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ABSTRACT

COMPLETE TROPICAL BÉZOUT’S THEOREM AND INTERSECTION

THEORY IN THE TROPICAL PROJECTIVE PLANE

Gretchen Rimmasch

Department of Mathematics

Doctor of Philosophy

In this dissertation we prove a version of the tropical Bézout’s theorem which is

applicable to all tropical projective plane curves. There is a version of tropical

Bézout’s theorem presented in other works which applies in special cases, but we

provide a proof of the theorem for all tropical projective plane curves. We provide

several different definitions of intersection multiplicity and show that they all agree.

Finally, we will use a tropical resultant to determine the intersection multiplicity of

points of intersection at infinite distance. Using these new definitions of intersection

multiplicity we prove the complete tropical Bézout’s theorem.
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1 Introduction

In this dissertation we prove a complete version of the tropical Bézout’s theorem,

as stated below.

Theorem 51. Let Z(f) and Z(g) be two tropical projective plane curves of degree

d and e respectively. Then Z(f) stably intersects Z(g) in d · e points, counting

multiplicity.

In [6], [16], and [19] a tropical version of Bézout’s theorem is presented, but only

for polynomials that satisfy certain restrictive conditions. The Bézout’s theorem

presented in those articles is applicable to curves of full support which are in general

position with respect to each other. Those restrictions result in the fact that all of

intersections happen in the tropical affine plane. This is a strong restriction and

does not explain how curves might intersect at infinite distance. We extend the

theorem to all tropical projective plane curves, using a different method of proof

than that found in [6], [16], and [19]. We also provide solid foundations and tools

for working with intersections of tropical plane curves and intersection multiplicity

in both the tropical affine plane and the tropical projective plane.

We will first give some basic background information in the area of tropical math-

ematics. There are many articles (for example, [2],[4],[6],[8],[11],[17],[12],[13],[16],[18],

etc.) that discuss background information in tropical mathematics, and may be of

interest for either a different perspective or more information than is given here

on certain topics. Although these articles provide good background information,

we will need to discuss more fully some of the topics that are presented in them

such as functional equivalence of tropical polynomials, tropical linear algebra, a

tropical version of Cramer’s rule, and the behavior of tropical plane curves in the
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projective plane. We will then discuss some new ideas, such as a tropical plane

curve deformations, a tropical resultant, and tropical intersection theory at infinite

distance.

Although many tropical theorems appear to be quite similar to classical theo-

rems, the proofs are in general quite different and do not translate from the classical

setting to the tropical setting easily. Although we are often interested in determining

which of the classical theorems have tropical analogues, the proofs of the classical

theorems rarely give us any insight into how to proceed in proving the tropical

versions. For this reason, we provide the tropical background and proofs of several

theorems and lemmas throughout the dissertation. These proofs are necessary to

build up to the proof of the complete tropical Bézout’s theorem.

We will first discuss tropical semi-rings and some of their properties. We will be

most interested in the tropical semi-field Q and the tropical polynomial semi-rings

Q[x1, . . . , xn]. Using homogeneous tropical polynomials in Q[x, y, z], we will define

tropical projective plane curves. We will then consider the intersections of tropical

projective plane curves. In order to understand all of the points of intersection,

not just those in the tropical affine plane, we will use a tropical resultant. In order

to define the resultant we will need to build up a foundation of tropical linear

algebra. Once we have the tropical linear algebra in place, we will be able to

define our resultant, and use it to determine points of intersection of two tropical

plane curves. We will also use the resultant to define intersection multiplicity in a

way which applies to all tropical projective plane curves, regardless of where they

intersect in the tropical projective plane. In [6], [16], and [19], two definitions were

given for intersection multiplicity. These definitions apply in the special cases when

the plane curves are in general position to each other and when all of the points of
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intersection are in the affine plane. We will show that the definition of intersection

multiplicity that we give agrees with these other two definitions, in the cases where

they apply. With this definition of intersection multiplicity, we will then be able to

prove a complete version of tropical Bézout’s theorem, which applies to all tropical

projective plane curves.

Finally, we will investigate some other related tropical results. Classically there

are some interesting consequences of Bézout’s theorem. We will investigate two of

those in the tropical setting, namely Pascal’s Hexagon and the group law on elliptic

curves. Unfortunately, Pascal’s Tropical Hexagon is not a straightforward result

of tropical Bézout’s theorem, although we can still prove it is still true. In the

tropical case it is, instead, a consequence of the tropical version of Cramer’s Rule.

Associativity of the group law on tropical elliptic curves is also not a straightforward

result of tropical Bézout’s theorem. However, Bézout’s theorem and the tropical

resultant can be used to show that the integer points on a tropical elliptic curve are

closed under addition.
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2 Tropical Mathematics

We will begin with a brief overview of tropical mathematics. Tropical algebraic

geometry is a fairly recent field of study which can be thought of in several different

ways. In this section we will build up one of those ways of looking at tropical

algebraic geometry by starting with what is called a tropical semi-ring. In this

chapter we will explore certain properties of the tropical semi-ring that will help

us better understand tropical linear algebra and tropical plane curves in the later

chapters.

2.1 Tropical Semi-Rings

Definition 1. 1. A semi-ring R is a set, together with two binary operations ⊕

and � satisfying the following axioms:

(a) ⊕ is associative, and commutative,

(b) � is associative,

(c) there exists an element e⊕ in R such that e⊕ ⊕ a = a⊕ e⊕ = a for every

a in R,

(d) the distributive laws hold: (a⊕ b)� c = (a� c)⊕ (b� c) and c� (a⊕ b) =

(c� a)⊕ (c� b)

2. The semi-ring R is commutative if � is commutative.

3. The semi-ring R is said to have an identity (or contains e� ) if there is an

element e� in R such that e� � a = a� e� = a for every a in R

We note that in a semi-ring the addition is not necessarily invertible, meaning
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that unlike a ring, where the set R needs to be a group under the operation ⊕, for

a semi-ring, R simply needs to be an additive monoid.

Definition 2. A semi-ring R with identity e�, where e� 6= e⊕, is called a semi-

division ring if every element a 6= e⊕ in R has a multiplicative inverse, i.e. there

exists b ∈ R such that a � b = b � a = e�. A commutative semi-division ring is

called a semi-field. In the semi-field R we will use c� a to denote division, that is

c� a = c� b where b is the multiplicative inverse of a.

Although there are many examples of semi-rings, we will be interested only

in a special set of semi-rings, called the tropical semi-rings. The tropical semi-

rings we will consider are those semi-rings which are subsemi-rings of (R,⊕�)

and polynomial and matrix semi-rings defined over the subsemi-rings of (R,⊕,�),

whereR = R ∪ {∞}, a ⊕ b = min{a, b}, with ∞ = e⊕ so a ⊕∞ = a for all a, and

a � b = a + b, with a �∞ = ∞. It is possible to define a tropical semi-ring that

does not have e⊕ = ∞, as shown in Section 2.2.

We note here that we will often suppress the multiplication sign � for simplicity.

But, since we will still on occasion need to use the classical multiplication as well,

we will always use a dot · to represent classical multiplication. So, if we have ab,

then we will assume this to mean a � b, and if we want the classical product, we

will write a · b.

We give now a few examples of tropical semi-rings.

Example 1. Consider (N ,⊕,�), where N = N∪ {0} ∪ {∞} and for any a, b ∈ N ,

a⊕ b = min{a, b} and a� b = a+ b, and a�∞ = ∞. We will show that (N ,⊕,�)

is a semi-ring.

To show that N is a semi-ring, we need to show that it satisfies Definition 1.

5



1. (a) ⊕ is associative, and commutative:

Let a, b, c ∈ N . Then

(a⊕ b)⊕ c = min {min{a, b}, c}

= min{a, b, c}

= min {a,min{b, c}}

= a⊕ (b⊕ c)

and a⊕ b = min{a, b} = min{b, a} = b⊕ a.

(b) � is associative:

Let a, b, c ∈ N . Then (a� b)� c = (a+ b)+ c = a+(b+ c) = a� (b� c).

(c) There exists an element e⊕ in R such that e⊕⊕ a = a⊕ e⊕ = a for every

a in R:

Let a ∈ N . Then a⊕∞ = a and ∞⊕ a = a, so ∞ = e⊕ in N .

(d) The distributive laws hold: (a⊕b)�c = (a�c)⊕(b�c) and c�(a⊕b) =

(c� a)⊕ (c� b):

Let a, b, c ∈ N . Then

(a⊕ b)� c = (min{a, b}) + c

= min{a+ c, b+ c}

= (a� c)⊕ (b� c)

and

c� (a⊕ b) = c+ min{a, b}

= min{c+ a, c+ b}

= (c� a)⊕ (c� b).
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2. We note that N is in fact a commutative semi-ring, since

a� b = a+ b

= b+ a

= b� a.

3. The multiplicative identity in N is 0 since a� 0 = a+ 0 = a for every a ∈ N .

4. Although not part of the definition, we prove now as well the the additive

identity and the multiplicative identity are unique in any tropical semi-ring.

Suppose the T has two elements e⊕ and e′⊕ which are both additive identities.

Then e⊕ = e⊕⊕e′⊕ = e′⊕, so these two elements are the same, and the additive

identity is unique.

Now suppose that there are two elements in T e� and e′� which are both

multiplicative identities. Then e� = e�e
′
� = e′�, so these two elements are the

same, and the multiplicative identity, if it exists, is unique.

N is in fact a semi-ring, and not a semi-field since N does not contain any of

the classical additive inverses, therefore N does not have tropical multiplicative

inverses. In Section 2.2 we will discuss in more detail the tropical arithmetic of this

semi-ring, as it is the tropical semi-ring which is analogous to the ring of integers

Z.

Example 2. The sets of positive integers, positive rationals, or positive reals to-

gether with ∞ with the given operations are tropical semi-rings. Similarly, the neg-

ative integers, negative rationals, and negative reals together with ∞ are tropical
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semi-rings. These tropical semi-rings do not have multiplicative identities. How-

ever, the sets of non-positive or non-negative integers, rationals or reals together

with ∞ can be made into tropical semi-rings with multiplicative identities.

Consider the set T = {x ∈ Z|x ≥ a, for some number a ∈ Z}. If a = 0, then

T ∪ {∞} is the tropical semi-ring defined on the set of non-negative integers. If

a = 1 then T ∪{∞} the tropical semi-ring defined on the positive integers. If a > 1,

then T ∪ {∞} a tropical semi-ring defined on those integers which are greater than

or equal to a, because this set is closed under minimum and under addition. But,

if a < 0, then we do not have a semi-ring. Take, for example, a = −1. Then a� a

must be present to have a semi-ring. But −1�−1 = −1+−1 = −2, but −2 6∈ {x ∈

Z|x ≥ −1}. Thus, for a < 0, T ∪{∞} is not a tropical semi-ring. For the case of the

integers (the rationals, the reals) T+ = {x ∈ Z (Q,R)|x ≥ a, for some number a ∈

Z (Q,R)} ∪ {∞} with the given operations is a tropical semi-ring for any a ≥ 0.

Similarly, the set T− = {x ∈ Z (Q,R)|x ≤ a, for some number a ∈ Z (Q,R)}∪{∞}

with the given operations is a tropical semi-ring for any a ≤ 0.

Example 3. (Z,⊕,�), (Q,⊕,�), and (R,⊕,�) are all tropical semi-fields where

Z = Z∪{∞},Q = Q∪{∞}, and R = R∪{∞}. These are semi-fields and not just

semi-rings because they all contain the classical additive inverses, so they contain

the tropical multiplicative inverses.

In all of the above cases, the arguments used in Example 1 verify that we have

a semi-ring.

Definition 3. Let R be a semi-ring.

1. An element a 6= e⊕ of R is called a zero divisor if there is an element b 6= e⊕

in R such that either a� b = e⊕ or b� a = e⊕.

8



2. Assume R has an identity e� 6= e⊕. An element u of R is called a unit in R

if there is some v in R such that u� v = v� u = e�. The set of units in R is

denoted R×.

Definition 4. A commutative semi-ring with identity e� 6= e⊕ is called a semi-

integral domain if it has no zero divisors.

In the tropical semi-rings which have∞ as their additive identity, there are never

any tropical zero divisors, since the only way to have a � b = ∞ is to have either

a or b equal to infinity. Thus all of those tropical semi-rings are in fact tropical

semi-integral domains.

Proposition 1. Assume a, b and c are elements of a tropical semi-ring with a not

a zero divisor. If a� b = a� c then either a = e⊕ or b = c. In particular, if a, b, c

are any elements in a tropical semi-integral domain and a � b = a � c then either

a = e⊕ or b = c.

Proof. In a tropical semi-ring, if a � b = a � c then a + b = a + c. If a 6= ∞, then

since we have the condition in terms of classical addition, we can subtract a from

both sides, so we get b = c.

Definition 5. A subsemi-ring of the semi-ring R is a submonoid of R that is closed

under multiplication.

Just as in the case of rings, a subsemi-ring S of R is a subset of R which has

the structure of a semi-ring when the operations of R are restricted to S.

Example 4. Let R be the real tropical semi-ring. Then Q, the rational tropical

semi-ring, is a subsemi-ring or R, and Z, the integer tropical semi-ring is a subsemi-

ring of Q and R.
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Example 5. Let a ∈ R. The set Ta = {a ·n|n ∈ Z} can be used to make a tropical

semi-ring a · Z = Ta ∪ {∞}. Let us take for an example a = 3. Then we have

for our set T all classical integer multiples of 3. The tropical addition is closed,

since the minimum of two classical multiples of three is a classical multiple of three.

Also, the tropical multiplication is closed, since the classical sum of two classical

multiples of 3 is a classical multiple of three. And all of the other properties needed

for a semi-ring hold by the same arguments as given in Example 1. But a does

not need to be an integer. We could have a =
1

2
. Then we would have all rational

numbers which can be written as
b

2
for b ∈ Z. Again, for the same reasons, this is

a semi-ring. Or we could have a = π, and then we would have all integer multiples

of π in our set T . If we have a = 0, then we have the semi-field with only 0 and ∞.

And we note that if a ∈ Z, then Ta is a subsemi-ring of Z, and by extension of Q

and R, if a ∈ Q, then Ta is a subsemi-ring of Q and R, and if a ∈ R, then Ta is a

subsemi-ring of R.

Example 6. We may also make tropical polynomial rings in one or more variables,

by taking a tropical semi-ring or tropical semi-field and adjoining indeterminates

and proceeding in the normal way, only using the tropical operations for everything,

where when we have xn we mean repeated multiplication, so xn = x�x�· · ·�x =

n · x. Tropical polynomial semi-rings will be discussed in detail in Section 2.4

Example 7. Just as in the classical setting, we can create tropical matrix semi-

rings. Fix an arbitrary tropical semi-ring T with or tropical polynomial semi-ring

and let n be any positive integer. Let Mn(T ) be the set of all n× n matrices with

entries from T . As usual, we will denote a matrix in Mn(T ) by (aij) where the

entry in row i and column j is aij. We define the addition and multiplication just
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as they are classically, only using the tropical operations in place of the classical

operations. More specifically, the addition is componentwise, so the i, j entry of

(aij)⊕ (bij) is aij ⊕ bij, and the multiplication is given by the i, j entry of (aij) (bij)

is
n⊕
k1

aikbkj. Using these two operations, it is straightforward to show that Mn(T )

is a tropical semi-ring, however, just as in the classical setting, it is not commutative.

The additive identity in Mn(T ) is the matrix all of whose entries are the additive

identity of T , and the multiplicative identity is the matrix with diagonal entries e�

and all off diagonal entries e⊕. We note that Mn(T ) will only have a multiplicative

identity if T has one.

Not only can we have tropical matrix semi-rings, but we can also start with a

tropical semi-field, and build a tropical vector space. This allows us to do a lot of

tropical linear algebra, which will be discussed in more detail in Chapter 4

2.2 Tropical Arithmetic in N

We give some properties of the tropical natural numbers. Recall that we define

(N ,⊕,�) to be the tropical semi-ring whereN = N∪{0}∪{∞}. This tropical semi-

ring is the natural analogue to Z, since it is in fact a semi-ring, instead of a semi-

field. We will provide some basic definitions and properties which are analogous to

some for the classical integers, along with some more specific results for the tropical

setting.

1. Since the tropical natural numbers are a subset of the integers, the Well

Ordering property of Z applies to them. Classically, this property says that

any nonempty subset of Z+ has a minimal element. Tropically this property

says that for any nonempty subset A of N , there is some element m ∈ A such
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that m ≤ a for every a ∈ A. In the tropical setting, this means that for that

m, m⊕ a = m for every a ∈ A.

2. If a, b ∈ N , we say a divides b if there is an element c ∈ N such that b = a�c.

We will write a | b if a divides b, and a - b otherwise.

Lemma 2. Let a, b ∈ N . Then a | b if and only if a⊕ b = a.

Proof. Suppose a | b. Then there is some c ∈ N such that b = a � c, but

a�c = a+c, and c ≥ 0, so a+c ≥ a, so a = min{a, a+c} = min{a, b} = a⊕b.

Suppose a⊕ b = a. Then b ≥ a, so c = b− a ≥ 0, so c ∈ N , and b = a� c, so

by definition a | b.

3. For a, b ∈ N there is a unique tropical natural number d, called the greatest

common divisor of a and b (or g.c.d. of a and b, denoted (a, b)T) that satisfies:

(a) d | a and d | b, and

(b) if e | a and e | b, then e | d.

Lemma 3. Let a, b ∈ N . Then (a, b)T = a⊕ b.

Proof. Clearly, if a | b, then (a, b)T = a = a⊕ b, because a is a divisor of both

a and b, but nothing larger than a divides a, as we see from Lemma 2. Now

suppose that a - b. Then by Lemma 2, we see that a ⊕ b = b and b | a, so

(a, b)T = b = a⊕ b.

If (a, b)T = 0 we say a and b are tropically relatively prime. We note that if

(a, b)T = 0 then a = 0 or b = 0, so no two numbers a 6= 0, b 6= 0 are tropically

relatively prime.
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4. For a, b ∈ N there is a unique tropical natural number l, called the least

common multiple of a and b (or l.c.m. of a and b), that satisfies:

(a) a | l and b | l, and

(b) if a | m and b | m, then l | m.

Lemma 4. Let a, b ∈ N . If a⊕ b = a, then the l.c.m. of a and b is equal to

b.

Proof. If a⊕ b = a, then by Lemma 2 a | b, and we know that b | b. Suppose

there is some other number m such that a | m and b | m. Then m ≥ b by

Lemma 2. Thus b must be the l.c.m. of a and b.

In the classical setting the connection between d, the g.c.d. of a and b, and l,

the l.c.m. of a and b, is given by dl = ab. This also holds tropically, but much

more trivially, since a = d and b = l (if a⊕ b = a).

5. The Division Algorithm and the Euclidean Algorithm are not nearly as inter-

esting in the tropical setting as they are in the classical setting, but they do

exist. For a, b ∈ N , then there exist q, r ∈ N such that

a = q � b⊕ r.

The difference is that there is no uniqueness, and there is no bound on what

values r can take on.

Let’s look at an example of this. Consider the numbers a = 7 and b = 3.

Then, it is clear that 7 = 4 � 3 ⊕∞. But it is also true that 7 = 4 � 3 ⊕ 8,

and that 7 = 5� 3⊕ 7. Now, of course, the best solution would probably be
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considered 7 = 4� 3⊕∞, as it mirrors that classical version slightly better,

since 7 is in fact a multiple of 3. Now set a = 3 and b = 7. We note that 3 is

not a multiple of 7, so we should have some finite remainder in this case. For

example, 3 = ∞� 7 ⊕ 3, but we also have 3 = 0 � 7 ⊕ 3. Again, we might

pick 3 = ∞�7⊕3 as the best possible answer, as it mirrors the classical case,

but that is not forced upon us. As for the Euclidean Algorithm, if you use

the best possible version of the division algorithm, and you make sure to start

with a ≥ b, then one step produces the g.c.d. However, there is no real point

to the algorithm, since the g.c.d. is just the tropical sum of the two numbers.

6. An element p ∈ N is said to be tropically prime if p > 0, p 6= ∞ and the only

divisors of p are 0 and p itself. All other numbers greater then 0 that are not

prime are called tropically composite.

Lemma 5. The only tropical prime number is 1.

Proof. For any a > 0, a⊕ 1 = 1, so 1 | a. Thus, the only number greater than

zero that has only 0 and itself for divisors is 1.

Because of this, it is easy to show that the Fundamental Theorem of Tropical

Arithmetic is true. Since any number n ∈ N , n > 0, n 6= ∞ can be written as

the classical sum of n 1’s, it has a unique prime factorization, even if it is not

a very interesting factorization.

Example 8. Let us consider, instead of the tropical semi-ring N , the tropical

semi-ring T we get from the set T = {n ∈ N|n = 0 or n ≥ a for some a ∈

N , a > 0}. If a = 1, then we just have N again, but if, for example, a = 5,

then we have a different tropical semi-ring. In this semi-ring, the numbers
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that have for divisors only 0 and themselves are 5,6,7,8, and 9. Even though

5 | 6 in N , 5 - 6 in T . From this we see that although 1 is the only tropical

prime, we do have the notion of irreducibility in other tropical semi-rings.

The Tropical Euler ϕT-function is also not nearly as interesting, because for

any n ∈ N the only number a ≤ n for which (n, a)T = 0 is in fact 0. So, for

any n ∈ N , ϕT(n) = 1.

With these properties in place, we would now like to discuss the tropical analogue

of Z/nZ.

Let n be a fixed element of N . Define a relation on N by

a ∼ b if and only if a⊕ n = b⊕ n.

Clearly a ∼ a, and a ∼ b implies b ∼ a for any tropical natural numbers a and b,

so the relation is reflexive and symmetric. If a ∼ b and b ∼ c, then a ⊕ n = b ⊕ n

and b⊕ n = c⊕ n, so a⊕ n = c⊕ n, and a ∼ c, so the relation is transitive. Thus

we have an equivalence relation. This relation is the tropical version of the classical

relation of congruence modulo n, and so we will refer to it as tropical congruence

modulo n and will write a ≡ b (tmod n) if a ∼ b.

Interestingly enough, instead of there being n equivalence classes as there are

classically, there are n+ 1 equivalence classes tmod n, namely the classes

0̄, 1̄, 2̄, . . . , n− 1, n̄.

We note that if we use the best choice of q and r for the division algorithm, then

these classes correspond with the possible remainders of dividing a number by n,

with the exception of n̄. But the equivalence class of n̄ would be the same as that
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of ∞, and so we do have the correspondence. We will denote the set of equivalence

classes under this relation by N/nN .

For the elements of N/nN , we will define tropical modular arithmetic as follows:

for ā, b̄ ∈ N /nN , define the tropical sum and tropical product by

ā⊕ b̄ = a⊕ b and ā� b̄ = a� b.

Theorem 6. The operations defined above on N/nN are well defined.

Proof. Suppose that a1 ≡ b1 (tmod n) and that a2 ≡ b2 (tmod n). We need to show

that a1⊕ a2 ≡ b1⊕ b2 (tmod n) and that a1� a2 ≡ b1� b2 (tmod n). To show that

a1⊕a2 ≡ b1⊕ b2 (tmod n), we need to show that (a1⊕a2)⊕n = (b1⊕ b2)⊕n. Well,

(a1 ⊕ a2)⊕ n = a1 ⊕ n⊕ a2 ⊕ n

= b1 ⊕ n⊕ b2 ⊕ n

= (b1 ⊕ bn)⊕ n,

so a1 ⊕ a2 ≡ b1 ⊕ b2 (tmod n).

Now, to show that a1�a2 ≡ b1�b2 (tmod n), we need to show that (a1�a2)⊕n =

(b1 � b2)⊕ n. We will consider three cases to show this.

Case 1: Assume that a1 ⊕ n = a1 6= n and a2 ⊕ n = a2 6= n. This means that a1 < n

and a2 < n. Since ai ≡ bi (tmod n), ai = ai ⊕ n = bi ⊕ n, which means that

bi = ai. Thus, a1�a2 = b1�b2 and it is clear that (a1�a2)⊕n = (b1�b2)⊕n.

Case 2: Assume that a1⊕n = n and a2⊕n = n. This means that a1 ≥ n and a2 ≥ n.

Since ai ≡ bi (tmod n), n = ai⊕n = bi⊕n, which means that bi ≥ n. as well.

Now, since ai, bi ≥ n, then a1 � a2 = a1 + a2 > n and b1 � b2 = b1 + b2 > n.

Thus (a1 � a2)⊕ n = (b1 � b2)⊕ n.
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Case 3: Without loss of generality, assume that a1 ⊕ n = a1 6= n and a2 ⊕ n = n.

Then, from the arguments given above, a1 = b1, a2 ≥ n, and b2 ≥ n. Since

a1, b1 ∈ N , then a1, b1 ≥ 0. Now, since a2 ≥ n and a1 ≥ 0, a1 + a2 ≥ n.

Similarly, b1 + b2 ≥ n. Thus, (a1 � a2)⊕ n = n = (b1 � b2)⊕ n.

Thus, in every possible case (a1�a2)⊕n = (b1�b2)⊕n, so a1�a2 ≡ b1�b2 (tmod n).

Thus the operations are well defined, and we do in fact have a tropical semi-ring

N/nN .

We do note that in the tropical semi-ring N/nN , we do not have the element

∞. But n̄ is the additive identity, and ā� n̄ = ¯a� n = ¯a+ n = n̄, so n̄ does satisfy

the required properties and we do have a tropical semi-ring.

2.3 Tropical Exponents

Due to the difference in the operations, we do need to discuss the properties of

tropical exponents. We will use the classical properties of exponents as a guide to

find tropical exponential properties.

Let’s look at an where n ∈ Z+. As in the classical case, we think of an, where

n is a positive integer, as repeated multiplication, so an = a � a � · · · � a, where

there are n copies of a that are being multiplied. So,

an = a� a� · · · � a

= a+ a+ · · ·+ a

= n · a.

Now let’s look at a1/n, where n ∈ Z+. Just as in the classical setting, we want

this to represent the nth root of a, which to say, we want a1/n = b where bn = a.
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Well, bn = n ·b, so if bn = a, then we have n ·b = a, but this is a real equation, which

means we can solve for b, and we get b =
1

n
· a, and so we see that a1/n =

1

n
· a.

