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ABSTRACT
Weak Cayley Table Isomorphisms

Long Bao Nguyen
Department of Mathematics, BYU

Doctor of Philosophy

We investigate weak Cayley table isomorphisms, a generalization of group isomorphisms.
Suppose G and H are groups. A bijective map φ : G→ H is a weak Cayley table isomorphism
if it satisfies two conditions:

1) If x ∼ y, then φ(x) ∼ φ(y);

2) For all x, y ∈ G, φ(xy) ∼ φ(x)φ(y).

If there exists a weak Cayley table isomorphism between two groups, then we say that the
two groups have the same weak Cayley table.

This dissertation has two main goals. First, we wish to find sufficient conditions under
which two groups have the same weak Cayley table. We specifically study Frobenius groups
and groups which satisfy the Camina pair condition.

Second, we consider the group of all weak Cayley table isomorphisms between G and
itself. We call this group the weak Cayley table group of G and denote it by W(G). Any
automorphism of G is an element of W(G). The inverse map on G is also an element of
W(G). We say that the weak Cayley table group is trivial if it is generated by the set of all
automorphisms of G and the inverse map. Humphries [11] proved that the symmetric groups
Sn, the dihedral groups D2n and the free groups Fn(n 6= 3) all have trivial weak Cayley table
groups. We will investigate the weak Cayley table groups of the alternating groups, certain
types of Coxeter groups, the projective special linear groups and certain sporadic simple
groups.

Keywords: groups, group automorphisms, weak Cayley table, weak Cayley table isomor-
phisms, weak Cayley table groups, character table.
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Chapter 1. Introduction

This dissertation focuses on weak Cayley table isomorphisms of groups, these being general-

izations isomorphisms of groups. We first consider weak Cayley table isomorphisms between

two groups G and H and generalize several results in this area. Then we investigate the weak

Cayley table group of a group G. In particular, we will study the weak Cayley table group

of the alternating groups, the Coxeter groups, certain sporadic groups and the projective

special linear groups. The dissertation is composed primarily of three main chapters. We

summarize here some of its major results and offer a brief outline of its content.

Given two groups G and H, a weak Cayley table isomorphism between them is a bijection

φ : G→ H which satisfies two conditions:

1) If x ∼ y, then φ(x) ∼ φ(y);

2) For all x, y ∈ G, φ(xy) ∼ φ(x)φ(y).

If there exists a weak Cayley table isomorphism between two groups, then we say that the

two groups have the same weak Cayley table. In Chapter 2, we also define Frobenius groups

and Camina pairs.

Johnson, Mattarei and Sehgal [15] proved several results which provide sufficient con-

ditions for two groups to have the same weak Cayley table. We generalize their results

in section 2 of Chapter 2 and prove several results which deal with Frobenius groups and

Camina pairs.

In section 3 of Chapter 2, we begin with the statement of Camina’s theorem regarding

groups which satisfy the Camina pair condition. Camina’s theorem motivates two questions

concerning the weak Cayley tables of such groups. We prove several results which partially

answer these questions.

Section 4 of Chapter 2 establishes some notation regarding the cohomology of groups.

We then prove a simple result which says that a certain map determined by a weak Cayley

table map is a trivial element of a cohomology group. We end the section by constructing a
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simple way to define a weak Cayley table isomorphism between a group G and itself.

In Chapter 3, we consider the group of all weak Cayley table isomorphisms between G

and itself. We call this group the weak Cayley table group of G and define what it means for

the weak Cayley table group to be trivial. Humphries [11] proved that the symmetric groups

Sn, the dihedral groups D2n and the free groups Fn(n 6= 3) all have trivial weak Cayley table

groups.

Humphries’ techniques for Sn do not generalize nicely in proving that the alternating

group has trivial weak Cayley table group. We introduce the concept of graph automorphisms

in section 2 to prove the alternating group case. The projective special linear groups require

additional modification of Humphries’ techniques. This we do in sections 3, 4 and 5.

We further generalize Humphries’ techniques in sections 6 and 7 of Chapter 3 to prove

that two types of Coxeter groups have trivial weak Cayley table groups: the Coxeter groups

of type Cn and the Coxeter groups of type Bn.

In general, given a group G, it is computationally difficult to determine whether the weak

Cayley table group of G is trivial. But because of the techniques we develop in Chapter 3, we

can efficiently determine that certain simple groups have trivial weak Cayley groups through

the computer algebra program Magma. We do this for the Mathieu groups M11,M12 and

M22 and the Janko groups J1 and J2 in Chapter 4.

We have included in the Appendix some of the code we use in Chapter 4. In addition,

we provide another proof for the case PSL(2, p) discussed in section 6.

2



Chapter 2. Weak Cayley Table Isomorphisms

2.1 Introduction

Johnson, Mattarei and Sehgal [15] generalize the concept of group automorphisms by intro-

ducing the concept of a weak Cayley table isomorphism between two groups. We first give

their definition of a weak Cayley table of a group.

Definition 2.1.1. Let G = {g1 = e, g2, . . . , gn} be a finite group. The weak Cayley table of

G is a table whose rows and columns are indexed by the elements of G and the (g, h) entry

is the conjugacy class of gh.

We note that the row indexed by e gives the conjugacy classes of G.

Example 2.1.2. Let G = S3 be the symmetric group on 3 letters. Let C0 = {(1)}, C1 =

{(132), (123)} and C2 = {(12), (13), (23)} be the conjugacy classes of G. Then the weak

Cayley table of G is given in Table 2.1.

(1) (123) (132) (12) (23) (13)
(1) C0 C1 C1 C2 C2 C2

(123) C1 C1 C0 C2 C2 C2

(132) C1 C0 C1 C2 C2 C2

(12) C2 C2 C2 C0 C1 C1

(23) C2 C2 C2 C1 C0 C1

(13) C2 C2 C2 C1 C1 C0

Table 2.1: The Weak Cayley Table for S3

Definition 2.1.3. Let G be a group and a, b ∈ G. We say that a is conjugate to b, denoted

by a ∼ b, if there exists x ∈ G such that b = x−1ax. We also define ax = x−1ax.

Definition 2.1.4. Suppose G and H are groups. A weak Cayley table isomorphism is a

bijection φ : G→ H satisfying the following conditions:

1) If x ∼ y, then φ(x) ∼ φ(y);

3



2) For all x, y ∈ G, φ(xy) ∼ φ(x)φ(y).

It’s easy to see that if there exists a weak Cayley table isomorphisms φ : G → H, then

G and H have the same weak Cayley table.

Example 2.1.5. Let G1 = 〈a, b|a9 = b3 = 1, bab−1 = a4〉 and G2 = 〈a, b, z|a3 = b3 = z3 =

1, az = za, bz = zb, bab−1 = az〉. Then G1 and G2 both have 27 elements. The centers are

Z(G1) = 〈a3〉 ∼= Z3 and Z(G2) = 〈z〉 ∼= Z3.

The groups G1 and G2 have the same weak Cayley table. We exhibit an explicit weak

Cayley table isomorphism between G1 and G2.

e → e;

a3 → z;

a6 → z2;[
a, a4, a7

]
→

[
az, az2, a

]
;[

a2, a5, a8
]
→

[
a2, a2z, a2z2

]
;[

b, a3b, a6b
]
→

[
bz, bz2, b

]
;[

b2, a3b2, a6b2
]
→

[
b2z2, b2, b2z

]
;[

ab, a4b, a7b
]
→

[
abz, abz2, ab

]
;[

a2b2, a5b2, a8b2
]
→

[
a2b2, a2b2z, a2b2z2

]
;[

a2b, a5b, a8b
]
→

[
a2bz, a2bz2, a2b

]
;[

ab2, a4b2, a7b2
]
→

[
ab2, ab2z, ab2z2

]
.

The following result establishes some basic properties of any weak Cayley table isomor-

phism φ.

Lemma 2.1.6. Let φ be a weak Cayley table isomorphism between G and H. Then,

(1) φ(e) = e and φ(g−1) = φ(g)−1, where e denotes the identity element of G.

4



(2) If N is a normal subgroup of G, then φ(N) is a normal subgroup of H.

(3) If N is a normal subgroup of G , then the image of the coset gN in G is the coset

φ(g)φ(N) in H.

4) If N is a normal subgroup of G, then φ induces a weak Cayley table isomorphism

φ̄ : G/N → H/φ(N).

(5) If φ : G→ H is a weak Cayley table isomorphism, then G and H have the same number

of involutions, that is, the same number of elements of order 2.

(6) If G and H have the same weak Cayley table, then they have the same character tables.

Proof. We will prove parts (1), (2), (3) and (5). The proof of parts (4) and (6) can be found

in [15]. To prove part (1), we note that the first condition of the definition implies that φ(e)

is central in H. The second condition then gives us that φ(e)φ(e) = φ(ee) = φ(e) and thus

φ(e) = e. To prove the second part of (1) we note that e = φ(e) = φ(gg−1) ∼ φ(g)φ(g−1).

Thus, φ(g)φ(g−1) = e and φ(g−1) = φ(g)−1. The proof of part (2) is clear since φ sends

classes in G to classes in H.

We now prove part (3). Let g, h ∈ G be elements of the same coset of N in G. Then

we have that h−1g ∈ N and φ(h−1g) ∈ φ(N). Since φ is a weak Cayley table isomorphism,

φ(h−1g) and φ(h−1)φ(g) are conjugate in H. By part (1), φ(h−1)φ(g) = φ(h)−1φ(g). Thus

φ(h−1g) is conjugate to φ(h)−1φ(g) in H. Since φ(N) is normal in H by part (2), φ(h−1g) ∈

φ(N) implies that its conjugate φ(h)−1φ(g) is also in φ(N). Thus φ(g)φ(N) = φ(h)φ(N) as

required.

To prove part (5), let x ∈ G be an involution so that x2 = e. Then

φ(x)2 ∼ φ(x2) = φ(e) = e.

Thus φ(x)2 = e. Thus φ sends involutions in G to involutions in H. Suppose now that φ(x)
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is an involution in H. We show that x must be an involution in G. We have

e = φ(x)2 ∼ φ(x2).

Thus, φ(x2) = e. But since φ(e) = e and the fact that φ is a bijection, we must have that

x2 = e. Thus x is an involution.

Thus, a weak Cayley table isomorphism between two groups is a strictly stronger condi-

tion than merely having the same character tables. For example, it is a fact that the dihedral

group D8 and the quaternion group Q8 have the same character table [14]. However, they

do not have the same weak Cayley table since D8 has five involutions and Q8 has only one.

Definition 2.1.7. A pair (G,N), with N a nontrivial, normal and proper subgroup of G, is

a Camina pair if conjugacy classes of G in G \ N are unions of cosets of N . We also say

that G and N satisfy the Camina pair condition and that G is a Camina pair group.

Example 2.1.8. Let

D8 = 〈a, b|a4 = 1, b2 = 1, b−1ab = a−1〉.

The conjugacy classes of D8 are C1 = {e}, C2 = {a2}, C3 = {a, a3}, C4 = {b, a2b} and

C5 = {ab, a3b}. Let N = Z(G) = {e, a2}. Then the conjugacy classes of G in G \ N are

cosets of N. Thus, (G,N) is a Camina pair.

Definition 2.1.9. A group G is a Frobenius group if it has a nontrivial subgroup A such

that A ∩ Ag = {e} for every g ∈ G \ A. The subgroup A is called the Frobenius complement

of G.

Suppose G is a Frobenius group with Frobenius complement A. Let N be the subset

of G consisting of those elements that are not conjugate in G to any nonidentity element

of A. Frobenius proved using character theory that N is always a subgroup of G [13]. A

character-free proof is still unknown. Note also that since N is a subgroup, it must be a

normal subgroup of G. The normal subgroup N is called the Frobenius kernel of G. By
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definition of N , we have that N ∩A = {e}. Further, if G is a finite group, it is easy to show

that |N | = |G|/|A|. Thus, A is the complement of the normal subgroup N in G.

Example 2.1.10. Let G = S3 and A = {(1), (12)}. The conjugates of A are A = {(1), (12)},

A(13) = {(1), (23)}, and A(23) = {(1), (13)}. Thus, the Frobenius kernel N is {(1), (123), (132)}.

In this case, G is a Frobenius group with Frobenius kernel N and Frobenius complement A.

2.2 Generalizing Johnson, Mattarei and Sehgal

We consider two groups G1 and G2 with normal subgroups N1 and N2, respectively, such

that (G1, N1) and (G2, N2) are Camina pairs and investigate conditions under which G1 and

G2 have the same weak Cayley table.

We first look at a result of Johnson, Mattarei and Sehgal [15].

Theorem 2.2.1. (Johnson, Mattarei and Sehgal [15]) Suppose G is a group of odd order

which acts on an abelian group N . Suppose further that G1 and G2 are nonisomorphic

extensions of N by G such that (G1, N) and (G2, N) are Camina pairs. Then G1 and G2

have the same Cayley table.

We note that the assumption that G has odd order is necessary for this result since D8

and Q8 are extensions of Z2 by Z2×Z2 and thus satisfy the other assumptions of the theorem

but do not have the same weak Cayley table.

Our first immediate goal is to generalize this result. What if we weaken the requirement

that G1/N ∼= G2/N and replace it instead with G1/N and G2/N having only the same weak

Cayley table? Here is a result in this direction.

Theorem 2.2.2. Let Ni E Gi, for i = 1, 2 with |Gi/Ni| odd. Suppose that the following

conditions hold:

(1) There exists a weak Cayley table isomorphism β : H1 = G1/N1 → H2 = G2/N2;

(2) There exists a map α : N1 → N2 such that α sends classes of G1 in N1 to classes of

G2 in N2 and α(n1n2) is conjugate in G2 to α(n1)α(n2) for all n1, n2 ∈ N1;

7



(3) (Gi, Ni) is a Camina pair for i = 1, 2.

Then G1 and G2 have the same weak Cayley table.

Proof. Since Gi is an extension of Ni by Hi, for i = 1, 2, we write Gi = Ni × Hi with

multiplication defined as

(n1, g1)(n2, g2) = (n1n
g−1
1

2 fi(g1, g2), g1g2),

for some function fi, for i = 1, 2. We may assume that fi(g, e) = fi(e, g) = e for all g ∈ Hi.

