. Then, the MR force can be used to compensate for any addi-

tional needed force, which allows all three occupants experience a soft landing. This

configuration with each occupant impacting at 10.7 m/s can be seen in Fig. 3.6.

Figure 3.6: Three occupants using active MR system at 10.7 m/s

Using this method, all three occupants receive the lowest constant force

necessary to bring them to a soft landing without wasting stroke length. 10.7 m/s

is still the maximum impact velocity that a 16 inch stroke seat can handle, but the

MR damper allows that threshold to be safely reached by all occupants.

The MR damper models used in this research are very idealized and are

primarily being used as the model to determine the best-case scenario an occupant
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can expect. A number of other, more realistic damper models have been developed

and have been used to model and validate other experiments [29], [30].

3.4 Algorithm

The control algorithms for the occupant models are very similar to each

other. Both are based off of the energy equation, shown in Eq. 3.1. The rigid

occupant model’s equations are shown in Eqs. 3.1-3.3 and the compliant occupant

model’s equation is shown in Eq. 3.4.

Mgd+
Mv2o

2
= Fdd (3.1)

Fd can be solved for, seen in Eq. 3.2, to provide the necessary force to stop

the seat pan at the end of the stroke length. From there, fy can be calculated since

the total damping force is just the sum of the viscous damping force and the yield

force, shown in Eq. 3.3.

Fd =
Mgd+

Mv2o
2

d
(3.2)

fy = Fd − C(ż − ẏ) (3.3)

The compliant occupant model control algorithm is very similar to the rigid

occupant model’s control algorithm. Starting with Eq. 3.2, a few variables can be

substituted in to accommodate the compliance of the new model.
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Fd =
Mbiogdseatpan +

Mbiov
2
seatpan

2
dseatpan

(3.4)

where Mbio = CfMoccupant and Cf is a numerically determined correction factor

designed to handle the internal dynamics of the compliant occupant model. The

correction factor is discussed further in Sec. 3.4.1. Besides the correction factor,

the major difference between the rigid occupant model control algorithm and the

compliant occupant model control algorithm is that the COM control algorithm must

be updated continuously throughout the crash while the ROM control algorithm is

constant and can be set by the initial conditions of the crash.

Additional control methods have been developed by other researchers, though

those algorithms are all much more complex than the ones used in this project [31],

[32] .

3.4.1 Correction Factor

When the compliant model was first introduced, there was no mass correc-

tion factor. It was quickly discovered that the internal dynamics of the compliant

occupant model affects the soft landing and induces a rebound after the landing.

This rebound effect can be seen in Fig. 3.7.

To mitigate this dangerous outcome, many simulations were run and a nu-

merically calculated correction factor was determined. This correction factor is a

function of both occupant mass and initial sink rate and its equations can be seen

in Eqs. 3.5-3.9.
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Figure 3.7: Rebound from compliant occupant without mass correction factor

Cf = Av3o +Bv2o + Cvo +D (3.5)

A = −4.4734 ∗ 10−7M2 + 5.6731 ∗ 10−5M − .002 (3.6)

B = −9.0973 ∗ 10−6M2 + .0011M − .0442 (3.7)

C = 5.3918 ∗ 10−5M2 + .0062M − .3349 (3.8)

D = −1.0230 ∗ 10−4M2 + .0125M + .1548 (3.9)

Fig. 3.8 shows how the necessary correction factor must increase in order

to accommodate larger masses and sink rates. This correction factor effectively

increases the amount of force the damper sends into the seat pan. The logical
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question that follows is, “Why does increasing the upward force into the seat decrease

the upward rebound?” Through the compliant occupant model simulations, it has

been determined that most of the motion occurs between the pelvis and the seat

pan. With the lower, unadjusted force, the seat pan is stopped in time, but the

spring and damper between the seat pan and pelvis are soft enough to allow the

pelvis to continue its descent. This spring eventually absorbs enough energy and

releases it, pushing the occupant back up and pulling the seat pan with it. By

increasing the force, this rebound effect can be dealt with during the descent in a

much safer manner so that both the seat pan and the pelvis come to a stop at the

end of the stroke length. There is still some rebound, seen in Fig. 3.9, but these

only occur at very high sink rates and the effects have been lessened dramatically.