Using the two properties above, we see that ap/q =
p

q
·a for any positive rational

p

q
. Now we can use sequences of rational numbers that converge to any irrational

numbers, as in the classical setting, to see that for any positive real number ar = r·a.

Using this information, we prove some properties of exponents, assuming the

exponents are positive real numbers. These properties will then help us extend to

non-positive real exponents.

Proposition 7. If a, b ∈ Q and let s, t ∈ R+, then

1. asat = as+t.

2. (as)t = as·t.

3. (ab)s = asbs.

4. 0s = 0.

5. as � at = as−t, for a 6= ∞.

Proof. 1. asat = (s · a) + (t · a) = (s+ t) · a = as+t.

2. (as)t = (s · a)t = t · (s · a) = (t · s) · a = at·s = as·t.

3. (ab)s = s · (a+ b) = s · a+ s · b = as ⊕ bs.

4. 0s = s · 0 = 0.

5. as � at = s · a− t · a = (s− t) · a = as−t.

18



We use property 5 to extend to the non-positive real exponents, giving us the

following properties.

Proposition 8. 6. a0 = 0 for a 6= ∞.

7. a−s = 0/as for a 6= ∞.

Proof. 6. a0 = as−s = as � as = s · a− s · a = 0.

7. Let u, v ∈ R+ such that u − v = −s (for example, u = 1, v = 1 + s). Then

a−s = au−v = au � av = u · a− v · a = (u− v) · a = −s · a = 0− s · a = 0/as.

Thus we note that for any real number r and any tropical number a, ar = r · a.

Now let’s consider the expansion of a binomial (a ⊕ b)n. We can look at this

expansion in two different ways. First, we can think of (a⊕b) itself as a number, and

then raise it to a power, or we can think of it as a binomial and use the distributive

law and properties of exponents to expand the expression. Let us look at both

versions for different powers of n.

For n = 1, we have (a⊕ b)1 = 1 ·min{a, b} = min{a, b} = a⊕ b, as desired both

expressions are the same.

For n = 2, if we think of (a⊕b) as one number and use our property of exponents

on it we get (a ⊕ b)2 = 2 · min{a, b} = min{2 · a, 2 · b} = a2 ⊕ b2. But now if

we expand (a ⊕ b)2 as (a ⊕ b)(a ⊕ b) then we get (a ⊕ b)2 = (a ⊕ b)(a ⊕ b) =

a2 ⊕ ab ⊕ ba ⊕ b2 = a2 ⊕ ab ⊕ b2. This, however, does not seem to be the same as

the answer we got using the other property. It is in fact equal, so let us consider

why. If a2 ⊕ ab ⊕ b2 = a2, then a2 ≤ b2, so a2 ⊕ b2 = a2, so they are equal when

a2⊕ab⊕ b2 = a2. Similarly, if a2⊕ab⊕ b2 = b2, the two expressions are again equal.
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Now suppose that a2 ⊕ ab⊕ b2 = ab, where ab 6= a2 and ab 6= b2. Thus, a+ b < 2a,

which means that b < a. But this implies that 2b < a+b, which means ab⊕b2 = b2,

but this is a contradiction, as a2 ⊕ ab ⊕ b2 = ab 6= b2. Thus, a2 ⊕ ab ⊕ b2 can only

equal ab if a2 = ab = b2. And so we see that the values a2 ⊕ b2 and a2 ⊕ ab⊕ b2 are

in fact equal.

For n = n, a similar argument shows that

an ⊕ bn = (a⊕ b)n = an ⊕ an−1b⊕ · · · ⊕ abn−1 ⊕ bn.

We will see in Section 2.4 that the full expansion gives what we call the least

coefficient form, so there will be times when we will want that expansion. Of course,

it is easier to evaluate the form an ⊕ bn, so there will also be times when we prefer

that representation.

2.4 Tropical Polynomial Semi-Rings

Fix a commutative tropical semi-ring T with identity. Let x be an indeterminate.

The formal sum

an � xn ⊕ an−1 � xn−1 ⊕ . . .⊕ a1 � x⊕ a0

with n ∈ Z, n ≥ 0 and each ai ∈ T is called a tropical polynomial in x with

coefficients ai in T . If an 6= ∞, then the polynomial is said to be of degree n and

an � xn is called the leading term. The polynomial is monic if an = 0. The set of

all such polynomials is called the semi-ring of tropical polynomials in the variable x

with coefficients in T and will be denoted T [x].

The operations of addition and multiplication which make T [x] into a tropical

semi-ring are the same operations as those of any tropical semi-ring, where the
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addition is componentwise, as shown:

(an�xn⊕an−1�xn−1⊕ ...⊕a1�x⊕a0)⊕ (bn�xn⊕ bn−1�xn−1⊕ . . .⊕ b1�x⊕ b0)

= (an ⊕ bn)� xn ⊕ (an−1 ⊕ bn−1)� xn−1 ⊕ . . .⊕ (a1 ⊕ b1)� x⊕ (a0 ⊕ b0)

(here an or bn may be ∞ in order for addition of polynomials of different degrees

to be defined). Multiplication is performed by first defining (a � xi) � (b � xj) =

a � b � xi+j for monomials (polynomials with only one non-infinite term), where

i + j is the addition from the ring Z, and then extending to all polynomials by

distributive laws (usually referred to as “expanding out and collecting like terms”):

(a0 ⊕ a1 � x⊕ a2 � x2 ⊕ ...)� (b0 ⊕ b1 � x⊕ b2 � x2 ⊕ ...)

= (a0 � b0)⊕ (a0 � b1 ⊕ a1 � b0)� x⊕ (a0 � b2 ⊕ a1 � b1 ⊕ a2 � b0)� x2 ⊕ ...

(in general, the coefficients of xk in the product will be
k⊕

i=0

ai � bk−i where
k⊕

i=0

is

tropical summation notation). These operations make sense since T is a tropical

semi-ring, so sums and products of the coefficients are defined. A straightforward

argument shows that with these definitions of addition and multiplication, T [x] is

a tropical semi-ring.

The semi-ring T is a subsemi-ring of T [x], and appears as the constant polyno-

mials. Note that by definition of multiplication, T [x] is a commutative semi-ring

with identity (the identity from T ).

Proposition 9. Let T be a tropical semi-integral domain and let p(x), q(x) ∈ T [x].

Then

1. deg(p(x)� q(x)) = deg p(x) + deg q(x), where this addition is that in Z,

2. the units of T [x] are just the units of T ,
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3. T [x] is a semi-integral domain.

Proof. 1. If p(x) and q(x) are polynomials with leading terms an�xn and bm�xm,

respectively, then the leading term of p(x) � q(x) is an � bm � xn+m. But,

since an 6= ∞ and bm 6= ∞, and T is a semi-integral domain, an � bm 6= ∞,

so deg(p(x)� q(x)) = n+m = deg p(x) + deg q(x).

2. Since T ⊂ T [x], it is clear that T × ⊂ T [x]×. Suppose u(x) is a unit in T [x].

Then there is a v(x) ∈ T [x] such that u(x) � v(x) = 0, the multiplicative

identity in a tropical semi-ring. But from part (1) we see that deg(u(x) �

v(x)) = deg u(x) + deg v(x), so 0 = deg 0 = deg u(x) + deg v(x). But since

deg u(x) ≥ 0 for all u(x) ∈ T [x], it follows that deg u(x) = deg v(x) = 0, so

u(x), v(x) ∈ T and thus in T ×, so T × = T [x]×.

3. Suppose T [x] is not a semi-integral domain. Then there are p(x), q(x) ∈ T [x]

with p(x) 6= ∞ and q(x) 6= ∞, such that p(x) � q(x) = ∞. Let p(x) =

an � xn ⊕ ...⊕ a0 and q(x) = bm � xm ⊕ ...⊕ b0, where an 6= ∞ and bm 6= ∞.

Then ∞ = p(x) � q(x) = an � bm � xn+m ⊕ ... ⊕ a0 � b0. But in order for

this to be true, each ai � bj = ∞. But this is a contradiction since T is a

semi-integral domain. Thus there are no such p(x) and q(x), so T [x] is also a

semi-integral domain.

We can also define tropical polynomial semi-rings in more than one variable.

Definition 6. The tropical polynomial semi-ring in the variables x1, ..., xn with

coefficients in T , denoted T [x1, ..., xn] is defined inductively by T [x1, ..., xn] =

T [x1, ..., xn−1][xn].
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Explicitly, a polynomial in x1, ..., xn with coefficients in T is a finite sum of

monomial terms for the form axd1
1 x

d2
2 · · ·xdn

n where a ∈ T and the di are non-

negative integers. The exponent di is called the degree in xi of the monomial and

the sum d = d1 + · · ·+dn is called the degree of the monomial. The ordered n-tuple

(d1, d2, ..., dn) is the multi-degree of the monomial. The degree of a polynomial is the

largest degree of any of its monomial terms. A polynomial is called homogeneous

or a form if all its monomials have the same degree. If f is a polynomial in n

variables, the sum of all the monomials of f of degree k is called the homogeneous

component of f of degree k. If f has degree d then f maybe written uniquely as

the sum f0 ⊕ f1 ⊕ · · · ⊕ fd where fk is the homogeneous component of f of degree

k, for 0 ≤ k ≤ d (where some fk may be infinite).

We will use Q most often for our base semi-field, so the remainder of our discus-

sions about tropical polynomials and concepts related to tropical polynomials will

be about the tropical polynomial semi-rings Q[x1, . . . , xn].

2.5 Formal Polynomials and Functionally Equivalent Poly-

nomials

We can think of tropical polynomials in two different ways, just as we do classically;

the formal sums, and the associated functions. Classically there is a one-to-one

correspondence between the formal sums and the functions, but this is not the case

tropically. As a formal sum, for f(x1, ..., xn) ∈ Q[x1, ..., xn] we have

f(x1, ..., xn) =
⊕

i

aix
i1
1 · · ·xin

n .
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x f(x) g(x)

x < 1 min{2 · x, 1 + x, 2} = 2 · x min{2 · x, 2 + x, 2} = 2 · x

x = 1 min{2 · 1, 1 + 1, 2} = 2 min{2 · 1, 2 + 1, 2} = 2

x > 1 min{2 · x, 1 + x, 2} = 2 min{2 · x, 2 + x, 2} = 2

Table 1: Functional Values for f(x) = x2 + 1x+ 2 and g(x) = x2 + 2x+ 2

But if we think of f(x1, ..., xn) as a function we have

f(x1, ..., xn) =
⊕

i

aix
i1
1 · · ·xin

n

= min
i
{ai + i1x1 + · · · inxn}.

It is possible for two different formal sums to give the same function. For example,

let f(x), g(x) ∈ Q[x] be given by f(x) = x2 +1x+2 and g(x) = x2 +2x+2. Table 1

shows the functional values of the two function for all possible x values. From this

we see that although the two formal polynomials are different, the two functions

are the same. We use this to define an equivalence, which is easy to show is an

equivalence relation.

Definition 7. Let f(x1, ...xn), g(x1, ..., xn) ∈ Q[x1, ..., xn] be tropical polynomials

in n variables. We say that f is functionally equivalent to g, denoted f ∼ g, if

f(P ) = g(P ) for every P ∈ Qn.

Theorem 10. Functional equivalence ∼, as defined in Definition 7, is an equiva-

lence relation.

Proof. To show that ∼ is an equivalence relation we must show that ∼ is reflexive,

symmetric and transitive. Let f(x1, ..., xn), g(x1, ..., xn) and h(x1, ..., xn) be poly-

nomials in Q[x1, ..., xn]. Since f(P ) = f(P ) for every P ∈ Qn, f ∼ f and ∼ is
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reflexive. If f ∼ g then by definition, f(P ) = g(P ) for every P ∈ Qn. But, then

g(P ) = f(P ) for every P ∈ Qn, so g ∼ f , and ∼ is symmetric. Now suppose that

f ∼ g and g ∼ h. We want to show that f ∼ h. Well, we know that f(P ) = g(P ) for

every P ∈ Qn, and that g(P ) = h(P ) for every P ∈ Qn. Thus f(P ) = g(P ) = h(P )

for every P ∈ Qn, which means f ∼ h, and ∼ is transitive. Thus ∼ is an equivalence

relation.

Theorem 11. Let f, g, a ∈ Q[x1, ..., xn]. If f ∼ g then f ⊕ a ∼ g⊕ a and fa ∼ ga.

Proof. If f ∼ g, then f(P ) = g(P ) for every P ∈ Qn. Consider f ⊕ a and g ⊕ a.

Now, (f ⊕ a)(P ) = f(P ) ⊕ a(P ) = min{f(P ), a(P )}. Similarly, (g ⊕ a)(P ) =

min{g(P ), a(P )}. If for a given P (f ⊕ a)(P ) = a(P ), then (g ⊕ a)(P ) must also

equal a(P ), since g(P ) = f(P ). If (f ⊕ a)(P ) = f(P ), then again (g ⊕ a)(P ) =

g(P ) = f(P ). So, in both cases (f ⊕ a)(P ) = (g ⊕ a)(P ), which are the only two

possible cases, so it is true for every P ∈ Qn Thus, f ⊕ a ∼ g ⊕ a.

Now consider fa and ga. (fa)(P ) = f(P ) + a(P ) and (ga)(P ) = g(P ) + a(P ).

But f(P ) = g(P ) for every P ∈ Qn, so f(P ) + a(P ) = g(P ) + a(P ) for every

P ∈ Qn, and fa ∼ ga.

Definition 8. Let P(Q[x1, ..., xn]) be the power set of Q[x1, ..., xn] where we con-

sider Q[x1, ..., xn] as a set, and ψ : Q[x1, ..., xn] → P(Q[x1, ..., xn]) be defined by

f 7→ {f ′ ∈ Q[x1, ..., xn]|f ′ ∼ f} = [f ]. We define Q〈x1, ..., xn〉 to be the image of ψ,

that is Q〈x1, ..., xn〉 = im(ψ). We note that ψ(f) = ψ(g) if and only if f ∼ g.

Theorem 12. (Q〈x1, ..., xn〉,⊕,�) with operations ⊕ and � defined as [f ]⊕ [g] =

[f ⊕ g] and [f ]� [g] = [f � g] is a tropical semi-ring.
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Proof. To show that Q〈x1, ..., xn〉 is in fact a tropical semi-ring, we simply need to

show that the addition and multiplication are well defined, the rest follows directly

from the fact that Q[x1, ..., xn] is a tropical semi-ring.

Let f, f ′, g, g′ ∈ Q[x1, ..., xn] such that f ∼ f ′ and g ∼ g′. We need to show that

f ⊕ g ∼ f ′ ⊕ g′ in order to show that the addition is well defined. From Theorem

11 we know that since f ∼ f ′, f ⊕ g ∼ f ′⊕ g, and since g ∼ g′, f ′⊕ g ∼ f ′⊕ g′. By

transitivity of the equivalence relation we have f ⊕ g ∼ f ′ ⊕ g′. So the addition is

well defined.

Now consider fg and f ′g′. Again by Theorem 11 we have that since f ∼ f ′,

fg ∼ f ′g, and since g ∼ g′, f ′g ∼ f ′g′. Again by transitivity we have fg ∼ f ′g′, so

the multiplication is well defined.

Since we are interested mostly in the functional behavior of the polynomials, we

will deal with the polynomial semi-ringQ〈x1, x2, . . . , xn〉 instead ofQ[x1, x2, . . . , xn].

It is convenient to have an individual element of each equivalence class to be the

representative. As explained in [8] one good candidate for the representative is what

is we call the least-coefficient polynomial.

Definition 9. Let f(x) = anx
n⊕an−1x

n−1⊕· · ·⊕aix
i⊕· · ·⊕a1x⊕a0. A coefficient

ai of f(x) is a least coefficient if for any b ∈ Q with b < ai, the polynomial

g(x) = anx
n⊕an−1x

n−1⊕· · ·⊕ bxi⊕· · ·⊕a1x⊕a0, formed by replacing ai with b, is

not functionally equivalent to f(x). A polynomial is a least-coefficient polynomial

if all of its coefficients are least coefficients. A term whose coefficient can not

be changed without effecting the functional value of the polynomial is called a

contributing term. A term whose coefficient can be raised without effecting the

functional value of the polynomial is called a non-contributing term.
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In [8] it is shown that there is a unique least-coefficient polynomial for each

equivalence class, as well as an algorithm for finding the least coefficient polynomial.

It is also shown that for polynomials in T [x] where T ⊆ Q, the least coefficient

polynomial is in Q〈x〉. Finally, the following theorem is proved in [8] about least-

coefficient polynomials in Q〈x〉.

Theorem 13. (The Fundamental Theorem of Tropical Algebra) Let f(x) = anx
n⊕

an−1x
n−1⊕· · ·⊕ar+1x

r+1⊕arx
r be a least-coefficients polynomial in Q[x]. Then f(x)

can be written uniquely as the product of linear factors anx
r(x⊕dn)(x⊕dn−1) · · · (x⊕

dr+1) where di = ai−1 � ai = ai−1 − ai.

We now include a lemma about the multiplicity of the factors of a polynomial

in one variable, which will be helpful to us later on.

Lemma 14. If f(x) = anx
n ⊕ an−1x

n−1 ⊕ · · · ⊕ a1x ⊕ a0 has a non-contributing

term, then f(x) has a factor of multiplicity greater than one.

Proof. First suppose that f(x) has only one non-contributing term aix
i, for some

i. Then, following the algorithm given in [8], we can rewrite f(x) in a functionally

equivalent form where we replace ai with
1

2
·(ai+1+ai−1), so f(x) ∼ anx

n⊕an−1x
n−1⊕

· · · ⊕ ai+1x
i+1 ⊕

(
1

2
· (ai+1 + ai−1)

)
xi ⊕ ai−1x

i−1 ⊕ · · · ⊕ a1x ⊕ a0. Now we have

a least coefficient representation for f(x) and by Theorem 13, we can factor f(x)

uniquely into linear factors of the form x⊕ dj, where dj = aj−1 − aj. Thus, in our

case, di+1 =
1

2
·(ai+1 +ai−1)−ai+1 =

1

2
(ai−1−ai+1) and di = ai−1−

1

2
(ai+1 +ai−1) =

1

2
(ai−1 − ai+1). Thus, di+1 = di, and we have a repeated root.

The algorithm given in [8] together with an inductive argument show that if

there are k non-contributing consecutive terms in f(x), then f(x) has a factor of

multiplicity k + 1.
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2.6 Tropical Roots and Factors

In the classical setting the factors of the polynomial are in correspondence with the

roots the polynomial. As we try to develop a similar correspondence tropically, we

notice that there need to be some modifications made.

In Theorem 13 any polynomial in Q〈x〉 can be factored uniquely into linear

factors. So now we will consider the roots of the polynomial to determine how to

create a correspondence between the factors and the roots.

Classically, the roots of a polynomial f(x) ∈ k[x] are the set of points p ∈ k

for which f(p) = 0. So, if we consider the analogous definition, we would define

the roots of a tropical polynomial f(x) ∈ Q[x] to be the set of points p ∈ Q for

which f(p) = ∞, since ∞ is our additive identity. Recall that when we think of

f(x) as a function, we have f(x) =
n⊕

i=0

aix
i = min{a0, a1 +x, a2 +2x, . . . , an +nx}.

So, to find the roots of f(x) then we would need to find the points p ∈ Q so that

min{a0, a1 + p, a2 + 2p, . . . , an + np} = ∞. First, if a0 6= ∞, then the minimum can

never be∞, so there are no p ∈ Q for which f(p) = ∞, and the set of roots is empty.

This means that for all polynomials with a finite constant, the set of roots is the

empty set. Now suppose that a0 = ∞, which is the same as saying that there is no

constant term. Now, we want to know when min{a1 +p, a2 +2p, . . . , an +np} = ∞.

If any of the ai 6= ∞, then this only happens when p = ∞. So, for all polynomials

with no finite constant, but some finite coefficients, the set of roots is just the single

point {∞}. The only remaining set of points that can be the roots in this setting is

the entire set Q, as any element of Q is a root of the ∞-polynomial (the analogous

polynomial to the zero-polynomial) which has all coefficients infinite. So we see

that the direct analogue of the roots of a polynomial are not interesting to us in the
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Figure 1: f(x) = x⊕ a

same way as they are classically.

Instead, let’s look at the roots from the direction of the factors. Classically, c

is a root of the polynomial if and only if x − c is a factor of that polynomial. It

turns out that tropically, if x ⊕ c is a factor of a polynomial, then the points c is

the analogous object to the root of the polynomial.

Let f(x) = x ⊕ a. As far as the function is concerned, when p is less than a,

then f(p) = p, when p is greater than a, then f(p) = a, and when p = a then

p = f(p) = a. So, for all p < a the minimum is attained by the monomial x, for all

p > a, the minimum is attained by the monomial a, and when p = a, the minimum

is attained by both of the monomials. We notice, when we look at the graph of this

function, that this point is also where our function is not classically locally linear,

as shown in Figure 1.

Now let’s consider what happens when we have the product of two linear bino-

mials. We will use specific examples to simplify the graphs of the functional values

29



5

5

4

4

2

2

0

3

3

1

!1

1

!2

0!1!2
x

(a) g(x) = x⊕ 1
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(c) g(x)h(x) = x2 ⊕ 1x⊕ 3

Figure 2: Graphs of g(x), h(x), and gh(x)

when we look at them, but these ideas are easily generalized.

Let g(x) = x⊕ 1 and h(x) = x⊕ 2. Then

g(x)h(x) = (x⊕ 1)(x⊕ 2)

= x2 ⊕ (1⊕ 2)x⊕ 3

= x2 ⊕ 1x⊕ 3

In Figure 2, we see the graphs of the functional values of g(x), h(x), and gh(x).

For our function g(x) = x⊕ 1, we note that the functional value is attained by

the x term for x < 1, but the 1 term for x > 1 and by both of the terms for x = 1.

Similarly with h(x) and the point 2. Now, when we consider the functional values

of g(x)h(x), we note that for x < 1 the minimum, or functional value, is attained by

the x2 term alone, for 1 < x < 2 it is attained by the 1x term alone, and for x > 2

it is attained by the constant term 3 alone. However, for x = 1 the value is attained

by both the term x2 and the term 1x, and for x = 2 the value is attained by both

the 1x term and the constant term 3. We notice that the two places where two

terms attained a minimum in our linear polynomials were preserved in the product,
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or, in other words, the corners of the product are at the same places as the corners

of our two original linear functions. Thus, if the roots of the polynomials really are

the corners, as we are tempted to believe, it did follow in this example that the

roots of the product g(x)h(x) are the roots of g(x) together with the roots of h(x).

These corner points of our graph do indeed fill the roll of the roots, as explained

by Theorem 17

Definition 10. Let T be a tropical semi-ring or a tropical polynomial semi-ring. A

tropical expression is a sum of tropical monomials a1 ⊕ a2 ⊕ · · · ⊕ an where ai ∈ T .

A tropical expression t = a1 ⊕ a2 ⊕ · · · ⊕ an is said to vanish tropically if the value

of t is attained by at least two of its monomials, which is to say there are some i, j

such that i 6= j, ai = aj and ai ≤ ak for all k, or if the value of the expression is ∞.

This idea is one of the more subtle problems with tropical mathematics. We

notice from this definition that 1 ⊕ 1 vanishes tropically, while 1 does not. But

1 ⊕ 1 = 1, so there seems to be some ambiguity. It is true that this can cause of

small amount of confusion, however it is generally clear when we want to simplify

1⊕1 = 1 so that it does not vanish tropically, and when we want to leave it expanded

so that we can see when it does. In the case of polynomials in one variable, when

we want to graph the functional values of the polynomial, then we simplify the

expression. However, if we wish to determine whether or not a point is one of the

corners, then we do not simplify the expression, but we keep all of the terms to see if

the minimum shows up twice. As we discuss more ideas we will often mention how

the question of simplifying the expression or not affects the outcome. In general, if

we are dealing simply with an expression but are not really concerned with a corner

locus or determining what points make something vanish tropically, we will simplify
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the expression so that 1⊕ 1 = 1, for example. But there will be times when we are

looking for a corner locus or similar object when we need to keep the expression

expanded. In [11], the tropically vanishing is always noted, so that 1 ⊕ 1 6= 1, but

instead, regardless of the situation, 1 ⊕ 1 vanishes tropically. As a result, in that

tropical semi-ring there is an additional copy of R for the terms a ⊕ a. In such a

tropical semi-ring, the polynomial 1x ⊕ 1x ⊕ 4 vanishes tropically at x = 3, but

also for any x ≤ 3, and so we choose not to adopt this convention. We will make

it clear though out the remainder of the text when we need to consider a⊕ a as a,

and when we need to consider a⊕ a as vanishing tropically.

We also have the following two lemmas about the behavior of the expressions

that vanish tropically.

Lemma 15. If h is a tropical expression that vanishes tropically, then the tropical

expression hg vanishes tropically for any tropical expression g.

Proof. If h = ∞, then the result follows trivially from the fact that a�∞ = ∞. If

h 6= ∞ and h =
m⊕

i=1

hi vanishes tropically, then two of its monomials are minimum

together, hk and hl. Since g =
n⊕

j=1

gj is a tropical expression it has at least one term

that attains the minimum, gp. Then in the product hg =
m⊕

i=1

n⊕
j=1

higj the terms

hkgp and hlgp are equal and minimum, so hg vanishes tropically.

Lemma 16. Let g and h be tropical expressions in a tropical semi-field. If gh

vanishes tropically, then either g vanishes tropically, or h does.

Proof. If gh = ∞, then either g = ∞ or h = ∞, since we are in a semi-field. So,

suppose that gh 6= ∞. Let g = g1⊕ g2⊕ · · · ⊕ gn and h = h1⊕ h2⊕ · · · ⊕ hm. Then
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gh =
n⊕

i=1

m⊕
j=1

gihj. We know that gh vanishes tropically, so we will consider two

cases.

First suppose that gh = gihj = gihk, which is to say the two terms that attain

the minimum together in gh are gihj and gihk. Since gihj = gihk ≤ grhs for all r, s,

we know that gihj = gihk ≤ gihs for all s, which means that hj = hk ≤ hs for all s,

since we can cancel the gi from every term. Thus, h vanishes tropically.

Now, suppose that gihj = gkhl for i 6= k and j 6= l, and suppose that neither of

g and h vanishes tropically. Then since gihj participates in attaining the minimum,

gihj ≤ gihs for every s. But, this equality must be strict since h does not vanish

tropically, so gihj < gihs for every s 6= j, which means that hj < hs for every s 6= j.