We note that for an arbitrary element (n, g) of either group G1 and G2, we have that

(n, g)−1 = (m, g−1) for some m ∈ Ni. In addition, since (n, g) = (n, e)(e, g) for all n ∈

Ni, g ∈ Hi, we have that (n, g)(m, g)−1 = (n, e)(e, g)(e, g)−1(m, e)−1 = (nm−1, e).

We partition H1 \ {e} into subsets S1 and S2 such that S2 = {g−1 : g ∈ S1}. We can do

this since |Hi| is odd by assumption. Now we define the map φ : G1 → G2 as follows.

φ(n, e) = (α(n), e),∀n ∈ N1,

φ(n, g) = (α(n), β(g)),∀n ∈ N1, g ∈ S1,

φ((n, g)−1) = (α(n), β(g))−1,∀n ∈ N1, g ∈ S1.

We first show that φ preserves conjugacy classes. Clearly this is true for classes in N1

by the hypothesis on α. For classes outside of N1, by the Camina pair assumption, since β

is a weak Cayley table isomorphism, classes of Gi are full preimages of conjugacy classes of

Hi = Gi/Ni, which are preserved by β. Now we show φ((n1, g1)(n2, g2)) is conjugate in G2

to φ(n1, g1)φ(n2, g2). We have three cases:

Case 1: g1 = g2 = e. Here

φ((n1, e)(n2, e)) = φ((n1n2, e)) = (α(n1n2), e).

8



On the other hand,

φ(n1, e)φ(n2, e) = (α(n1), e)(α(n2), e) = (α(n1)α(n2), e).

These elements are conjugate since α is a weak Cayley table isomorphism.

Case 2: g1 6= g−1
2 . Here

φ((n1, g1)(n2, g2)) = φ(n1n
g−1
1

2 f1(g1, g2), g1g2)

= (α(n1n
g−1
1

2 f1(g1, g2)), β(g1g2)).

On the other hand,

φ(n1, g1)φ(n2, g2) = (α(n1), β(g1))(α(n2), β(g2))

= (α(n1)α(n2)β(g1)−1

f2(β(g1), β(g2)), β(g1)β(g2)).

These elements are conjugate since β is a weak Cayley table isomorphism on the quotient

and (G2, N2) is a Camina pair.

Case 3: g2 = g−1
1 6= e. Without loss of generality, assume g1 ∈ S1. Write (n2, g2) =

(n, g1)−1 for some n ∈ N1. Then

φ((n1, g1)(n2, g2)) = φ((n1, g1)(n, g1)−1)

= φ(n1n
−1, e) = (α(n1n

−1), e).

Also,

φ(n1, g1)φ(n2, g2) = φ(n1, g1)φ((n, g1)−1)

= (α(n1), β(g1))(α(n), β(g1))−1

= (α(n1)α(n)−1, e) = (α(n1)α(n−1), e).

9



Thus these elements are also conjugate by the assumption on α. Hence, G1 and G2 have the

same weak Cayley table.

The following corollary follows directly from the theorem.

Corollary 2.2.3. Suppose (G1, N1) and (G2, N2) are Camina pairs with |Gi/Ni| odd and

N1
∼= N2, G1/N1

∼= G2/N2. Suppose also that classes of G1 in N1 correspond to classes of

G2 in N2 after identifying N1 and N2. Then G1 and G2 have the same weak Cayley table.

Here is another generalization of Theorem 2.2.1 that will be useful.

Theorem 2.2.4. (Johnson, Mattarei and Sehgal, [15, Theorem 4.1]) Let Gi be an extension

of Hi by the abelian normal subgroup N such that the conjugacy classes of G1 which lie

in N are the same as the conjugacy classes of G2 in N . Suppose that H1 and H2 have

the same weak Cayley table via α : H1 → H2 with nx = nα(x) for all n ∈ N , x ∈ Hi.

Suppose that (G1, N) and (G2, N) are Camina pairs. Finally, having fixed a representation

for each Gi as an extension of Hi by N , suppose that for every involution x ∈ H1, we have

(e, x)2 = (e, α(x))2. Then G1 and G2 have the same weak Cayley table.

2.3 Camina’s Theorem

In this section, we state a theorem of Camina and deduce some results. Suppose G is a group

with a proper non-trivial normal subgroup N such that (G,N) is a Camina pair. Camina

[2] shows that G must satisfy one of three conditions.

Theorem 2.3.1. (Camina [2]) Let G be a group with a non-trivial proper normal subgroup

N satisfying the Camina pair condition. Then G satisfies one of the following conditions:

(1) G is a Frobenius group with kernel N ,

(2) N is a p-group for some prime p, or

(3) G/N is a p-group for some prime p.
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Now suppose (Gi, Ni) for i = 1, 2 are Camina pairs. From the conclusions of Camina’s

theorem, we will attempt to answer the following two questions:

(1) If we suppose further that G1 and G2 are Frobenius groups, what further assumptions

do we need to guarantee that they have the same weak Cayley table?

(2) If instead G1/N1 and G2/N2 are p-groups, what are some sufficient conditions to guar-

antee that the two groups have the same weak Cayley table?

To answer the first question, we have this result due to Johnson, Mattarei and Sehgal in

[15] but without proof. We fill in the proof below.

Corollary 2.3.2. Let G1, G2 be Frobenius groups with kernels N1
∼= N2 and H1 = G1/N1

∼=

G2/N2 = H2. Assume also that classes of G1 in N1 coincide with classes of G2 in N2. Then

G1, G2 have the same weak Cayley table.

Proof. If |Gi/Ni| is odd, the assumptions of the theorem satisfy the first two conditions

Theorem 2.2.2. Since G1, G2 are both Frobenius groups with kernels N1 and N2, respectively,

we have that (G1, N1) and (G2, N2) are Camina pairs. Thus all of the assumptions of Theorem

2.2.2 are satisfied and the conclusion follows.

If |Gi/Ni| is even, then by 12.6.19 of Scott [18], N1 and N2 are abelian subgroups. More-

over, by Theorem 6.3 of Isaacs [12], H1 and H2 each has a unique involution. Suppose xi is

the unique involution in Hi. Since Gi are Frobenius groups, CGi
(xi) ⊆ Hi and we have that

each xi must act by inversion on Ni. Thus all the assumptions of Theorem 2.2.4 are satisfied

and the conclusion follows.

Chillag and Macdonald [3] showed that if (G,N) is a Camina pair, then requiring that

G be a Frobenius group is equivalent to requiring that G is a split extension of N . Thus, we

have this corollary, part of whose proof follows their argument.

Corollary 2.3.3. Suppose N and H are finite groups. Suppose that G1 and G2 are split

extensions of N by H such that (Gi, N) for i = 1, 2 are Camina pairs. If the conjugacy

classes in N of G1 and G2 coincide, then G1 and G2 have the same weak Cayley table.
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Proof. Let G be any split extension of N by H satisfying the assumptions of the corollary.

We can write G = HN, with N ∩ H = {1} and N / G. Fix h 6= e, h ∈ H. Let e 6=

n ∈ N . Since (G,N) is a Camina pair, h is conjugate to hn. Suppose hm = hn, where

m = m1m2,m1 ∈ H,m2 ∈ N. Then

n = h−1hm1m2 = h−1m−1
2 hm2(h−1m−1

1 hm1)m2 . (2.1)

Since N normal in G, h−1m−1
2 hm2 ∈ N . Also, n,m2 ∈ N and 2.1 implies that h−1m−1

1 hm1 ∈

N . But h−1m−1
1 hm1 is also in H. We have h−1m−1

1 hm1 ∈ N ∩H = {1}. Thus, from 2.1, we

have nm−1
2 = h−1m−1

2 h. Since n 6= e, we have m2 6= e. Now let n′ = h−1m′−1
2 hm2 for some

m′2 ∈ N . Clearly, if n 6= n′, then m2 6= m′2. Thus as n varies over N \ {1}, we have that

conjugating by h for all h ∈ H \{1} on N \{1} is fixed-point free. Thus G is Frobenius with

kernel N and complement H. This shows that G1 and G2 are both Frobenius groups with

kernel N and complement H. The result follows from the previous corollary.

To answer the second question above, that is, assuming further that Gi/Ni for i = 1, 2

are p-groups, we have the following result.

Theorem 2.3.4. Suppose (G1, N1) and (G2, N2) are Camina pairs with N1
∼= N2 such that

|Gi/Ni| is an abelian p-group for i = 1, 2 and that the classes of G1 in N1 coincide with

classes of G2 in N2 after identifying N1 and N2. Suppose further that Gi is neither a p-

group nor a Frobenius group with kernel Ni, i = 1, 2. Then G1 and G2 have the same weak

Cayley table.

Proof. Let Hi be the Sylow p-subgroup of Gi, i = 1, 2. It’s easy to see that Gi = NiHi.

We first prove that (Hi, Hi ∩ Ni) is a Camina pair. We do this by showing |CHi
(g)| =
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|CHi/Hi∩Ni
(g(Hi ∩Ni))|. We have

|CHi
(g)| ≤ |CGi

(g)|

= |CGi/Ni
(gNi)|

= |CHi/Hi∩Ni
(g(Hi ∩Ni))|

≤ |CHi
(g)|,

where the last inequality is given by Corollary 2.24 of Isaacs [13]. Thus, (Hi, Hi ∩ Ni) is a

Camina pair.

We now prove that (Hi, H
′
i) is also a Camina pair where H ′i is the commutator subgroup

of Hi. We do this by showing that Hi ∩ Ni = H ′i. By the second isomorphism theorem,

NiHi/Ni
∼= Hi/Ni ∩ Hi. But since NiHi/Ni = Gi/Ni is an abelian group, we have that

H ′i ≤ Ni ∩Hi.

Lemma 2.1 of Macdonald [17] is useful at this point. We first define some notation. We

write G1 = G, G2 = [G,G] and in general, Gk = [Gk−1, G] for k > 2. This series of subgroups

of G is called the lower central series of G.

Lemma 2.3.5. [17, Lemma 2.1] If (G,N) is a Camina pair and G has nilpotence class c

then N = Gr for some r satisfying 1 < r ≤ c.

Since Hi is a finite p-group and (Hi, Hi ∩Ni) is a Camina pair, by Lemma 2.3.5, we have

Hi ∩Ni = Hr
i . Thus, Hi ∩Ni ≤ H ′i and so Hi ∩Ni = H ′i. We have that (Hi, H

′
i) is a Camina

pair as required.

We now appeal to the main result of Dark [5] and Theorem 3 of Chillag, Mann and

Scoppola [4].

Theorem 2.3.6. (Dark [5]) If G is a finite p-group such that (G,N) is a Camina pair for

some subgroup N and G′ = N , then G4 = 1.

Theorem 2.3.7. (Chillag, Mann, Scoppola [4]) Let (G,N) be a Camina pair with G/N a
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p-group and let P ∈ Sylp(G). Assume that the nilpotence class of P is at most 4. Then G

is a Frobenius group with complement Q8 and N is a subgroup of index 4 in G.

Thus, by Theorem 2.3.6, Hi has nilpotence class of at most 3. By Theorem 2.3.7 above,

Gi is a Frobenius group with complement Q8 and Ni is a subgroup of index 4. Let Ki be the

kernel of Gi. Since Ni is normal in G, by [18, Theorem 12.6.8], either Ni ≤ Ki or Ki ≤ Ni.

Since Ni has index 4 and Ki has index 8, we have that Ki ≤ Ni with |Ni : Ki| = 2.

Then Ni is Frobenius with kernel Ki. Thus, after identifying N1 with N2, we have

K1
∼= K2. And since Q8 is a complement of both G1 and G2, by Corollary 2.3.2 above, G1

and G2 have the same weak Cayley table.

2.4 Weak Cayley Table Isomorphisms and Derivations

We begin with some notation from Dummit and Foote [8, Chapter 17.2]. Let G be a finite

group. Let A be an abelian group, written additively, on which G acts as automorphisms. In

this case, we say that A is a G-module. Define C0(G,A) = A and for n ≥ 1 define Cn(G,A)

to be the collection of all maps from Gn = G × · · · × G to A. The elements of Cn(G,A)

are called n-cochains. Each set Cn(G,A) is an additive abelian group given by the usual

pointwise addition of functions.

Definition 2.4.1. For n ≥ 0, define the nth coboundary homomorphism from Cn(G,A) to

Cn+1(G,A) by

Bn(f)(g1, ..., gn+1) =

g1 · f(g2, ..., gn+1) +
n∑
i=1

(−1)if(g1, ..., gi−1, gigi+1, gi+2, ..., gn+1) + (−1)n+1f(g1, ..., gn),

where the product gigi+1 occupies the ith position in Gn.

It is immediate from the above definition that the Bn are group homomorphisms and

Bn ◦ dn−1 = 0 for n ≥ 1.

Definition 2.4.2. (1) Let Zn(G,A) = ker(Bn) for n ≥ 0. The elements of Zn(G,A) are

called n-cocycles.
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(2) Let Bn(G,A) = Image(dn−1) for n ≥ 1 and B0(G,A) = 1. The elements of Bn(G,A)

are called n-coboundaries.

The elements of Z1(G,A), the 1-cocyles, are also called derivations. It is easy to check

f : G→ A is a derivation if and only if f(gh) = f(g)+g ·f(h) for all g, h ∈ G. The elements

of B1(G,A), the 1-coboundaries, are also called principal derivations. In this case, f is a

1-coboundary if there exists an a ∈ A such that f(g) = g · a− a for all g ∈ G.

Since Bn ◦ dn−1 = 0 for n ≥ 1 we have that Image(dn−1) ⊂ ker(Bn). Thus Bn(G,A) is

a subgroup of Zn(G,A).

Definition 2.4.3. For any G-module A, the quotient group Zn(G,A)/Bn(G,A) is called the

nth cohomology group of G with coefficients in A and is denoted Hn(G,A), n ≥ 0.

It is a fact (see Brown [1, Chapter IV]) that A-conjugacy classes of splittings of the

split extension 0 → A → A o G → G → 1 are in 1-1 correspondence with the elements of

H1(G,A) = Z1(G,A)/B1(G,A), in other words, the classes of derivations modulo principal

derivations.