Figure 3.8: Mass correction factor necessary for soft landing for each occupant at

each velocity
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Figure 3.9: Stroke length with mass correction factor at multiple sink rates
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Chapter 4: Rigid Occupant Model and Landing Gear

The purpose of this chapter is to examine the effects of the landing gear on

the rigid occupant and determine the best device to limit the loads to the occupant.

Since the rigid occupant model is such a simple case, the landing gear benefits are

easily observed and the energy distribution is easy to track.

4.1 Results

The addition of the landing gear to the rigid occupant model produces some

clear, beneficial results. The easiest way to gauge these benefits is to simulate the

maximum safe sink rate from the seat alone, but including the landing gear model in

the calculations as well. Fig. 4.1 shows the seat acceleration for the 50th percentile

male impacting at 10.7 m/s. Energy is absorbed by the landing gear in the first 8

cm of the stroke. This absorbed energy means that the peak loads can be reduced

across the rest of the seat’s stroke once the landing gear has crushed completely. The

constant stroking load landing gear reduces the peak accelerations on the occupant

from 14.5g to 13.1g.

The more realistic, sinusoidal landing gear model was also examined to see

its effect on the rigid occupant’s accelerations. Since this model is only 60% as
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Figure 4.1: Rigid occupant model acceleration at 10.7 m/s with constant stroking

load landing gear

efficient as the constant stroking load landing gear, the peak loads are not expected

to drop as much. Fig. 4.2 shows that while the landing gear does still absorb some

energy from the impact, it is nowhere near as effective and only drops the peak loads

from 14.5g to 13.9g.

Once the landing gear was determined to benefit the seat throughout the

impact in some manner, regardless of its load stroke profile, the sink rate was in-

creased until the occupant was again peaking at 14.5g. This new sink rate was 11.2

m/s and the corresponding occupant accelerations are shown in Fig. 4.3.

While the landing gear certainly helps to increase the maximum safe sink

rate, it also adds a very stiff element to the system that is detrimental to the

occupant’s safety at lower sink rates. The landing gear strokes at 6.7g regardless of

whether the occupant would reach that threshold if the seat stroked freely across the

entire stroke length. Fig. 4.4 shows the rigid occupant model impacting at various
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Figure 4.2: Rigid occupant model acceleration at 10.7 m/s with sinusoidal stroking

load landing gear

Figure 4.3: Rigid occupant model acceleration at 11.2 m/s with constant stroking

load landing gear
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sink rates and their accelerations after the landing gear crushes completely. Below

3.2 m/s, the landing gear absorbs all of the energy from the impact and the seat pan

will not need to stroke. Interestingly, below 7.9 m/s, the seat will not stroke above

the landing gear stroking threshold. This means that below 7.9 m/s, the landing

gear is inducing higher loads on the occupant than would otherwise occur without

the landing gear. Only above 7.9 m/s does the occupant start to experience higher

loads from the seat crushing than they do from the landing gear.

This trade-off becomes a key issue when designing landing gear systems.

The higher the landing gear’s stroking threshold is, the more energy it will absorb

and the more likely it will be able to protect the helicopter from damage. The higher

the stroking load, though, the more likely the occupant will sustain some kind of

injury, even if it is mild. This unadjustable stroking load also forces the system to

behave more like the FLEA that the MR was added to avoid. While the landing gear

only induces 6.7g on the rigid occupant, the compliant occupant interacts poorly

with the landing gear at low sink rates. The compliant model’s difficulties with the

landing gear is discussed in Sec. 5.3.1.