Similarly, we have gi < gr for every r 6= i. Thus gihj < gihl < gkhl, so we don’t have

equality, which is a contradiction. Thus, either h or g must vanish tropically.

We see from these lemmas that tropical vanishing has that same annihilating

property as classical zeros. We note that∞ has these two properties, but as noted is

not nearly as interesting in the polynomial setting. Thus, instead of defining a zero

locus of a polynomial, the set of all points where the polynomial attains the value

of the additive identity, we will define the corner locus of a tropical polynomial,

which is in fact the analogous object.

Finally, we prove the correspondence between the tropical vanishing of the poly-

nomial and its factors.

Theorem 17. Let f(x) = anx
n⊕ an−1x

n−1⊕ · · · ⊕ a1x⊕ a0 ∈ Q〈x〉. f(x) vanishes

tropically at p ∈ Q if and only if x⊕ p is a factor of f(x).

Proof. Suppose that x ⊕ p is a factor of f(x), so f(x) = (x ⊕ p)h(x) for some

polynomial h(x). Clearly, x⊕ p vanishes tropically for x = p, so by Lemma 15 f(x)
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also vanishes tropically at p.

Now suppose f(x) vanishes tropically at p. We know that there is a least-

coefficients polynomial in Q〈x〉 which is equivalent to f(x) and which by the Funda-

mental Theorem of Tropical Algebra, factors uniquely as an(x⊕dn)(x⊕dn−1) · · · (c⊕

d1). Since f(x) vanishes tropically at p, then an(p⊕ dn)(p⊕ dn−1) · · · (p⊕ d1) van-

ishes tropically, so by Lemma 16, one of the factors must vanish tropically as well.

Suppose that the factor that vanishes tropically is p ⊕ dj for some j. Then, since

p⊕ dj vanishes tropically, p = dj. Thus x⊕ p is a factor of f(x)

So we see that the corners are in fact the analogous object to the roots of the

polynomial in relation to the factors.

All of these observations motivate us to give the following definition.

Definition 11. Let f(x1, ..., xn) ∈ Q[x1, ..., xn] be a tropical polynomial. The

corner locus Z(f) is defined to be the set of all points p ∈ Qn for which the

expression f(p) vanishes tropically. This is

Z(f) = {p ∈ Qn|f(p) vanishes tropically},

or, in other words

Z(f) = {p ∈ Qn| two monomials of f(p) attain the minimum together}.

We will use this definition, in the case of Q[x, y], to create tropical plane curves,

which we will discuss in more detail in Chapter 3.

An equivalent definition for a tropical corner locus, or tropical variety is given

in [19], which is stated below. It is a straightforward argument, based on the fact
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that the tropical polynomials are simply minimums of linear polynomials, to show

the two definitions are equivalent. The definition is stated in [19] for polynomials

in R[x1, . . . , xn], but is clearly suitable for polynomials in Q[x1, . . . , xn].

Definition 12. Let f be a tropical polynomial in n indeterminates. The tropical

variety Z(f) defined by f is the set of points in Qn where the associated function

f : Qn → Q is not linear. If f is homogeneous, we can regard Z(f) as a tropical

projective variety in TPn−1.

Lemma 18. Let f, g ∈ Q[x1, x2, . . . , xn] such that f ∼ g. Then Z(f) = Z(g).

Proof. Suppose that Z(f) 6= Z(g). Then there is some point P ∈ Qn such that

f(P ) vanishes tropically, but g(P ) does not. By Definition 12 the graph of g is

locally linear at P , but the graph of f is not. But this is a contradiction because

f ∼ g, so they always take on the same functional values. Thus they must both be

locally linear at a point, or both not. Thus Z(f) = Z(g).

Since two curves that are functionally equivalent have the same corner locus, we

can simply consider our polynomials as being in Q〈x1, . . . , xn〉, and Definition 11

still makes sense.

35



3 Tropical Plane Curves

We begin with a few comments on tropical affine spaces and tropical projective

spaces. We will then discuss drawing the plane curves, their dual graphs, and some

of their general position properties.

3.1 Tropical Affine and Projective Spaces

We define tropical-affine n-space over Q, denoted TAn
Q or simply TAn, to be the set

of all n-tuples of elements of Q. An element P ∈ TAn will be called a point, and

if P = (a1, ..., an) with ai ∈ Q, then the ai will be called the coordinates of P . Let

A = Q〈x1, ..., xn〉 be the tropical polynomial semi-ring in n variables over Q. We

can interpret the elements of A as functions from the tropical affine n-space to Q, by

defining f(P ) = f(a1, ..., an), where f ∈ A and P ∈ Qn. We treat the polynomials

as discussed in Section 2.4, but we now also can think of them, as noted above, as

functions from TAn to Q. We will most often think of TAn simply as Qn.

We define tropical projective space over Q, denoted TPn
Q or simply TPn, to

be the set of equivalence classes of all (n + 1)-tuples of elements in Q under the

equivalence relation defined by (a0, a1, . . . , an) ∼ (b0, b1, . . . , bn) if there is some

λ ∈ Q such that λ 6= ∞ and ai = λbi for every i. If P is a point in TPn, then any

(n+1)-tuple (a0, a1, . . . , an) in the equivalence class P is called a set of homogeneous

coordinates. Borrowing the convention, one may want to denote the equivalence

class of (a0, a1, . . . , an) by (a0 : a1 : · · · : an), however we will usually use (x, y, z)

for the equivalence class in TP2. We note that the point (∞,∞, . . . ,∞) is not in

TPn, analogous to (0, 0, . . . , 0) not being in the classical projective space Pn. Let

S = Q〈xo, x1, . . . , xn〉 be a tropical polynomial semi-ring. Of course we cannot think
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of polynomials in S as functions from TPn toQ, because of the non-uniqueness of the

homogeneous coordinates. However, if we consider only homogeneous polynomials

of a given degree d, which is to say each monomial in the polynomial is of degree d,

then we have that f(λa0, λa1, . . . , λan) = λdf(a0, a1, . . . , an). By Lemma 15, we see

that if f vanishes tropically, then so does λdf . Thus we see that tropical vanishing

depends only on the equivalence class of (a0, a1, . . . , an), and we can talk about the

corner locus of a tropical polynomial.

Definition 13. Let f(x0 : x1 : · · · : xn) be a homogeneous polynomial. We define

the corner locus Z(f) by

Z(f) = {P ∈ TPn|f(P ) vanishes tropiclly}.

Depending on the situation, we will use affine coordinates or projective coor-

dinates. To go from a polynomial in Q〈x1, . . . , xn〉 to a homogeneous polynomial

in Q〈x0, x1, . . . , xn〉, we will follow the usual procedure. Since we are interested in

plane curves, we will consider the polynomial ring Q〈x, y〉 and the homogeneous

polynomial ring Q〈x, y, z〉. We will start with a polynomial f(x, y) ∈ Q〈x, y〉 where

f(x, y) =
⊕

aix
diyei of degree n, and produce the homogeneous polynomial by

simplifying zn � f
(x
z
,
y

z

)
, which will give us f̃(x, y, z) =

⊕
aix

diyeizn−di−ei , so

every term has degree n. In essence, we just multiply each term by the appropriate

power of z to make its degree n. Since we will usually need to consider our plane

curves in the tropical projective plane TP2, which we explain below, we will most

often use the homogeneous version of the polynomial. When we graph the corner

locus of a homogeneous polynomial in Q〈x, y, z〉 we will graph it with points of the

form (x, y, 0). To dehomogenize a polynomial with respect to one if its variables, we

will simply assume the corresponding coordinate is not taking on an infinite value,
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Figure 3: Triangle Model of TA2.

and therefore points can be scaled so that that coordinate is 0.

When we think about TAn, we have the plane Q2 together with the boundaries

of the form (a,∞) and (∞, b). So we can think of it as the half closed region shown

in Figure 3.

When we move into the projective plane, we think of this as adding the line at

infinity, which in our case means we add on a line where the third coordinate z is

actually equal to ∞. This adds to our model another edge and two more vertices

at infinity, as shown in Figure 4.

3.2 Tropical Plane Curves and Dual Graphs

In this section we will discuss how to determine a plane curve and its dual graph. We

will do this in the affine case, and then later switch to the more general projective

case. We will then discuss the behavior of the plane curves relative to the tropical

projective model.

We recall from Section 2.4 that the corner locus of a tropical polynomial is the
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Figure 4: Triangle Model of TP2.

object which is analogous to the zero locus of a polynomial. The zero locus of

a polynomial in two variables (or three homogeneous variables) gives us a plane

curve, and the corner locus of a polynomial in two variables gives us the a tropical

plane curve. We recall below the definition of corner locus, here stated in terms of

polynomial in two variables, or three homogeneous variables.

Definition 14. Let f(x, y) ∈ Q〈x, y〉 be a tropical polynomial. The corner locus

Z(f) is defined to be the set of all points p ∈ Q2 for which the expression f(p)

vanishes tropically. The corner locus of a tropical polynomial in two variables is

called a tropical plane curve. A tropical plane curve is said to be a curve of degree

d if f(x, y) is a polynomial of degree d.

Example 9. Let us first consider the example of the linear polynomial f(x, y) =

ax⊕ by⊕ c, for a, b, c 6= ∞. We could, as we did in the one variable case, graph the

three planes z = a+x, z = b+ y and z = c, and then find where they intersect, and

then project this down to the xy-plane, as shown in Figure 5.
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(a) Graph of z = ax⊕ by ⊕ c

(c-a,c-b)

(b) Z(ax⊕ by ⊕ c)

Figure 5: Example of a Tropical Line

Or we can use Definition 14 directly. In this case we see that the corner locus is

the set of all points in Q2 such that

a+ x = b+ y ≤ c

a+ x = c ≤ b+ y

b+ y = c ≤ a+ x

So we have the union of the line y = x + a − b for x ≤ c − a (or y ≤ c − b),

the line x = c − a for y ≥ c − b, and the line y = c − b for x ≥ c − a, as shown in

Figure 5.

A similar process is used to determine the plane curve associated with any

polynomial, where there are more planes to intersect or more inequalities to consider

for higher degree polynomials.

Example 10. Consider the polynomial h(x, y) = 3x2 ⊕ xy ⊕ 2y2 ⊕ x⊕ y ⊕ 3. We

could again graph the planes z = 3+2 ·x, z = x+y, z = 2+2 ·y, z = x, z = y, and
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Figure 6: An Example of a Tropical Conic

z = 3, and consider the corners, as shown in Figure 6, from [7]. Or we could consider

the inequalities from setting two monomials equal to each other and smaller than

or equal to the remaining monomials. (A generalized example of this is shown in

[4]). In which case we again have the conic shown in Figure 6.

We notice in Example 20, the line has one trivalent vertex, and three unbounded

rays, one in each of the positive x, positive y, and negative x = y directions. In

Example 10, the conic has four trivalent vertices and six unbounded rays, two in

each of the positive x, positive y, and negative x = y directions. It is not always the

case however that all vertices will be trivalent and that there will be n unbounded

rays in each three directions listed above. Consider the line given by ax ⊕ by. For

this the minimum is attained by two monomials anytime the two monomials are

equal to each other, since they do not need to be compared to any other monomial.

So, we have for our plane curve the points (x, y) such that a+x = b+y, which is just
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Figure 7: Some Tropical Conics

the line y = x+a−b. This seems to be a degenerate case of sorts, since the constant

term is infinite, so it can only participate in the minimum when both x and y are

infinite. But degenerate or not, it does come from a polynomial of degree one and

should therefore be considered a tropical line. Thus there are four possible shapes

for lines, the one as in Figure 5, classical lines of slope one, classical lines of slope

zero, and classical lines of slope infinity. Of course, these last three are isomorphic

to each other by a change of variables, so we really only have two possible lines. The

conics are classified in [4], and there are many more, with more interesting results

of degeneracy. For example, the polynomials g(x, y) = 3x2⊕xy⊕2y2⊕3x⊕1y⊕3,

k(x, y) = xy⊕ 2y2⊕ x⊕ 1y⊕ 3, and l(x, y) = 4x2⊕ 2xy⊕ 3y2⊕ x⊕ 1y⊕ 1 give the

conics shown in Figure 7.

Unlike Z(h), Z(g) has only five unbounded rays, because it does not have two

unbounded rays in the positive y direction, and it has only three trivalent vertices,

instead of four. And Z(k) again has only five unbounded rays, and instead of simply

missing one in one of the three expected directions, one ray extends in the negative
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y direction, and it has only three trivalent vertices. Z(l) has six unbounded rays,

extending as expected, but it only has three vertices, and one of them in four-valent.

As we will see below, the one ray of Z(g) that extends in the positive y direction

is actually a double ray, so if we count with multiplicity then we still have two

unbounded rays in that direction. In Z(k) we have the only ray extending in an

unexpected direction because of the lack of the x2 term in the polynomial (this is

similar to the lines that come from the polynomials that only have two of the terms

present). And, it is clear that Z(l) is the union of two tropical lines, and the one

four-valent vertex is the point of intersection of the two individual lines. These are

just some examples of the kinds of things that happen for different polynomials of

degree 2. As mentioned earlier, in [4] there is a complete classification of tropical

conics. There are 21 different combinatorial shapes that the conics can assume. For

higher degree polynomials, there are clearly even more possible shapes with more

variations in the kinds of interesting things that happen. We will discuss some of

these things, and what their implications are in later sections. Now, we will discuss

another important object that can be associated to a plane curve.

We can think of our plane curves as planar graphs if we like. We first note that

at the end of the unbounded rays in the positive x and y directions, there actually

is a well defined point of the tropical plane, since ∞ ∈ Q. For example, at the end

of those two rays of a line are the points (∞, c− b) and (c− a,∞). In the tropical

projective plane these points become (∞, c − b, 0) and (c − a,∞, 0) and there is a

point at the end of the unbounded ray that extends in the negative y = x direction,

the point (c−a, c− b,∞). Every unbounded ray will have some infinite point at its

end in the tropical projective plane, which is on the boundary of TP2 . With this in

mind, then we can let each vertex in the plane curve, and each of the end points of
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unbounded rays, be vertices in a graph, and each segment or ray in the plane curve

be an edge in a graph, which graph we will call G(f). We do require, however, that

the edges in G(f) maintain the same slope and length as their counterparts in Z(f).

We then create a dual graph ∆f for our curve, as explained in [16]. We will form the

dual graph in the standard way, with one slight modification. First, we will have a

vertex in our dual graph for each connected component of TP2 \G(f) = TP2 \Z(f)

and an edge in ∆f for each edge G(f), where there is an edge in ∆f between

two vertices if there is an edge in G(f) between the corresponding components of

TP2 \ G(f). The modification that we use is that we require the edges of ∆f to

be perpendicular to the edges of G(f). In this way we will still be able to preserve

information regarding the the slope of each of the rays and segments as well as

which vertices they are connected to. We note that the dual graph may not always

fit directly over the curve, because of the added stipulation that the edges are

perpendicular to those of the curve, but it does give us the combinatorial shape of

the curve. For each curve, there is a unique dual graph, but for each dual graph

there are an infinite number of curves, since the dual graph tells you nothing about

either position in the plane, or length of finite segments. Figure 8 shows the curves

we have looked at so far along with their dual graphs, along with that of the cubic

c(x, y) = 5x3 ⊕ 1x2y ⊕ 1xy2 ⊕ 5y3 ⊕ 1x2 +⊕xy ⊕ 1y2 ⊕ x⊕ y ⊕ 4.

Definition 15. We say a tropical plane curve of degree n is a full support tropical

plane curve or has full support if in the polynomial of which it is the corner locus,

all possible terms of degree n are present and have finite coefficients. In particular,

all three pure terms, namely xn, yn, and zn, must have finite coefficients. Similarly,

a dual graph is called a full support dual graph if the curve to which it is associated
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Figure 8: Plane Curves and Dual Graphs
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is a full support curve. The boundary ∂n of a full support dual graph associated

with a polynomial of degree n is called the limiting triangle of degree n.

We note that if a polynomial does not have all of the possible terms of degree

n, but it does have all three pure terms xn, yn, and zn, then it is functionally

equivalent to a polynomial which has all possible term of degree n present with

finite coefficients.

We will now note a few properties of tropical plane curves, and then we will

discuss the behavior of the curves with regard to the model of the tropical projective

plane given earlier.

Lemma 19. (Due to Aaron Hill) Let f(x, y) and g(x, y) be two tropical polynomial

in two variables. Then Z(f) ∪ Z(g) = Z(fg).

Proof. We need to show that the two sets contain each other. Suppose there is

a point p ∈ Z(f) ∪ Z(g). Then either f or g vanishes tropically at p. Thus, by

Lemma 15, fg vanishes tropically at p. Now suppose there is a point p in Z(fg).

Then fg vanishes tropically at p. But then either f or g must vanish tropically by

Lemma 16, so p must be in Z(f) or Z(g).

It follows from this, as explained in [18], that ∆fg is simply a Minkowski sum

of ∆f and ∆g. This means that for every polygon of ∆f and ∆g are present in

∆fg, but they been combined in such a way as to represent the product of the two.

Each vertex of Z(fg) is either a vertex of Z(f), a vertex of Z(g), or a point of

intersection of Z(f) and Z(g). We recall the Z(l) in Figure 8 was the product of

two lines, so its dual graph is a Minkowski sum of the dual graph of two lines. We

notice that there is parallelogram in ∆l, which represents the point of intersection

of the two lines.
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Figure 9: Monomials which correspond to Components of TP2 \ Z(f)

We also note that each of the components of TP2 \Z(f) is where one monomial

of f(x, y, z) attains the minimum alone. For example, in Figure 9, we see which of

the monomials attains the minimum in each of those components for f(x, y, z) =

ax⊕by⊕cz. For each of these components there is a vertex in the dual graph, so we

can see the correlation between the monomials of the polynomial and the vertices

of its dual graph, as displayed for the line in Figure 9.

Definition 16. Let I + {f1, f2, . . . , fs} be a set of polynomials in Q〈x, y〉. Then

Z(I) = {P ∈ Q2|f(P ) vanishes tropically for every f(x, y) ∈ I}.

We will also denote Z(I) by Z(f1, . . . , fs).
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Lemma 20. Let f(x, y) and g(x, y) be tropical polynomials in Q〈x, y〉. Then Z(f)∩

Z(g) = Z(f, g).

Proof. Let P ∈ Z(f)∩Z(g), then f(P ) vanishes tropically, and g(P ) also vanishes

tropically, so P ∈ Z(f, g). If P ∈ Z(f, g) then f(P ) and g(P ) both vanish tropically,

so P ∈ Z(f) ∩ Z(g).

We will discuss in more detail what we mean by the intersection of two tropical

plane curves, as it is not as straightforward as the intersection of two classical curves.

The behavior of the unbounded rays of a tropical plane curve as one of the

variables approaches infinity is an important concept to understand, especially for

a complete tropical Bézout’s theorem. Suppose r is an unbounded ray on a tropical

curve (starting at an affine point) containing a point p = (p0, p1, p2) ∈ ∂TP2. Also,

assume that p2 6= ∞ (that is, p is not on the z = ∞ part of the projective simplex).

We can normalize so that p2 = 0 and for every (x, y, z) ∈ r, z = 0. There are

two (distinct) monomials aijx
iyj and amnx

myn that attain the minimum together

at every point on r. Thus, for all (x, y, 0) ∈ r,

aij + ix+ jy = amn +mx+ ny,

which implies

(i−m)x = amn − aij + (n− j)y. (1)

So, if there is a rational q ∈ Q such that (∞, q, 0) ∈ r then since the limit of the

right hand side of (1) as y approaches q is finite and x approaches ∞, it must be

that i−m = 0. Examining the dual graph, this implies that the angle θ between r

and the x-axis is 0.

Similar reasoning shows that if there is q ∈ Q such that (q,∞, 0) ∈ r then

n− j = 0, implying that θ =
π

2
. These two facts together show that if r has angle
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Direction θ Intersection with ∂TP2

θ = 0 (∞, y, z)

θ = π/2 (x,∞, z)

θ = −3π/4 (x, y,∞)

−3π/4 < θ < 0 (∞, y,∞)

0 < θ < π/2 (∞,∞, z)

π/2 < θ < 5π/4 (x,∞,∞)

Table 2: End Behavior of Unbounded Rays

of inclination 0 < θ <
π

2
, then r hits the boundary of TP2 at (∞,∞, 0). (It is clear

that if
π

2
< θ < 2π then r cannot hit (∞,∞, 0), and we proved that it doesn’t hit

any points of the type (q,∞, 0) or (∞, q, 0). So these types of rays do not avoid

z = ∞).

The cases where r avoids x = ∞ and y = ∞ are similar and we have Table 2

detailing the end behavior of tropical curves.

As shown in [4], there are two kinds of invertible linear transformations of the

tropical projective plane; namely rotations and reflections due to change of variables

and translations due to tropically scaling one or more of the variables. There are

six possible changes of variable for this function, which are the six elements of S3,

and an infinite number of translations. We give some examples to see the effects of

these transformations on tropical plane curves.

Example 11. Let f(x, y, z) = ax⊕ by⊕ cz. Clearly any of the changes of variables

leaves us with a line, where the coefficients have been permuted. Thus, even though

we still have a line, it’s possible that the vertex has moved. For example, if we do
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the change of variables, x 7→ y, y 7→ z, z 7→ x, then we have the equation cx⊕ay⊕bz,

which is a line, but now has vertex at (b − c, b − a, 0) instead of (c − a, c − b, 0).

So, unless a = b = c, the vertex has moved. In order to translate our curve,

we simply multiply at least one of the variables by some scalar. For example, we

could have aαx ⊕ by ⊕ cz. Of course we will have a line, but now the vertex is at

(c−a−α, c− b, 0), so the entire line has been shifted to the left α units. If we have

ax⊕ bβy⊕cz, then the vertex has moved to (c−a, c− b−β, 0), and the whole thing

has shifted down by β. Now if we have aαx⊕ bβy⊕ cz, then we move the vertex to

c− a−α, c− b−β, 0), so we have shifted down and to the right. If α = β, then the

vertex is (c−a−α, c− b−α, 0) = (c−α−a, c−α− b, 0), which is the vertex for the

line ax ⊕ by ⊕ c(−α)z, which is simply a translation in the z direction. Clearly, if

we translate the line in all three directions, this is the same as translating it in just

two of the directions, by a different amount. If we have aαx⊕ bβy ⊕ cγz, then we

can factor out one of the translations, and see have γ(a(α� γ))x⊕ b(β� γ)y⊕ cz),

which has the same corner locus as a(α� γ))x⊕ b(β � γ)y ⊕ cz. Figure 10, we see

the original line Z(f) and the translated line Z(aαx⊕ by ⊕ cz).

Example 12. Let f(x, y, z) = 3x2 ⊕ xy ⊕ 2y2 ⊕ 1xz ⊕ 1yz ⊕ 1z2. In Figure 11, we

see the six different conics we get from the six changes of variables possible, which

we label according the cycle notation.

We note that these conics are all of the same combinatorial type, because they

all have the same dual graph up to a change of variables. And not only are they

the same combinatorial type, but these curves would clearly be isomorphic, since

we know the invertible linear map that takes one to another one.

When we translate this conic, the same thing happens as in the case of the line,
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(c-a-α,c-b,0)
(c-a,c-b,0)

Figure 10: Translation of ax⊕ by ⊕ cz to aαx⊕ by ⊕ cz

it simply moves the conic up or down, or left or right, or up or down a line of slope

one. We do this in the same way, be scaling one of the variables. So, for example,

if we wanted to shift left or right, we would simply scale the x by some scalar α. In

such a case our polynomial would become 3α2x2⊕αxy⊕2y2⊕1αxz⊕1yz⊕1z2, but

clearly all this does is slide all of the vertices α to the left or right. We could also

translate in both the x and y directions, as above, by two different amounts α and

β. For our polynomial we would then get 3α2x2⊕αβxy⊕2β2y2⊕1αxz⊕1βyz⊕1z2.

Both of these translations are shown in Figure 12.

We note that since translations are continuous in the classical setting, since we

are using the Euclidean topology, then the translations are still continuous.

3.3 Intersections of Curves in General Positions

In order to understand and prove the complete tropical Bézout’s Theorem we need

to understand what stable intersections are, and how to count the intersection
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Figure 11: Conic Transformations under Change of Variables
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Figure 12: Conic Transformations under Translations

multiplicity of a given intersection.

As in the classical setting we will first consider two curves which are in general

position to each other. Classically, this simply means that the two curves do not

share a common component. Tropically, however, this is slightly more involved.

Take for example the two lines Z(ax ⊕ by ⊕ cz) and Z(aαx ⊕ by ⊕ cz) shown in

Figure 13. These two lines do not have a component in common, since they are not

the same line. But, they intersect in an infinite number of points. We do not want

to consider such a pair of curves as being in general position. One way of saying

this is to say that the curves are in general position to each other if all of the points

of intersection of the two curves are transverse intersections, which we define below.

In Figure 14(a), we see that these two conics are not in general position to each

other, but those in Figure 14(b) are.

Definition 17. Let F and G be tropical plane curves, and let P ∈ F ∩ G. P is

said to be a transverse intersection if there is some open neighborhood UP of P ,

in the Euclidean topology, such that Up ∩ F ∩ G = P and P lies in the relative

interior of an edge of F and in the relative interior of an edge of G. In other words,

53



(c-a-α,c-b,0)
(c-a,c-b,0)

Figure 13: Translation of ax⊕ by ⊕ cz to aαx⊕ by ⊕ cz
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Figure 14: Conic Transformations under Translations
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an intersection is transverse if locally it is the intersection of two classical lines of

unequal slopes. Two curves are in general position with respect to each other if all

of their intersections are transverse intersections.

If two curves are in general position, then it is clear by looking at the graphs

where their points of intersection are.

Lemma 21. Any two curves C1 and C2 can be put into general position with respect

to each other by using a finite number of translations.

Proof. It’s easy to see that two curves with no vertices can be put in general position.

So suppose at least one of them has a vertex. If P is an intersection point that does

not satisfy the condition, then either P is a vertex or there is a subset of C1∩C2 that

contains P and is homeomorphic to an interval. If there is a subset homeomorphic

to an interval, since the curves are unions of rectilinear lines, either C1 or C2 has a

vertex in C1 ∩C2. In either case, there is a vertex in C1 ∩C2. So if we can shift the

curves a bit so that no vertex is in the intersection, then we’re done.