We now apply the notation above to the following context. Suppose G is a finite group.

Define W(G) to be the group of weak Cayley table isomorphisms from G to G. Fix an

abelian subgroup N of G. Let A(G) denote the abelian group of all functions G→ N . Let

WN(G) be the group of all φ ∈ W(G) such that there exists a function δ(φ) : G → N such

that

φ(g) = gδ(φ)(g), for all g ∈ G.

Assume also that δ(φ) : G→ N is constant on the N cosets of G. We note that δ defines a

function from WN(G) to A(G), φ 7→ δ(φ).

Example 2.4.4. For G = G27,3 (in Magma notation), the non-abelian group of order 27

and exponent 3 and with N = Z(G), WN(G) has 54 elements where N = Z(G).

Lemma 2.4.5. Let G be a group with an abelian subgroup N ≤ G. For φ1, φ2 ∈ WN(G) and

g ∈ G, we have
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δ(φ2φ1)(g) = δ(φ1)(g) · δ(φ2)(g).

Proof. On the one hand, (φ2φ1)(g) = gδ(φ2φ1)(g). On the other hand, we have

(φ2φ1)(g) = φ2(φ1(g)) = φ2(gδ(φ1)(g))

= gδ(φ1)(g) · δ(φ2)(gδ(φ1)(g)) = gδ(φ1)(g) · δ(φ2)(g),

where the last equality follows from the fact that δ(φ) is constant on the N cosets of G.

Cancelling the g on both sides gives the identity.

Now we define an action of WN(G) on A(G). For φ ∈ WN(G) and µ ∈ A(G) define

φ · µ ∈ A(G) by

(φ · µ)(g) = µ(φ(g)) for all g ∈ G.

We show that this is indeed an action. To do this, we show that (φ2φ1)·(µ) = φ2 ·(φ1 ·(µ)).

Fixing g ∈ G, we have

(φ2φ1) · (µ)(g) = µ((φ2φ1)(g)) = µ(gδ(φ2φ1)(g))

= µ(gδ(φ1)(g) · δ(φ2)(g)).

But we also have

φ2 · (φ1 · (µ))(g) = φ1 · µ(φ2(g)) = µ(φ1φ2(g))

= µ(gδ(φ1φ2)(g)) = µ(gδ(φ1)(g) · δ(φ2)(g)),

as required.

The proof of Lemma 2.4.5 also shows us that

δ(φ2φ1) = δ(φ1) · φ1(δ(φ2)),
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that is, δ : WN(G) → A(G) is a derivation. Thus, the natural question is whether δ is a

principal derivation, in other words, whether it is a trivial element of the cohomology group.

The answer is “yes”. Here is the precise statement and proof.

Proposition 2.4.6. Suppose G is a finite group and N is an abelian subgroup of G. Then

δ : WN(G)→ A(G) defined above is a principal derivation.

Proof. We show that there exists µ ∈ A(G) such that

δ(φ)(g) = µ(φ(g))µ(g)−1, for all φ ∈ WN(G).

Pick a set T of representatives for left cosets of N in G, say T = {h1 = e, h2, ..., hm}. For

each g ∈ G, write g = hin, for some hi ∈ T and n ∈ N . Define µ : G→ N by

µ(g) = µ(hin) = n.

Let φ ∈ WN(G), so that φ(g) = gδ(φ)(g). We show that δ(φ)(g) = µ(φ(g))µ(g)−1, or

equivalently,

φ(g) = gµ(φ(g))µ(g)−1.

We have

gµ(φ(g))µ(g)−1 = gµ(gδ(φ)(g))µ(g)−1 = gµ(hinδ(φ)(g))µ(g)−1

= gnδ(φ)(g)µ(g)−1 = gnδ(φ)(g)µ(hin)−1

= gnδ(φ)(g)n−1 = gδ(φ)(g) = φ(g),

as required.

The above discussion also gives rise to the following question: Given a finite group G

with a subgroup N , can we always find a map δ ∈ A(G) such that φ(g) = gδ(g) is a weak

Cayley table isomorphism between G and G?

We indicate one situation where this is possible.
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Proposition 2.4.7. Let G be a finite group such that (G,Z(G)) is a Camina pair. Suppose

δ : G→ Z(G) is a function satisfying

(1) δ(g) = e for all g ∈ Z(G);

(2) δ is constant on Z(G) cosets of G;

(3) For all g, h /∈ Z(G) and gh ∈ Z(G), then δ(g)δ(h) = e.

Then φ : G→ G defined by φ(g) = gδ(g) is a weak Cayley table isomorphism.

Proof. Because (G,Z(G)) is a Camina pair, φ clearly sends classes to classes. We show that

for g, h ∈ G, φ(gh) ∼ φ(g)φ(h). There are four cases:

Case 1: g, h ∈ Z(G). We have φ(gh) = gh = φ(g)φ(h).

Case 2: g ∈ Z(G), h /∈ Z(G). Since gh /∈ Z(G), φ(gh) = ghδ(gh). Also φ(g)φ(h) =

ghδ(h). But ghδ(h) ∼ ghδ(gh) since (G,Z(G)) is a Camina pair, and so we are done.

Case 3: g, h /∈ Z(G) and gh /∈ Z(G). On the one hand, φ(gh) = ghδ(gh). On the

other hand, φ(g)φ(h) = gδ(g)hδ(h) = ghδ(g)δ(h), where the last equality follows because

δ(g), δ(h) ∈ Z(G). Thus φ(gh) ∼ φ(g)φ(h) since (G,Z(G)) is a Camina pair.

Case 4: g, h /∈ Z(G) and gh ∈ Z(G). In this case, φ(gh) = gh since gh ∈ Z(G). And

φ(g)φ(h) = gδ(g)hδ(h) = ghδ(g)δ(h). But by assumption δ(g)δ(h) = e. Thus φ(gh) =

φ(g)φ(h).

Example 2.4.8. For G = G27,3, let Z(G) = 〈z〉 and write G = Z(G)∪ g1Z(G)∪ g−1
1 Z(G)∪

· · · ∪ g4Z(G) ∪ g−1
4 Z(G). Let ε1, . . . , ε4 ∈ {±1}. Now define

δ(z) = e,∀z ∈ Z(G);

δ(giz
j) = zεi ,∀i = 1, . . . , 4;

δ(g−1
i zj) = z−εi ,∀i = 1, . . . , 4.

Then δ satisfies Proposition 2.4.7.
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Chapter 3. Weak Cayley Table Groups

3.1 Introduction

The set of all weak Cayley table isomorphisms φ : G → G forms a group which we denote

by W(G).

Example 3.1.1. Any automorphism φ : G → G is a weak Cayley table isomorphism and

thus is an element of W(G).

Example 3.1.2. An anti-automorphism is a bijective map φ : G → G such that φ(gh) =

φ(h)φ(g) for all g, h ∈ G. Any anti-automorphism is a weak Cayley table isomorphism.

Example 3.1.3. The inverse map I : G→ G, defined by

I(x) = x−1,

is an anti-automorphism and hence a weak Cayley table isomorphism.

Fact 3.1.4. Let φ be an anti-automorphism. Then φ can be written in the form φ = Iψ,

where I is the inverse map above and ψ is some automorphism of G.

Definition 3.1.5. A weak Cayley table isomorphism is trivial if it is either an automorphism

or an anti-automorphism. Further, we say that W(G) is trivial if it consists of only trivial

weak Cayley table isomorphisms.

LetW0(G) denote the subgroup ofW(G) of trivial weak Cayley table isomorphisms, that

is, W0(G) = 〈Aut(G), I〉, where I is the inverse map.

Thus the group W(G) is trivial if W(G) =W0(G), where W0(G) = 〈Aut(G), I〉.

We now give two examples of groups for which there exist nontrivial weak Cayley table

isomorphisms.
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Example 3.1.6. Let G = A4, the alternating group of degree 4. Since Aut(A4) ∼= S4, we

have that |W0(G)| = 48. But a Magma calculation shows that |W(G)| = 288. Thus there

exists nontrivial weak Cayley table isomorphisms for this group.

Example 3.1.7. Let G = 〈a, b | a5 = b4 = 1, bab−1 = a2〉, which is a group of order 20. Using

Magma, we have |Aut(G)| = 20 and so |W0(G)| = |〈Aut, I〉| = 40. But |W(G)| = 57, 600.

Humphries [11] proved the following important result.

Theorem 3.1.8. For n ≥ 1, the group W(Sn) is trivial.

Humphries’ proof used the following lemma.

Lemma 3.1.9. Suppose that G is a group containing a nontrivial conjugacy class C such

that G = 〈C〉. Suppose also that for every α ∈ W(G), there is an φ ∈ W0(G) such that the

following four statements are true:

(1) φα(x) = x for all x ∈ C;

(2) φα(x) = x for all x ∈ C2;

(3) φα(x) = x for all x ∈ C3;

(4) for all x, y ∈ G with x ∼ y, x 6= y, there is a c ∈ C ∪ C2 such that cx � cy.

Then W(G) is trivial.

Proof. We replace φα by φ in the proof below. Let λ be the length function for G relative

to the generating set C. Let x ∈ G be a shortest word such that y = φ(x) 6= x, is such a

word exists. Then λ(x) > 2 by assumptions (1) and (2), and we can write x = x′c where

c ∈ C and λ(x′) < λ(x). Then we have φ(x′) = x′ and so

y = φ(x′c) ∼ φ(x′)φ(c) = x′c = x.

Thus by hypothesis (4), there is a d ∈ C ∪C2 such that dy � dx. However, using hypothesis

(3) we also have
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yd ∼ φ(xd) = φ(x′cd) ∼ φ(x′)φ(cd) = x′cd = xd.

This contradiction gives the result.

Humphries applied this lemma to G = Sn and C the class of transpositions (i, j) in Sn

to show that W(Sn) is trivial. We wish to generalize his methods to show that W(An) is

trivial. We do this in the next section.

3.2 The Alternating Groups An

In generalizing Humphries’ methods, we first observe that his lemma, Lemma 3.1.9, can be

slightly modified as follows: Suppose we can pick c in (4) to be in C instead of C ∪C2, then

from the proof, we can drop hypothesis (3) thus simplifying our calculations.

We further note that his method for showing hypothesis (1) does not carry over to the

groups An. This observation leads us to use a different technique to prove hypothesis (1),

namely analyzing graph automorphisms.

Theorem 3.2.1. For n ≥ 5, the group W(An) is trivial.

Proof. We first show that for C the class of (i, j, k), hypothesis (1) of Lemma 3.1.9 is satisfied.

Proposition 3.2.2. Let C be the class of all 3-cycles. Suppose that φ : An → An, n ≥ 5,

is a weak Cayley table isomorphism. Then up to composing with a trivial weak Cayley table

isomorphism, we have that φ(x) = x for all x ∈ C.

Proof. We show that φ(C) = C. We use a counting argument. For 5 ≤ n ≤ 8, we can check

by Magma that C is the unique smallest class with its size. We next show that for n ≥ 9, C

is the unique smallest size class in An. Since weak Cayley table isomorphisms sends classes

to classes of the same size, we then have that φ(C) = C.

The class C has 2
(
n
3

)
=
n(n− 1)(n− 2)

3
elements. Suppose g ∈ An contains a k-cycle,
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where k > 3. Then there exists at least

(k − 1)!

(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k

elements in the class of g. Thus, to show that the class of g is larger than the class of C, we

show that

n(n− 1) · · · (n− k + 1)

k
>
n(n− 1)(n− 2)

3
,

or equivalently,

(n− 3)(n− 4) · · · (n− k + 1)

k
>

1

3
.

We will show, in fact, that

(n− 3)(n− 4) · · · (n− k + 1)

k
> 1. (3.1)

Thus, it suffices to show that the numerator of the left term of Equation 3.1 is larger than

k. If k = 4, then this is clearly true. For k > 4, the numerator has at least two terms. Since

n ≥ 9, we have

(n− 3)(n− 4) · · · (n− k + 1) > (n− 3)(n− 4) > (n− 3)2 > n ≥ k,

as required.

This shows that the class of g is bigger than then class of C if g has a k-cycle where

k > 3. Now if g has at least two 3-cycles in its decomposition then its size is at least

2
(
n
3

)(
n−3

3

)
> 2

(
n
3

)
. Similarly, if g has a 3-cycle and at least one 2-cycle. Finally, suppose g

has all 2-cycles. If g has m 2-cycles where m ≥ 2, then its class size is

n(n− 1) · · · (n− (2m− 1))

2 · 4 · · · (2m)
.
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Thus, it suffices to show that

(n− 3)(n− 4) · · · (n− (2m− 1))

2 · 4 · · · (2m)
>

1

3
.

We will show that

(n− 3)(n− 4) · · · (n− (2m− 1))

2 · 4 · · · (2m)
> 1. (3.2)

Let N and D denote the numerator and denominator of the left term of Equation 3.2,

respectively. Since N is a product of 2m − 3 consecutive terms and D is a product of m

consecutive even terms, it is easy to see that that N > D. Thus C is the smallest size class

as required.

We now create a graph, Γ. Let the vertex set of Γ be the set of subsets {x, x−1} where x

is a 3-cycle. If x = (i, j, k), then we identify the vertex {x, x−1} with the set {i, j, k}. Thus,

we will view this vertex set as the set of all size 3 subsets of {1, 2, ..., n}. Two vertices are

connected by an edge in Γ if they have two elements in common.

We now observe that Γ is a connected graph. For any two vertices, {a, b, c} and {d, e, f},

with {a, b, c} ∩ {d, e, f} = ∅, we have the following path connecting them: {a, b, c} →

{d, a, b} → {d, e, a} → {d, e, f}. The cases where {a, b, c} ∩ {d, e, f} 6= ∅ are similar.

Lemma 3.2.3. Any weak Cayley table isomorphism φ of An acts as an automorphism of

the graph Γ.