41



(a) 3.2 m/s (b) 5 m/s

(c) 7.9 m/s (d) 10 m/s

Figure 4.4: Rigid occupant model seat accelerations at various sink rates
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Chapter 5: Compliant Occupant Model and Landing Gear

The purpose of this chapter is to examine how the landing gear and the

compliant occupant model can work together to limit the loads to the occupant

during a crash. The internal dynamics in the compliant model interact heavily with

the seat pan and landing gear to produce some interesting results and add a number

of complications.

5.1 Compliant Occupant Model Alone

Before looking at the compliant occupant model’s interactions with the seat

pan, the compliant occupant model must be examined on its own. While the rigid

occupant model was very straight forward with few complications, the compliant

model is much more complex. Sec. 5.1.1 looks at the development process of the

control algorithm for the compliant occupant model and Sec. 5.1.2 covers the com-

pliant occupant model impacting on its own without the landing gear.

5.1.1 Fixed Load Versus Variable Load

When the compliant occupant model was first introduced to the simulations,

the damper was controlled to output the same fixed load as it was doing for the rigid
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occupant model. Due to the complexities of the compliant occupant model and the

interactions between the seat pan and the pelvis, this yielded very poor results, seen

in Fig. 5.1.

Figure 5.1: 50th percentile male accelerations from fixed load at 10.7 m/s

Even though this occupant is only impacting at 10.7 m/s, he quickly exceeds

the 23g injury threshold. He is also stopped too early, therefore wasting stroke

length, and then rebounds 8.4 cm. This is very undesirable and is directly caused

by treating the compliant occupant model the same as the rigid occupant model.

To rectify this, a variable load was used instead, seen in Fig. 5.2. This new control

algorithm, described earlier in Eq. 3.4, adjusts as necessary to deal with the pelvis’s

effect on the seat pan. A constant force can be applied across the entire impact for

the rigid occupant model because there are no interactions between the seat pan and

the pelvis. However, in the compliant occupant model, the influence of the pelvis

on the seat pan varies greatly throughout the impact.

Even though the force into the seat pan exceeds the injury threshold for the
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Figure 5.2: Fixed load and variable load

50th percentile male, this variable load interacts much better with the compliant

occupant. The occupant’s accelerations under this new loading can be seen in Fig.

5.3. Clearly, this variable loading provides a much smoother ride for the occupant

and lowers the peak loads by 2.3g from 24.1g to 21.8g. Additionally, this variable

loading removes the secondary acceleration peak the occupant experienced with the

fixed load and limits the rebound to 1.5 cm. The rebound is reduced even further

at lower sink rates.

5.1.2 Compliant Occupant Model Results

With this new control algorithm, the compliant occupant model can be

simulated and examined more closely. The 50th percentile male only reaches 21.8g

when impacting at 10.7 m/s. Therefore, the first step in further analysis is increasing

the speed until the 23g loading is met again. His sink rate can be increased to 11.2

m/s before exceeding the threshold because of the internal dynamics absorbing some
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Figure 5.3: 50th percentile male accelerations at 10.7 m/s

of the energy. This new set of accelerations can be seen in Fig. 5.4.

Figure 5.4: 50th percentile male accelerations at 11.2 m/s

However, the 5th percentile female does not fare so well at 11.2 m/s. Fig. 5.5

shows the chest accelerations, the component experiencing the highest accelerations,

for each occupant at 11.2 m/s. The 5th percentile female clearly exceeds the injury

threshold as she peaks at 25.2g. Her maximum safe sink rate must actually be

reduced to 10.6 m/s so as not to pass her injury threshold. Meanwhile, the 95th
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male does not exceed the injury threshold until 11.6 m/s. These values are tabulated

in Table 5.1.

Figure 5.5: Occupant chest accelerations at 11.2 m/s

All three occupants have very similar load stroke profiles. Their accelera-

tions from a 11.6 m/s impact with a constant stroking load landing gear are shown

in Fig. 5.6.

5.2 Compliant Occupant Model and Landing Gear

With these new sink rate limits in mind, the landing gear model was added.

The constant stroking load landing gear model was used in order to first determine

the best-case scenario before including more realistic factors, such as a ramp up

period for the force and the tapering off at the end, as seen in the hyperbolic

tangent model and the sinusoidal model discussed in Sec. 2.3.