Let v be the closest such vertex to p. Without loss of generality, we may assume

that that v ∈ C1. The rays of C1 emanating from v have positive span the plane.

Choose two rays (vectors) at v that are linearly independent from the vector vp

(note that at least two such vectors exist) and translate C1 a small amount in the

direction of the sum of the two vectors. That is, you can find α and β so that the map

(x, y, z) 7→ (αx, βy, z), when applied to C1, translates C1 in the desired direction

and a desired Euclidean distance away from the original curve. It is possible to

choose α and β in such a way that this translation of C1 makes v no longer in the

intersection. Since there are only a finite number of vertices, one can also make

the magnitude of the translation small enough so that every vertex not previously
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in the intersection is still not in the intersection. Repeat the process the requisite

number of times and the two curves are in general position.

As with classical curves, it is not only how the curves intersect, but where that

can be a problem. If two curves intersect at infinite distance, then it is useful

to move that point of intersection to a finite point. This is done with an easy

transformation of the plane classically. Tropically the points of intersection at

infinite distance all happen at a corner of the model shown in Figure 4. So, to move

an intersection at infinite distance to a point at finite distance we would need to

move a corner into the interior of the complex somehow. There are only two kinds

of linear transformations of TP2, as shown in [4], namely translations and rotations

achieved by change of variables. Unfortunately, both of these transformations map

the corners to corners, so the points of intersection at infinite distance stay at infinite

distance. Thus, in order to consider these intersection points at finite distance we

deform the curves so that they do not intersect the boundary at a corner. This will

force the intersections to finite points, as the curves will no longer extend to places

where infinite intersections are possible. In Chapter 5 we will deform our curves in

the manner explained Lemma 22 and Corollary 23 to verify that we are counting

the infinite intersection multiplicity correctly.

Lemma 22. Every dual graph is the (not necessarily proper) subset of at least one

full support dual graph.

Proof. Suppose f(x, y, z) is a polynomial of full support. Then the dual graph ∆f

of f(x, y, z) is a full support dual graph, and we’re done.

Now, suppose that f(x, y, z) is not a polynomial of full support, but in only

missing one pure term. Without loss of generality suppose that f(x, y, z) is only
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missing the yn of the pure terms, but has both the xn and zn terms. This means

that ∆f has both of the upper corners, but is missing the lower corner. To find the

full support dual graph that has this dual graph as a subset, we will start with ∆f

and expand it. We will do this by staring with the vertex associated to the term of

the form xiyn−i which has the smallest i. We will number this vertex v0, and then

number the vertices along the boundary of the dual graph in a counterclockwise

direction form there, with vs being the vertex associated to the term of the form

yjzn−j which has the largest j. From v1 we will drop a vertical segment to the

boundary of the limiting triangle. Then, from each of the vertices v2, . . . vs we will

drop vertical segments of the same length. At the end of each segment will be a new

vertex v′k. where v′0 = v0. Now, connect v′k to v′k+1, for k = 0, ..., s − 1. This gives

a new dual graph that has the original dual graph of f(x, y, z) as a subset. Now

relabel the vertices and start again, only this time you will have vertices v1, . . . vs−1.

Repeat this process until the entire limiting triangle is full. Now we have a full

support dual graph of which the dual graph of f(x, y, z) as a subset.

Now suppose that two of the pure terms are missing, xn and yn. We proceed

in the same way as described above, filling in the yn corner of the dual graph. We

then do a change of variables so the yn is again the missing term and fill the corner

in as explained. If all three pure terms are missing, we simply perform one more

change of variables, and fill in the last corner as well. Now you have a full support

dual graph of which our original dual is a subset.

It is true that this is not the only way to create a full support dual graph that

has the dual graph of f(x, y, z) as a subset. We could have just as easily dropped

a segment from each of v1, . . . , vs to the limiting triangle, and then connected the
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vertices at their endpoints. However, the method described will be useful to us when

we look at the infinite intersections moved to finite points. This method allows us

to look at the infinite intersections one at a time.

Corollary 23. Every tropical plane curve associated to a tropical polynomial f(x, y, z)

is equal to a tropical plane curve of full support associated to a full support tropical

polynomial f̃(x, y, z) in some bounded region of the TP2.

Proof. Since every dual graph is the subset of a dual graph of full support, and

since the dual graph gives you the basic shape of the curve, we can fix the original

bounded portion of our curve, and then add onto it to fill in the full support curve.

All tropical plane curves are made up of vertices, segments and rays, where the

segments have finite length and do not intersect the boundary of TP2 and the rays

extend infinitely in a given direction and do intersect the boundary of TP2. Thus,

there is some ball that contains all of the segments, and parts of the rays. It is

this portion of the graph that we fix, but then we are able to split the rays of our

original curve by using the full support dual graph we found to create a full support

curve which is equal to our original curve inside the ball.

In essence, we deform a curve that is not of full support by splitting the rays

that extend in non-desirable directions. This produces for us a curve of full support,

which does not intersect ∂TP2 in any of the corners.

Example 13. Let f(x, y, z) = 3x2 ⊕ xy ⊕ 3y2 ⊕ xz ⊕ yz. This curve, as shown in

Figure 15, is not a curve of full support as the polynomial is missing the z2 term.

However, we can deform this polynomial by adding αz2 for any α > 0, so we have

the polynomial f̃(x, y, z) = 3x2 ⊕ xy ⊕ 3y2 ⊕ xz ⊕ yz ⊕ αz2, which does produce a
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(a) Z(f) (b) ∆f

(c) Z(f̃), α = 1 (d) Z(f̃), α = 7 (e) ∆f

Figure 15: Deforming Curves of Non-full Support

curve of full support. The larger α the farther then new vertex is from the original

vertices.

3.4 Affine Intersections of Tropical Plane Curves

As discussed our plane curves maybe in general position to each other, or they may

not be. We will first discuss intersection multiplicity for two curves that are in

general position, and then we will discuss curves that are not in general position.

This discussion will follow that given in [16].
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For transverse intersections, we need to know some information about the slopes

of the segments or rays that are intersecting in order to find the intersection mul-

tiplicity of the points of intersection. As explained in [6],[13],[14], and[16] we can

also think of our tropical plane curves as weighted balanced graphs. In this way

there is a weight and a integral direction vector associated with each segment. Sup-

pose the two segments l1 and l2 and suppose that li has integral direction vector

(ui,1, ui,2, ui,3) and weight mi. The following definition of intersection multiplicity

is given in [16].

Definition 18. Let f(x, y, z) and g(x, y, z) be two homogenous polynomials in gen-

eral position with respect to each other, and let P ∈ TA2 be a point of intersection

of Z(f) and Z(g). The intersection multiplicity iP for the point P is defined to be

the absolute value of the classical determinant of the matrix
u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

1 1 1


times m1 ·m2. That is

iP =

∣∣∣∣∣∣∣∣∣∣
u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

1 1 1

∣∣∣∣∣∣∣∣∣∣
·m1 ·m2

We recall that our dual graph is made on a lattice with points that correspond to

possible monomials in our polynomial, so there is a point in the lattice for each term

of the form xiyjzk. If we define the distance between points of the form xi+1yjzk

and xiyjzk to be one, and the distance between terms of the form xiyj+1zk and
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xiyjzk to also be one, then using the Euclidean metric from there, we have the

distance from xiyjzk+1 to xiyjzk being
√

2.

Definition 19. Let f(x, y, z) and g(x, y, z) be two homogenous polynomials in gen-

eral position with respect to each other, and let P ∈ TA2 be a point of intersection

of Z(f) and Z(g). The dual graph intersection multiplicity of the point P is defined

the be the area of the parallelogram of ∆fg that corresponds to P .

Lemma 24. The intersection multiplicity defined in Definition 18 agrees with the

dual graph intersection multiplicity defined in Definition 19 in the cases where both

of them apply.

Proof. It is straightforward to show that the intersection multiplicity given in Def-

inition 18 the same as the area of the associated parallelogram in the dual graph of

the product of the original polynomials. This is because the segments in the dual

graph are perpendicular to the segments of the curve. The determinant above just

gives the area of the parallelogram determined by the integral direction vectors, so

using perpendicular vectors will provide the same area. Also, as explained in [16]

the lattice length of the segment in the dual associated with the segment in the

curve tells us the weights mi of the segments in the curve. Thus, the area of the

parallelogram is precisely the classical determinant of the above matrix times the

weights m1 · · ·m2.

We note that the area of such a parallelogram will only be greater than one

if there are more than four points of the lattice contained in the interior or the

boundary of the parallelogram. For example, the sides have lattice length greater

than one, in which case there would be additional lattice points on the edges of

the parallelogram. An other possibility is that all the sides have lattice length one,
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but that there is a point of the lattice interior to the parallelogram. In all of these

cases, there is a term of the product that is non-contributing, which is why there

are addition points of the lattice involved in the parallelogram.

When we have two curves that are not in general position to each other, meaning

they have an infinite intersection without having a common component, or they

have a vertex in the intersection, it is not as clear what the intersection is or what

the intersection multiplicity is. Since there is a vertex of one of the curves in the

intersection, there is not a well defined segment of that curve which is participating

in the intersection. Thus, there is no way to determine the integral direction vectors,

so Definition 18 does not apply. Similarly, since the curves are not in general

position, the intersections are not transverse, which means that the polygon in the

dual graph which corresponds to the point of intersection is not a parallelogram,

and corresponds not only to the point of intersection, but to the original vertex as

well, so finding its area does not give the intersection multiplicity either. As shown

Lemma 21, we can translate one of the two curves so that the two curves are in

general position to each other. When the curves are in general position to each

other it becomes clear what the intersections are. So, we determine the points of

intersection, and then consider the limit of the intersections of the two curves as

we translate the given back from its translated position to its original positions, as

explained in [16]. Since the translations are continuous, the limits are well defined,

so we have well defined points of intersection, called the stable intersections.

Definition 20. Let f(x, y, z) and g(x, y, z) be homogenous polynomials. The stable

intersection of Z(f) and Z(g) is defined to be the set of points which are the limits

of the points of intersection of Z(fα,β) and Z(g) where fα,β(x, y, z) = f(αx, βy, z),
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(a) Z(f) ∪ Z(g) ∪Rf,g,x (b) Z(f) ∪ Z(g) ∪Rf,g,y (c) Z(f) ∪ Z(g) ∪Rf,g,z

Figure 16: Stable Intersections

for some α, β ∈ Q and we are taking the limits as α, β → 0.

Proposition 25. Let f(x, y, z) and g(x, y, z) be homogeneous polynomials of degree

d and e respecitively. The stable intersection of Z(f) and Z(g) given in Defini-

tion 20 is well defined.

Proof. Since the translations of tropical plane curves are continuous functions in the

Euclidean topology, the points of intersection vary continuously as α and β vary.

Thus any sequence of intersections points must converge to the same points, so the

points are well defined. Because the translation of one curve puts our curves into

general position with respect to each other, we can use Definition 18 to see that we

have d · e points of intersection for α, β 6= 0. But, since the points of intersection

vary continuously, when α, β → 0, we have d · e such points.

Example 14. Let us consider the two lines as shown in Figure 16, f(x, y, z) =

ax ⊕ by ⊕ cz and g(x, y, z) = ax ⊕ sy ⊕ cz. If we shift g under the translation

y 7→ βy, then the green line either moves up or down, and are curves are in general

position to each other, as shown in Figure 16.
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(a) Z(f) ∪ Z(g) ∪Rf,g,x (b) Z(f) ∪ Z(g) ∪Rf,g,y (c) Z(f) ∪ Z(g) ∪Rf,g,z

Figure 17: Stable Vertex Intersections

We see that under these translations there is one clear point of intersection. As

we allow the green line to return to its original position, the point of intersections

converges to the vertex of the green line.

Recall that when we are translating one of the two curves, we want to do so by a

very small α and β, so that our curves will stay in a relatively similar position. We

just want to move them enough so that they are now in general position. If we do

this then we can define the intersection multiplicity of a stable intersection to be the

the sum of the intersection multiplicities of all the points of transverse intersection

that limit to our stable intersection when we translate in a given direction.

Example 15. Let us consider the two lines as shown in Figure 17, f(x, y, z) =

x ⊕ y ⊕ 4z and g(x, y, z) = xy ⊕ 2xz ⊕ 4z2. If we shift f under the translation

y 7→ βy, then the red line either moves up or down, and are curves are in general

position to each other, as shown in Figure 17.

Here we see that when the red line shifts up, then there are two points of

intersection, but when it shifts down there is only one. However, this one point

of interstice does indeed have intersection multiplicity two. This is because as we
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translated the curve that was shifted up back down to its original position, the two

points of intersection converge to the same point, thus giving a point of intersection

multiplicity two.

The version of Bézout’s theorem that is given in [16] uses only curves that have

full support, which we recall means that all three pure terms xn, yn, and zn have

finite coefficients, and which are in general position to each other. Suppose we have

two polynomials, f(x, y, z) and g(x, y, z), both of full support, of degree d and e

respectively. Then, using the distance convention given above, ∆f has area d2/2,

since it is a isosceles right triangle of leg length d. Similarly, ∆g has area e2/2, and

∆fg has area (d + e)2/2 = d2/2 + e2/2 + d · e. Note that is does not matter the

relative position of Z(f) and Z(g), since fg is a full support polynomial of degree

d+e. So, in such a case, the area of ∆fg is the sum of the area of ∆f , the area of ∆g

and deg f ·deg g. But the area in ∆fg that is not from ∆f and ∆g is associated with

the vertices of the product which are the points of intersection of the two curves.

And that area, as explained above, is the intersection multiplicity of the points of

intersection of the two curves. Thus, for the special case where the two curves are

both curves of full support, tropical Bézout’s theorem is true. But, we note that

for polynomials that are full support, all of the points of intersection are in the

tropical affine plane, but only the finite points in the affine plane. Although this is

an important result, in Chapter 5 we extend this result to all polynomials, not just

those of full support.
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4 Tropical Linear Algebra

In this section we want to consider the tropical analogue of a vector space. A

tropical vector is simply an n-tuple with tropical entries, the analogous object to a

vector in Rn, for example. Through out the section T will be any tropical semi-ring

which has ∞ as its additive identity.

Definition 21. Let u and v be tropical vectors in T n and let α be a scalar in T .

We define u⊕ v to be the componentwise sum of u and v, and we define c� u to

be the vector found by multiplying each entry of u by the scalar c.

Using Definition 21, it is straightforward to show that all of the properties of

a semi-vector space are satisfied by our collection of vectors, where a semi-vector

space has all of the conditions of a vector space, with the exception of additive

inverses. We note we will write our vectors interchangably as row or column vectors

when it is not ambiguous to save space.

Let us consider Q2 for an example. As far as the geometric interpretation of a

vector is concerned, it is the same as in the classical setting. So, the vector (1, 20)

is the same in both R2 and Q2. However, the geometric interpretation of the vector

space operations is not the same. For example, the tropical sum of two vectors can

not be realized in the same geometric manner as in the classical case. Consider the

vectors u = (3, 2) and v = (1, 4). Then u⊕v = (3⊕1, 2⊕4) = (1, 2). Thus the sum

simply lowers each coordinate to the least value of all the values for that coordinate

in the vectors we add. Although we will not have geometric interpretations to match

the classical setting, the formal operations on the vectors are well defined, and many

of the operations with both vectors and matrices will still be meaningful.
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4.1 Linear Independence and Singularity

We now give some basic definitions and properties of vectors and matrices with

entries in T . The following definitions and proofs basically follow definitions and

proofs of similar theorems in [11], only with a more universal notation of tropical

vanishing. We do deviate from his proof for the proof of Lemma 32

We recall that a tropical expression vanishes tropically if two of the terms in the

expression are minimal together. We also recall that if g is a tropical expression

that vanishes, then gh also vanishes for any tropical expression h.

Definition 22. A tropical vector expression is said to vanish tropically if each

entry of the resulting tropical vector sum vanishes tropically. Explicitly, let vi =

(vi1, vi2, ..., vin) ∈ T n where vij ∈ T . Then

v1 ⊕ v2 ⊕ · · · ⊕ vm =



v11

v12

...

v1n


⊕



v21

v22

...

v2n


⊕ · · · ⊕



vm1

vm2

...

vmn



=



v11 ⊕ v21 ⊕ · · · ⊕ vm1

v12 ⊕ v22 ⊕ · · · ⊕ vm2

...

v1n ⊕ v2n ⊕ · · · ⊕ vmn


,

and v1⊕v2⊕ · · · ⊕vm vanishes tropically if v1i⊕ v2i⊕ · · · ⊕ vmi vanishes tropically

for every i.

Definition 23. Let v1,v2, ...,vm be a collection of m vectors in T n. These vectors

are said to be tropically linearly dependent if for some λ1, ..., λm ∈ Q, not all infinite,
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λ1v1 ⊕ λ2v2 ⊕ · · · ⊕ λmvm, vanishes tropically. If no such constants λi exist so

that the sum vanishes tropically, then the vectors are said to be tropically linearly

independent.

Definition 24. The rank TRank(A) of a tropical matrix is defined to be the max-

imum number of its independent columns.

There are three different definitions for the rank of a tropical matrix, as given

in [2]. We will show later that the above definition of the rank of a tropical matrix

is equivalent to what is called the tropical rank of a matrix in that paper, as given

below.

Definition 25. Let A be a tropical n×n matrix with entries ai,j and let Sn be the

collection of permutations of {1, ..., n}. The tropical determinant of A is defined to

be

|A|T =
⊕
σ∈Sn

a1,σ(1) · · · an,σ(n).

A is said to be tropically singular if the expression
⊕
σ∈Sn

a1,σ(1) · · · an,σ(n) vanishes

tropically.

We note that tropical determinants can be determined using the method of

co-factors, with all addition and subtraction being replaced by tropical addition.

Definition 26. Let A be a tropical matrix with entries in T . The tropical rank of

A is defined to be the largest integer r such that A has a a non-singular r×r minor.

To show that the two definitions of rank are equivalent, we first need the follow-

ing definitions and lemmas that relate the linear independence of the columns of a

matrix and the singularity of a square matrix.
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Definition 27. The directed graph GA associated to an n×n matrix A is the directed

graph with n vertices, v1, . . . , vn, indexed by the rows/columns of the matrix, and

edges satisfying the condition that there is an edge from vi to vj if aij has a given

property P .

Unless stated otherwise, the property P that we will be dealing with is minimum

among the row entries. So, if aij ≤ aik for all k = 1, ..., n, then there will be an edge

from vi to vj.

Lemma 26. Suppose A is an n×n matrix with entries in Q. Then GA, under this

property P , contains at least one cycle.

Proof. Suppose that GA does not a cycle. Since the entries of A are in T , then each

row has an entry that is minimum. Thus, in row b1, ab1,b2 is minimum, so we have

an edge from vb1 to vb2 . But row b2 also has a minimum, say ab2,b3 , so there is an

edge from vb2 to vb3 , and so on. But, if there is no cycle in GA, then bi 6= bj for any

i 6= j . But row bn also has a minimum in it, abn,bn+1 . But there are only n vertices,

so bn+1 = bj for some j. Thus there is at least one cycle in GA.

We note that it is possible for the cycle in GA to be a self-loop, from vi to itself.

Lemma 27. Suppose that A is an n×n matrix with entries in Q, and suppose that

the cycle resulting from Lemma 26 has length r. Then there is some permutation

σ ∈ Sn such that σ(αi) = αi+1 for indices in the cycle, and σ(j) = j for indices not

in the cycle, where αr+1 = α1.

Proof. This is clear.

Lemma 28. If A is an n× n matrix with entries in T and if |A|T =
n⊙

i=1

ai,µ(i) for

some permutation µ, then at least one of ai,µ(i) is minimum among its row.
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Proof. Without loss of generality, suppose µ is the identity permutation. Our matrix

still satisfies the conditions for Lemma 27, so there is a permutation σ corresponding

to some cycle of GA, as described. But for those indices in the cycle, it is true

that ai,σ(i) ≤ ai,µ(i), and for those indices not in the cycle, ai,σ(i) = ai,µ(i). Thus
n⊙

i=1

ai,σ(i) ≤
n⊙

i=1

ai,µ(i). If equality holds, then the permutation σ also produces

the determinant, and we know that ai,σ(i) is minimum among its row for indices

in the cycle. If equality does not hold, then we have a contradiction, as
n⊙

i=1

ai,µ(i)

is minimal over all the terms in the determinant. Thus, it follows that ai,µ(i) is

minimum among its row for at least one i.

Lemma 29. Let A be an n× n matrix with entries in Q and suppose each row has

two distinct entries that attain the minimum of that row; that is there are indices

i1 6= i2 such that ai,i1 = ai,i2 ≤ ai,j for every j = 1, ..., n. Then GA has two cycles

with no edges in common.

Proof. With the minima ai,i1 , by Lemma 26 we have one cycle c1. But, using the

minima ai,i2 , Lemma 26 gives us another cycle c2. Suppose that c1 and c2 have an

edge in common, say −−→vjvk, choosing j minimally among all common edges of c1 and

c1. Then ajk is minimal in row j. By our assumption, there is some k′ 6= k such

that ajk′ is also minimal in row j. We can thus replace the edge −−→vjvk in c1 with the

edge −−→vjvk′ and continue building c1 in the same manner as described in Lemma 26,

where we choose the edge not contained in c2 at each vertex. This gives two cycles

in GA with no edges in common.

Lemma 30. Let A be an n× n matrix with entries in T and suppose each row has

two distinct entries that attain the minimum in that row, as in Lemma 29. Then A

is tropically singular.
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Proof. From the proof of Lemma 29 we see that for every cycle c of GA, there is

another cycle c′ of GA such that c and c′ do not share an edge. By Lemma 26 we have

a cycle c1 associated with one set of minima aii1 from the rows. By Lemma 27 there

is a permutation σ1 associated with c1 as described. By the proof of Lemma 28, we

see the determinant must be attained by a permutation (called σ1) that contains

such a cycle of GA. Assume σ1 is the identity permutation. Now we have another

cycle c2 with no edges in common with c1. Thus by Lemma 27 we have another

permutation σ2 associated to c2. As in the proof of Lemma 28, we can use this

permutation to to get
n⊙

i=1

ai,σ2(i) ≤
n⊙

i=1

ai,σ1(i). But |A|T =
n⊙

i=1

ai,σ1(i), so we can not

have a strict inequality. Thus
n⊙

i=1

ai,σ2(i) =
n⊙

i=1

ai,σ1(i), and |A|T vanishes tropically,

and A is tropically singular.

Lemma 31. Suppose A is an n × n matrix whose entries are tropical expressions

where the monomials in each expression are in T , and suppose that each row of A

either has two distinct entries that attain the minimum of that row, or one entry

that is an expression which vanishes tropically and is minimum in the row. Then

A is singular.

Proof. If each row has at least two distinct entries which attain the minimum we’re

done by Lemma 30. So, suppose there is some row where one of the entries vanishes

tropically and is smaller than the other entries in the row, say ajk. If |A|T =

�n
i=1ai,σ(i) where σ(j) = k, which is to say the entry that vanishes tropically is

in the determinant, then we are done by Lemma 15. If there is no such entry in

that permutation, then there is an entry in each row that is not on the diagonal

that attains the minimum, so by Lemma 30 we can find another permutation that

attains the minimum and we are done. Thus A is singular.
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Lemma 32. Let A be a tropical n × n matrix such that |A|T vanishes tropically.

Then the columns C1, ..., Cn of A (or rows of A) are tropically linearly dependent.

Proof. Consider a n × n tropical matrix A which is singular. We note that the

determinant can be found by cofactor expansion around any row or column. Now,

either every possible (n − 1) minor of A is infinite, or there is at least one (n − 1)

which has a finite value.

First suppose that every (n − 1) minor is infinite. Then A is singular because

|A|T = ∞, and every term is infinite. This means that every term in
⊕
σ∈Sn

n⊙
i=1

ai,σ(i)

must have an infinite factor. This implies that either an entire row or column of

A is infinite, or that there are two rows or columns each with one finite entry in

the same position. If one entire row or column is infinite, then clearly the rows or

columns are linearly dependent. Similarly, if two rows or columns each only have

one finite entry in the same position, then one is a multiple of the other, and again

the rows or columns are linearly dependent.

Now suppose that at least one of the (n− 1) minors from this expansion is not

infinite, say the minor where the first column and kth row are deleted. We then

define a mapping which takes in n− 1 vectors and returns a tropical expression in

T to be the determinant of the matrix attained by deleting the k entry from each

vector and letting those be the columns. Now consider the following tropical sum:

n⊕
i=1

f(C1, ..., Ĉi, ..., Cn)Ci.

This sum is a tropical vector with n entries. We want to show that this sum vanishes

tropically. If this is true, then we have found suitable λi = f(C1, ..., Ĉi, ..., Cn) to

provide the linear dependence of the columns of A. Consider the jth entry in the

resulting sum, where j 6= k. We need to show that this entry vanishes tropically.
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We will show that for every term of the sum, there is another term with the same

value, thus those two terms together vanish tropically. Thus, the entire sum for the

entry is in fact a sum of terms that vanish tropically, and thus the sum must vanish

tropically. A term in the sum for the jth entry looks like cm,j

⊙
ci,σ(i) where cm,j

is the jth entry of the mth column, and the product never has i = m or σ(i) = k

(since the kth row has been deleted). But each product must have a term from each

row, which means that it must have a term from the the jth row, namely cσ−1(j),j.

But then f(C1, ..., ˆCσ−1(j), ..., Cn)Cσ−1(j) has the exact same term with the difference

that cm,j is the term in the product and cσ−1(j),j is the term from the vector. Thus

each term has another term that matches it, and the entries all vanish tropically

for j 6= k. Now, the kth entry is simply the cofactor expansion |A|T around the kth

row. But, by hypothesis, this vanishes tropically. We note that at least λ1 6= ∞,

since f(C2, ..., Cn) is the minor that was not infinite. Thus, every entry vanishes

tropically, and we have found suitable λi for our columns to be tropically linearly

dependent, our desired result.

Theorem 33. Let A be an n × n square matrix whose entries are tropical expres-

sions. TRank(A) < n if and only if A is tropically singular.