Proof. Since φ(g−1) = φ(g)−1, φ sends vertices to vertices. We now show that if x and y are

adjacent, then φ(x) and φ(y) are adjacent. Write x = (a, b, c) and y = (c, b, d), with a, b, c, d

all distinct. Since φ(C) = C, by conjugating, if necessary, we can change φ so that we can

assume φ(x) = (a, b, c). Suppose φ(y) = (i, j, k). We have φ(xy) = φ((a, b, c)(c, b, d)) =

φ(a, d, c) ∈ C. Butφ(xy) ∼ φ(x)φ(y) = (a, b, c)(i, j, k). Thus (a, b, c)(i, j, k) must be a 3-

cycle. But this is true only if |{a, b, c} ∩ {i, j, k}| = 2 or if (i, j, k) = (a, b, c), which can not

happen. So we have that φ(x) is adjacent to φ(y). Thus, φ preserves adjacency in the graph

Γ and φ acts as an automorphism of Γ.
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Certainly, the action of conjugating by an element of Sn is an automorphism of Γ. By [6],

these make up all of the automorphism of Γ. Thus, we have that φ acts on Γ as a conjugation

by some element g of Sn. By conjugating by g−1, we may assume that φ acts as the identity

on Γ.

Thus, φ((i, j, k)) ∈ {(i, j, k), (i, k, j)}, for all i, j, k. Now we show that φ((i, j, k)) =

(i, j, k), for all i, j, k.

Lemma 3.2.4. Suppose x and y are adjacent vertices with x = {(a, b, c), (a, c, b)} and y =

{(a, b, d), (a, d, b)}. Suppose further that φ((a, b, c)) = (a, b, c) and φ((a, c, b)) = (a, c, b).

Then φ((a, b, d)) = (a, b, d) and φ((a, d, b)) = (a, d, b).

Proof. By assumption φ((a, b, c)) = (a, b, c) and φ((a, c, b)) = (a, c, b). It suffices to show

that φ((a, b, d)) = (a, b, d). We proved above that φ((a, b, d)) ∈ {(a, d, b), (a, b, d)}. We have

φ((a, c, b)(a, b, d)) = φ((a, c, d)) ∈ C. But

φ((a, c, b)(a, b, d)) ∼ φ((a, c, b))φ((a, b, d)) = (a, c, b)φ((a, b, d)).

Thus, we have that (a, c, b)φ((a, b, d)) is a 3-cycle. And since (a, c, b)(a, d, b) = (a, c)(d, b) is

not a 3-cycle, we must have that φ((a, b, d)) = (a, b, d).

Repeating the argument of the lemma above, we see that if φ acts as the identity on a

particular vertex x then φ acts as the identity on all vertices that are path connected to x.

But this completes the proof of the proposition since the graph Γ is connected and we may

assume up to a conjugation that φ((123)) = (123) and φ(132) = (132).

We now show that hypothesis (2) of Lemma 3.1.9 is satisfied.

Proposition 3.2.5. Assuming the hypotheses of the previous proposition, we have that

φ(x) = x for all x ∈ C2.

Proof. Since C is the class of 3-cycles, we have that the elements of C2 are one of the

following four types: 5-cycles, type 2-2, 3-cycles and type 3-3.
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We first show that φ(x) ∼ x for all x ∈ C2. Write x = cd where c, d ∈ C. By the previous

proposition, we have that φ(c) = c and φ(d) = d. Thus, φ(x) = φ(cd) ∼ φ(c)φ(d) = cd = x

as required.

By the previous proposition, we have shown that φ fixes all 3-cycles. We now show that

φ fixes all 5-cycles. Suppose g is a 5-cycle. Without loss of generality, write g = (12345).

Since φ(x) ∼ x, we have that φ(x) is a 5-cycle.

Write φ((12345)) = (i, j, k, l,m). We have

φ((12345)(132)) ∼ φ((12345))(132) = (i, j, k, l,m)(132).

But φ((12345)(132)) = φ((345)) = (345). Thus, (i, j, k, l,m)(132) is a 3-cycle. We have

then that {1, 2, 3} ∩ {i, j, k, l,m} = {1, 2, 3}. Moreover, (i, j, k, l,m)(132) is a 3-cycle only if

(i, j, k, l,m) has the form (1, 2, 3, l,m). By a similar argument using (354) instead of (132), we

see that {l,m} = {4, 5} and that (1, 2, 3, l,m)(354) is a 3-cycle only if (1, 2, 3, l,m) = (12345).

Thus, φ((12345)) = (12345).

We now show that φ fixes 2-2 types. Without loss, we show that φ((12)(34)) = (12)(34).

By arguing as before, we see that φ((12)(34)) = (i, j)(k, l). Since (12)(34)(123) = (134), we

have that (i, j)(k, l)(123) is a 3-cycle. We can then check that {i, j, k, l}∩{1, 2, 3} = {1, 2, 3}.

Similarly, by multiplying by (234), we have that {i, j, k, l} = {1, 2, 3, 4}. Since we just proved

φ((12345)) = (12345) and (12)(34)(12345) is a 3-cycle, we must have that (i, j)(k, l)(12345)

is a 3-cycle. This happens only if (i, j)(k, l) = (12)(34).

Finally, we show φ((123)(456)) = (123)(456). Since

(123) = φ((123)) = φ((123)(456)(654)) ∼ (i, j, k)(l,m, n)(654),

we have that φ((i, j, k)(l,m, n)(654) is a 3-cycle. We then have that {i, j, k, l,m, n} ∩

{6, 5, 4} = {6, 5, 4}. Similarly, by multiplying by (321), we have that {i, j, k, l,m, n} =

{1, 2, 3, 4, 5, 6}. By similar computations as above, we have that (i, j, k)(l,m, n) = (123)(456),
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as required.

Thus, we have that φ(x) = x for all x ∈ C2.

To finish the proof of the theorem, we prove the following proposition.

Proposition 3.2.6. Suppose x, y ∈ An with x 6= y and x ∼ y. Then there exists c ∈ C such

that cx � cy.

Proof. We consider the disjoint cycle decomposition for x and y. We do not include 1-cycles

in our decomposition.

Lemma 3.2.7. Both x and y must have the same two cycles else we can find a c ∈ C such

that cx � cy.

Proof. We suppose (i, j) is a cycle in a cycle decomposition for x. Write x = (i, j)x1, where

x1 consists of the rest of the cycles of x. We first show that i, j are both in the cycle

decomposition of y and each must be in a 2-cycle of y. If not, let c = (j, i, k), where k is

an element of any nontrivial cycle of x. Such a k exists since x ∈ An. We then have that

cx � cy.

We now show that (i, j) is a cycle in the decomposition for y. Suppose not, write y =

(i, k)(j,m)y1 for some k,m ∈ [n]. We have two possibilities for x: x = (i, j)(k, a1)(m, b1)x1

or x = (i, j)(k, a1,m, b1)x1, where a1, b1 are subsequences of [n] representing the rest of

the elements in the decomposition. Here, we allow a1, b1 to be empty sets. In the first

case, where x = (i, j)(k, a1)(m, b1)x1, we have that (i,m, k)x = (i, b1,m, a1, k, j)x1 and

(i,m, k)y = (i, j,m)y1. In the second case, where x = (ij)(k, a1,m, b1)x1, we have (j,m, t)x =

(j, b1, k, a1,m, t, i). Thus, in both cases, since x ∼ y, we have that (i,m, k)x � (i,m, k)y.

Now we consider cycles of length at least 3.

Lemma 3.2.8. If {i, j, k} occurs in some cycle in the decomposition of x, then it also occurs

in some cycle in the decomposition for y in the same cyclic order else there exists a c ∈ C

such that cx � cy.
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Proof. We show that if {i, j, k} occurs in some cycle in the decomposition of x, then it also

occurs in some cycle in the decomposition for y else we can find a c ∈ C such that cx �

cy. Thus, suppose that x = (i, a1, j, b1, k, c1)x1 where a1, b1, c1 are subsequences, possibly

empty, of [n] and y doesn’t have all of i, j, k all in the same cycle. Then we have either

y = (i, d1)(j, e1)(k, f1)y1 or y = (i, d1, j, e1)(k, f1)y1, where d1, e1 and f1 are subsequences,

possibly empty, of [n].

In the first case, where y = (i, d1)(j, e1)(k, f1)y1, we have

(i, j, k)y = (i, e1, j, f1, k, d1)y1

and (i, j, k)x = (i, b1, k, a1, j, c1)x1. Since x ∼ y, we have that (i, j, k)x � (i, j, k)y.

In the second case, where y = (i, d1, j, e1)(k, f1)y1, we have

(i, k, j)y = (i, f1, k, e1)(j, d1)y1

and (i, k, j)x = (i, c1)(k, b1)(j, a1)x1. Again, we have (i, k, j)x � (i, k, j)y.

Thus, if x = (i, a1, j, b1, k, c1)x1 then y must be either y = (i, d1, j, e1, k, f1)y1 or y =

(i, d1, k, e1, j, f1)y1 for some subsets d1, e1, f1 of [n]. If it’s the second case, then (i, j, k)x =

(i, b1, k, a1, j, c1)x1 � (i, j, k)y = (i, f1)(j, e1)(k, d1)y1. Thus, we must have that

y = (i, d1, j, e1, k, f1)y1.

We have just shown that if {i, j, k} is in some cycle of x, then it is also in some cycle of

y in that same order else there exists a c ∈ C such that cx � cy.

Thus from the above lemma, if x = (i, a1, j, b1, k, c1)x1, then y = (i, d1, j, e1, k, f1)y1.

We have that (i, j, k)x = (i, c1)(k, b1)(j, a1)x1 and (i, j, k)y = (i, f1)(k, e1)(j, d1)y1. Thus

(i, j, k)x � (i, j, k)y unless {|a1|, |b1|, |c1|} = {|d1|, |e1|, |f1|}.

We next show that unless |a1| = |d1|, |b1| = |e1| and |c1| = |f1|, we can find c ∈ C such
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that cx � cy. Suppose not, that is, suppose without loss of generality that |a1| < |d1|. But

then this means that there are less elements of [n] between i and j in that cycle of x than

in the same cycle of y. But this contradicts the requirement we proved earlier that for all

{i, j, k} occuring in some cycle of x, the same set of elements must also occur in some cycle

of y in the same cyclic order.

Thus, we have shown that for all x, y ∈ An, x ∼ y, unless x = y, we can always find a

c ∈ C such that cx � cy.

3.3 The Projective Special Linear Groups PSL(2, pn)

Let G = PSL(2, pn) for some prime p. We wish to investigate the group W(G). Our first

observation is that Humphries’ lemma, Lemma 3.1.9, cannot be used in this case. We run

into two main issues. The first issue arises because the group PSL(2, pn) is different from

An and Sn and hence his techniques will not generalize. The second issue arises from the

fact that the class C we are interested in generates G “too quickly.” More precisely, the set

C2 constitutes most of the elements of G and C3 = G.

In resolving the first issue, we again resort to analyzing graph automorphisms and in

resolving the second, we modify Humphries’ lemma.

The strategy for proving the theorem is indicated by the following modification of Humphries’

lemma.

Lemma 3.3.1. Let G be a group and C a nontrivial class of G. Suppose also that for every

α ∈ W(G), there is a φ ∈ W0(G) such that the following three statements are true:

(1) φα(x) = x, for all x ∈ C;

(2) φα(x) ∼ x, for all x ∈G;

(3) For all x 6= y, x ∼ y, there exists c ∈ C such that cx � cy.
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Then W(G) is trivial.

Proof. We replace φα with φ in the following proof. It suffices to show that φ is the identity

map. Suppose not, that is, φ(x) 6= x for some x ∈ G. By assumption (2), φ(x) ∼ x.

By assumption (3), there exists a c ∈ C such that cx � cφ(x). But using (1), we have

φ(cx) ∼ φ(c)φ(x) = cφ(x) � cx, which is a contradiction to (2).

We note that if C2 = G then (2) is automatically satisfied if (1) is true.

Consider SL(2, pn). The center of SL(2, pn) is Z = {I,−I}. The projective special

linear group G = PSL(2, pn) is the quotient SL(2, pn)/Z. For ease of notation, we will

denote elements of G by elements of SL(2, pn) without explicitly referring to the quotient.

We include in the Appendix the conjugacy classes and character table of G. We will quote

freely these facts throughout sections 3.3, 3.4 and 3.5.

Let C be the class of G containing A = ( 1 1
0 1 ) . Then C is a class of elements of order p

and |C| = (p2n−1)/2. From Lemma A.0.14, the class D is another class of elements of order

p and size (p2n − 1)/2.

Let φ ∈ W(G). By conjugating by an element of GL(2, pn), there is an outer automor-

phism of G taking one class to the other. Thus, we may assume that φ sends C to itself.

This implies, in addition, that φ sends the class D to itself because these two classes are the

only classes of size (p2n − 1)/2. We note also that the class L(pn−1)/4 is the unique class of

involutions. Thus φ(L(pn−1)/4) = L(pn−1)/4.

We first define the trace of each class of G. By picking the conjugacy class representatives

for G given in Lemma A.0.14 and define the trace of those classes as the trace of the repre-

sentatives in the usual way. If X ∈ G, then we define the trace of X, denoted by Tr(X), to

be the trace of the representative of the conjugacy class to which X belongs. Thus, we have

that for all X, Y ∈ G, if X ∼ Y , then Tr(X) = Tr(Y ). In particular, Tr(I) = 2 for the

identity element of G and Tr(X) = 2 for all X belonging to the class of C or D. We also

note that the elements of the class L(pn−1)/4 have trace 0.

We first prove part (2) of Lemma 3.3.1 if (1) holds.
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Proposition 3.3.2. Let G = PSL(2, pn). Suppose that α ∈ W(G) satisfies (1) of Lemma

3.3.1. Then there exists a map φ ∈ W0(G) such that for all X ∈ G, φα(X) ∼ X.

Proof. We replace φα with φ in this proof.

If x ∈ C2, then φ(x) ∼ x. To see this, write x = c1c2, for some c1, c2 in C. By assumption,

φ(c1) = c1, φ(c2) = c2, we have that

x = c1c2 = φ(c1)φ(c2) ∼ φ(c1c2) = φ(x).

We first show that the classes D and Bm, for 1 ≤ m ≤ (pn − 1)/4 lie in C2. Then we

will show that φ sends each diagonal matrix to itself. Since the classes represented by the

diagonal matrices are the only classes outside of C2, this completes the proof for all the

representatives of all of the classes in G and hence all the classes of G.