Fig. 5.7 shows the accelerations of the 50th percentile male at 11.2 m/s.

The addition of the landing gear reduces the peak chest accelerations from by 1.8g
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(a) Head (b) Chest

(c) Viscera (d) Pelvis

Figure 5.6: Compliant occupant component accelerations at 11.6 m/s with a con-

stant stroking load landing gear
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23g to 21.2g. This reduction in loading partially comes from the additional energy

being absorbed by the occupant in the extra stroke length provided by the landing

gear, which can be seen in the first 8 cm of the stroke. Since the occupant is no

longer reaching the injury threshold, the sink rate can again be increased. The 50th

percentile male can safely impact at 11.6 m/s when the most efficient landing gear

is in place. However, the 5th percentile female again exceeds the 23g threshold at

this sink rate, as seen in Fig. 5.8, and her maximum sink rate must be adjusted

accordingly to 10.9 m/s. The 95th percentile male’s maximum sink rate of 12.0 m/s

is also tabulated in Table 5.1.

Figure 5.7: 50th percentile male accelerations at 11.2 m/s

Table 5.1: Maximum sink rate for each occupant

Occupant Without landing With sinusoidal With constant stroking load

gear landing gear landing gear

5th percentile female 10.6 m/s 10.8 m/s 10.9 m/s

50th percentile male 11.2 m/s 11.5 m/s 11.6 m/s

95th percentile male 11.6 m/s 11.8 m/s 12.0 m/s
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Figure 5.8: Each occupant’s chest accelerations at 11.6 m/s

5.3 Complications

There are a number of issues that arise when adding in the landing gear

system and when looking at the injury criteria for the compliant occupant model.

Section 5.3.1 discusses the tradeoffs that must be made when trying to minimize

destruction to the helicopter and Sec. 5.3.2 covers some of the issues that arise when

trying to catalog the dangers to the compliant occupant.

5.3.1 Initial Forced Acceleration

While the landing gear clearly increases the maximum safe sink rate for

each occupant, it also introduces a very stiff element to the system that has some

detrimental effects to the occupant at low sink rates. The rigid occupant model’s

behavior with the landing gear system is described in Sec. 4.1. The negative effects

seen in the ROM are amplified by the compliant occupant model. The landing gear
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strokes at 6.7g, shown in Fig. 4.4, and those loads are transmitted directly to the

occupant because the seat is rigidly connected to the landing gear unless the landing

gear has finished stroking or the loads to the occupant will exceed 14.5g. While the

rigid model showed that it also stroked at 6.7g, the compliant occupant exhibits

increased loads from those of the landing gear. These effects can most clearly be

seen when comparing Fig. 5.9 and Fig. 5.10. In Fig. 5.9, the seat pan is allowed to

stroke freely to absorb the energy from the 4 m/s impact. The loading peaks at 5g

at the end, but the occupant does receive a safe, fairly smooth landing. Meanwhile,

Fig. 5.10 shows the effects of the landing gear on the compliant occupant. The

compliant occupant model shows that the occupant is launched at nearly 12g due to

the landing gear, even though the sink rate is relatively low. This effect continues

up to 6.5 m/s, where the occupant begins to see lower peak loads with the landing

gear than without it.

Figure 5.9: Behavior of compliant occupant model without landing gear at 4 m/s
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Figure 5.10: Behavior of compliant occupant model with landing gear at 4 m/s

5.3.2 Injury Criteria

Another issue faced in this research is determining which injury criteria to

use in each crash case. As discussed in Sec. 1.3, most of the injury criteria devel-

oped previously were for the rigid occupant model. The compliant occupant model

was not developed until 2015, and as such does not have as much documentation

surrounding it. While the 14.5g acceleration threshold can easily be applied to the

rigid occupant model, even transforming that acceleration into forces can lead to

confusion. The rigid occupant model includes the seat pan mass, but when looking

at the lumbar loads, the seat pan mass should not necessarily be included. However,

the seat pan is typically included when looking at total body forces.