Proof. Suppose TRank(A) < n. This means that there are λ1, ..., λn ∈ Q, not all

infinite, such that λ1c1 ⊕ λ2c2 ⊕ · · · ⊕ λncn, vanishes tropically, where cj is the jth

column of A. Since |λjaij|T = (
n⊙

j=1

λj) � |A|T, if all of the λi are finite, |λjaij|

vanishes tropically if and only if |A| vanishes tropically, so we may consider [λjaij]

as A and disregard the λj for simplicity. Since A is tropically singular, each entry

of c1 ⊕ c2 ⊕ ... ⊕ cn vanishes tropically, which means that each row either has two

distinct entries that attain the minimum together, or has an entry with vanishes
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tropically and is minimum in the row. But we can now apply Lemma 31, and we

see that A is singular.

We claim that if λi = ∞ for any i, then |A|T vanishes tropically. Suppose

without loss of generality that λ1 = ∞, but that λi 6= ∞ for i ≥ 2. Then all of the

(n−1)-minors associated with c2, ..., cn are in the situation described above, so they

all vanish tropically. Thus, if we do the cofactor expansion around the first column,

then each summand of the determinant will be the product of an entry from c1 and

an expression that vanishes tropically. Thus, each summand vanishes tropically,

and the entire determinant vanishes tropically. A similar argument shows that if k

of the λi’s are infinite, then since certain (n−k) minors still vanish tropically, there

is a cofactor expansion which vanishes tropically, and thus the determinant does as

well.

Conversely, if A is singular, then by Lemma 32, the columns of A are linearly

dependent, so TRank(A) < n.

We note here that since |A|T = |AT |T, we can use either the rows or the columns

of an n× n matrix to determine the rank.

Lemma 34. The definition of rank of a tropical matrix as given in Definition 24 is

equivalent to that given in Definition 26. More specifically, the maximum number

of independent columns of A is r if and only if r is the largest integer such that A

has a non-singular r × r minor.

Proof. Suppose that the maximum number of independent columns of A is r, and

suppose that there is a non-singular minor of size s × s such that s > r. Then

by Theorem 33, the columns of this s × s matrix are linearly independent. Which

means that the s columns from A associated with the columns of the s × s minor
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are also linearly independent (since it doesn’t matter what we add on in the other

rows, the rows represented by the s× s minor are linearly independent). But this is

a contradiction, since the maximum number of independent columns of A is r < s.

Now suppose that r is the largest integer such that A has a non-singular r × r

minor, and suppose that A has s linearly independent columns where s > r. Thus

at least one of the rows does not have two entries which are equal and minimum.

Consider any s × s minor which is made up of a set of s rows of these columns,

where the row that does not have two minimums is contained in the set. These

truncated columns are still linearly, so by Theorem 33, this minor is non-singular.

But this is a contradiction, since the largest non-singular minor was r × r where

r < s.

Thus the two definitions are equivalent.

4.2 Tropical Cramer’s Rule

In the classical setting we solve systems of linear equations using matrices. This is

often done by row reducing the matrices to being as close to the identity matrix as

possible. Unfortunately for the tropical setting, this generally involves subtraction,

which we do not have. However, classically is it also possible to solve the system of

equations using Cramer’s Rule, for which there is a tropical analogue. We will look

at a few examples before we give the theorem and it’s proof.

Example 16. Let us first consider the question of trying to determine whether or

not three points are collinear. Let (x1, y1), (x2, y2), (x3, y3) be three points in the

plane. These three points are tropically collinear if there are scalars a, b, c so that

axi⊕ byi⊕ c vanishes tropically for each i. But this is the same as saying the three
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vectors 
x1

x2

x3

 ,


y1

y2

y3

 ,


0

0

0


are linearly dependent with scalars a, b, c. But these three vectors are linearly

dependent if and only if the matrix
x1 y1 0

x2 y2 0

x3 y3 0


is singular. We can of course generalize this to a projective setting, where instead of

looking at points (xi, yi) in the tropical affine plane, we can look at points (xi, yi, zi)

in the tropical projective plane. These three points are then tropically collinear if

the matrix 
x1 y1 z1

x2 y2 z2

x3 y3 z3


is tropically singular.

We can use this same method to find the line that contains two points. Let

(x1, y1, z1) and (x2, y2, z2) be two points in the tropical projective plane. Then the

set of all points (x, y, z) that are collinear with these two points is the same as the

set of all points (x, y, z) for which 
x1 y1 z1

x2 y2 z2

x y z


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is tropically singular. We recall that this matrix is tropically singular when the

determinant vanishes tropically. If we calculate the determinant of this matrix

using cofactor expansion around the last row, then we get

(y1z2 ⊕ y2z1)x⊕ (x1z2 ⊕ x2z1)y ⊕ (x1y2 ⊕ x2y1)z.

The points (x, y, z) at which this vanishes tropically are the same as the corner

loci of the linear equation given by the determinant. This gives us a method to

determine the linear equation for the line between two points.

As in the classical setting, the points in TP2 are in one-to-one correspondence

with the lines in TP2. Thus this method can also be used to determine the point

of intersection of two lines ax ⊕ by ⊕ cz and dx ⊕ ey ⊕ fz in TP2. To find the

point of intersection, we first find consider the points (a, b, c) and (d, e, f) in TP2

that correspond to the lines, and then find the line that passes through these points.

The point that corresponds to this line is the point of intersection of the two original

lines. Thus, when we take the determinant of the matrix
a b c

d e f

x y z

 ,

instead of the 2× 2 minors giving the coefficients for the linear equation, they give

the coordinates of the point where the lines intersect.

As we mentioned above, the lines in TP2 are in one-to-one correspondence with

the points in TP2. This extends naturally to the points in TPn being in one-to-

one correspondence with the hyperplanes in TPn. We can use the same methods

as we did in Example 16 to determine where n hyperplanes in TPn intersect, or,
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equivalently, whether or not n points in TPn are co-hyperplanar. Thus we have the

following theorem, which is the tropical analogue of Cramer’s Rule.

Theorem 35. Let pi = (x1,i, x2,i, . . . , xn+1,i), i = 1 . . . n+ 1 be n+ 1 points in TPn.

These n+ 1 points lie on the same tropical hyperplane, if and only if the matrix

x1,1 x2,1 · · · xn+1,1

x1,2 x2,2 · · · xn+1,2

...
...

...

x1,n x2,n · · · xn+1,n

x1,n+1 x2,n+1 · · · xn+1,n+1


is tropically singular.

Proof. Suppose that the n + 1 points lie on a tropical hyperplane. Then they all

satisfy the same equation of the form a1x1 ⊕ a2x2 ⊕ · · · anxn ⊕ an+1xn+1, which

means that the scalars a1, a2, . . . , an, an+1 are the appropriate scalars to satisfy the

linear dependence relation for the columns of the above matrix. Thus, the matrix

is singular.

Now suppose the matrix is singular. Then the columns are linearly dependent, so

there exist scalars a1, a2, . . . , an, an+1 which satisfy the linear dependence relation

of the columns of the above matrix. But then these scalars are the appropriate

coefficients for the linear equation a1x1⊕a2x2⊕· · · anxn⊕an+1xn+1 for a hyperplane,

which each point must then satisfy. Thus the n+1 points lie on the same hyperplane.

Corollary 36. The hyperplane in TPn which contains the points
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pi = (x1,i, x2,i, . . . , xn+1,i), i = 1 . . . n, is the corner locus of the |A|T where

A =



x1,1 x2,1 · · · xn+1,1

x1,2 x2,2 · · · xn+1,2

...
...

...

x1,n x2,n · · · xn+1,n

x1 x2 · · · xn+1


,

where the last row is simply made up of the n+1 indeterminants of Q〈x1, x2, . . . , xn+1〉.

Proof. The set of all points (x1, x2, . . . , xn+1) that lie on a hyperplane with the given

n points are those for which the matrix above is singular. Which is to say the set

of points (x1, x2, . . . , xn+1) for which |A|T vanishes tropically. But |A|T is simply a

linear polynomial in n+1 indeterminates, so the points that make it vanish are the

same as the points in its corner locus.

In the classical setting, these arguments are easily extended to help us find curves

of certain degrees passing through a given number of points in the plane. As we have

seen, the line that passes through two points in the plane can be determined in this

manner. Similarly, we know that if we are given five points in the plane, then we

can find the conic that passes through those points. This is because classically the

coefficients of a polynomial determine the polynomial and associated curve. There

are a total of six terms of degree two in three homogenous polynomials, namely,

x2, xy, y2, xz, yz, z2. Thus, each homogeneous quadratic polynomial in three vari-

ables has associated to it a point in P5. But more than that, these polynomials are

actually in one-to-one correspondence with the points of P5 since each polynomial

and its associated curve is uniquely determined by its coefficients. Thus for each

point in P5 we have a unique conic plane curve. Unfortunately, this is not the
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case in the tropical setting. Although it is true that each homogeneous quadratic

tropical polynomial in three variables gives a point in TP5, and each point in TP5

gives a homogenous quadratic tropical polynomial, since a tropical conic curve in

the plane does not necessarily have a unique polynomial associated with it because

of functional equivalence, there is not a one-to-one correspondence of points in TP5

and tropical conic plane curves. But, even though the condition is not as strong,

we can still us the fact that to every point in TP5 there is an associated conic,

and for every quadratic polynomial there is a point in TP5 to find the conic that

passes through five given points. This, of course, can be extended to higher degree

polynomials and the number of points required to determine such curves. The only

thing that we are missing due to functional equivalence is uniqueness. But, just

as in the classical setting, since there are
n(n+ 3)

2
+ 1 terms of degree n in three

homogeneous variables, the polynomial of degree n can be associated with a point

of TPN where N =
n(n+ 3)

2
. Thus, if we find the hyperplane in TPN that passes

through the appropriate N points, we will have a polynomial in three homogeneous

variables whose corner locus contains the N original points. We thus have two

additional corollaries to Theorem 35

Corollary 37. N + 1 =
n(n+ 3)

2
+ 1 points (xi, yi, zi), i = 1, . . . , n in TP2 lie on a

tropical plane curve of degree n if and only if the matrix

xn
1 xn−1

1 y1 · · · xn−1
1 z1 xn−2

1 y1z1 · · · y1z
n−1
1 zn

1

xn
2 xn−1

2 y2 · · · xn−1
2 z2 xn−2

2 y2z2 · · · y2z
n−1
2 zn

2

...
...

...
...

...
...

xn
N xn−1

N yN · · · xn−1
N zN xn−2

N yNzN · · · yNz
n−1
N zn

N+1

xn
N+1 xn−1

N+1yN+1 · · · xn−1
N+1zN+1 xn−2

N+1yN+1zN+1 · · · yN+1z
n−1
N+1 zn

N+1


is troically singular.
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We note that the entries of a the jth row of the matrix are simply the different

possible monic monomials of degree n in three variables evaluated at the point

(xj, yj, zj).

Corollary 38. For any N =
n(n+ 3)

2
points (xi, yi, zi) ∈ TP2, let

A =



xn
1 xn−1

1 y1 · · · xn−1
1 z1 xn−2

1 y1z1 · · · x1z
n−1
1 y1z

n−1
1 zn

1

xn
2 xn−1

2 y2 · · · xn−1
2 z2 xn−2

2 y2z2 · · · x2z
n−1
2 y2z

n−1
2 zn

2

...
...

...
...

...
...

...

xn
N xn−1

N yN · · · xn−1
N zN xn−2

N yNzN · · · xNz
n−1
N yNz

n−1
N zn

N+1

xn xn−1y · · · xn−1z xn−2yz · · · xzn−1 yzn−1 zn


.

Then |A|T is a polynomial of degree n whose corner locus passes through our N

points.

Of course, as we mentioned before, this polynomial may not be the only poly-

nomial whose corner locus passes through the given points. Often it will happen

that the different polynomials whose corner loci pass through this point will all have

the same corner locus. However, it also happens that sometimes there are different

corner loci that pass through given points. Let us consider an example

Example 17. Let p1 = (1, 2, 0) and p2 = (2, 3, 0). Then from Corollary 38 we

get the line that passes through these two points by finding the determinate of the

matrix 
1 2 0

2 3 0

x y z

 .

We get for this determinant the equation 2x⊕ 1y⊕ 4x, and tne corner locus of this

polynomial does in fact pass through the points as desired, as shown in Figure 18.
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Figure 18: Lines Through (1, 2) and (2, 3)

The polynomial 2x ⊕ 1y ⊕ 6z is also satisfied by the two points. In fact, any

polynomial of the form 2x⊕ 1y ⊕ αz where α ≥ 4 has a corner locus which passes

through these two points.

This happens because the two points are not in general position to each other.

For lines this means that the two points lie on a classical line of slope 0, 1 or ∞.

When this happens, then there is not a unique line that passes through the two

points, as we see in our example. But we can also see this from our matrix, if we

don’t want to determine the classical line on which our two points lie. If one of the

2×2 minors used to calculate the polynomial is singular, then our points are not in

general position to each other. In our example, the determinant in its non-simplified
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form is (2⊕ 3)x⊕ (1⊕ 2)y ⊕ (4⊕ 4)z, which means that the minor1 2

2 3


is singular. If we think about when our matrix

1 2 0

2 3 0

x y z


is singular, we then have either that two of the monomials are equal and minimal,

which gave us the line Z(2x⊕ 1y⊕ 4z). But, it could also have happened the there

was some point so that the (4⊕4)z term was smaller than the x and y terms, which

would have also made the entire determinant vanish tropically. Thus, when one

of the 2 × 2 minors is singular, the line that passes through the two points is not

unique.

Example 18. Let us consider the five points p1 = (3, 5, 0), p2 = (7, 3, 0), p3 =

(0,−2, 0), p4 = (−2,−5, 0), and p5 = (−3,−2, 0). We will use the matrix

A =



6 8 10 3 5 0

14 10 6 7 3 0

0 −2 −4 0 −2 0

−4 −7 −10 −2 −5 0

−6 −5 −4 −3 −2 0

x2 xy y2 xz yz z2


to calculate the quadratic polynomial that passes through these five points. We get

as a result

|A|T = 3x2 ⊕ xy ⊕ 3y2 ⊕ xz ⊕ yz ⊕ 3z2.
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Figure 19: Conic Through Five Points

None of the minors are singular, and we do in fact have a unique tropical conic that

passes through these five points, as shown in Figure 19.

Example 19. Let us consider one more example, in the case of a cubic. Let us

start with the nine points p1 = (−2, 0, 0), p2 = (0,−3, 0), p3 = (3, 3, 0), p4 =

(−3, 0, 0), p5 = (0,−2, 0), p6 = (1, 1, 0), p7 = (−2,−2, 0), p8 = (2,−1, 0), and
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p9 = (−1, 2, 0). We now use the matrix

A =



−6 −4 −2 0 −4 −2 0 −2 0 0

0 −3 −6 −9 0 −3 −6 0 −3 0

9 9 9 9 6 6 6 3 3 0

−9 −6 −3 0 −6 −3 0 −3 0 0

0 −2 −4 −6 0 −2 −4 0 −2 0

3 3 3 3 2 2 2 1 1 0

−6 −6 −6 −6 −4 −4 −4 −2 −2 0

6 3 0 −3 4 1 −2 2 −1 0

−3 0 3 6 −2 1 4 −1 2 0

x3 x2y xy2 y3 x2z xyz y2z xz2 yz2 z3


to find the cubic polynomial that passes through the given nine points. From this

we get

|A|T = (x, y, z) = 5x3⊕ 2x2y⊕ 2xy2⊕ 5y3⊕ 2x2z⊕ xyz⊕ 2y2z⊕ 1xz2⊕ 1yz2⊕ 4z3.

In Figure 20 we see this cubic plane curve, passing through the nine points, as well

as three other cubic curves that also pass through the nine points.

In turns out in this example that each of the 9 × 9 minors which give the

coefficients for |A|T are in fact singular. This implies that we can evaluate the final

row of A at any point in the plane, and still have a singular matrix. Thus for each

point in the plane, there is a cubic that passes through that point, and the nine

given points.

These examples leads us to the following lemma about uniqueness of the poly-

nomial and curve passing through a given number of points.
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Figure 20: Cubics Through Nine Points
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Lemma 39. Let A be the matrix used in Corollary 38 to determine the polynomial

of degree n through N =
n(n+ 3)

2
points. If all of the minors calculated when ex-

panding around the bottom row are non-singular, then the polynomial and associated

curve through the N points is unique, call it PC.

Proof. Suppose that all of the minors are non-singular. Then no coefficient of PC

vanishes tropically on its own. So, each point of the curve through our points must

be attained by two distinct monomials. Suppose that there is another polynomial

B whose corner locus contains the given points, but whose corner locus is not equal

to that of PC. Then, there is a point p ∈ B such that p 6∈ PC. But, then the point p

also makes satisfies the condition that if p is substituted into the last row of M , then

the determinant of M vanishes tropically. But, if that is the case, then we know

that p ∈ PC, since PC is the set of all points that make that determinant vanish

tropically. But, this is a contradiction, so there is no other B, and the polynomial

is unique.
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5 Complete Tropical Bézout’s Theorem

Our goal in this chapter is to prove a complete version of a tropical Bézout’s theorem,

as stated below.

Theorem 51. Let Z(f) and Z(g) be two tropical projective plane curves of degree

d and e respectively. Then Z(f) stably intersects Z(g) in d · e points, counting

multiplicity.

We will show that the number of points of intersection of two curves in general

position to each other is d·e, and then we will generalize this to curves in any relative

position to each other. We will also prove that the number of intersection points is

correct for two curves where at least one of them is a curve of full support, and then

extend that to general curves, using the above to help us count the multiplicity of

the points of intersection at infinite distance.

To prove the tropical version of Bézout’s Theorem, we will use a tropical resul-

tant, which we will define and discuss it in the next section. We will then discuss

how we define intersection multiplicity using the resultant for several cases. In Sec-

tion 5.6 we will prove the complete Tropical Bézout’s Theorem. Finally, we will

discuss some other results relating to the resultant and how they relate to tropical

Bézout’s theorem.

5.1 Tropical Resultants

Definition 28. Let f(x, y, z) and g(x, y, z) be homogeneous tropical polynomials

of degree d and e respectively. To form the tropical Sylvester matrix of f and g with

respect to z, we write f and g as polynomials in z with coefficients in Q〈x, y〉. Thus

they can be written as f(x, y, z) = f0(x, y)z
d ⊕ f1(x, y)z

d−1 ⊕ · · · ⊕ fd−1(x, y)z ⊕
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fd(x, y) and g(x, y, z) = g0(x, y)z
e⊕ g1(x, y)z

e−1⊕· · ·⊕ ge−1(x, y)z⊕ ge(x, y), where

fi, gj ∈ Q〈x〉. It is possible that either of f0 or g0 is infinite. Let fd′(x, y) be the

coefficient of the highest degree term of f which is not infinite, while thinking of f

as a polynomial in z. Similarly let ge′(x, y) be the coefficient of the highest degree

term of g, while thought of as a polynomial in z, that is not infinite. That is to say,

f(x, y, z) = fd′z
d−d′⊕fd′+1z

d−(d′+1)⊕· · ·⊕fd−1z⊕fd. Let m = d−d′ and n = e−e′.

The tropical Sylvester matrix Mf,g,z of f and g with respect to z is an (m +

n)× (n+m) matrix of the form

Mf,g,z =



fd′ fd′+1 · · · fd ∞ ∞ ∞ · · · ∞

∞ fd′ fd′+1 · · · fd ∞ ∞ · · · ∞

∞ ∞ fd′ fd′+1 · · · fd ∞ · · · ∞
. . . . . . . . .

. . . . . . . . .

∞ ∞ ∞ · · · ∞ fd′ fd′+1 · · · fd

ge′ ge′+1 · · · ge ∞ ∞ ∞ · · · ∞

∞ ge′ ge′+1 · · · ge ∞ ∞ · · · ∞

∞ ∞ ge′ ge′+1 · · · ge ∞ · · · ∞
. . . . . . . . .

. . . . . . . . .

∞ ∞ ∞ · · · ∞ ge′ ge′+1 · · · ge


where the upper block of the matrix (B1) has n rows and the lower block (B2) has

m rows.

Definition 29. Let f(x, y, z), g(x, y, z) be homogeneous polynomials in Q〈x, y, z〉.

The tropical resultant Rf,g,z of f and g with respect to z is defined to be the tropical
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determinant of the of Mf,g,z.

We note that Rf,g,x and Rf,g,y, the tropical resultants of f and g with respect

to x and y, can be defined in a similar manner, where we for the tropical Sylvester

matrix by thinking of f and g as polynomials in x and y respectively.

Lemma 40. Let f(x, y, z), g(x, y, z) be homogeneous polynomials of degree d and

e respectively such that (∞,∞, 0) 6∈ Z(f) ∩ Z(g). Then Rf,g,z is a homogeneous

polynomial in x and y of degree d · e

Proof. We form the Sylvester matrix as described in Definition 28, noting that

since we have assumed that the point (∞,∞, 0) is not in the intersection of the

polynomials, so f0 and g0 cannot both be infinite. Without loss of generality, let

f0 6= ∞ and let ge′(x, y) be the coefficient of the highest degree term of g, while

thought of as a polynomial in z, which is not infinite. Let d = m and e− e′ = n.

Thus, Mf,g,z is and (m+ n)× (m+ n) matrix of the form

Mf,g,z =



f0 f1 · · · fd ∞ ∞ ∞ · · · ∞

∞ f0 f1 · · · fd ∞ ∞ · · · ∞

∞ ∞ f0 f1 · · · fd ∞ · · · ∞
. . . . . . . . .

∞ ∞ ∞ · · · ∞ f0 f1 · · · fd

ge′ ge′+1 · · · ge ∞ ∞ ∞ · · · ∞

∞ ge′ ge′+1 · · · ge ∞ ∞ · · · ∞

∞ ∞ ge′ ge′+1 · · · ge ∞ · · · ∞
. . . . . . . . .

∞ ∞ ∞ · · · ∞ ge′ ge′+1 · · · ge


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where the upper block of the matrix (B1) has n rows and the lower block (B2) has

m rows. In general, let ri,j represent the i, jth entry. Since the entries from g in

Mf,g,z start on the (n+ 1)th row, the terms ge are on the diagonal of Mf,g,z. Thus,

m+n⊙
i=1

ri,i = fn
0 g

m
e

is the term in the resultant that corresponds to the identity permutation in Sm+n.

Since deg f0 = 0 and deg ge = e, this term has degree me = de.

We now show that if
m+n⊙
i=1

ri,σ(i) 6= ∞, then multiplying a permutation σ by

a transposition (ij) leaves the degree of the corresponding term in the resultant

unchanged, if that term doesn’t become ∞. Let rσ−1(i),i be the entry in the ith

column in this term of Rf,g,z and let rσ−1(j),j be that in the jth column, i < j.

If τ = (ij)σ, then rτ−1(j),j = rσ−1(i),j, so deg
(
rτ−1(j),j

)
− deg

(
rσ−1(i),i

)
= j − i.

Likewise, deg
(
rτ−1(i),i

)
− deg

(
rσ−1(j),j

)
= i − j. Thus, the degree of

m+n⊙
i=1

ri,τ(i) =

de+ j − i+ i− j = de.

Thus, Rf,g,z is a homogenous polynomial in x and y of degree d · e.

It has been shown independently by [8] and [11] that any polynomial in Q〈x〉

has a unique factorization into linear factors. Since Rf,g,z is the homogenization

of such a polynomial, it has a unique factorization into linear factors of the form

ax⊕ by.

We note that if (0,∞,∞) 6∈ Z(f) ∩ Z(g), then Rf,g,x is a homogeneous poly-

nomial of degree d · e in y and z, and thus has a unique factorization into linear

factors of the form by ⊕ cz. Similarly, if (∞, 0,∞) 6∈ Z(f) ∩ Z(g) then Rf,g,y is a

homogeneous polynomial of degree d ·e in x and z, and it has a unique factorization

in to linear factors of the form ax⊕ cz.
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Lemma 41. let f(x, y, z) and g(x, y, z) be homogeneous tropical polynomials. Then

Rf,g,z(pi,0, pi,1) vanishes tropically for every pi = (pi,0, pi,1, pi,2) ∈ Z(f) ∩ Z(g).

Proof. Let pi = (pi,0, pi,1, pi,2) ∈ Z(f) ∩ Z(g). If Mf,g,z is evaluated at (x, y) =

(pi,0, pi,1) then every row attains its minimum twice. In other words, if c1, c2, . . . , cn+m

are the column vectors of Mf,g,z(pi), then c1 ⊕ c2 ⊕ · · · ⊕ cn+m vanishes tropically.

By Theorem 33 we get that Rf,g,z(pi) vanishes tropically as well. So the point

(pi,0, pi,1, pi,2) is contained in Z(aix ⊕ biy) for some factor aix ⊕ biy of Rf,g,z. This

shows there exists some constant α ∈ Q such that

aix⊕ biy = α(pi,1x⊕ pi,0y). (2)

Lemma 42. Let f and g be homogeneous polynomials in Q〈x, y〉. Then f and g

have a common root if and only if Rf,g,y(p) vanishes tropically for all p ∈ Q.

Proof. Suppose f and g have a common root. Using the Fundamental Theorem of

Tropical Algebra, [8], f and g have deg f = m and deg g = n roots, respectively.

Let a1, a2, . . . , ar be the roots of f that are not roots of g and let b1, b2, . . . , bs be the

roots of g that aren’t roots of f . Then r < m and s < n since f and g have a root

in common. Also, let fm and gn be the leading coefficients of f and g respectively.

Define ψ = gn(x⊕ b1)(x⊕ b2) · · · (x⊕ bs) and ϕ = fm(x⊕a1)(x⊕a2) · · · (x⊕ar).

Then ψf = ϕg, where we note that their least coefficient forms are formally equal

as well. Write ψ and ϕ in least coefficient forms as

µ0 ⊕ µ1x⊕ · · · ⊕ µsx
s and λ0 ⊕ λ1x⊕ · · · ⊕ λrx

r.

Also, define µj = ∞ for j > s and λj = ∞ for j > r. One may form the Sylvester
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matrix of f and g in the same way as above. Let ri be the ith row of Mf,g,y. Then

µ0x
0r1 ⊕ µ1x

1r2 ⊕ · · · ⊕ µn−1x
n−1rn = λ0x

0rn+1 ⊕ λ1x
1rn+2 ⊕ · · · ⊕ λm−1x

m−1rn+m,

because each entry si in the sum is the term of degree i− 1 in ψf on the left hand

side and ϕh on the right hand side. So for any x ∈ Q,

µ0x
0r1⊕µ1x

1r2⊕· · ·⊕µn−1x
n−1rn⊕λ0x

0rn+1⊕λ1x
1rn+2⊕· · ·⊕λm−1x

m−1rn+m (3)

vanishes tropically. Thus, by Theorem 33, Rf,g,y always vanishes tropically.