To show D ⊂ C2, we use character theory. We introduce some notation from James and

Liebeck [14]. Let C1, ..., Cl be all the classes of a finite group G. We consider the group

algebra CG. For C ⊆ G, we define C̄ =
∑

x∈C x. Then it’s easy to show that there exists

integers ai,j,k such that for 1 ≤ i, j,≤ l, C̄iC̄j =
∑l

k=1 ai,j,kC̄k. Moreover, for all g ∈ Ck, and

for all i, j, we have

ai,j,k = #{(a, b) | a ∈ Ci, b ∈ Cj such that ab = g}.

In addition, the ai,j,k’s are given by the formula,

ai,j,k =
|G|

|CG(gi)||CG(gj)|
∑
χ

χ(gi)χ(gj)χ(gk)

χ(1)
,

where gi ∈ Ci and the sum runs over all irreducible characters χ of G. The ai,j,k’s are called

the structure constants of G [14].

Now denote C1 = C,C2 = D. To show that D ⊂ C2, it suffices to show a112 is nonzero.

Note that |CG(g1)| = |CG(g2)| = pn if g1 ∈ C, g2 ∈ D by Lemma A.0.14. From the formula
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for ai,j,k, we have that

a112 =
|G|

|CG(g1)||CG(g1)|
∑
χ

χ(g1)χ(g1)χ(g2)

χ(1)

=
pn(p2n − 1)

2p2n
(1 +

pn − 5

4(pn + 1)
− pn − 1

4(pn − 1)

+ (
1 +
√
pn

2
)2(

1−
√
pn

2
)(

2

pn + 1
) + (

1−
√
pn

2
)2(

1 +
√
pn

2
)(

2

pn + 1
))

=
(p2n − 1)pn

2p2n
(1 +

pn − 5

4(pn + 1)
− pn − 1

4(pn − 1)
+

2− 2pn

4(pn + 1)
)

=
pn − 1

4
.

Similarly, if we let C1 = C and Cm = Bm, we have

a11m =
|G|

|CG(g1)||CG(g1)|
∑
χ

χ(g1)χ(g1)χ(gm)

χ(1)

=
pn(p2n − 1)

2p2n

1−
1−

(pn−1)/4∑
i=1

(σ2i + σ−2i)

pn − 1

 ,

where σ is a (p + 1)th root of unity. Notice that −(p − 1)/2 ≡ (p − 1)/2 + 2 mod (p + 1).

Thus,

a11m =
pn(p2n − 1)

2p2n

(
1− σ2m + σ4m + σ6m + · · ·+ σ(pn−3)m + σ(pn−1)m

pn − 1

)
=
pn(p2n − 1)

2p2n
(1− −1

pn − 1
)

=
pn(p2n − 1)

2p2n
(

pn

pn − 1
)

=
pn + 1

2
.

To complete the proof of the proposition, we now show that φ sends each diagonal matrix
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to itself. Let Ll =
(
x 0
0 x−1

)
, x ∈ Fnp , x 6= ±1, for some l with 1 ≤ l ≤ (pn − 5)/4. Suppose

that φ(Ll) = ( a bc d ). Let Mλ = ( 1 λ
0 1 ), where λ is a nonzero square in Fpn so that Mλ is in C.

We note that MλL
l ∼ Ll. Then

φ(Ll) ∼ φ(MλL
l) ∼ φ(Mλ)φ(Ll) = Mλφ(Ll).

Thus, we have that Tr(Mλφ(Ll))=Tr(φ(Ll)). But Tr(φ(Ll))=a+ d and

Tr(Mλφ(Ll)) = a+ d+ λc.

Thus, c = 0. Similarly, by using MT
−λ ∼Mλ and multiplying on the right, we can show that

b = 0. Thus φ sends a diagonal matrix to a diagonal matrix.

Now, we show that φ(Ll) = Ll. Suppose φ(Ll) =
(
y 0
0 y−1

)
. We note that y 6= ±1. Pick

Aa,c =
(

1−ac a2

−c2 1+ac

)
∈ C

such that LlAa,c is in either C or D and Tr(LlAa,c)=2. We will show that such an Aa,c exists

by a similar argument using the structure constants as above. If l is even, we show that such

an Aa,c can be picked so that LlAa,c is in C. And if l is odd, we will pick Aa,c so that LlAa,c

is in D. Let C1 = Ll, C2 = C and C3 = D. If l is even, recall that ρ is a (p − 1)th root of

unity and we have from Lemma B.0.15,

a122 = (pn + 1)(1 +
ρ2l + ρ−2l + · · ·+ ρl(p

n−5)/2 + ρ−l(p
n−5)/2

pn + 1

+
2(−1)l(

1 +
√
pn

2
)2

pn + 1
+

2(−1)l(
1−
√
pn

2
)2

pn + 1
)

= (pn + 1)(1 +
ρ2l + ρ4l + · · ·+ ρl(p

n−5)/2 + ρl((p
n−5)/2+4) + · · ·+ ρ(pn−3)l

pn + 1
+ (−1)l).
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Since l is even, we have ρl(p−1)/2 = 1 and the above sum involving the ρ’s is −2. Thus,

a122 = (pn + 1)(1 +
−2

pn + 1
+ (−1)l)

= 2pn.

If l is odd, then we have ρl(p
n−1)/2 = −1 and the above sum involving the ρ’s is 0. In this

case, we also have a122 = 0. Thus, in order to show that we can find Aa,c so that LlAa,c is in

D, we show a123 is nonzero. In this case, we have,

a123 = (pn + 1)

1 +

(pn−5)/4∑
i=1

(σ2li + σ−2li)

pn + 1
+

(−1)l(1 +
√
pn)(1−

√
pn)

pn + 1


= (pn + 1)

(
1 +

(−1)l(1− pn)

pn + 1

)
= 2pn.

Since φ(D) = D, we have φ(LlAa,c) ∼ LlAa,c. But φ(LlAa,c) ∼ φ(Ll)φ(Aa,c) = φ(Ll)Aa,c.

Thus, Tr(φ(Ll)Aa,c)=2. So

2 = Tr(LlAa,c) = x+ x−1 + ac(x−1 − x),

which gives ac = (x− 1)/(x+ 1). Now,

2 = Tr(φ(Ll)Aa,c) = y + y−1 + ac(y−1 − y),

and substituting ac = (x− 1)(x+ 1), into the above equation, we get,

y2 − y(x+ 1) + x = 0,
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which is quadratic in y. We solve to obtain y = x or y = 1. Thus, y = x, and φ(Ll) = Ll, as

required.

Thus, for all X ∈ G, φ(X) ∼ X.

Now we show part (3) of Lemma 3.3.1.

Proposition 3.3.3. For all X, Y ∈ G,X 6= Y , satisfying X ∼ Y, there exists Aa,c ∈ C such

that Aa,cX � Aa,cY.

Proof. We assume that pn > 3. The case p = 3 can be checked computationally by Magma.

We first assume thatX, Y ∈ C. By conjugating, if necessary, we may assume X = A = ( 1 1
0 1 ) .

Write Y =
(

1−bd b2

−d2 1+bd

)
. We have that

Tr(Aa,cX) = 2− c2

and

Tr(Aa,cY ) = 2− a2d2 − b2c2 + abcd.

Let c = 0. If d 6= 0, then pick a 6= 0 such that a2 6= 4/d2 so that

±Tr(Aa,cX) = ±2 6= Tr(Aa,cY ) = 2− a2d2.

We can do this since pn > 3. If d = 0 then b2 6= 1 else X = Y . But Tr(Aa,cX) = 2− c2 and

Tr(Aa,cY ) = 2− b2c2. So we need to find a c ∈ Fpn such that

2− c2 6= ±(2− b2c2).

Choosing c 6= 0 such that

c2(1 + b2) 6= 4

will do this.
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Suppose that X, Y ∈ D. Without loss, assume X = ( 1 ε
0 1 ), where ε is a generator of F∗pn .

Since X ∼ Y , Y =
(

1+ghε h2ε
−g2ε 1−ghε

)
, he− gf = 1. We note that

Tr(Aa,cX) = 2− c2ε

and

Tr(Aa,cY ) = 2− 2acghε− g2a2ε− c2h2ε.

We want to show that there exist a, c ∈ Fpn such that Tr(Aa,cX) 6= ±Tr(Aa,cY ). If h2 6= 1,

then choose a = 0 so that Tr(Aa−cX) 6= Tr(Aa,cY. Also choose c 6= 0 so that εc2(1 + h2) 6= 4

so that Tr(Aa,cX) 6= −Tr(Aa,cY ). If h2 = 1, then g 6= 0 else X = Y. In this case, choose

nonzero a, c such that 2ch + ga 6= 0 and εc2 6= 2 to get Tr(Aa,cX) 6= ±Tr(Aa,cY ). We can

do this since pn > 3.

Suppose now that X, Y are in the class represented by Ll, where 1 ≤ l ≤ (pn − 3)/4.

Thus, pn > 3 else classes of this type do not exist. As before, without loss, assume that

X =
(
x 0
0 x−1

)
, x 6= ±1 and Y =

(
hex−gfx−1 fhx−hfx−1

gex−1−gex hex−1−fgx

)
, he − gf = 1. Consider Aa,0 in C.

Then

Tr(Aa,0X) = x+ x−1,

and

Tr(Aa,0Y ) = x− x−1(1− a2ge).

Notice if g or e is zero, then any nonzero a will give different traces. If both g, e are nonzero,

choose a so that 2 6= a2ge and 2x2 6= −a2ge so that Tr(Aa,cX) 6= ±Tr(Aa,cY ).

Suppose now that X, Y ∈ Bm. Then we assume X = ( x y
εy x ) , y 6= 0, x 6= ±1 and Y =(

x−fyeε+ghy h2y−f2yε
y(e2ε−g2) x+fyeε−hgy

)
, he− gf = 1. Then,

Tr(Aa,cX) = 2x− yc2 + a2yε,
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and

Tr(Aa,cY ) = 2x+ 2acfyeε− 2acghy + a2(e2yε− g2y)− c2(h2y − f 2yε).

We want to find a, c ∈ Fpn such that Tr(Aa,cX) 6= ±Tr(Aa,cY ). Equivalently, we find a, c

such that

c2(1 + f 2ε− h2) + a2(εe2 − g2 − ε) + 2ac(feε− gh) 6= 0, (3.3)

and

4x/y + c2(−1 + f 2ε− h2) + a2(εe2 − g2 + ε) + 2ac(feε− gh) 6= 0. (3.4)

We first note that not all three parentheses expressions from Equation (3.3) can be 0 else

X = Y . Since feε− gh is in both equations, if it’s nonzero, we can find a, c such that both

expressions are nonzero and we are done.

Thus, suppose now that feε− gh = 0. Also suppose that at least one of e2ε− g2 + ε and

f 2ε − h2 − 1 from Equation (3.4) is nonzero. Then since we also know that at least one of

1 + f 2ε− h2 and εe2 − g2 − ε is also nonzero, we can find a, c such that both equations are

nonzero as required.

Thus, suppose that both e2ε− g2 + ε and f 2ε− h2 − 1 are zero. If x 6= 0, then again we

are done. Thus suppose also that x = 0. Then Y =
(

0 −y
−ε 0

)
which gives y = −1/ε and from

X =
(

0 y
εy 0

)
, we get that ε = −1, which is a contradiction.

Thus, if X 6= Y , we can always find Aa,c ∈ C such that Aa,cX � Aa,cY .

We can not, at this time, prove part (1) of Lemma 3.3.1 for the general case G =

PSL(2, pn). We will be able to prove it for the special cases PSL(2, p) and PSL(2, p2). We

will do this in the next two sections.

3.4 The Projective Special Linear Groups PSL(2, p)

Let G = PSL(2, p), for a prime p. Let C be the class of ( 1 1
0 1 ) in G. For simplicity, we treat

the case p ≡ 1 mod 8. (The general cases are proven in the Appendix.) In particular, this
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implies that −1 and 2 are quadratic residues in Fp [16, Theorem 5.3 and 5.5]. Let r, s ∈ Fp

be such that r2 ≡ −1 mod p and s2 ≡ 2 mod p. By the results of the previous section, we

only need to prove part (1) of Lemma 3.3.1.

Proposition 3.4.1. Let φ ∈ W(G). Then there exists α ∈ W0(G) such that αφ(x) = x for

all x ∈ C.

Proof. We define a graph Γ as follows. The vertices of Γ are elements of the class C. Two

vertices M and N are connected by an edge if MN ∈ L(p−1)/4, that is MN is an involution.

Recall that up to an automorphism ofG, we may assume that φ(C) = C. We show that φ acts

as an automorphism of Γ. By assumption, φ is a bijection. Suppose M,N are adjacent in Γ.

Then MN ∈ L(p−1)/4. By the above, we have φ(MN) ∈ L(p−1)/4. But φ(MN) ∼ φ(M)φ(N),

thus φ(M)φ(N) ∈ L(p−1)/4 and φ(M), φ(N) ∈ C are also adjacent.

We analyze the graph Γ. We fix a vertex A = ( 1 1
0 1 ) of Γ. Since φ(A) ∈ C, by conjugation

if necessary, we may assume that φ(A) = A. We investigate the immediate neighbors of A.

Any element of C is conjugate to A and can be written in the form

Aa,c = ( a bc d ) ( 1 1
0 1 )

(
d −b
−c a

)
=
(

1−ac a2

−c2 1+ac

)
,

for some a, c ∈ Fp.

Since

AAa,c =
(

1−ac−c2 a2+1+ac
−c2 1+ac

)
, (3.5)

AAa,c ∈ L(p−1)/4 implies that Tr(AAa,c) = 2 − c2 = 0. Thus c = ±
√

2 = ±s. Thus the

neighbors of A are precisely the elements Aa,c such that c = ±s and a ∈ Fp. But since

Aa,c = A−a,−c, these are precisely the elements Aa,c such that c =
√

2 = s and a ∈ Fp.

Lemma 3.4.2. The graph Γ is connected.

Proof. Suppose that Γ decomposes into multiple components. We first notice that these

components must have the same size since any two vertices of the graph are images of each
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other by an automorphism of G. Thus to show that Γ has only one component, we only need

to show that the component containing A contains more than |C|/2 = (p2 − 1)/4 elements.