Meanwhile, these issues are exacerbated by the compliant occupant model’s

number of components. Special care needs to be taken when deciding whether

to exclude the seat pan from that threshold and when determining how much of

the occupant to use when looking at the lumbar loads. Fig. 5.11 shows the 50th
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percentile male’s lumbar loads when impacting at the maximum safe sink rate of

11.6 m/s, as determined by the 23g threshold. Even using a conservative injury

threshold by excluding the seat pan mass from the force, these loads only reach

4.1 kN of compression. By this metric, the maximum safe sink rate would be

significantly higher than that shown by the 23g threshold. There is clearly more

research that needs to be done in this area in order to better improve these criteria.

Figure 5.11: 50th percentile male’s lumbar loads when impacting at 11.6 m/s
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Chapter 6: Biodynamic Modeling

The purpose of this chapter is to detail the biodynamic modeling performed

for Advanced Materials and Devices (AMAD). The University of Maryland was

approached by AMAD as part of a Small Business Innovation Research (SBIR)

project. The contract number was N0002417NR52468 and the primary person of

contact was Barkan Kavlicoglu. AMAD was performing research into passive seat

suspension systems and their effect on an occupant on a high-speed boat on rough

waters. The University of Maryland was tasked with simulating a variety of stiffness

and damping constants for the seat suspension and determining the occupant’s peak

loads under multiple acceleration impulses.

6.1 Introduction

To accomplish this task, the occupant model for the 95th percentile male

were used. The masses, springs, and dampers are all the same values listed in

Tables 2.2 and 2.3. However, AMAD wished to use a completely passive suspension

system, so a spring was used in the seat instead of the MR damper that has been

used previous simulations. The passive occupant models are shown below in Fig.

6.1. Some simulations also included a cushion between the seat pan and the pelvis,
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whose models are shown in Fig. 6.1(b) and 6.1(d). The spring and damper constants

from the cushion are handled in the model for this project in the same way they

were included in Sec. 2.2.

(a) COM without cushion (b) COM with cushion

(c) ROM without cushion (d) ROM with cushion

Figure 6.1: Occupant models

Through this research, the University of Maryland hoped to determine the

effectiveness of AMAD’s new devices to limit loads to the occupant in order to

reduce discomfort or injury from extended, rough rides.

55



6.1.1 Ride Severity Index

Several injury criteria were considered when exploring the accelerations.

In addition to the US Army Occupant Protection Handbook [33], which places a

threshold at 23g at 7 ms, the Ride Severity Index (RSI) was investigated.

RSI is a new method of comparing the roughness of two acceleration pulses

[34]. It uses a statistical approach to average the top 10% of the acceleration peaks

and correlates that value to a level of discomfort over a specified time. This method

is shown below in Eq. 6.1.

A1/10 =
1

n/10

n/10∑
i=1

Ai (6.1)

This A1/10 value can then be compared to Table 6.1 to determine the occu-

pant’s condition over time. These resulting values can also be compared between

rides to gauge how much rougher one ride was than another. For example, if Ride

B has an A1/10 value of 1.5g and Ride C has an A1/10 value of 1.2g, then the ratio

between them is 1.25. Therefore, Ride B was 25% rougher, or more intense, than

Ride C.

Table 6.1: Acceleration Severity Level [34]

Severity A1/10 A1/10 Range Occupant

level g g condition

IV 3 3-4 Extreme discomfort

III NA 2-3 Discomfort and limited performance

II 1.5 1-2 Effective performance for 1-2 hours

I 1 <1 Effective performance for 4 or more hours
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6.2 Results

The results for both halves of this project are discussed below in Sec. 6.2.1

and 6.2.2. Section 6.2.1 discusses the initial nine cases that were requested. These

cases did not include a seat cushion. Sec. 6.2.2 involved a much wider range of

parameters, including both occupant models, and with and without a seat cushion.