Conversely, by Theorem 33, if Rf,g,z(p) vanishes tropically for all p ∈ Q, then

there exist µ0, . . . , µn−1 and λ0, . . . , λm−1 ∈ Q〈x〉 such that (3) is satisfied. In order

for this to happen, we see that the ratio
µ0

λ0

must be in Q, since f0, g0 ∈ Q. Thus,

we might as well have µ0, λ0 ∈ Q. In fact, in order for each entry of the sum to have

the minimum attained twice for every x, each term in the sum must have the same

degree of x. And, as the degree increases by one in each entry of the first row, the

degree of the µi and λj must increase in a corresponding way. We thus note that

the highest degree a µi may have is n− 1 and the highest degree a λj may have is

m− 1 Defining ψ and ϕ by ψ = µ0 ⊕ · · · ⊕ µn−1 and ϕ = λ0 ⊕ · · · ⊕ λm−1, this says

that ψf ⊕ ϕg vanishes tropically for all x, because their corresponding coefficients

match up. But since this is true, they are functionally equivalent and must have

the same roots. But degψ < n = deg g and degϕ < m = deg f . So it must be that

f and g share at least one root.

Lemma 43. If (x0, y0) ∈ Z(Rf,g,z), and neither x0 6= ∞ nor y0 6= ∞, then there is

some q ∈ Q such that (x, y, q) ∈ Z(F ) ∩ Z(G).

Proof. Note that, since x and y are not ∞, we have ge′(x, y) 6= ∞. Of course, we
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have assumed already that f0 is a constant in Q. So

f ′ := f0(x0, y0)z
m ⊕ f1(x0, y0)z

m−1w ⊕ · · · ⊕ fd(x0, y0)w
m−d ∈ Q〈z, w〉

has degree m and

g′ := ge′(x0, y0)z
n ⊕ ge′+1(x0, y0)z

n−1w ⊕ · · · ⊕ ge(x0, y0)w
n−e ∈ Q〈z, w〉

has degree n. By hypothesis, (x0, y0) ∈ Z(Rf,g,z). This means that Rf,g,z(x0, y0)

vanishes tropically. By a similar argument as given above, Rf ′,g′,z is a homogeneous

polynomial, but it is only in one variable. Thus, Rf ′,g′,z is only one term, and

Rf,g,z(x0, y0) is its coefficient. Thus Rf ′,g′,z vanishes tropically for all z. By Lemma

42, f ′ and g′ have a common root q ∈ Q.

We see from Lemma 43 that the resultants tells us lines in TP2 that contain

points of intersection. For example, since Rf,g,z is a homogenous polynomial in x

and y only, then its corner locus, Z(Rf,g,z) is a collection of classical lines of slope one

in TP2, which all intersection in the (∞,∞, 0) corner of the projective plane model.

For each factor of Rf,g,z there is only line in Z(Rf,g,z), which contains one point of

intersection of Z(f) and Z(g). If a factor is repeated (has multiplicity greater than

one) then the corresponding line has weight greater than one in Z(Rf,g,z). This

means that there are multiple points of intersection on this line. These points of

intersection could all be the same point, yielding a point of intersection multiplicity

greater than one, or there could be several different points on the line, some of

intersection multiplicity one and others with greater intersection multiplicity. But,

counting multiplicity, there are the same number of points of intersection on that

line as the multiplicity of the factor of Rf,g,z. Similarly, Rf,g,x tells us the classical

lines of infinite slope that the points of intersection lie on, and Rf,g,y tell us the

classical lines of slope zero that the intersections lie on.
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5.2 Transverse Points of Intersection

We will now give an algorithm for finding the transverse points of intersection using

all Rf,g,x, Rf,g,y, and Rf,g,z.

Algorithm 1. Let f(x, y, z) and g(x, y, z) be to homogenous polynomials of degree

d and e respectively, such that Z(f) is in general position with respect to Z(g), so

that all of their intersection points are transverse.

First we will find all three resultants, Rf,g,x, Rf,g,y, and Rf,g,z, and factor them

into linear factors. These factors tell us which lines the points on intersection lie

on. If P is a point of intersection of Z(f) and Z(g) then it will satisfy all three

resultants, and will therefore be a point where all three resultants intersect. We

find all points of intersection of all three resultants on a given line. This is easily

done using classical techniques, since they are all just classical lines.

Starting with any factor of multiplicity one of any of the resultants, we look at

the points of intersection of all three resultants that lie on its corresponding line.

Since this line has weight one in the resultant, there is only one point of intersection

of all three curves on this line that is also a point of intersection of Z(f) and Z(g),

so all but one of the points will be disregarded. Doing this with all the factors of

multiplicity one, we will find all such points of intersection multiplicity one. Once

we have found all of these points of intersection multiplicity one, we can reduce

our resultants by removing the corresponding factor of multiplicity one from each

resultant for each line on which we found a point of intersection multiplicity one.

We now consider the reduced resultants. If any of them now have factors with

multiplicity one, then we proceed as above to find the points of intersection multi-

plicity one that correspond to them. If they do not, then we look at the factors of
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multiplicity two. In order for a point of intersection to have intersection multiplicity

two then it must be a point where all three resultants intersect, each from a factor

of multiplicity two or greater. So, we start with a factor of multiplicity two in our

reduced resultant and find all the points where the remaining reduced resultants

both intersect that line. If there is only one point of intersection that is also on both

of the original curves, then this point of intersection has intersection multiplicity 2.

If there are two points of intersection on this line that are on both curves, then they

must each have intersection multiplicity one. In either case we can again reduce

our resultants by removing factors with the appropriate multiplicity for each of the

points.

We now repeat this step for any factors of the again reduced resultants which

have multiplicity one or two. Once we have found all such points of intersection

multiplicity one or two, we reduce our resultants and then move on to the factors

of multiplicity three. Again, we find all the points of intersection of each of the

resultants, and determine whether or not those points are on the original curves. If

there is one such point it has intersection multiplicity three. If there are three such

points then they have intersection multiplicity one each. If there are two such points

then one has intersection multiplicity one and the other has intersection multiplicity

two. Pick one of the two points and look at the two lines in the other directions that

contain it. These lines must both have at least one more point of intersection, since

both of these lines have weight three. If either of these lines has two more points

of intersection, then all the points on that line must have intersection multiplicity

one, so the original point in consideration does as well. If both of the lines just

have one more point of intersection, then we look at the lines that pass through

points and determine if those points are guaranteed to have intersection multiplicity
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one. If not, then we look at the lines through the additional points. Since there

are only a finite number of points of intersection, and each line has a finite weight,

this process will eventually terminate, allowing us to determine which point has

intersection multiplicity one, and which has multiplicity two.

We then reduce our resultants again, and proceed as above starting with the

lowest multiplicity of a factor and reducing as we determine points of intersection.

Again, as there are only a finite number of points of intersection, this will terminate

and we will have found all the points of intersection with multiplicity.

Lemma 44. Let f(x, y, z) and g(x, y, z) be homogeneous polynomials of degree d

and e respectively. The transverse points of intersection of Z(f)∩Z(g) as described

in Section 3.4 are precisely those accounted for by the resultants.

Proof. By Lemma 41 P = (p0, p1, p2) ∈ TP2 is in Z(f) ∩ Z(g)m then all three

resultants vanish tropically at P . We can use Lemma 43 and Algorithm 1 to use

the resultants to find the points of intersection.

Example 20. Let f(x, y, z) = ax ⊕ by ⊕ cz and g(x, y, z) = rx ⊕ sy ⊕ tz. The

Sylvester matrices for these two polynomials are

Mf,g,x =

a by ⊕ cz

r sy ⊕ tz

 Mf,g,y =

b ax⊕ cz

s rx⊕ tz

 Mf,g,z =

c ax⊕ by

t rx⊕ sy

 ,

from which we get

Rf,g,x = (as⊕ br)y ⊕ (at⊕ cr)z

Rf,g,y = (br ⊕ as)x⊕ (bt⊕ cs)z

Rf,g,z = (cr ⊕ at)x⊕ (cs⊕ bt)y.
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Thus the point of intersection is a point that satisfies the three lines from the

resultants. From Rf,g,x we know that the point must have the form (x, at⊕ cr, as⊕

br), from Rf,g,y we know if must be of the form (bt⊕ cs, y, br⊕ as), and from Rf,g,z

we see it must have the form (cs⊕ bt, cr⊕at, z). The point (bt⊕ cs, at⊕ cr, as⊕ br)

satisfies all of these conditions and is the point of intersection.

Alternatively, if we were to use Cramer’s Rule instead of the resultant, we would

find the determinant of the matrix

A =


a b c

r s t

x y z


is (bt⊕cs)x⊕ (at⊕cr)y⊕ (as⊕br)z, and so the point of intersection is (bt⊕cs, at⊕

cr, as⊕ br). So we see that they agree.

Example 21. Let f(x, y, z) = x⊕ 2y⊕ 4z and g(x, y, z) = 6x2⊕ 2xy⊕ 6y2⊕ 1xz⊕

1yz ⊕ 4z2. To compute Rf,g,x, we will find the determinant of the matrix

Mf,g,x =


0 2y ⊕ 4z ∞

∞ 0 2y ⊕ 4z

6 2y ⊕ 1z 6y2 ⊕ 1yz ⊕ 4z2

 ,

and we see that Rf,g,x = 4y2 ⊕ 1yz ⊕ 4z2 = 4(y ⊕ −3z)(y ⊕ 3z). Thus, Z(f) and

Z(g) intersect somewhere on the classical line y = −3 and somewhere in the line

y = 3. Since both of these roots have multiplicity one, we know that the points

of intersection are also both of intersection multiplicity one. But, we can consider

the other resultants as well to verify our result. We get Rf,g,y = 4x2 ⊕ 3xz ⊕ 7z2 =

4(x⊕−1z)(x⊕ 4z), so we have points of intersection on the classical lines x = −1

and x = 4. Finally, Rf,g,z = 4x2 ⊕ 5xy ⊕ 7y2 = 4(x⊕ 1y)(x⊕ 2y), so the points of
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intersection are on the classical lines y = x−1 and y = x−2. In Figure 21 we see the

two curves graphed together so we can see their points of intersection, the dual graph

of the curve Z(fg), the two curves graphed with each of the resultants individually,

all three resultants, and the two curves with all three resultants. We notice that the

points of intersection are where factors of all three resultants intersect each other.

Normally, when the curves have transverse intersection, it is very straightforward

to find and count the intersections with the appropriate multiplicity. When the

points of intersection are not transverse, we will use the same algorithm, but it will

be slightly more involved.

5.3 Stable Points of Intersection

Lemma 45. Let f(x, y, z) and g(x, y, z) be two homogeneous polynomials of degree

d and e respectively. The stable intersection points of Z(f) and Z(g), as defined in

Definition 20, are the same as the points of intersection found by the resultants.

Proof. Assume that Z(f) and Z(g) are not in general position to each other, and

suppose that to put them in general position to each other we shift f(x, y, z) to

f(αx, βy, z) = f̃(x, y, z). Now by Lemma 40 Rf̃ ,g,z is a homogeneous polynomial

of degree d · e in x and y, but its coefficients now are polynomials in α and β.

More specifically, the coefficient of the xiyd·e−i term in Rf.g.z is some sum of tropical

rational numbers, c1⊕c2⊕· · ·⊕ck, and the coefficient of xiyd·e−i inRf,g,z is αr1βs1c1⊕

αr2βs2c2 ⊕ · · · ⊕ αrkβskck, for ri, sj non-negative integers. Now, it is not possible to

determine in general what power of α and β will be in each term, as it does depend

on the original polynomials, but the ci will be the same for both resultants. But

Rf̃ ,g,z gives the points of intersection of the translation of Z(f) and the original

99



(a) Z(f) ∪ Z(g) (b) ∆fg

(c) Z(f) ∪ Z(g) ∪Rf,g,x (d) Z(f) ∪ Z(g) ∪Rf,g,y (e) Z(f) ∪ Z(g) ∪Rf,g,z
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(f) Rf,g,x ∪Rf,g,y ∪Rf,g,z (g) Z(f)∪Z(g)∪Rf,g,x ∪

Rf,g,y ∪Rf,g,z

Figure 21: Transverse Intersections
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curve Z(g). So, if we now take the limit of this resultant as α, β → 0 then we

will have the stable intersections, since both the translations and the resultants

will vary continuously. But, if we consider Rf̃ ,g,z, and look at the limit of it as

α, β → 0, then we see that we get Rf,g,z the resultant of the two original curves,

because when α and β approach 0, we have our original coefficient. Explicitly,

lim
α,β→0

αr1βs1c1 ⊕ αr2βs2c2 ⊕ · · · ⊕ αrkβskck = c1 ⊕ c2 ⊕ · · · ⊕ ck. Thus the resultant

gives us the stable intersection as defined in Definition 20.

Example 22. Let f(x, y, z) = ax ⊕ by ⊕ cz and g(x, y, z) = rx ⊕ by ⊕ cz. This

means that the two curves are not in general position to each other because f has

its vertex at (c− a, c− b, 0) and g has its vertex at (c− r, c− b, 0), so they overlap

on a horizontal ray. To find the stable point of intersection, we first translate one

of the curves so that they no longer overlap. Since they share a horizontal ray, we

can simply shift one of the two curves, say g, up or down, using the transformation

(x, y, z) 7→ (x, βy, z). Now our polynomials become f(x, y, z) = ax ⊕ by ⊕ cz and

gβ(x, y, z) = ra ⊕ bβy ⊕ cz. For most β 6= 0 these two curves are now in general

position, so we may assume we picked such a β. Now we get

Mf,gβ ,x =

a by ⊕ cz

r bβy ⊕ cz

 Mf,gβ ,y =

 b ax⊕ cz

bβ rx⊕ cz

 Mf,gβ ,z =

c ax⊕ by

c rx⊕ bβy

 ,
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from which we get

Rf,gβ ,x = (abβ ⊕ br)y ⊕ (ac⊕ cr)z

= b(aβ ⊕ r)y ⊕ c(a⊕ r)z

Rf,gβ ,y = (br ⊕ abβ)x⊕ (bc⊕ cbβ)z

= b(r ⊕ aβ)x⊕ bc(0⊕ β)z

Rf,gβ ,z = (cr ⊕ ac)x⊕ (cbβ ⊕ bc)y

= c(r ⊕ a)x⊕ bc(β ⊕ 0).

We note that here we are in the same situation as we were above, since our curves

are in general position, and we get the desired point of intersection, which is at

(bcβ ⊕ bc, ac⊕ cr, abβ ⊕ br). But we really want to know what happens as we allow

β to approach 0. Clearly, when β = 0 we have our original curves, which are not

in general position to each other. But, as β approaches 0, we have a continuous

translation of g, so the point of intersection moves continuously. Also we can find

the limits of the coefficients of the resultants as β approaches 0. When we let β

approach 0 in our resultants we get

lim
β→0

Rf,gβ ,x = (ab+ br)y ⊕ (ac⊕ cr)z

lim
β→0

Rf,gβ ,y = (br ⊕ ab)x⊕ (bc⊕ cb)z

lim
β→0

Rf,gβ ,z = (cr ⊕ ac)x⊕ (cb⊕ bc)y.

But these are the same resultants we would find if we computed them without

shifting one of the curves.

Now, the limit of our point of intersection as β approaches 0 is (bc ⊕ bc, ac ⊕
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cr,⊕ab ⊕ br), which is also the point of intersection we would get if we used the

limited resultants or the resultants where we didn’t shift one of the curves.

Now, if we look at what happens when we use Cramer’s rule with the shifted

polynomials, and then let β approach 0, we have the same result, since we would

get (bcβ ⊕ bc, ac⊕ cr, abβ ⊕ br) as our point of intersection.

But let’s examine this point a little more.

(bc⊕ bc, ac⊕ cr, ab⊕ br) = (bc, c(a⊕ r), b(a⊕ r))

= (bc� b(a⊕ r), c(a⊕ r)� b(a⊕ r), 0)

= (c� (a⊕ r), c� b, 0)

= (c−min{a, r}, c− b, 0)

But (c−min{a, r}, c− b, 0) is the vertex of f or g, depending on which of them

has a smaller coefficient of x. So, the point of intersection that the resultant gives us

is the same as the point of intersection as the limit of the resultant, and is the vertex

where the two curves begin to share an infinite ray, which is the stable intersection

of the curves as defined earlier.

Example 23. Let f(x, y, z) = x ⊕ 2y ⊕ 6z and g(x, y, z) = 1xy ⊕ yz ⊕ 2z2. This

time we will start with Rf,g,z, since g(x, y, z) has the z2 term, which means that

the corner (∞,∞, 0) could not possibly have any intersection. We get Rf,g,z =

2x2 ⊕ 4xy ⊕ 6y2 = 2(x ⊕ 2y)2. We notice that Rf,g,z has a root of multiplicity

two, which means that either there are two distinct points of intersection with

multiplicity one on the line y = x− 2, or there is one point of intersection on that

line with intersection multiplicity two. We compute Rf,g,x and Rf,g,y to determine

which case we have. Rf,g,x = 3y2 ⊕ yz ⊕ 2z2 = 3(y ⊕ −3z)(y ⊕ 2z) and Rf,g,y =
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1x2 ⊕ xz ⊕ 4z2 = 1(x ⊕ −1z)(x ⊕ 4z). Neither of these have multiple roots, so we

see that there must be two points of intersection on the line y = x − 2, which we

see in Figure 22.

Example 24. Let f(x, y, z) = xy2 ⊕ y2z ⊕ xyz ⊕ yz2 ⊕ 3x2y ⊕ 3x2z ⊕ 3xz2 and

g(x, y, z) = 3x3 ⊕ −3x2y ⊕ −6xyz ⊕ −3xz2 ⊕ −3y3 ⊕ −6y2z ⊕ z3. For our three

resultants we get

Rf,g,x = −3y9 ⊕−6y8z ⊕−6y7z2 ⊕−6y6z3 ⊕−6y5z4

⊕−6y4z5 ⊕−6y3z6 ⊕−3y2z7 ⊕ yz8 ⊕ 6z9

= −3(y ⊕−3z)(y ⊕ z)5(y ⊕ 3z)2(y ⊕ 6z)

Rf,g,y = 3x9 ⊕−3x8z ⊕−6x7z2 ⊕−9x6z3 ⊕−9x4z5

⊕−9x3z6 ⊕−9x2z7 ⊕−9xz8 ⊕−6z9

= (x⊕−6z)(x⊕−3z)2(x⊕ z)5(x⊕ 3z)

Rf,g,z = 9x9 ⊕ 3x8y ⊕ x7y2 ⊕−3x6y3 ⊕−6x5y4 ⊕−9x4y5

⊕−12x3y6 ⊕−12x2y7 ⊕−12xy8 ⊕−9y9

= (x⊕−6y)(x⊕−3y)5(x⊕ y)2(x⊕ 3y).

In Figure 23 we see all the graphs as before, but with the added graph of the

resultants together where the thickness of the lines is determined by the multiplicity

of the root. We notice that each of the resultants has a root of multiplicity 5, which

means that it is possible for there to be one point of intersections multiplicity 5.

However, this can only happen if all three of the lines associated with these roots

intersect in one point, which we see from the graph that they do not. Thus, we

know that there is no point of intersection which has intersection multiplicity five.

This means that each of the points of intersection can have either multiplicity one
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(a) Z(f) ∪ Z(g) (b) ∆fg

(c) Z(f) ∪ Z(g) ∪Rf,g,x (d) Z(f) ∪ Z(g) ∪Rf,g,y (e) Z(f) ∪ Z(g) ∪Rf,g,z

(f) Rf,g,x ∪Rf,g,y ∪Rf,g,z (g) Z(f)∪Z(g)∪Rf,g,x ∪

Rf,g,y ∪Rf,g,z

Figure 22: Counting Intersection Multiplicity for Transverse Intersections
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or two, but nothing else. We look again at the intersections of the three resultants,

and see that there are more points of intersection of the three resultants than there

should be for the two curves, which means that some of the points of intersection of

the resultants are not points of intersection of the two curves. This is normal, since

the resultants are giving you entire lines on which the points of intersection lie. So,

we pick a point of intersection of all three resultants and determine whether or not

it is on both of the original curves. For example, we see in the graph that the point

(−6,−3, 0) is on all three resultant lines (we can also see that this point satisfies all

three resultants by considering the equations), but it is not on the curve Z(g) (the

green curve). Thus, this is not a point of intersection of the two curves. But there

must be a point of intersection multiplicity one on the line x = −6, and it must be

where all three resultants intersect, which means it must be at the point (−6, 0, 0).

But we also know that there is only one point of intersection on the line y = x+ 6,

and this point is, so the other two points on that line are not points of intersection.

And there must be one point of intersection on the line y = 6, and we have ruled

out the point (0, 6, 0), so this point must be (3, 6, 0). But now we know that there

is only one point of intersection on the line x = 3, so the other two points where all

three resultants intersection on that line are not points of intersection. But,there

must be one point of intersection on the line y = x− 3, so it must be at the point

(0,−3, 0). And the line y = −3 can only have one, so that point it is, and the other

point on the line is also not a point of intersection. So, we now how three points

of intersection multiplicity one each, and the resultants all intersect each other in

only three more places, and each of those intersections involves lines of multiplicity

two or five. But remember that no points have intersection multiplicity five, so

they must have intersection multiplicity two for all of the multiplicities to work
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out as needed. Thus the points (0, 0, 0), (0, 3, 0), and (−3, 0, 0) are all points of

intersection multiplicity two. Thus, we have a total of nine points of intersection,

when we count with multiplicity.

5.4 Resultant and Dual Graph Intersection Multiplicities

Recall that the intersection multiplicity for affine intersections was defined in Sec-

tion 3.4 using the dual graph as well. We say in that section that the intersection

multiplicity for transverse intersection was the same as that given by the area in

the dual graph. We will show in this section that the intersection multiplicity given

by the resultants is also the same as that given by the area in the dual graph.

Lemma 46. Let f(x, y, z) and g(x, y, z) be homogenous polynomials of degree d and

e respectively such that Z(f) and Z(g) are in general position to each other. If the

product fg(x, y, z) has a non-contributing term then all three resultants have similar

non-contributing terms.

Proof. Let f(x, y, z) = f0z
d ⊕ f1z

d−1 ⊕ · · · ⊕ fd−1z ⊕ fd and let g(x, y, z) = g0z
e ⊕

g1z
e−1 ⊕ · · · ⊕ ge−1z ⊕ ge. Then fg(x, y, z) = (f0g0)z

d+e ⊕ (f0g1 ⊕ f1g0)z
d⊕e−1 ⊕

(f0g2⊕ f1g1⊕ f2g0)z
d+e−2⊕· · ·⊕ (fd1ge⊕ fdge−1)z⊕ (fdge). If fg(x, y, z) has a non-

contributing term which does not correspond to a non-contributing term of either

f or g, then the corresponding vertex of the lattice is not a vertex in the dual graph

∆fg. This vertex is in the interior of ∆fg, because any non-contributing terms on

the boundary of ∆fg correspond to non-contributing terms of either f or g.

The term that is non-contributing is non-contributing among the terms of the

same degree, when we think of fg as above. That means that f0gk ⊕ f1gk−1⊕ · · · ⊕

fk−1g1 ⊕ fkg0 has a non-contributing term. But Rf,g,z is a polynomial of the form
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(a) Z(f) ∪ Z(g) (b) ∆fg

(c) Z(f) ∪ Z(g) ∪Rf,g,x (d) Z(f) ∪ Z(g) ∪Rf,g,y (e) Z(f) ∪ Z(g) ∪Rf,g,z

(f) Rf,g,x ∪Rf,g,y ∪Rf,g,z (g) Z(f)∪Z(g)∪Rf,g,x ∪

Rf,g,y ∪Rf,g,z

(h) Rf,g,x ∪ Rf,g,y ∪ Rf,g,z

with multiplicity

Figure 23: Counting Intersection Multiplicity for Stable Intersections
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⊕
fσ(0)fσ(1) · · · fσ(e−1)gσ(e) · · · gσ(e+d−1), so it has terms of the form (f0gk⊕f1gk−1⊕

· · ·⊕fk−1g1⊕fkg0)f̃ g̃ where f̃ is some product of fi’s and g̃ is some product of gj’s.

But this means that the same conditions that create a non-contributing term in fg

exist in Rf,g,z, so it must also have a non-contributing term. Rewriting f and g as

polynomial with respect to x and y, the product fg will still have a non-contributing

term, so this same argument applies to Rf,g,x and Rf,g,z, so all three resultants have

non-contributing terms.

If f or g has a non-contributing term, then fg must also have a non-contributing

term. This non-contributing term in non-contributing when compared with certain

terms in the product. But, as shown above, these terms all show up in the resultants

as well, so the term must also be non-contributing all three resultants.

Lemma 47. The intersection multiplicity found by the resultants is the same the

intersection multiplicity as determined by the dual graph as defined in Definition 19.

Proof. We recall from the discussion in Section 3.4 that if the dual graph of the

product has a parallelogram corresponding to a point of intersection which has area

greater than one, then there is a non-contributing term of fg. But then by Also, by

Lemma 46, the resultants all must have non-contributing terms. But, by Lemma 14

we know that if a homogeneous polynomial in two variables has a non-contributing

term, then it has a factor of multiplicity greater than one. So all three resultants

have factors of intersection multiplicity greater than one, which must all intersect

each other in one place, because their non-contributing terms all correspond to each

other. Thus the point of intersection has intersection multiplicity greater than one.

We note that for each increase in area of the dual graph, and addition term becomes

non-contributing, thus it also does in the resultants, so the multiplicities agree.
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In all of the examples that we have given we have included the dual graphs. We

see in all of the cases where the intersections were transverse that the area of the

parallelogram of the dual graph was in fact equal to the intersection multiplicity

found using the resultants.