We show that the neighbors of A form a cycle of length p around A, where Aa,s is adjacent

to Aa+1,s, for all a ∈ Fp. The neighbors of A can visualized below in Figure 3.1.

Figure 3.1: The neighbors of A in Γ.

We can check that the trace of Aa,sAa+1,s is 0 for all a ∈ Fp, showing that Aa,s and Aa+1,s

form an edge of Γ. We call the Aa,s’s the cycle neighbors of A.

Each cycle neighbor Aa,s of A, has its own cycle neighbors. These can be found by

conjugating by a fixed element D such that D−1AD = Aa,s. If we let D =
(

0 −1/s
s −a

)
, then we

have that D−1AD = Aa,s. Thus the cycle neighbors of Aa,s are

D−1Ax,sD =
(

1+sx−sax2 (ax−1)2

−2x2 1−sx+sax2

)
,

for all x ∈ Fp.

Now, we show that for each a ∈ Fp, A and Aa,s have exactly two cycle neighbors in

common, Aa−1,s and Aa+1,s. To see this, we suppose that D−1Ax,sD is a cycle neighbor of

both Aa,s and A. Then the trace of AD−1Ax,sD must be 0. But the trace of AD−1Ax,sD is

2− 2x2. Thus, x = ±1. But substituting x = ±1 into D−1Ax,sD gives Aa−1,s and Aa+1,s as
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required. This shows, in particular, that among the cycle neighbors of A, the only adjacencies

are the ones formed by the p-cycle A0,s, A1,s,...,Ap−1,s, A0,s.

Next, for all a, b ∈ Fp, a 6= b, we show that Aa,s and Ab,s have two cycle neighbors in

common, namely A and
(

1+sx−sax2 (ax−1)2

−2x2 1−sx+sax2

)
, where x ≡ 2/(a− b) mod p. To see this, we

solve (
1+sx−sax2 (ax−1)2

−2x2 1−sx+sax2

)
=
(

1+sy−sby2 (by−1)2

−2y2 1−sy+sby2

)
.

The (2, 1) entry yields y = ±x. But the (1, 2) entry implies a 6= b, so we have either

y = x = 0 or y = −x. The first case gives A as a common cycle neighbor. In the second

case, we substitute y = −x into the above matrices and equate their (1, 1) entries to get

1 +
√

2x−
√

2ax2 = 1−
√

2x−
√

2bx2.

This gives x ≡ 2/(a− b) mod p, as required.

Now we find a lower bound for the number of elements in the same component as A. We

start with A and its p cycle neighbors for a total of p + 1 elements. Since any two distinct

cycle neighbors, Aa,s and Ab,s, of A have exactly one common cycle neighbor, not including

A, we have that we can get at least

(p− 3) + (p− 4) + · · ·+ 2 + 1 = (p− 3)(p− 2)/2

distinct cycle neighbors of the Aa,s’s not including A and its cycle neighbors, for all a ∈ Fp.

Thus we have at least (p2−3p+8)/2 elements in the same component as A. But this number

is strictly bigger than |C|/2 = (p2− 1)/4, for all p. Thus Γ can have at most one component

and hence must be connected.

Lemma 3.4.3. The stabilizer of A under the action of Aut(Γ) is isomorphic to the dihedral

group of order 2p, D2p.

Proof. We first show that D2p is a subgroup of the stabilizer group. Let P = ( 1 d
0 1 ), where
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d = −1/s. Then P commutes with A and we can check that P−1AP = A and P−1Aa,sP =

Aa+1,s, for all a. Thus conjugating by P rotates Γ about A. Now let Q =
(
x−1 0

0 x

)
, where

x2 = −1. Then, by composing the inverse map with conjugation by Q, we get the map

β : Γ→ Γ, which sends A to itself and Aa,s to Q−1A−1
a,sQ = A−a,s, realizing a reflection fixing

A’s cycle neighbor A0,s.

We next show that the elements of D2p are the only automorphisms that fix A. To do

this, we show that any automorphism fixing A and its cycle neighbors fixes all of Γ.

Since Γ is connected, we use an inductive argument on the distance from the vertex

A. By assumption, all vertices with distance 1 away from A are fixed. Suppose that all

vertices with distance less than n away from A is fixed. Let An be any vertex whose distance

from A is n ≥ 2. Let A0 = A,A1, .., An−1, An be a path of length n from A to An. By

assumption, A0, A1, ..., An−1 are fixed. Consider the vertex An−2. By assumption, all of the

cycle neighbors of An−2 are fixed and An−1 is one such neighbor. By the argument above,

An−1 and An−2 have two neighbors in common, say B1 and B2, both of which are fixed.

Thus An−1, B1, B2, and An are cycle neighbors of An−1. Since An−2, B1, B2 are all fixed, the

rest of the cycle neighbors of An−1 are fixed and hence An is also fixed.

Thus D2p is the stabilizer group of automorphisms of Γ fixing A.

We have just shown by Lemma 3.4.3 that W0(G) can realize all of the elements of the

stabilizer group, D2p, fixing A. Thus, we have that W0(G) acting on Γ can realize all of

Aut(Γ).

Now, we prove Proposition 3.4.1. The weak Cayley table isomorphism φ acts as an

automorphism on Γ. Since W0(G) can realize any element of Aut(Γ), let α be the element

of W0(G) which is the inverse element of φ in Aut(Γ). Then αφ(x) = x, for all x ∈ C as

required.

We have shown that φ satisfies all three of the conditions of Lemma 3.3.1, for p ≡ 1 mod

8. Thus, in this case, W(G) is trivial. For the general case, see the Appendix.
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3.5 The Projective Special Linear Groups PSL(2, p2)

Theorem 3.5.1. For all primes p ≡ 5 mod 8, W(PSL(2, p2)) is trivial.

Proof. Let G = PSL(2, p2). It suffices to show part (1) of Lemma 3.3.1. In other words, we

show that given φ ∈ W(G), there exists a trivial weak Cayley table isomorphism α such that

αφ(x) = x for all x ∈ C.

In this case, we have that 2 is a quadratic nonresidue in Fp [16, Theorem 5.5]. But it is

a quadratic residue in Fp2 since all quadratics over Fp split over Fp2 . As before let C be the

class of ( 1 1
0 1 ). Let φ ∈ W(G). We show that there exists α ∈ W0(G) such that αφ(x) = x

for all x ∈ C.

We define a graph Γ with colored edges as follows. The vertices of Γ are elements of

the class C. Two vertices A,B are connected by a red edge if AB ∈ L(p−1)/4, that is, if

AB is an involution. If A = ( 1 1
0 1 ) ∈ C, then let S denotes the set of all neighbors that are

red-adjacent to A in Γ. Let s =
√

2 in Fp2 . Then as proven in the previous case in Section

3.3, S = {Aa,s|a ∈ Fp2}. Thus |S| = p2.

We want to understand the red-adjacencies among the elements of S. And as in Section

3.3, given a ∈ Fp2 , one can show that the only elements of S that are red-adjacent to Aa,s

are Aa+1,s and Aa−1,s. Moreover, Aa,s, Aa+1,s, ..., Aa+p−1,s, Aa,s form a p-cycle in Γ. Thus S

decomposes into p distinct p-cycles, where given an element of S, Aa,s, we get the full p-cycle

that Aa,s belongs to by repeatedly adding 1 to the argument a. This is the complete local

picture of red-adjacencies for all of the neighbors of A. See Figure 3.2 below.

Now we add to Γ a new set of colored edges joining elements of S. Two vertices A,B ∈ S

are connected by a blue edge if AB ∈ C. Solving the equations Tr(Aa,sAb,s) = ±2 where

a 6= b, we get that given Aa,s ∈ S, its blue-adjacent neigbors in S are Aa+s,s and Aa−s,s.

Thus, Aa,s, Aa+s,s, ..., Aa+(p−1)s,s, Aa,s form a p-cycle in blue edges in Γ.

A geometric way of visualizing the vertices of S is to recognize that the vertices of S

along with the red and blue edges form the skeleton for a torus. See Figure 3.3.

Given a vertex Aa,s in S, adding ±1 to a gives us the vertices Aa±1,s connected to Aa,s by
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Figure 3.2: The p2 neighbors of A in Γ.

Figure 3.3: The neighbors of A with both red and blue edges form the skeleton of a torus.

red edges. But adding ±
√

2 to a gives us vertices Aa±
√

2,s connected to Aa,s by blue edges.

These four vertices are the only vertices in S connected to Aa,s by red and blue colored edges.

See Figure 3.4.

Since {1,
√

2} forms a basis of Fp2 over Fp, any two vertices in S, Aa,s and Ab,s, can

be connected to one another by a path of red and blue edges by adding the appropriate

Fp-multiples of 1’s and
√

2’s.

Given a vertex Aa,s in S, the p red-adjacencies path cycle Aa,s, Aa+1,s, ..., Aa+p−1,s, Aa,s

forms a circle along the longitudinal direction of the torus skeleton. Denote this set by
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Figure 3.4: Adjacent neighbors of A.

La. The blue-adjacencies path cycle Aa,s, Aa+s,s, ..., Aa+(p−1)s,s, Aa,s forms a circle along the

meridian direction of the torus skeleton. Denote this set by Ma. Thus S can be partitioned

as {Ma|a ∈ Fp} or by fixing an element a ∈ Fp2 , S can also be partitioned as {Lx |x =

a+ ns, n ∈ Fp}.

Lemma 3.5.2. The graph Γ is connected.

Proof. The proof is similar to the PSL(2, p) case. We show that the component containing

A contains more than |C|/2 = (p4 − 1)/4 elements.

As shown in the Fp case, for each a ∈ Fp2 , A and Aa,s have exactly two neighbors in

common, Aa−1,s and Aa+1,s. And for all a, b ∈ Fp2 , a 6= b, we have that Aa,s and Ab,s have

two neighbors in common, namely A and
(

1+sx−sax2 (ax−1)2

−2x2 1−sx+sax2

)
, where x ≡ 2/(a − b) mod

p2.

Now we find a lower bound for the number of elements in the same component as A. We

start with A and its p2 cycle neighbors for a total of p2 +1. Since any two distinct neighbors,

Aa,s and Ab,s, of A have exactly one common neighbor, not including A, we can get at least

(p2 − 3) + (p2 − 4) + · · ·+ 2 + 1 = (p2 − 3)(p2 − 2)/2

distinct neighbors of Aa,s not including A and its neighbors, for all a ∈ Fp2 . Thus we have
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at least (p4 − 3p2 + 8)/2 elements in the same component as A. But this number is strictly

bigger than |C|/2 = (p4−1)/4, for all p. Thus Γ can have at most one component and hence

must be connected.

Lemma 3.5.3. The stabilizer of A under the action of Aut(Γ) has 4p2 elements. In addition,

all of the elements of this subgroup can be realized by trivial weak Cayley table isomorphisms.

In fact, the stabilizer subgroup is isomorphic to D2p × D2p. But we will not need this

fact.

Proof. Let StabAut(Γ)(A) denote the stabilizer of A under the action of Aut(Γ). Fix a = 0 ∈

Fp. Consider the set La = L0 = {A0,s, A1,s, A2,s, ..., Ap−1,s}.

We first show that the subgroup of elements φ ∈ StabAut(Γ)(A) such that φ(L0) = L0 has

at least 2p elements. This is clear since the set of vertices in L0 forms a p-cycle in Γ. Thus

its stabilizer subgroup contains D2p, which has 2p elements as required. Moreover, we found

in the proof of the PSL(2, p) case, the trivial weak Cayley table isomorphisms can realize

all of D2p.

We next show that the subgroup of elements φ ∈ StabAut(Γ)(A) such that φ(x) = x for

all x ∈ L0 has 2 elements. Pick an element of L0, say A0,s. Since φ(A0,s) = A0,s, we have

that φ(M0) = M0, where M0 = {A0,s, As,s, A2s,s, ..., A(p−1)s,s}. But M0 is a p-cycle whose

vertex A0,s is fixed under the action of φ. Thus the only possibility for the action of φ on

M0 is a reflection of the p-cycle in M0 fixing the vertex A0,s. Thus, it suffices to show that if

φ(As,s) = As,s then φ(At,s) = At,s for all elements t ∈ Fp2 ; that is, φ fixes all elements of S.

First, since φ(As,s) = As,s, we must have that φ(At,s) = At,s for all t such that t = ns, n ∈ Fp,

that is, φ fixes all elements of both M0 and L0. Now consider an arbitrary element of S, say

Ar,s, where r = a+ bs, a, b ∈ Fp. We notice that Ma = Mr and Lbs = Lr by definition. Since

φ fixes all elements of L0 and M0, we have that φ(Aa,s) = Aa,s and φ(Abs,s) = Abs,s. Thus

φ(Ma) = φ(Mr) = Mr and φ(Lbs) = φ(Lr) = Lr. But Mr ∩Lr = {Ar,s}. Thus φ(Ar,s) = Ar,s

as required.
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Now we show that the reflection fixing all of L0 and sending As,s to A−s,s can be realized

by a trivial weak Cayley table isomorphism. Consider the Frobenius field automorphism

ρ : Fp2 → Fp2 given by ρ(x) = xp, for all x ∈ Fp2 . This field automorphism induces an

automorphism, ρ̄, of PSL(2, p2), where

ρ̄ ( a bc d ) =
(
ρ(a) ρ(b)
ρ(c) ρ(d)

)
= ( a

p bp

cp dp ) .

We can check that ρ̄(A) = A, ρ̄(At,s) = At,s for all At,s ∈ L0.

We show that ρ̄(As,s) = A−s,s. It suffices to show that ρ(s) = sp = −s. We first state

without proof Euler’s Criterion [16, Theorem 3.23].

Theorem 3.5.4. If p is an odd prime, then for arbitrary a ∈ Z,

a(p−1)/2 ≡ (a/p)(mod p),

where (a/p) = 1 if a is a quadratic residue and (a/p) = −1 if a is quadratic nonresidue.

Now, ρ(s) = sp = (s2)(p−1)/2s = (2)(p−1)/2s = −s, where the last equality follows because

2 is a quadratic nonresidue in Fp2 .

We now show that the action of StabAut(Γ)(A) on S = {L0, Ls, L2s, ..., L(p−1)s} is transitive.