6.2.1 Initial Nine Cases

Several floor input requirements were given for the simulations. Initially,

a single, 5g, 200 ms triangular peak was requested and many of the simulations

were performed based on this requirement. Later, a sinusoidal input was requested,

so the simulations were changed to reflect that. Since waves occur repeatedly, the

requirement was changed to three sequential peaks, and eventually a long series of

peaks from a test on a boat were provided for the simulations. Each of these inputs

can be seen in Fig. 6.2.

Initially, nine different cases were desired. AMAD provided UMD with three

stiffnesses of 100, 125, and 150 lbf/in (17.5, 21.9, and 26.3 kN/m) and three damp-

ing constants of 33.3, 41.7, and 50 lbf.s/in (5831, 7302, and 8756 Ns/m). These

first nine cases were simulated using the single, 5g triangular peak. Their peak

loads, mechanical attenuation, and biodynamic attenuation are all shown in Table

6.2.

The results from Table 6.2 are also shown in Fig. 6.3. Clearly, the seat pan

suspension parameters are spread over too narrow of a range to have a large effect
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(a) Sinusoidal wave (b) Single triangular peak

(c) Three triangular peaks (d) Long series of peaks

Figure 6.2: Acceleration inputs
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Table 6.2: Biodynamic Modeling Simulation Results

Spring Damping Natural Damping Peak Seat Mechanical Peak Biodynamic Biodynamic

Constant Constant Frequency Ratio Pan Acceleration Attenuation Acceleration Attenuation

kN/m Ns/m Hz g g g

17.512 5831 2.20 2.31 3.817 .763 6.268 1.254

17.512 7302 2.20 2.89 3.877 .775 6.420 1.284

17.512 8756 2.20 3.46 3.903 .781 6.531 1.306

21.890 5831 2.47 2.06 3.832 .766 6.311 1.262

21.890 7302 2.47 2.58 3.884 .777 6.450 1.290

21.890 8756 2.47 3.10 3.904 .781 6.554 1.311

26.268 5831 2.70 1.88 3.845 .769 6.353 1.271

26.268 7302 2.70 2.36 3.891 .778 6.480 1.296

26.268 8756 2.70 2.83 3.907 .781 6.576 1.315

on the occupant’s accelerations. In general though, as the stiffness and damping

increases, so do the accelerations. Additionally, while the pelvis is the only compo-

nent of the body being shown in Fig. 6.3, all of the body accelerations are almost

identical at these low g loads. This fact is also shown in Fig. 6.4, which shows all

of the accelerations in a single run. In an impact at these lower loads, the occupant

itself is almost completely rigid and nearly all of the motion stems from the seat

pan and pelvic interactions.

6.2.2 Additional Cases

The second half of this project contained a much wider range of parameters.

The spring values considered were 50, 100, and 150 lbf/in and the damper values

were 50, 100, and 150 lbf.s/ft. Additionally, a seat cushion was included in some

of the models. Its spring values were 15, 22.5, and 30 lbf/in and its damper values

were 25, 50, and 100 lbf.s/ft. Finally, a long set of acceleration pulses from a
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Figure 6.3: Seat and pelvic accelerations for all nine cases

Figure 6.4: Accelerations for single occupant
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boat test was provided for these simulations, which had an A1/10 value of 2.98g.

Combinations of these parameters were combined and the 95th percentile male’s

acceleration responses were recorded from each simulation. The A1/10 values from

the seat pan and pelvis were then compared to that of the wave input to determine

if the combination of parameters increased or decreased the loads to the occupant.

The simulations included multiple runs for each occupant model, with and

without a cushion, each with a different array of seat parameters. Table 6.3 high-

lights the minimum and maximum loads from each of these different combinations.