Example 25. For this example, we take the same curves as in Example 23, only

we shift the line to the left so that the points of intersection move. So, we now

have f(x, y, z) = 6x ⊕ 2y ⊕ 6z, but we sill have g(x, y, z) = 1xy ⊕ yz ⊕ 2z2. We

begin again with the resultant with respect to z and get Rf,g,z = 14x2 ⊕ 10xy +

6y2 = 14(x ⊕ −4y)2. We again look at the other two resultants and get Rf,g,x =

3y2 ⊕ 6yz ⊕ 8z2 ∼ 3y2 ⊕ 11

2
yz ⊕ 8z2 = 3(y ⊕ 5

2
z)2 and Rf,g,y = 7x2 ⊕ 6xz ⊕ 4z2 ∼

7x2 ⊕ 11

2
xz ⊕ 4z2 = 7(x ⊕ 3

2
z)2. So all three of the resultants have double roots,

and we notice in Figure 24 that the three resultants intersect in just one place, as

do the curves. Thus, we do have one point of intersection, with multiplicity two.

As noted in Algorithm 1 that if the resultants have factors of multiplicity greater

than one, that does not mean that there must be a point of intersection of intersec-

tion multiplicity greater than one, it is only a possibility. Example 23 shows such a

situation.

Example 26. Let us look at Example 25 again. We recall that f(x, y, z) = 6x ⊕

2y ⊕ 6z and g(x, y, z) = 1xy ⊕ yz ⊕ 2z2, as shown in Figure 24. The product

fg(x, y, z) = 6x2y ⊕ 6xyz ⊕ 8xz2 ⊕ 2xy2 ⊕ 2y2z ⊕ 4yz2 ⊕ 7xyz ⊕ 6yz2 ⊕ 8z3

= 6x2y ⊕ 2xy2 ⊕ 6xyz ⊕ 2y2z ⊕ 8xz2 ⊕ 4yz2 ⊕ 8z3

∼ 6x2y ⊕ 2xy2 ⊕ 6xyz ⊕ 2y2z ⊕ 8xz2 ⊕ 4yz2 ⊕ 8z3.

We notice in the last line that we dropped the 6xyz term. This is because
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(a) Z(f) ∪ Z(g) (b) ∆fg

(c) Z(f) ∪ Z(g) ∪Rf,g,x (d) Z(f) ∪ Z(g) ∪Rf,g,y (e) Z(f) ∪ Z(g) ∪Rf,g,z

(f) Rf,g,x ∪Rf,g,y ∪Rf,g,z (g) Z(f)∪Z(g)∪Rf,g,x ∪

Rf,g,y ∪Rf,g,z

Figure 24: Transverse Intersection of Intersection Multiplicity Two
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6xzy never attains the minimum by itself, so it is not contributing. This is the

reason that the corresponding vertex does not show up in the dual graph. Thus,

the parallelogram that corresponds to the intersection of the two curves has area

two.

Now let’s consider the resultants again. We have

Rf,g,z = 14x2 ⊕ 10xy + 6y2

∼ 14x2 ⊕ 6y2

Rf,g,x = 3y2 ⊕ 6yz ⊕ 8z2

∼ 3y2 ⊕ 8z2

Rf,g,y = 7x2 ⊕ 6xz ⊕ 4z2

∼ 7x2 ⊕ 4z2

since none of the mixed terms are ever contributing. But the fact that they are non-

contributing means that the resultants all have double roots. Because when we find

the resultant we are finding products of terms of a given degree of the two original

polynomials, the behavior of the product of the two polynomials manifests itself in

this way. Thus, whenever the resultants all have a root of multiplicity greater than

one at the same point, it corresponds to a certain term not contributing, which

term has a counterpart in the product of the two functions which also does not

contribute.

5.5 Points of Intersection at Infinite Distance

Again recall that Rf,g,z gives us lines of classical slope one in the plane that tell

us where our points of intersection are. These lines of slope one in the plane all
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pass through the vertex (∞,∞, 0), as noted in Table 2 and intersecting the edge

z = ∞ of our model of TP2. This is one of the reasons that we required that the

point (∞,∞, 0) not be in the intersection. Rf,g,z does not (∞,∞, 0) as a point

of intersection because all of lines that have a point of intersection pass through

this point. However, the other resultants do recognize (∞,∞, 0) as a point of

intersection, because only one line of slope zero and only one line of infinite slope

pass through (∞,∞, 0). Similarly, Rf,g,x gives lines through the point (0,∞,∞)

and intersecting the edge x = ∞ on which there are points of intersection, but fails

to recognize the point (0,∞,∞) and Rf,g,y gives lines through the point (∞, 0,∞)

and intersecting the edge y = ∞, while ignoring the point (∞, 0,∞). Because this

the case, we will need to use at least two resultants to appropriate determine the

intersection multiplicity at ∞ if the two curves intersect in all three corners.

Lemma 48. Let f(x, y, z) and g(x, y, z) be two homogeneous polynomials, of degree

d and e respectively, such that Z(f) ∩ Z(g) contains the point (∞,∞, 0), but does

not (0,∞,∞) and (∞, 0,∞). Then deg(Rf,g,z) < d · e, and both Rf,g,x and Rf,g,y

have infinite roots of multiplicity d · e− deg(Rf,g,z).

Proof. To satisfy the given conditions, f cannot have the term zd and g can not

have the term ze, but at least one of f and g must have the pure in x term and the

pure in y term. But, since f0 and g0 are both ∞ there are not e rows in the lower

block of Mf,g,z, which means that each term of the resultant does not have degree

d · e. However, since the curves do not both pass through the points (0,∞,∞)

and (∞, 0,∞), then Rf,g,x and Rf,g,y are still both of degree d · e, so there are

still d · e points of intersection. However, Rf,g,x will not have a term of the form

zd·e, because there is no zd term in f and no ze term in g to contribute to this
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term in the resultant. It will have, on the other hand the yd·e term, because those

terms are present. Thus we will be able to factor yk out of Rf,g,x for some k. But,

yk = (y ⊕ ∞z)k, so we have k factors that vanish tropically only when y = ∞.

Similarly, Rf,g,y will not have the zd·e term, but it will have the xd·e term, so we can

factor xk out and have (x⊕∞z)k, giving k factors that vanish tropically only when

x = ∞. This k must be the same in both cases, since Rf,g,x and Rf,g,y must have

the same number of finite points of intersection. But Rf,g,z also sees those same

finite points of intersection, so Rf,g,z must have degree d · e− k.

Definition 30. Let f(x, y, z) and g(x, y, z) be two homogeneous polynomials, of

degree d and e respectively, such that Z(f)∩Z(g) contains the point (∞,∞, 0), but

does not (0,∞,∞) and (∞, 0,∞). We define the infinite intersection multiplicity

to be the number k = d · e− deg(Rf,g,z) of Lemma 48.

Definition 31. Let f(x, y, z) and g(x, y, z) be two homogeneous polynomials, of

degree d and e respectively, such that Z(f) ∩ Z(g) contains the point (∞,∞, 0),

but does not (0,∞,∞) and (∞, 0,∞). Let Z(f̃) and Z(g̃) be the curves of full

support the agree with f and g respectively in some bounded region, as explained

in Corollary 23. The limit of the points of intersection of Z(f̃) and Z(g̃) as the

coefficients of the additional terms increase without bound are called the infinite

stable intersections.

Lemma 49. The points of stable infinite intersection as defined Definition 31 are

the same as the infinite points of intersection found by the resultants in Lemma 48

as defined in Definition 30.

Proof. By Corollary 23, we know we can find f̃ and g̃ so that the bounded region

contains all of the finite points of intersection of the Z(f) and Z(g) and so that

114



the new points of intersection are transverse. Now when we find the resultants, all

three of them are of degree d · e, and their factors all give points of intersection at

finite distance. We note that the original points of intersection at finite distance

have not changed, since they were preserved when we found our new curves. Now,

f̃ = f ⊕ h1 and g̃ = g ⊕ h2, where h1 and h2 only contain terms that were not

present in f and g, but which make f̃ and g̃ into full support polynomials. We

note that we have not replaced any of the finite coefficients of f or g in f̃ and g̃.

The coefficients of the terms in h1 and h2 can be increased without disturbing the

original points of intersections of f and g, and without changing the combinatorial

type of the curves f̃ and g̃. Let us start with the the zd term f̃ and the ze term of g̃.

Since the coefficients of these two terms are finite, we have d ·e points of intersection

at finite distance by Lemma 40. As we allow these two coefficients to increase, we

still have those mn intersections at finite distance, but the x and y coordinates of at

least one of the points of intersection are getting larger. When we allow these two

coefficients to become infinite, then we no longer have d · e intersections at finite

distance, because this point now has infinite x and y coordinates. However, the

total degree of Rf̃ ,g̃,z has not changed. But, some of the finite factors have become

infinite factors, accounting for the one point of intersection that no longer has finite

coordinates. As we allow all of the additional coefficients of f̃ and g̃ to become

infinite, we see that all k of the points that we picked up with the full support

curves, have in fact moved back to the corner (∞,∞, 0), and all of d · e points of

intersection are accounted for, and the intersection multiplicity matches that given

in Lemma 48.

We note that in the argument given in Lemma 49, we deformed both curves to
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Resultant Factor in Resultant Corner of Intersection

Rf,g,z xk (∞, y,∞)

yk (x,∞,∞)

Rf,g,y xk (∞,∞, z)

zk (x,∞,∞)

Rf,g,x yk (∞,∞, z)

zk (∞, y,∞)

Table 3: Points of Intersection at Infinite Distance

be full support, but it is only necessary to deform one of the two curves to move

the points of intersection to finite points.

If the two curves intersect in one of the other corners, then the same arguments

as given in Lemma 48 and Lemma 49 can be used to determine the intersection

multiplicity at those corners. The results of these arguments are shown in Table 3

Example 27. Let f(x, y, z) = 2y⊕ 5z and g(x, y, z) = 1xy⊕ yz⊕ 2z2, as shown in

Figure 25. We notice first that neither of these equations have a term that is pure

in x, which is to say of the form αxn for some non-negative integer n. So, the three

resultants for f and g are

Rf,g,x = 2y ⊕ 5z

= 2(y ⊕ 3z)
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Rf,g,y = 4z2 ⊕ 6xz

= 4z(z ⊕ 2x)

= 4(z ⊕∞x)(z ⊕ 2x)

Rf,g,z = 6y2 ⊕ 11xy

= 6y(y ⊕ 5x)

= 6(y ⊕∞x)(y ⊕ 5x).

From Rf,g,x we see that f and g only have on intersection at finite distance.

However, from Rf,g,y we see that there is a point of intersection when z = ∞

and from Rf,g,z we see there is a point of intersection when y = ∞. If we look

at the f(x,∞, z) we see that we have 2 � ∞ ⊕ 5z, and the only way that the

two monomials can attain the minimum together is if z = ∞ as well. Similarly,

g(x,∞, z) = 1x � ∞ ⊕ ∞ � z ⊕ 2z2, so again for two monomials to attain the

minimum together, z = ∞. If we consider instead f(x, y,∞)2y ⊕ 5 � ∞ and

g(x, y,∞) = 1xy⊕y�∞⊕2�∞2, we see that the common point of the two curves

is when y = ∞ as well. So, we have a point of intersection at (0,∞,∞). We note

that the resultant with respect to x does not display the infinite intersection with

a factor, but rather with the lack there of.

Suppose we deform the curve f , as explained in Lemma 22 and Corollary 23.

Then we get f̃(x, y, z) = αx⊕ 2y ⊕ 5z, where α > 7, as shown in Figure 26. With

this choice of α, the finite point of intersection of f and g is not changed, but now
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(a) Z(f) ∪ Z(g) (b) ∆fg

(c) Z(f) ∪ Z(g) ∪Rf,g,x (d) Z(f) ∪ Z(g) ∪Rf,g,y (e) Z(f) ∪ Z(g) ∪Rf,g,z

(f) Rf,g,x ∪Rf,g,y ∪Rf,g,z (g) Z(f)∪Z(g)∪Rf,g,x ∪

Rf,g,y ∪Rf,g,z

Figure 25: Intersections at Finite and Infinite Distance
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f̃ has its pure in x term, so our resultants will change to

Rf̃ ,g,x = 3y2 ⊕ (α⊕ 6)yz ⊕ 2αz2

= 3y2 ⊕ 6yz ⊕ 2αz2

= 3(y ⊕ 3z)(y ⊕ (2α� 6)z)

Rf̃ ,g,y = 4z2 ⊕ (α⊕ 6)xz ⊕ 1αx2

= 4z2 ⊕ 6xz ⊕ 1αx2

= 4(z ⊕ 2x)(z ⊕ (1α� 6)x)

Rf̃ ,g,z = 6y2 ⊕ (11⊕ 4α⊕ 5α)xy ⊕ 2α2x2

= 6y2 ⊕ 11xy ⊕ 2α2x2

= 6(y ⊕ 5x)(y ⊕ (2α2 � 11)x).

From Rf̃ ,g,x we see that our points of intersection must be of the form (x, 3, 0)

and (x, α − 4, 0). From Rf̃ ,g,y we get the points (−2, y, 0) and (0, y, α − 50. And

from Rf̃ ,g,z we get (0, 5, z) and (0, 2α − 9, z). From this we see that our points of

intersection must be (−2, 3, 0) and (0, 2α − 9, α − 5). Now we will let α approach

∞ so that our curve returns to it’s normal self, and we see that all of the resultants

lose a pure term, and so they all lose one of the finite roots (the new finite root),

and those roots are replaced by infinite when the limit has been completed. And

our points of intersection become (−2, 3, 0) and (0∞,∞), so we had the correct

points of intersection above.

Lemma 50. Suppose that Z(f) and Z(g) are topical projective plane curves, of de-

gree d and e respectively, that intersect in each of the corners (∞,∞, 0), (∞, 0,∞),

and (0,∞,∞). There there are d · e points of intersection of Z(f) and Z(g) in TP2

counting multiplicity.
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(a) Z(f) ∪ Z(g) (b) ∆fg

(c) Z(f) ∪ Z(g) ∪Rf,g,x (d) Z(f) ∪ Z(g) ∪Rf,g,y (e) Z(f) ∪ Z(g) ∪Rf,g,z

(f) Rf,g,x ∪Rf,g,y ∪Rf,g,z (g) Z(f)∪Z(g)∪Rf,g,x ∪

Rf,g,y ∪Rf,g,z

Figure 26: Infinite Intersection Deformed to Finite Distance
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Proof. Since the curves intersect in all three corners, then none of the resultants

will have degree d ·e. All three resultants will, however, have the same number, r, of

finite points of intersection. As shown in Lemma 48, Rf,g,x has an infinite factor of

the form (y⊕∞z)k if and only if Rf,g,y has an infinite factor of the form (x⊕∞z)k.

Similarly, Rf,g,x has an infinite factor of the form (∞y ⊕ z)m if and only if Rf,g,z

has an infinite factor of the form (x ⊕∞y)m. And, Rf,g,y has an infinite factor of

the form (∞x⊕y)n if and only if Rf,g,z has an infinite factor of the form (∞x⊕y)n.

We can use the same method as explained in Lemma 49, considering one corner at

a time. We thus see that there are k points of intersection at (∞,∞, 0), m points

of intersection at (∞, 0,∞) and n points of intersection at (0,∞,∞), along with

the r points of intersection at finite distance. Thus we have k +m + n + r points

of intersection counting multiplicity. But, before we considered the limit, we knew

we had d · e points of intersection, and the limiting process did not create any new

points of intersection, so d · e = k +m+ n+ r, and we have the desired number of

points of intersection.

Example 28. In this example we will look at two curves which have intersections

at all three corners. Let f(x, y, z) = 3xz ⊕ 2yz ⊕ xy and g(x, y, z) = 1xz2 ⊕ 1yz2 ⊕
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xyz ⊕ 2y2z ⊕ 3xy2, as shown in Figure 27. The resultants are given by

Rf,g,x = 2y3z ⊕ 1y2z2 ⊕ 3yz3

= yz(2y2 ⊕ 1yz ⊕ 3z2)

= 2(y ⊕∞z)(∞y ⊕ z)(y ⊕−1z)(y ⊕ 2z)

Rf,g,y = 1x3z2 ⊕ 3x2z3 ⊕ 5xz4

= xz2(1x2 ⊕ 3xz ⊕ 5z2)

= 1(x⊕∞z)(∞x⊕ z)2(x⊕ 2z)2

Rf,g,z = 1x3y2 ⊕ 1x2y3 ⊕ 4xy4

= xy2(1x2 ⊕ 1xy ⊕ 4y2)

= 1(x⊕∞y)(∞x⊕ y)2(x⊕ y)(x⊕ 3y).

From our resultants we see that we have two finite points of intersection and some

infinite points of intersection. Starting with Rf,g,x, we see that there is an infinite

point of intersection when y = ∞ and when z = ∞. If we look at f(x,∞, z) =

3xz⊕∞⊕∞ and g(x,∞, z) = 1xz2⊕∞⊕∞⊕∞⊕∞ we see that we need either

x = ∞ or z = ∞. But we remember theRf,g,x gives us the lines of slope zero through

the point (0,∞,∞), so it doesn’t see the intersections at that point. Which means

in this case that x = ∞, and we have an infinite point of intersection at (∞,∞, 0).

Now if we consider f(x, z,∞) = ∞⊕∞⊕xy and g(x, y,∞) = ∞⊕∞⊕∞⊕∞⊕3xy2,

we see that x = ∞ or y = ∞. But again, since Rf,g,x doesn’t recognize the point

(0,∞,∞), we see that x = ∞, and we have an infinite intersection at the point

(∞, 0,∞). The point (∞,∞, 0) is also seen in Rf,g,y from the factor (x⊕∞z). And

the point (∞, 0∞) can be seen in Rf,g,z from the factor (x⊕∞y). This leaves the

factors (∞x⊕y)2 from Rf,g,z and (∞x⊕z)2 from Rf,g,y, which both yield a infinite
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point of intersection multiplicity two at (0,∞,∞).

To verify this let f̃ = αx2 ⊕ xy ⊕ βy2 ⊕ 3xz ⊕ 2yz ⊕ γz2 where α > 4, β > 5,

and γ > 5, as shown in Figure 28. Then f̃ is a full support curve, so all of the

intersections will be finite. We then find these intersections, and then consider the

points as α, β, and γ approach ∞ individually to see that the infinite intersections

appear as we have calculated them.

5.6 Complete Tropical Bézout’s Theorem

Theorem 51. Let Z(f) and Z(g) be two tropical projective plane curves of degree

d and e respectively. Then Z(f) stably intersects Z(g) in d · e points, counting

multiplicity.

Proof. First suppose that Z(f) and Z(g) do not intersect in any of the corners

of TP2, and that all of the intersections are transverse. Then, by Lemma 41, the

resultants vanish tropically at every point of intersection of Z(f) and Z(g). But

by Lemma 40, the resultants are all homogeneous polynomials in two variables of

degree d · e. Thus, they have d · e roots counting multiplicity. Thus, there are d · e

points of intersection of Z(f) and Z(g).

Now suppose that Z(f) and Z(g) do not intersect in any of the corners of

TP2, and but that some of the intersections are not transverse. By Lemma 40, the

resultants still have degree d · e, and by Lemma 45 the resultants give the stable

points of intersection, so there are d · e stable points of intersection.

Now suppose that Z(f) and Z(g) intersect in some corners of TP2. Then, by

Lemma 48 or Lemma 50 (depending on the case), there are d·e points of intersection

of Z(f) and Z(g) in TP2.
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(a) Z(f) ∪ Z(g) (b) ∆fg

(c) Z(f) ∪ Z(g) ∪Rf,g,x (d) Z(f) ∪ Z(g) ∪Rf,g,y (e) Z(f) ∪ Z(g) ∪Rf,g,z

(f) Rf,g,x ∪Rf,g,y ∪Rf,g,z (g) Z(f)∪Z(g)∪Rf,g,x ∪

Rf,g,y ∪Rf,g,z

Figure 27: Intersection Multiplicity at Infinite Distance
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(a) Z(f) ∪ Z(g) (b) ∆fg

(c) Z(f) ∪ Z(g) ∪Rf,g,x (d) Z(f) ∪ Z(g) ∪Rf,g,y (e) Z(f) ∪ Z(g) ∪Rf,g,z

(f) Rf,g,x ∪Rf,g,y ∪Rf,g,z (g) Z(f)∪Z(g)∪Rf,g,x ∪

Rf,g,y ∪Rf,g,z

Figure 28: Infinite Intersection Multiplicity Deformed to Finite Distance
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Thus, in all cases, Z(f) stably intersects Z(g) in d · e points.

5.7 Complete Tropical Vanishing of the Resultant

As shown above, the resultant does in fact vanish whenever the two curves have

a point in common. This means that the resultant must also vanish for all of the

points that the curves have in common, even when they are not in general position

to each other. Although this seems contradictory, since we just showed using the

resultant, that there are d · e points of stable intersection, it is not. The resultants

can be thought of in two ways, because the determinant of a matrix can be thought

of in two ways. If we have an n × n matrix, then its determinant can either be

thought of as an expression, which we simplify, or as a polynomial in n2 variables;

one variable for each entry of our matrix. When we simplify the determinant of the

tropical Sylvester matrix, then we get our resultant as a homogeneous polynomial

of degree d · e, which has d · e roots. However, if we think of the determinant as a

polynomial in n2 variables, then it can vanish tropically in more places than those

of the simplified resultant. Thus, if we treat our determinant in this way, we will

have the resultant vanishing at all the points that are common to both curves, by

Lemma 41

Classically, if two curves have a component in common, then the resultant van-

ishes completely. This is also the case tropically, but we must think of the resultant

in its non-simplified form, as explained above. Lemma 52 explains why this is. This

lemma applies to curves that have a common component, since if they do, the first

row of the upper block of the Sylvester matrix will be a multiple of the first row of

the lower block of the Sylvester matrix.
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Lemma 52. Let A be an n×n matrix with columns C1, . . . , Cn such that Ci = Cj for

some i and j. Then |A|T vanishes tropically. Moreover, for every term
n⊙

k=1

ak,σ(k)

in |A|T there is another term
n⊙

k=1

ak,τ(k) such that
n⊙

k=1

ak,σ(k) =
n⊙

k=1

ak,τ(k).

Proof. Let σ ∈ Sn be any permutation, and let τ be the permutation obtained by

first applying the transposition (ij) and then the permutation σ, so τ = (σ)(ij).

Then σ(i) = τ(j), σ(j) = τ(i) and σ(k) = τ(k) for all k 6= i, j. So,

a1,σ(1) · · · a1,σ(i) · · · aj,σ(j) · · · an,σ(n)

= a1,σ(1) · · · ai,τ(j) · · · aj,τ(i) · · · an,σ(n)

= a1,τ(1) · · · ai,τ(i) · · · aj,τ(j) · · · an,τ(n).

Thus, for every term term
n⊙

k=1

ak,σ(k) in |A|T there is another term
n⊙

k=1

ak,τ(k) such

that
n⊙

k=1

ak,σ(k) =
n⊙

k=1

ak,τ(k), and |A|T is the sum of things that vanish tropically,

and so vanishes tropically.

Thus, it follows that if the two curves do have a component in common, the

resultant vanishes tropically at every point, but we can only see it if we keep track

of all of the terms. If we do not keep track of all of the terms, then the resultant

gives us the vertices of the common component as the points of intersection, which

are the points of stable intersection.

Example 29. Let us consider the intersection of one line with itself. Let f(x, y, z) =

ax⊕ by ⊕ cz. For the three resultants we get

Rf,f,x = (ab⊕ ba)y ⊕ (ac⊕ ca)z

Rf,f,y = (ba⊕ ab)x⊕ (bc⊕ cb)z

Rf,f,z = (ca⊕ ac)x⊕ (cb⊕ bc)y.
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We note that both of the coefficients of each of the resultants is are expressions

that vanish tropically. This means that each resultant vanishes tropically for every

point (x, y, z) in TP2. That means that on every line of slope one, every line of

slope zero, and every line of infinite slope there is a point that is common to both

of the polynomials (which is clear, since they are the same line). But, if we simplify

the resultants we appear to have a different result. In that case we have

Rf,f,x = (ab)y ⊕ (ac)z

Rf,f,y = (ab)x⊕ (bc)z

Rf,f,z = (ac)x⊕ (bc)y.

These resultants give us one point of intersection, which is the point (bc, ac, ab) =

(bc�ab, ac�ab, 0) = (c−a, c−b, 0), which is in fact the vertex of the line f(x, y, z) =

ax⊕ by ⊕ cx.

Similarly, if they two curves do not have a component in common, but do in-

tersect in an infinite number of places, the resultant does vanish tropically on all

of those points, but only if we keep track of the terms again. The points that the

resultant picks out are the points where the segments begin to be common to both

curves, generally a vertex of one or both of the curves.

Example 30. Let us look again at the two curves given in the second half of

Example 22. For this example we had f(x, y, z) = ax ⊕ by ⊕ cz and g(x, y, z) =
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rx⊕ by ⊕ cz, and our resultants were

Rf,g,x = (ab+ br)y ⊕ (ac⊕ cr)z

Rf,g,y = (br ⊕ ab)x⊕ (bc⊕ cb)z

Rf,g,z = (cr ⊕ ac)x⊕ (cb⊕ bc)y.

Here we notice that the coefficients of Rf,g,x do not vanish tropically, so there is

only one line of slope zero that has a point of intersection. However, in Rf,g,y, the

coefficient of z does vanish tropically. So, if we pick a point so that (br⊕ab)x⊕bcz =

bcz, then the minimum will be attained twice. So, for any point of the form (α, y, 0)

where α ≥ c − min{a, r}, Rf,g,y vanishes tropically. So, every line of the form

x = α, where α is as above has a point of intersection on it. Similarly from Rf,g,z

we see that any line of the form y = x− γ where γ ≤ min{a, r} − b has a point of

intersection on it.

We recall that when we simplified these resultants in Example 22, we got the

point (c − min{a, r}, c − b, 0), as the point of intersection, which as the left most

vertex of the two lines.