This is clear since if we let D = ( 1 −n
0 1 ), then D−1AD = A and D−1A0,sD = Ans,s, for all

n ∈ Fp. Thus D−1L0D = Lns. This shows, in particular, that the orbit under StabAut(Γ)(A)

of L0 has p elements.

To complete the proof that |StabAut(Γ)(A)| = 4p2, we show that any element of Aut(Γ)

fixing all elements of S fixes all of Γ. Let V be some vertex in Γ. If the distance between

V and A is 1, then V ∈ S and we are done. Suppose now that the distance is 2. Let

At,s, t ∈ Fp2 , be an element in S such that At,s is adjacent to V . Then, as shown in the

PSL(2, p) case, V has the form V =
(

1+sx−stx2 (tx−1)2

−2x2 1−sx+stx2

)
for some x ∈ Fp2 . Now, as argued

above, if b = t − 2/x then Aa,s and Ab,s have exactly two common neighbors, A and V .

And since A, Aa,s and Ab,s are all fixed by φ, we must have that φ(V ) = V . By repeating
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this argument, we get that φ fixes all elements in the same component of A. But we proved

above that Γ is connected, thus φ fixes all of Γ as required.

Thus the stabilizer group of automorphisms of Γ fixing A has size 4p2 as required. More-

over, all of the elements of this subgroup can be realized by trivial weak Cayley table iso-

morphisms.

Thus, we have that W0(G) acting on Γ can realize all of Aut(Γ). Thus any weak Cayley

isomorphism acting on Γ can be changed by a trivial weak Cayley table isomorphism to give

the identity isomorphism.

3.6 The Coxeter Groups Cn

Set [n] = {1, 2..., n}. We define the Coxeter Group of type Cn as

Cn = 〈r0, r1, ..., rn−1|r2
i = 1, 0 ≤ i ≤ n− 1, (riri+1)3 = 1, 1 ≤ i ≤ n− 2, (r0r1)4 = 1, rirj =

rjri, |i− j| ≥ 1.〉

However, for clarity, we embed Cn as a subgroup of S2n. As a set of generators for Cn,

we take the set

{(12), (13)(24), (35)(46), ..., (2n− 3, 2n− 1)(2n− 2, 2n)}.

Thus, we can view Cn as the group of signed permutation acting on the set of pairs in

P = {{1, 2}, {3, 4}, ..., {2n− 1, 2n}}.

The group Cn is a semidirect product of the normal subgroup K = 〈(12), (34), ..., (2n−

1, 2n)〉 ∼= Zn2 with H = 〈(13)(24), (35)(46), ..., (2n − 3, 2n − 1)(2n − 2, 2n)〉 ∼= Sn. Denote

these generators of H as

σ1 = (13)(24), σ3 = (35)(46), ..., σ2n−3 = (2n− 3, 2n− 1)(2n− 2, 2n).
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Thus, H = 〈σ1, σ3, ..., σ2n−3〉. For each generator σi = (i, i + 2)(i + 1, i + 3) of H, we let

σ′i = (i, i+ 3)(i+ 1, i+ 2).

Let C1 be the class of (13)(24) in Cn and C2 the class of (12) in Cn. The center of Cn is

generated by the involution z = (12)(34) · · · (2n− 1, 2n). Since Cn acts on the n pairs in P ,

we have that |C1| = 2
(
n
2

)
= n(n− 1) and |C2| = n. There are two classes of Cn of size n, C2

and zC2. Let C = C1 ∪ C2.

We show that Cn has only trivial weak Cayley table isomorphisms.

Theorem 3.6.1. The group W(Cn) is trivial for all n.

Proof. Suppose φ ∈ W(Cn). We first show that φ(K) = K. Since C2 ⊂ K, zC2 ⊂ K are

the only two classes of size n in Cn, we have that φ(C2 ∪ zC2) = C2 ∪ zC2. By 2.1.6, φ(K) is

a normal subgroup of Cn. Thus φ(K) is a normal subgroup of Cn containing C2 ∪ zC2. But

〈C2 ∪ zC2〉 = K. Thus φ(K) = K as required.

Lemma 3.6.2. Up to composing with a trivial weak Cayley table isomorphism of Cn, we

may assume that φ(hK) = hK for all h ∈ H.

Proof. Since φ(K) = K, by Lemma 2.1.6 part (3), for each h ∈ H, we have that φ(hK) =

h′K for some h′ ∈ H. By part (4), this induces a weak Cayley table isomorphism φ̄ on

G/K ∼= H ∼= Sn. By Theorem 3.1.8, φ̄ is a trivial weak Cayley table isomorphism on H.

Thus φ̄ is either an inner automorphism on H or an inner automorphism composed with the

inverse map.

In the first case, suppose that φ̄ is an inner automorphism on H, that is, suppose that for

some x ∈ H, φ̄(h) = hx for all h ∈ H. Then φ(hK) = hxK for h ∈ H. Thus by composing

with a conjugation by x−1 on Cn, we may assume that φ(hK) = hK for h ∈ H.

In the second case, suppose that φ̄ is an inner automorphism composed with the inverse

map. By the argument in the preceding paragraph, without loss, we may assume that φ̄ is

the inverse map. Then by composing φ with the inverse map on Cn, we may assume that

φ(hK) = hK for all h ∈ H.
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Thus, we may assume that φ sends each coset of K to itself.

Lemma 3.6.3. Up to composing with a trivial weak Cayley table isomorphism, we may

assume that φ((13)(24)) = (13)(24). Thus φ(C1) = C1.

Proof. Let h = (13)(24). Since φ sends each coset of K to itself, we have that φ(h) = hkh,

for some kh ∈ K. But h2 = 1, and so 1 = φ(h2) ∼ φ(h)2, and so φ(h)2 = 1. Thus, we

have (hkh)
2 = 1. Since every element of K is an involution, kh ∈ CK(h). Also we have that

|hG| = |(hkh)G| since φ sends each class to a class of the same size.

First we show that CK(h) consists of exactly the elements in K with (12)(34) in the cycle

decomposition or the elements of K whose cycle decomposition does not involve elements

of the set {1, 2, 3, 4}. Since (12)(34) centralizes h, we have that this set of elements of K

is a subset of CK(h). But this set has 2n−1 elements which is half the size of K. Since

(12) does not centralize h, we must have equality. Since |hG| = |(hkh)G|, we must have that

kh ∈ {1, z, (12)(34), (12)(34)z}.

Thus φ(h) = hkh ∈ {h, hz, h(12)(34), h(12)(34)z}. By Proposition 2.8 of Franzsen [9], we

have that multiplying each generator of H by z while fixing each generator of K is an outer

automorphism of Cn. Thus, we may assume that φ(h) = hkh ∈ {h = (13)(24), h(12)(34) =

(14)(23)}. And since (14)(23) is conjugate to (13)(24) by (12), we may assume finally that

φ((13)(24)) = (13)(24). As a consequence, we also have that φ(C1) = C1.

Now we show that φ fixes pointwise all of the elements of C1.

Lemma 3.6.4. We can compose φ with some trivial weak Cayley table isomorphism so that

for all x ∈ C1, φ(x) = x.

Proof. Without loss, we write x = (a, c)(a+ 1, c+ 1) where {a, a+ 1}, {c, c+ 1} ∈ P . Since

x(a, a + 1) = (a, c, a + 1, c + 1), x(c, c + 1) = (a, c + 1, a + 1, c) and x(a, a + 1)(c, c + 1) =

(a, c + 1)(c, a + 1), we see that the intersection of xG = (13)(24)G and xK is the set {x =

(a, c)(a+1, c+1), (a, c+1)(c, a+1)}. Thus φ(x) ∈ {x = (a, c)(a+1, c+1), (a, c+1)(c, a+1)},

for all x ∈ (13)(24)G. This shows also that φ((14)(23)) = (14)(23).
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We next show that φ(σi) = σi = (i, i+2)(i+1, i+3) and φ(σ′i) = σ′i = (i, i+3)(i+1, i+2)

for all odd i ∈ [n]. We already showed that φ(σ1) = φ((13)(24)) = (13)(24) = σ1. Consider

σ3 = (35)(46). As above, we have that {φ((35)(46)), φ((36)(45))} = {(35)(46), (36)(45)}.

But by conjugating by (56), if necessary, we can assume that φ((35)(46)) = (35)(46). Notice

this conjugation does not effect what φ does to the previous generator (13)(24). Similarly

by conjugating by (78) if necessary, we can assume that φ((57)(68)) = (57)(68). Continuing

this process, we see that φ(σi) = σi and φ(σ′i) = σ′i for all i odd in [n].

Every element x ∈ (13)(24)G determines a swapping of two pairs in P. Given any two

pairs in P , say {a, a+ 1} and {b, b+ 1} with b > a, define

D({a, a+ 1}, {b, b+ 1} = (b− a)/2.

Thus, D measures the distance between any two pairs in P .

For x ∈ (13)(24)G, write x = (a, c)(a+ 1, c+ 1), where a < c. We show that φ(x) = x by

induction on D({a, a+ 1}, {c, c+ 1}). If D({a, a+ 1}, {c, c+ 1}) = 1, then x = σi or x = σ′i

for some i odd in [2n]. We already showed above that φ(x) = x in this case. Suppose now

that D({a, a+ 1}, {c, c+ 1}) = m > 1 and any swapping of pairings of distance less than m

is fixed by φ. Pick any pair {e, e+ 1} in P such that a < e < c.

Let y = (a, c, e)(a+ 1, c+ 1, e+ 1).

Lemma 3.6.5. For all x in the class containing y, we have that φ(x) = x.

Proof. We first show that φ(y) ∈ yG. We have y = (a, c)(a + 1, c + 1)(a, e)(a + 1, e + 1).

Thus, φ(y) ∼ φ((a, c)(a+ 1, c+ 1))φ((a, e)(a+ 1, e+ 1)). But we already showed that either

φ(a, c)(a + 1, c + 1) is (a, c)(a + 1, c + 1) or (a, c + 1)(a + 1, c) and φ((a, e)(a + 1, e + 1)) =

(a, e)(a+ 1, e+ 1) by the inductive hypothesis. But in both cases, we see that φ(y) ∼ y.

Next we show that

yG∩yK = {y, (a, c, e+1)(a+1, c+1, e), (a, c+1, e+1)(a+1, c, e), (a, c+1, e)(a+1, c, e+1)}.
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To see this, we note that for yky ∈ yG, then ky must be in {1, (a, a + 1)(c, c + 1), (a, a +

1)(e, e+ 1), (e, e+ 1)(c, c+ 1)}.

We now show that φ(y) can’t be equal to any of (a, c, e+1)(a+1, c+1, e), (a, c+1, e+1)(a+

1, c, e) or (a, c+1, e)(a+1, c, e+1). To see this, suppose φ(y) = (a, c, e+1)(a+1, c+1, e). Let

s = (a, e)(a+1, e+1). We have φ(s) = s by the inductive hypothesis. Then on the one hand,

we have φ(sy) = φ((e, c)(e+1, c+1)) = (e, c)(e+1, c+1) where the last equality follows from

the inductive hypothesis. On the other hand, φ(sy) ∼ φ(s)φ(y) = s(a, c, e+1)(a+1, c+1, e) =

(a, a+1)(e, c, e+1, c+1), which is a contradiction. The same s will similarly give us another

contradiction for the second case. Lastly, s = (e, c)(e+ 1, c+ 1) will give a contradiction for

the third case.

Thus, φ(y) = y. And similarly for elements in the class of y.

We now continue the proof of Lemma 3.6.4. Suppose, for contradiction, that φ(x) =

(a, c+1)(a+1, c). Then, on the one hand, φ(xy) = φ((a, e)(a+1, e+1)) = (a, e)(a+1, e+1) by

the inductive hypothesis. On the other hand, φ(xy) ∼ φ(x)φ(y) = (a, c+ 1)(b, c)(a, c, e)(a+

1, d, e + 1) = (a, e + 1, a + 1, e)(c + 1, c), which is a contradiction. Thus, φ(x) = x as

required.

Now we want to show that φ also fixes pointwise all of C2.

Lemma 3.6.6. For all x ∈ C2, φ(x) = x.

Proof. We first want to show that φ((12)) ∈ (12)G so that φ(C2) = C2.

Suppose first that n is even. By Franzsen [9], we have that multiplying z by each generator

of K while fixing each generator of H is an outer automorphism of Cn. Thus if φ((12)) ∈

((12)z)G, then by applying the automorphism, we may assume that φ((12)) ∈ (12)G as

required.

Suppose now that n is odd so that n = 2m+ 1 for some m. The above argument cannot

be used since no such automorphism exists for this case. Define D1 to be the class of (13)(24).
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For i > 1 such that 4i < 2n = 4m+ 2, define Di to be the class of (13)(24)(57)(68) · · · (4i−

3, 4i− 1)(4i− 2, 4i). We showed above that for all x ∈ D1, we have φ(x) = x.

Lemma 3.6.7. Suppose for x ∈ Di, we have that φ(x) = x. Then for x ∈ Di+1, we have

φ(x) = x.

Proof. Without loss, we write x ∈ Di+1 as

x = (13)(24)(57)(68) · · · (4i+ 1, 4i+ 3)(4i+ 2, 4i+ 4) = σ1σ5 · · ·σ4i+1.

Then x = (13)(24)y where y ∈ Di. But by assumption, φ(13)(24) = (13)(24) and φ(y) = y.

Thus, we have φ(x) = φ((13)(24)y) ∼ φ((13)(24))φ(y) = (13)(24)y = x. Thus φ(x) ∼ x.

Since xkx ∈ xG only if kx ∈ {1, (12)(34), ..., (4i+ 1, 4i+ 2)(4i+ 3, 4i+ 4)}, this being the set

of elements of K whose cycle decomposition contains the pairings in the cycle decomposition

of x, we have φ(x) = σ∗1 · · ·σ∗4i−3, where σ∗j is either σj or σ′j. It suffices to show that σ∗j = σj

for all j. For a fixed j, we have that σjx = σ1 · · ·σj−1σj+1 · · · σ4i+1 ∈ Di. Thus φ(σjx) = σjx.