Table 6.3: Acceleration Loads and System Parameters

Max/Min Seat pan Pelvis Ks Cs Kc Cc Occupant

loads acceleration [g] acceleration [g] model

Max 3.80 - 150 50 - - Rigid

Min 2.58 - 50 100 - - Rigid

Max 2.60 - 50 100 30 25 Rigid

Min 1.68 - 50 100 15 100 Rigid

Max 4.67 4.12 150 50 - - Compliant

Min 3.05 3.05 50 100 - - Compliant

Max 2.24 2.77 50 100 30 25 Compliant

Max 2.40 2.45 109.5 132 22.5 100 Compliant

Min 2.00 2.06 50 100 15 100 Compliant

The floor acceleration pulse provided for this series of cases was nearly ten

minutes long. For these simulations, only the first two minutes were used in an

effort to save on computing time. A typical case is shown below in Fig. 6.5. Ad-

ditionally, the frequency responses are shown in Fig. 6.6. These plots help to show

the frequencies at which the occupant will show the greatest response.
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Figure 6.5: Typical accelerations for a single case

Figure 6.6: Typical frequency response for a single case
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Chapter 7: Conclusion

The purpose of this chapter is to summarize the research that has been

done on this project and to discuss areas of future work. Additionally, the long

term schedule of this project is described.

The goal of this research was to develop a comprehensive model of an occu-

pant in a helicopter equipped with an active seat and an active landing gear system

to simulate crash landings and determine the effectiveness of various energy absorb-

ing devices. This research began with designing a seat control algorithm for the

rigid occupant model alone. Then the compliant occupant model was substituted in

and adjustments were made to the control algorithm to accommodate the additional

motion of the COM. Eventually, the landing gear model was added to the system

and its effect on the rigid occupant’s loads was examined. Later, the landing gear

was applied to the compliant occupant model. The load-stroke profiles for each

landing gear and occupant were determined and the maximum safe sink rate with

each device was found.
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7.1 Rigid Occupant Model

The rigid occupant model was initially used as a simple solution to estimate

the loads transmitted to the occupant in the event of a helicopter crash. A viscous

damper was originally used to absorb the energy and it was determined that a 50th

percentile male could impact at 7.25 m/s without exceeding his injury threshold of

14.5g using this system. The viscous system is very inefficient, so a fixed load energy

absorber was examined. This device is much more efficient and raised the maximum

safe sink rate for the 50th percentile male to 10.7 m/s. However, the FLEA is also

a passive device that cannot adapt to different occupants or sink rates. This causes

the 5th percentile female to always exceed her injury threshold and is inefficient on

the 95th percentile male.

An MR damper was added to the seat pan in order to work with the viscous

damper and adapt to the variable impact conditions. This device was controlled to

produce a net force that caused the peak loads to drop by 50% when compared to the

purely viscous system. This new system was then applied to all three occupants.

The controllable load allowed the entire range of occupants to experience a soft

landing and use the entire stroke length up to 10.7 m/s.

Finally, the landing gear model was added to the seat and occupant models.

The constant stroking landing gear was initially used to determine the best case

scenario for the occupant. This landing gear model increased the maximum safe

sink rate for all three occupants to 11.2 m/s. The more realistic, sinusoidal landing

gear increases the maximum sink rate from 10.7 m/s to 11.1 m/s. These simulations
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informed the control algorithms for the compliant occupant model.

7.2 Compliant Occupant Model

The compliant occupant model was introduced after the rigid occupant

model’s control algorithm was developed. This model was used to give more in-

sight into the loads within the occupant and understand the interactions between

the seat pan and the occupant. Unlike the rigid occupant model, which shows the

occupants following the same load stroke profile across all the occupants, the com-

pliant model exhibits slightly different behaviors depending on which occupant mass

is simulated. This led to the maximum safe sink rate for the 50th percentile male

reaching 11.2 m/s, but the 5th percentile female only reaching 10.6 m/s and the

95th percentile male achieving 11.6 m/s.

These maximums were increased when the landing gear model was imple-

mented with the compliant occupant models. The sinusoidal landing gear increased

each occupant’s maximum safe sink rate by 0.2-0.3 m/s each, and the more efficient

constant stroking load landing gear increased each maximum safe sink rate by an

additional 0.1-0.2 m/s on top of that. All of these values are tabulated in Table 7.1.