Finally, it is unfortunately possible for all three resultants to vanish tropically

for every point (x, y, z) in TP2, even if the two curves do not have a component in

common. In the case of two lines, if all three resultants vanish for every (x, y, z),

then we know that the two lines are in fact the same line. Also, if one of the two

curves is a single line, and all three resultants vanish tropically everywhere, then we

know that the line is a component of the other curve. However, if the two curves

are both of degree greater than one, then it is possible for all three resultants to

vanish tropically, even if the two curves do not share a common component.
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Figure 29: Completely Vanishing Resultants

Example 31. Let f(x, y, z) = 1x2 ⊕ xy ⊕ 1y2 ⊕ xz ⊕ yz ⊕ 1z2 and g(x, y, z) =

1x2 ⊕ xy ⊕ 1y2 ⊕ xz ⊕ yz ⊕ z2, as shown in Figure 29. We first note that f is

irreducible, so if g is a component of f , then it must be all of f . But, these are

clearly not the same curve. However, for every line of slope one, slope zero, or

infinite slope, the two curves do in fact have a point in common. Thus, all three

resultants must vanish tropically for every (x, y, z). If we calculate the resultants,

keeping track of the repeated minimal terms, we get

Rf,g,x =(2⊕ 2)y4 ⊕ (1⊕ 1)y3z ⊕ (1⊕ 1)y2z2 ⊕ (1⊕ 1)yz3 ⊕ (1⊕ 1)z4

Rf,g,y =(2⊕ 2)x4 ⊕ (1⊕ 1)x3z ⊕ (1⊕ 1)x2z2 ⊕ (1⊕ 1)xz3 ⊕ (1⊕ 1)z4

Rf.g,z =(1⊕ 1)x4 ⊕ (0⊕ 0)x3y ⊕ (0⊕ 0)x2y2 ⊕ (0⊕ 0)xy3 ⊕ (1⊕ 1)y4.

130



6 Related Tropical Results

Now that we have a complete tropical Bézout’s Theorem, the natural thing to do

is determine which of its classical consequences have tropical analogues. We will

consider two such consequences, but it we will see that they are not consequences

of Bézout’s theorem in the the tropical setting.

6.1 Tropical Pascal’s Hexagon

At the age of 16 Blaise Pascal proved the following theorem, of which we include a

proof, since it shows the motivation for some of the things we do later.

Theorem 53. For a hexagon inscribed in an irreducible conic Q, the three points

of intersections of the pairs of opposite sides are collinear.

Proof. Let Q be an irreducible conic, and let p1, p2, . . . , p6 be the six vertices of the

hexagon on the conic. Let li be the line between pi and pi+1 for i = 1, . . . , 6, where

p7 = p1, and let qj be the point of intersection of lines lj and lj + 3 for j = 1, . . . , 3.

We note that pj does not lie on Q for any j, for it it did, then lj ∩Q ⊇ {pj, pj+1, qj}.

But by Bézout’s Theorem, lj ∩Q should only contain two points, or lj and Q must

share a component. But Q is irreducible, and lj is a line, so they do not have a

component in common. Let C1 = l1 ∪ l3 ∪ l5 and C2 = l2 ∪ l4 ∪ l6. C1 and C2 are

two cubic plane curves, which intersect in the nine points p1, . . . , p6, q1, q2, q3. There

are no other points of intersection, by Bézout’s Theorem. Now let us consider the

pencil of cubic plane curves given by λC1 + µC2. Since this is a pencil of cubics, we

know that every curve in the pencil contains the nine points of intersection of the

two original cubic curves, and that for any point in the plane, there is a cubic in

the pencil that passes through that point. So, let P be some point on Q such that
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P 6= pi for any i. Then there is some cubic C that is in the given pencil that passes

through P . But then C ∩ Q ⊇ {p1, . . . , p6, P}. But that means there are seven

points of intersection of the cubic C and the conic Q. But by Bézout’s Theorem

there can only be six points of intersection, unless the two curves have a component

in common. But Q is irreducible, so the only way for the two curves to have a

component in common is for Q ⊂ C. Thus, C = Q ∪ L for some line L. Since none

of the q1, q2, q3 lie on Q, but they are points of C, they must all lie on L, so they are

collinear.

This theorem is extended to an arbitrary hexagon inscribed in an arbitrary

conic, and so Pappus’ Theorem is a special case of Pascal’s Theorem. There is a

natural tropical analogue to this theorem, which we state in its general form here

for reference, but will prove later.

Theorem 56. For an arbitrary tropical hexagon inscribed in an arbitrary tropical

conic Q, the three points of intersection of the pairs of opposite sides are tropically

collinear.

In order to follow the same method of proof as the classical proof given, we need

to to have a pencil of curves with which to work. Classically, a pencil satisfies the

conditions that all of the curves in the pencil pass through any points of intersection

of the two original curves. Also, since the curves in the pencil are of the form λf+µg,

there is a curve in the pencil for every point in P1. We also know that for any point

(a, b, c) ∈ P2, that there is a curve in the pencil that passes through this point. If,

for example, (a, b, c) is on one of the two original curves, say f , then we may have

λ = 1 and µ = 0. If (a, b, c) is not on either of the curves, then f(a, b, c) 6= 0 and

g(a, b, c) 6= 0, so we may let λ = 1 and solve λf(a, b, c) + µg(a, b, c) = 0 for µ, and
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we will have the desired point, (λ, µ) =

(
1,−f(a, b, c)

g(a, b, c)

)
, so that our curve passes

through the point (a, b, c).

In the tropical case we will take two curves of the same degree, and consider the

set of all curves of the form λf ⊕ µg, and see if it has these same nice properties.

Lemma 54. Let f, g ∈ Q〈x, y, z〉 be two homogeneous polynomials, and let P ∈

Z(f) ∩ Z(g). Then P ∈ Z(λf ⊕ µg) for any λ, µ ∈ Q.

Proof. We have a few cases to consider. First, if λ = µ = ∞ then every point of Q

is in Z(λf ⊕ µg), so we’re done. Without loss of generality, if λ = ∞ and µ 6= ∞,

then λf ⊕ µg = µg, and since Z(µg) = Z(g) for any µ 6= ∞, and P ∈ Z(g), then

P ∈ Z(λf ⊕ µg). Finally we have the case where λ 6= ∞ and µ 6= ∞. But, as we

mentioned above, Z(µg) = Z(g) for any µ 6= ∞, so we can simply consider f ⊕ g.

Let fp1 , fp2 be two monomials of f that attain the minimum together at p and

let gp1 , gp2 be two monomials of g that attain the minimum together at p. Without

loss of generality assume that f(P ) ≤ g(P ). Assume that some monomial g0 of

g replaces the monomial fp1 in 5he sum f ⊕ g. This means that fp1 = αxryszt

and g0 = βxryszt where β < α, and that fp1(x0, y0, z0) > g0(x0, y0, z0) for every

(x0, y0, z0) ∈ Q3. But we know that f(P ) ≥ fp1(p) > g0(p) ≥ g(p). But this

is a contradiction, as f(p) ≤ g(p). Thus, the monomial fp1 could not have been

replaced. Similarly for fp2 . Thus, f ⊕ g still has the two monomials that attain the

minimum at p and P ∈ Z(f ⊕ g).

So we see that this version of a pencil does in fact pass through all the points

of intersection of the two curves. Unfortunately there are curves f and g for which

there are points in the plane so that no curve in the pencil λf ⊕ µg passes through

the given point.

133



2.5

!7.5

0.0!7.5 5.0

!2.5

0.0

!5.0

!10.0

2.5

5.0

!2.5

!5.0

Figure 30: Some line in the pencil λf ⊕ µg

Example 32. Let f(x) = x⊕ y⊕ z and g(x) = 5x⊕ 7y⊕ z. Figure 30 shows some

of the curves in the pencil λf ⊕ µg.

We will just consider the case where µ = 0, since we would be able to scale one

of the two of them out anyway. We note that in this particular case, we will not

ever need to have µ = ∞ to get the µg term to drop out, because all the coefficients

have finite coefficients, so there is some finite µ which makes µg larger than f . We

can write down a piecewise function for our sum, as given below.

λf ⊕ g =



λx⊕ λy ⊕ λz λ ≤ 0

λx⊕ λy ⊕ z 0 ≤ λ ≤ 5

5x⊕ λy ⊕ z 5 ≤ λ ≤ 7

5x⊕ 7y ⊕ z λ ≥ 7

We note that Z(λf) = Z(f), so we just have lines between Z(f) and Z(g) as

shown in Figure 30. Naturally, we only have a few values of λ, and chose integers

for simplicity.

But maybe we can find a curve of the form λf ⊕µg that goes through any point

we want, for example, the point (2, 2, 0). For this to happen, we need λf ⊕ g to
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vanish tropically at (2, 2, 0). λf ⊕ g = (λ⊕ 5)x⊕ (λ⊕ 7)y ⊕ (λ⊕ 0)z. We need to

find λ so that

2 + min{λ, 5} = 2 + min{λ, 7} ≤ min{λ, 0} or

2 + min{λ, 5} = min{λ, 0} ≤ 2 + min{λ, 7} or

2 + min{λ, 7} = min{λ, 0} ≤ 2 + min{λ, 5}.

It is straight forward to see that this never happens. So, there is not curve in the

pencil that passes through the point (2, 2, 0).

In the case of Pascal’s theorem, we can create the two cubics by taking the

appropriate product of lines, and make a pencil out of them. The curves in this

tropical pencil do pass through the nine desired points, but we cannot guarantee

that we will be able to find a curve in the pencil that passes through another good

point on the conic. But, suppose that we could. We would then, as desired, have

the seven points of intersection with a cubic and the conic. However, this does not

guarantee in any way that the conic is a component of the cubic, since it might

simply mean that they have a segment or ray in common. And even if we can show

that all three resultants vanish tropically everywhere, this also does not guarantee

that the conic is a component of the cubic, as we saw in Example 31. So, we can

not prove Pascal’s theorem in this way.

We might be able to consider a different form of pencil of curves, where instead

of taking the curves that are dependent on two curves of the same degree, we take

all curves of a given degree through a fixed number of points. If we use the nine

points which are the points of intersection of our two cubics, it turns out that for

any point in the plane, there is a cubic that passes through that point and the
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nine original points. However, there is no way, again, to determine whether or not

the cubic you find contains the conic as a component, so this does not help either.

It seems that there is no way to prove this theorem using similar methods to the

classical proof, if the classical proof relies on begin able to determine when a conic is

a component of a cubic. Thus, we turn to a different method to prove this theorem.

Suppose that six points pi = (xi, yi, zi) lie on a conic. We recall that

Q =



x2
1 x1y1 y2

1 x1z1 y1z1 z2
1

x2
2 x2y2 y2

2 x2z2 y2z2 z2
2

x2
3 x3y3 y2

3 x3z3 y3z3 z2
3

x2
4 x4y4 y2

4 x4z4 y4z4 z2
4

x2
5 x5y5 y2

5 x5z5 y5z5 z2
5

x2
6 x6y6 y2

6 x6z6 y6z6 z2
6


is a singular matrix, which is to say that it’s determinant vanishes tropically.

We also know that three points qi = (xi, yi, zi) are collinear when
x1 y1 z1

x2 y2 z2

x3 y3 z3


is a singular matrix. We will use these two facts to prove Pascal’s Theorem for

hexagons.
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Lemma 55. Let pi = (xi, yi, zi) be six points in TP2. If

Q =



x2
1 x1y1 y2

1 x1z1 y1z1 z2
1

x2
2 x2y2 y2

2 x2z2 y2z2 z2
2

x2
3 x3y3 y2

3 x3z3 y3z3 z2
3

x2
4 x4y4 y2

4 x4z4 y4z4 z2
4

x2
5 x5y5 y2

5 x5z5 y5z5 z2
5

x2
6 x6y6 y2

6 x6z6 y6z6 z2
6


is tropically singular, then

L =



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
x1 z1

x2 z2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x1 y1

x2 y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x4 z4

x5 z5

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x4 y4

x5 y5

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y1 z1

y2 z2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x1 y1

x2 y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y4 z4

y5 z5

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x4 y4

x5 y5

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y1 z1

y2 z2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x1 z1

x2 z2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y4 z4

y5 z5

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x4 z4

x5 z5

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
x2 z2

x3 z3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x2 y2

x3 y3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x5 z5

x6 z6

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x5 y5

x6 y6

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y2 z2

y3 z3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x2 y2

x3 y3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y5 z5

y6 z6

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x5 y5

x6 y6

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y2 z2

y3 z3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x2 z2

x3 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y5 z5

y6 z6

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x5 z5

x6 z6

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
x3 z3

x4 z4

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x3 y3

x4 y4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x6 z6

x1 z1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x6 y6

x1 y1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y3 z3

y4 z4

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x3 y3

x4 y4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y6 z6

y1 z1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x6 y6

x1 y1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y3 z3

y4 z4

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x3 z3

x4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y6 z6

y1 z1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x6 z6

x1 z1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


is tropically singular.

Proof. A straightforward, although tedious, computation and comparison of the

terms of |Q|T and |L|T shows that |L|T = |Q|T⊕H, where H is a tropical expression
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which vanishes tropically as every term in repeated at least twice. Thus, if |Q|T

vanishes tropically, then |L|T vanishes tropically, as it is the sum of two expressions

that vanish tropically.

Note that this computation can be using a computational program by computing

the classical permanent LP and QP of each matrix (which is simply the determinant

but with out the sign changes for the permutations), and finding the difference

LP − QP . The difference can then be reduced modulo 2, producing a result of 0.

This implies that the terms of LP −QP all appear an even number of times, which

implies that tropically the expression must vanish.

Theorem 56. For an arbitrary tropical hexagon inscribed in an arbitrary tropical

conic Q, the three points of intersection of the pairs of opposite sides are tropically

collinear.

Proof. Let p1 = (x1, y1, z1), . . . , p6 = (x6, y6, z6) be the six points on the hexagon.

The line that contains pi and pi+1 is given by∣∣∣∣∣∣∣∣∣∣
xi yi zi

xi+1 yi+1 zi+1

x y z

∣∣∣∣∣∣∣∣∣∣
.

So, we have

l1 =

∣∣∣∣∣∣∣
y1 z1

y2 z2

∣∣∣∣∣∣∣ x⊕
∣∣∣∣∣∣∣
x1 z1

x2 z2

∣∣∣∣∣∣∣ y ⊕
∣∣∣∣∣∣∣
x1 y1

x2 y2

∣∣∣∣∣∣∣ z,

l2 =

∣∣∣∣∣∣∣
y2 z2

y3 z3

∣∣∣∣∣∣∣ x⊕
∣∣∣∣∣∣∣
x2 z2

x3 z3

∣∣∣∣∣∣∣ y ⊕
∣∣∣∣∣∣∣
x2 y2

x3 y3

∣∣∣∣∣∣∣ z,
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l3 =

∣∣∣∣∣∣∣
y3 z3

y4 z4

∣∣∣∣∣∣∣ x⊕
∣∣∣∣∣∣∣
x3 z3

x4 z4

∣∣∣∣∣∣∣ y ⊕
∣∣∣∣∣∣∣
x3 y3

x4 y4

∣∣∣∣∣∣∣ z,

l4 =

∣∣∣∣∣∣∣
y4 z4

y5 z5

∣∣∣∣∣∣∣ x⊕
∣∣∣∣∣∣∣
x4 z4

x5 z5

∣∣∣∣∣∣∣ y ⊕
∣∣∣∣∣∣∣
x4 y4

x5 y5

∣∣∣∣∣∣∣ z,

l5 =

∣∣∣∣∣∣∣
y5 z5

y6 z6

∣∣∣∣∣∣∣ x⊕
∣∣∣∣∣∣∣
x5 z5

x6 z6

∣∣∣∣∣∣∣ y ⊕
∣∣∣∣∣∣∣
x5 y5

x6 y6

∣∣∣∣∣∣∣ z,

l6 =

∣∣∣∣∣∣∣
y6 z6

y1 z1

∣∣∣∣∣∣∣ x⊕
∣∣∣∣∣∣∣
x6 z6

x1 z1

∣∣∣∣∣∣∣ y ⊕
∣∣∣∣∣∣∣
x6 y6

x1 y1

∣∣∣∣∣∣∣ z.
Now, the point of intersection of two lines can be found in the same way, where

we think of the x, y, z as telling us which coordinate we have rather than giving us

an equation. So, for our three points of intersection of opposite sides we have

q1 =



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
x1 z1

x2 z2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x1 y1

x2 y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x4 z4

x5 z5

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x4 y4

x5 y5

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y1 z1

y2 z2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x1 y1

x2 y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y4 z4

y5 z5

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x4 y4

x5 y5

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y1 z1

y2 z2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x1 z1

x2 z2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y4 z4

y5 z5

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x4 z4

x5 z5

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


,

q2 =



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
x2 z2

x3 z3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x2 y2

x3 y3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x5 z5

x6 z6

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x5 y5

x6 y6

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y2 z2

y3 z3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x2 y2

x3 y3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y5 z5

y6 z6

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x5 y5

x6 y6

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y2 z2

y3 z3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x2 z2

x3 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y5 z5

y6 z6

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x5 z5

x6 z6

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


,
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q3 =



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
x3 z3

x4 z4

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x3 y3

x4 y4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x6 z6

x1 z1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x6 y6

x1 y1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y3 z3

y4 z4

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x3 y3

x4 y4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y6 z6

y1 z1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x6 y6

x1 y1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y3 z3

y4 z4

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x3 z3

x4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y6 z6

y1 z1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x6 z6

x1 z1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


.

Now, these three points will be collinear if the following matrix is singular.

L =



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
x1 z1

x2 z2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x1 y1

x2 y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x4 z4

x5 z5

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x4 y4

x5 y5

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y1 z1

y2 z2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x1 y1

x2 y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y4 z4

y5 z5

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x4 y4

x5 y5

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y1 z1

y2 z2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x1 z1

x2 z2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y4 z4

y5 z5

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x4 z4

x5 z5

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
x2 z2

x3 z3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x2 y2

x3 y3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x5 z5

x6 z6

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x5 y5

x6 y6

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y2 z2

y3 z3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x2 y2

x3 y3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y5 z5

y6 z6

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x5 y5

x6 y6

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
y2 z2

y3 z3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x2 z2

x3 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y5 z5

y6 z6

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x5 z5

x6 z6

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
x3 z3

x4 z4

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x3 y3

x4 y4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x6 z6

x1 z1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x6 y6

x1 y1

∣∣∣∣∣∣∣
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

.

But we know that the six points are on a conic so the matrix Q from Lemma 55 is

singular, so L is singular too, and our points are collinear.

Example 33. In Figure 31 we see an example of Pascal’s Tropical Hexagon. We

note that in the hexagon, we have colored opposite side the same color. So, in
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Figure 31(c), the three points of intersection of opposite sides are where the lines

of the same color intersect each other.

6.2 Tropical Elliptic Curves and the Group Law

In the following section we discuss briefly tropical elliptic curves that the group

law that can be defined on them as discussed in [19] and [20]. We give a few

definitions and a small amount of background information, and then give a few

results concerning the group law that follow from the complete tropical Bézout’s

theorem.

Definition 32. Let f(x, y, z) be a homogenous tropical polynomial of degree n.

The genus of Z(f) is defined to be number of interior lattice points of ∆f . That is

to say, the number of points of the lattice that are interior to ∂n which are vertices

of ∆f .

As shown in [15] and [20] the genus the same number as the number of cycles

that the curve Z(f) contains.

Definition 33. A tropical elliptic curve is a tropical plane curve of genus one.

In both [19] and [20], only cubic tropical elliptic curves are considered, so those

are the ones we will restrict our attention to as well. To define the group law on

cubic tropical elliptic, or any elliptic curve, we need to define divisors.

Definition 34. Set Div(C) to be the free Abelian group generated by the points of

a tropical plane curve C. A divisor D is an element of DivC, that is D =
∑
P∈C

µPP

where µP ∈ Z. The sum
∑
P∈C

µP is the degree of the divisor D, denoted deg(D).

The set of degree zero divisors in denoted Div0(C). If f(x, y, z) is a homogeneous
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(a) Tropical Conic (b) Tropical Hexagon

(c) Points of Intersection (d) Line

Figure 31: Pascal’s Tropical Hexagon
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polynomial then the divisor of f divf is defined to be the formal sum of the stable

intersection points with of Z(f) and C with their intersection multiplicities. That

is, divf =
∑

P∈Z(f)∩C

iPP where iP is the intersection multiplicity of P . A tropical

divisor D is principal if there are homogeneous tropical polynomials f and g of the

same degree such that D = divf − divg.

In [19], the polynomials f and g needed to form a principal divisor must have

the same Newton polygon, which means that ∆f and ∆g have the same boundary.

In [20], the polynomials must both be products of lines. These conventions are

necessary to prove the group law is well defined, although we will discuss that in

detail. The result that in Lemma 57, which follows from the complete tropical

Bézout’s theorem, does not depend on either of those restrictions to f and g.

Lemma 57. The tropical principal divisors are divisors of degree zero.

Proof. Suppose D is a principal divisor, and suppose the C is a curve of degree

n. Then D = divf − divg for polynomials f, g of the same degree, say d. But,

by Bézout’s theorem, Z(f) ∩ C has n · d stable points of intersection, counting

multiplicity. So, the deg(divf) = n · d. Similarly, deg(divg) = n · d. Thus deg(D) =

deg(divf − divg) = deg(divf) − deg(divg) = n · d − n · d = 0. Thus, all principal

divisors are divisors of degree zero.

In [19] and [20] it is shown how to define the group law on cubic tropical elliptic

curves, which is analogous to the classical group law on elliptic curves, and that the

group is isomorphic to S1. It is also shown in [19] that if all of the points that we

are considering for a sum are in general enough position, then we have a geometric

method of adding the points which is similar to that in the classical case. The points
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are in general enough position if all of the points need to make lines are in general

position to each other, and if all of the lines are in general position with respect to

the the curve C. We use the geometric method picking an origin O, and then for two

points P and Q, find the line L that passes through P and Q, and define P ?Q to be

the third point of intersection of L and C. By Bézout’s theorem we know that there

are three well defined points of intersection in L∩C, so we can find this third point.

Now we find the line LO between P ? Q and O. Again, LO ∩ C consists of three

points, so we have a third point of intersection. This point of intersection is P +Q.

It is quite possible that the points we need are not all in general enough position

to use this geometric approach. However, in [19], it is shown that for points that

are not in general enough position, the pairs of points that are in general enough

position can be found which pairs are linearly equivalent to the original pairs of

points. All of this is explained sufficiently in [19], so we will simply use the fact

that the addition can be done with lines for the following lemmas, which follow

from the Fundamental Theorem of Tropical Algebra and Bézout’s theorem.

Lemma 58. Let f(x) = anx
n ⊕ an−1x

n−1 ⊕ · · · ⊕ a1x + a0 be a least coefficients

polynomial, and let α1, . . . , αn be the roots of f(x). Then
n⊙

i=1

αi = a0 � an.

Proof. Since f(x) is a least coefficients polynomial, it can be factored completely as

an(x⊕αn) · · · (x⊕α1). But this means that anαn · · ·α1 = a0. Thus,
n⊙

i=1

αi = a0�an,

our desired result.

Lemma 59. If f(x) = anx
n ⊕ · · · ⊕ a1x⊕ a0 ∈ Z〈x〉 where f is a least-coefficients

polynomial, and α1, . . . , αn are the roots of f(x) where αi 6= ∞ for any i, and n− 1

of these roots are in Z then the remaining root is also in Z.
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Proof. By Lemma 58 we know that
n⊙

i=1

αi = a0 � an. Suppose that αi ∈ Z

for every i 6= j for some j. Then, since Z is a semi-field, it follows that a0 �

(anα1 · · · α̂j · · ·αn) ∈ Z. But aj = a0 � (anα1 · · · α̂j · · ·αn), so the final root is also

in Z.

Note that if f(x) is a polynomial such that ∞ is a root of f(x), then we can

factor xk out of the whole polynomial for some k ∈ N, and the remainder satisfies

the desired condition for the lemma.

We note that if the polynomial is a least-coefficient polynomial, with all of its

coefficients in any tropical semi-field, then all of the roots are in that semi-field. For

example, if the coefficients are all in
1

2
·Z when the polynomial is in least-coefficient

form, then all of the roots are in
1

2
Z = {p

2
|p ∈ Z} ∪ {∞}.

Lemma 60. Let P and Q be two integer points. Then the line that passes through

them is given by an equation b0x⊕ b1y ⊕ b2z where b0, b1, b2 ∈ Z.

Proof. The line that passes through P = (p0, p1, p2) and Q = (q0, q1, q2) is given by∣∣∣∣∣∣∣
p1 p2

q1 q2

∣∣∣∣∣∣∣ x⊕
∣∣∣∣∣∣∣
p0 p2

q0 p2

∣∣∣∣∣∣∣ y ⊕
∣∣∣∣∣∣∣
p0 p1

q0 q1

∣∣∣∣∣∣∣ z.
But each pi, qj ∈ Z so, each of the above coefficients above are also in Z.

Lemma 61. The integer points of elliptic curves are closed under addition.

Proof. Let f(x, y, z) = a0x
3 ⊕ a1x

2y ⊕ a2xy
2 ⊕ a3y

3 ⊕ a4x
2z ⊕ a5xyz ⊕ a6y

2z ⊕

a7xz
2 ⊕ a8yz

2 ⊕ a9z
3 ∈ Z〈x, y, z〉. Let P and Q be two integer points of Z(f).

Then by Lemma 60 the line through P and Q is given by an equation of the

form b0x ⊕ b1y ⊕ b2z where bi ∈ Z for each i. The resultant tells us where the
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points of intersection of the cubic and the line are. Since all of the entries of the

Sylvester matrix are polynomials with integer coefficients, the determinant Rf,g is

a polynomial with integer coefficients, which factors completely. But we already

know that two of the three roots, P and Q of Rf,g are integers, so by Lemma 59,

the remaining root P ? Q is also an integer point. Thus, if we pick O to be an

integer point, then the third point of intersection of the line through O and P ? Q

is also an integer point. Thus the integer points of elliptic curves are closed under

addition.

In the classical case, the associativity of the group law is also a consequence of

Bézout’s theorem. However, due to the interesting intersections of tropical curves,

it is not a straightforward consequence tropically.

6.3 Conclusion

In conclusion we note that although when we first consider the affine version of

tropical Bézout’s theorem, it seems like an almost trivial fact. But the proof of it,

even in the affine case is far from trivial, as shown in [16]. But then when we look at

examples in the tropical projective plane, we are led to wonder if the theorem is even

true. And surprisingly enough, it is, which we showed using a tropical resultant.

But, we also noted that tropically linear algebra, although having similar results,

could not be built up in quite the same way as its classical analogues, and almost

none of the proofs followed proofs similar to those of their analogues theorems. And

yet, they all worked out in the end. But then the resultant also did not behave in

quite the same way, but the way that it did behave was sufficient to prove our
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desired results. Finally we saw that although Pascal’s Tropical Hexagon and the

group law on tropical elliptic curves still work, they don’t follow in the same way

from Bézout’s theorem as they do classically. And so we see that with many tropical

theorems, although the theorems are analogues of classical theorems, the proofs are

definitely not analogues of classical proofs.
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