Both occupant models experience detrimental effects from the landing gear

at low sink rates, but these effects are particularly prevalent in the compliant oc-

cupant model. The landing gear strokes at 6.7g, which propagates through to the

compliant occupant and forces it to experience nearly 12g. This effect eventually

is offset by the landing gear’s energy absorption capabilities at sink rates above 7.9
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Table 7.1: Maximum Sink Rate for Each Occupant

Occupant Without landing With sinusoidal With constant stroking

gear landing gear load landing gear

All rigid occupants 10.7 m/s 11.1 m/s 11.2 m/s

5th percentile Female 10.6 m/s 10.8 m/s 10.9 m/s

50th percentile Male 11.2 m/s 11.5 m/s 11.6 m/s

95th percentile Male 11.6 m/s 11.8 m/s 12.0 m/s

m/s. The compliant occupant’s loads are always well below the injury criteria, but

these loads could still cause mild injury and are a trade off when designing a system

to protect the helicopter.

7.3 Future Work

As stated in chapter 5, a heavier occupant can withstand higher sink rates.

None of the masses used in these simulations contain a complete set of limbs or any

additional equipment that would typically be seen in a military pilot. There could

be some interesting results in determining what the average pilot carries with him

or her on a typical flight and how those additional masses affect the accelerations

and the maximum sink rate.

Additionally, further research needs to be performed to determine the in-

jury criteria for the compliant occupant model. Sections 1.3 and 5.3.2 discuss the

background and some of the issues with the current injury criteria and how they

apply to the compliant model. These conditions need to be resolved as the 14.5g

threshold on the rigid occupant and the 23g threshold on the compliant model’s
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chest are currently the limiting factors on the maximum safe sink rate. A threshold

for the lumbar load compression should be researched so that these loads can be

used to their fullest potential.

There has also been some research done into the presence of a seat cush-

ion and its effects on the occupant. Typically, a seat cushion model was adding

oscillations and was eventually neglected for simplicity. However, seat cushions are

common devices due to the comfort they add to a more typical ride and they should

be investigated to determine if there is a good combination of stiffness and damping

that can provide a comfortable ride that is also safe in the case of an impact.

Finally, the floor is the last primary location for energy absorption in a

helicopter. So far, this research has considered the floor to have a rigid connection

with the landing gear, but that is not the case in a real crash. The floor collapses in

a controlled manner just like the landing gear and seat pan. This energy absorption

is not yet modeled in these simulations and giving it a honeycomb-like crushing

profile is a good place to start to better understand how the floor works with the

landing gear and seat.

7.3.1 VLRCOE

This research is part of a series of projects funded by the US Army, Navy,

and NASA in the Vertical Lift Rotorcraft Centers of Excellence (VLRCOE) project.

This research specifically is Task 1.15 at the University of Maryland and is finishing

its second year in a five year project. As such, this project has specific tasks to be
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accomplished in the next three years, and these tasks are listed below:

• Year 3

– Develop models of energy absorbers based on pneumatic and shape mem-

ory alloy elements

– Test these energy absorbing prototypes at low speeds (< 10 ft/s) on the

drop tower in the lab at UMD

• Year 4

– Validate the energy absorber models and feedback control strategies with

experimental test data from the UMD drop tower for high speeds (> 10

ft/s)

– Refine crashworthiness simulations to incorporate models of adaptive en-

ergy absorbers

– Assess capabilities of new energy absorber designs to minimize injury

criteria

– Refine controllers

• Year 5

– Quantify injury mitigation probabilities using simulations

– Assess biodynamic crew response and refine controllers and energy ab-

sorber designs
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Additionally, during the annual review in November, some other recom-

mendations were made. The sponsors would like to see the MR damper results

be directly compare to other systems already being used in the field or under de-

velopment to better determine how benefits of MR. Some interest was also shown

in adding a seat cushion, which has previously been ignored because of its added

oscillations that could not be resolved. Overall, though, the sponsors were pleased

with how the project has gone in its first two years and are looking forward to the

experimental results from the drop tests in the coming years.
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