We also have φ(σjx) ∼ φ(σj)φ(x) = σjφ(x). Thus σjx ∼ σjφ(x). But this is true only if

σ∗j = σj.

Lemma 3.6.7 proves that we can fix pointwise all of the classes Di with 4i < 2n. Now

we show that for n = 2m + 1 odd, we have φ((12)) ∈ (12)G. Consider the class Dm. Since

n is odd, we have that (12)z ∈ D2
m. Write (12)z = st with s, t ∈ Dm. We proved above in

Lemma 3.6.7 that φ(s) = s and φ(t) = t. Thus φ((12)z) = φ(st) ∼ φ(s)φ(t) = st = (12)z.

Thus φ((12)z) ∼ (12)z and φ((12)) ∼ (12) as required.

Suppose φ((12) = (r, r + 1) for some odd r ≥ 3. Consider σr = (r, r + 2)(r + 1, r + 3).

We proved above in Lemma 3.6.4 that φ(σr) = σr. We have φ(σr(12)) ∼ φ(σr)φ((12)) =

σr(r, r + 1) = (r, r + 2, r + 1, r + 3). But if r 6= 1, the size of the class σr(12) is (n− 2)|σGr |

and the size of the class (r, r + 2, r + 1, r + 3) is only |σGr |. Thus φ(12) = (12) as required.

Similarly for the rest of the conjugates of (12), we have φ((12)g) = (12)g.
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Since C = C1 ∪ C2, we have just proven that for x ∈ C, φ(x) = x. We next show

that φ fixes pointwise all of the elements of C2. Our strategy proceeds as follows. Let

x ∈ C2. We first show that φ(x) ∼ x. To see this, we write x = rs, r, s ∈ C. But

φ(x) = φ(rs) ∼ φ(r)φ(s) = rs = x. In addition, since φ(x) ∈ xK, we must have that

φ(x) ∈ xG ∩ xK. Next, we pick t ∈ C such that tx ∈ C so that φ(s) = s and φ(tx) = tx.

Thus, we must have

tx = φ(tx) ∼ φ(t)φ(x) = tφ(x). (3.6)

We will then check that none of the elements in xG ∩ xK except x satisfies the necessary

condition of Equation (3.6).

Lemma 3.6.8. For all x ∈ C2, φ(x) = x.

Proof. The classes in C2 have the following set of representatives,

{(12)(34), (13)(24)(57)(68), (135)(246), (13)(24)(56), (1423)}.

We show that φ fixes each representative and the proof will follow exactly the same for the

other elements of the class. We already showed in Lemma 3.6.5 that φ fixes pointwise every

element of the class (135)(246). By Lemma 3.6.7, we also showed that φ fixes pointwise the

whole class of (13)(24)(57)(68). We now consider the remaining three cases.

Suppose x = (12)(34). Then φ(x) = (i, i+ 1)(j, j + 1). Let s = (34). Then φ(s) = s. By

Equation (3.6), we have φ(x)(34) ∼ (12). This shows that φ(x) takes the form (34)(i, i+ 1)

for some odd i ∈ [2n]. Now let s = (12) and the same calculation shows that φ(x) takes the

form (12)(i, i+ 1). Thus φ(x) = x as required.

Let x = (13)(24)(56). We have in this case that xG∩xK consists of elements of the form

(a, c)(a+ 1, c+ 1)(e, e+ 1) where {a, a+ 1},{c, c+ 1} and {e, e+ 1} are distinct pairs in P .

Let s = (13)(24). Then Equation (3.6) gives us (13)(24)φ(x) ∼ (56). This shows φ(x) has

the form (13)(24)(i, i+ 1). If we let s = (34), the same calculation will give us φ(x) = x.

Finally suppose x = (1423). But xG ∩ xK = {x, (1324)}. Consider s = (145)(236).

We already know that φ(s) = s by Lemma 3.6.5. Suppose for contradiction that φ(x) =

52



(1324). Then φ(xs) = φ((15)(26)(34)) = (15)(24)(34), where the last equality comes from

the previous case. On the other hand, φ(xs) ∼ φ(x)φ(s) = (1324)s = (1625), which is a

contradiction. Thus, φ(x) = x.

Lemma 3.6.9. For all x ∈ C3, φ(x) = x.

Proof. There are ten types of classes in C3 not covered in C and C2 cases. These types have

the following set of representatives,

{(12)(34)(56), (13)(24)(56)(78), (1324)(56), (14)(23)(56)(79)(8, 10),

(135)(246)(78), (135246), (13)(24)(57)(68)(9, 11)(10, 12),

(13)(24)(5867), (1357)(2468), (13)(24)(579)(68, 10)}.

Since we can fix C and C2, for all x in C3, we have φ(x) ∼ x.

Suppose x = (12)(34)(56). Since φ(x) ∼ x, we have that φ(x) = (i, i+1)(j, j+1)(k, k+1).

Let s = (34)(56). We have that φ(s) = s. Also Equation (3.6) gives us (i, i+1)(j, j+1)(k, k+

1)s ∼ (12). Thus we must have that φ(x) = (34)(56)(k, k + 1). If we let s = (12), then the

same calculation gives us (34)(56)(c, c+ 1)(12) ∼ (34)(56). But this forces φ(x) = x.

Suppose x = (13)(24)(56)(78) and let s = (56)(78). Then φ(x) has the form (a, c)(b, d)(e, e+

1)(f, f + 1), where {a, b} and {c, d} are pairs in P and (e, e+ 1), (f, f + 1) ∈ (12)G. We have

φ(x)s ∼ (13)(24). This implies that φ(x) = (a, c)(b, d)(56)(78). Now let s = (13)(24). Then

sφ(x) ∼ (56)(78) which gives us φ(x) = (13)(24)(56)(78).

Suppose x = (1324)(56). Let s = (1423). We have that φ(sx) = φ((56)) = (56). We also

have by Equation (3.6) (1423)φ(x) ∼ (56). This gives us φ(x) = (1324)(i, i + 1). Now let

s = (56). And φ(x)s ∼ (1324) gives us φ(x) = x.

Let x = (14)(23)(56)(7, 9)(8, 10). For kx satisfying the property xkx ∼ x, k can change

the (13)(24) part of x by having (12)(34) in its decomposition or similarly the (79)(8, 10)

part by having (78)(9, 10). In addition, k can switch out (56) with another pair of reflection

(i, i + 1). Let (13)(24)′ denote either possibility (13)(24) or (14)(23) and (79)(8, 10)′ either
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(79)(8, 10) or (7, 10)(89). Then an arbitrary conjugate of x lying in xK takes the form

(13)(24)′(79)(8, 10)′(i, i + 1). We then use s = (14)(23)(79)(8, 10) to get φ(x)s ∼ (56). This

implies that φ(x) must take the form (14)(23)(79)(8, 10)(i, i+ 1). Apply the condition again

to s = (56) will give us φ(x) = x.

Let x = (135)(246)(78). In this case, kx can have any of {(12)(34), (12)(56), (34)(56)} in

its decomposition to change the (135)(246) part of x and (78)(i, i+ 1) to switch out (78) for

(i, i+ 1). But as before, s = (153)(264) and t = (78) will eliminate all but x as a possibility

for φ(x).

The next five types are easy to deal with and the method used to prove that φ fixes each

of them is the same. Suppose we want to fix x. We then show that |xG ∩ xK| is either 4 or

8 independent of n. And since we know that φ(x) ∈ xG ∩ xK, there are only 4 or 8 choices

for φ(x). We then pick s, t ∈ C or C2 and use the necessary condition from Equation 3.6 to

eliminate all but x in xG ∩ xK.

Let x = (135246). We show that |xG ∩ xK| = 4. Suppose that k ∈ K is such that

xk ∼ x. Write k = (k1, k1 + 1) · · · (kr, kr + 1). We then see that if for any pair of re-

flection {ki, ki + 1} that is not a subset of [6], then xk � x. We then can compute that

r = 2 and the only possibilities are {1, (12)(34), (12)(56), (34)(56)}. Thus xG ∩ xK =

{x, x(12)(34), x(12)(56), x(34)(56)}. Now let s = (13)(24) and t = (15)(26), we can check

that the only element that satisfies the necessary condition of Equation (3.6) is x.

Let x = (13)(24)(57)(68)(9, 11)(10, 12). In this case, for xk ∼ x, k must have in decom-

position any combination of (12)(34), (56)(78), (9, 10)(11, 12) and nothing else for a total of

8 possibilities. We then check the condition of Equation 3.6 for s = (57)(68)(9, 11)(10, 12)

and t = (13)(24)(57)(68) to see that φ(x) = x is the only possibility.

Let x = (13)(24)(5867). In this case, k must have in its decomposition only elements in

{(12), (34), (56), (78)}. We can check that identity, any two pairs in that set and all four pairs

are the only possibilities for a total of 8 elements in the intersection of the class of x and the

coset xK. And of those, x is the only element that satisfies the condition in Equation (3.6)
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for s = (13)(24) and t = (5768).

Let x = (1357)(2468). This case yields the same set of possibilities for k as in the

previous case for a total of 8. But we have to use three elements to eliminate all but x,

namely, s = (13)(24), t = (57)(68), and r = (35)(46).

Finally, x = (13)(24)(579)(6, 8, 10). In this case, k can have either (12)(34) in its de-

composition to change (13)(24) part of x or any of {(56)(78), (56)(9, 10), (78)(9, 10)} to

change the (579)(6, 8, 10) but still have xk ∼ x. Thus, there are again 8 possibilities for

φ(x) and only x satisfies the necessary condition of Equation (3.6) using s = (13)(24) and

t = (597)(6, 10, 8).

Lemma 3.6.10. For all x, y ∈ G, x 6= y and x ∼ y, there exists c ∈ C ∪ C2 such that

cx � cy.

Proof. Suppose a pair say {1, 2} is in the decomposition for x. We show that {1, 2} must

occur in the decomposition of y in the same way else we can find c ∈ C ∪ C2 such that

cx � cy. More precisely, we show that

1) If x = (1, a1)(2, b1)x1 then y = (1, c1)(2, d1)y1 where |a1| = |c1| = |b1| = |d1|, or

2) If x = (1, a1, 2, b1)x1 then y = (1, c1, 2, d1)y1 where |a1| = |c1| = |b1| = |d1|.

Since (12)(1, a1, 2, b1) = (1, b1)(2, a1) and (12)(1, a1)(2, b1) = (1, b1, 2, a1) we see that unless

the above statements are true, (12)x � (12)y.

Suppose now that {3, 4} also occurs in the decomposition for x.

Lemma 3.6.11. Suppose that we are in case (1) above so that

x = (1, a1, 3, a2)(2, b1, 4, b2)x1.

Then y = (1, c1, 3, c2)(2, d1, 4, d2)y1 with |a1| = |c1| else we can find a c ∈ C ∪ C2 such that

cx � cy.
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Proof. If y = (1, c1)(2, d1)(3, c2)(4, d2)y1, then (13)(24)x = (1, a2)(3, a1)(2, b2)(4, b1)x1 �

(13)(24)y = (1, c2, 3, c1)(2, d2, 4, d1)y1. Thus we have that both {1, 2} and {3, 4} must occur

in the same two cycles in both x and y, that is x = (1, a1, 3, a2)(2, b1, 4, b2)x1 and y is

either (1, c1, 3, c2)(2, d1, 4, d2)y1 or (1, c1, 4, c2)(2, d1, 3, d2)y1. But if y takes on the form of

the second case then (13)(24)x � (13)(24)y. Thus, if

x = (1, a1, 3, a2)(2, b1, 4, b2)x1

then y = (1, c1, 3, c2)(2, d1, 4, d2)y1.

We show next that |a1| = |c1|. Let c = (135)(246) and d = (153)(264). Then we can

check that cx ∼ cy only if either |c1| = |a1| or |a2| = |c1| + 1. The first case gives us the

result. If |a2| = |c1|+ 1, then dx ∼ dy only if |c1| = |a1|.

Lemma 3.6.12. Suppose that we are in case 2) above so that

x = (1, a1, 3, a2, 2, a3, 4, a4)x1.

Then y = (1, c1, 3, c2, 2, c3, 4, c4)y1 where |a1| = |c1| else we can find a c ∈ C ∪ C2 such that

cx � cy.

Proof. If y is (1, b1, 2, b2)(3, c1, 4, c2)y1 or (1, b1, 2, b2)(3, c1)(4, c2)y1 then (1, 3)(2, 4)x � (1, 3)(2, 4)y.

Thus we must have that y = (1, b1, 3, b2, 2, b3, 4, b4)y1 or

y = (1, b1, 4, b2, 2, b3, 3, b4)y1.

We show that the second case can’t happen. To see this, we suppose that

y = (1, b1, 4, b2, 2, b3, 3, b4)y1.

We consider c = (135)(246) ∈ C2. We have then that cx ∼ cy only if |a1| = |b4| − 1 and
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|a2| = |b1| + 1. And if we let d = (153)(264) ∈ C2, then dx ∼ dy only if |a1| = |b4| + 1

and |a2| = |b1| − 1. But these two cases are mutually exclusive. Thus we see that if

y = (1, b1, 4, b2, 2, b3, 3, b4)y1, then there exists a c ∈ C2 such that cx � cy.

Now we show that x = (1, a1, 3, a2, 2, a3, 4, a4)x1 and y = (1, c1, 3, c2, 2, c3, 4, c4)y1 where

|a1| = |c1|. Let c = (135)(246) ∈ C2. Then we have that cx ∼ cy only if |a1| = |c1|.

The above lemmas show, in particular, that if {1, 2} and {3, 4} occur in the cycle de-

composition of x, then they must also occur in the same way in the cycle decomposition of

y and their ordering and relative distance must be the same in both cycle decompositions.

But this force x = y. Thus, if x 6= y, x ∼ y, then there exists a c ∈ C ∪ C2 so that cx � cy

as required.

3.7 The Coxeter Groups Bn

The Coxeter group Bn is an index 2 normal subgroup of the Coxeter group Cn. We keep the

notation from the previous section for Cn. The generators are all the generators of H ≤ Cn,

where H = 〈(13)(24), (35)(46), ..., (2n− 3, 2n− 1)(2n− 2, 2n)〉 ∼= Sn and the even reflections

in K ≤ Cn, that is, the set 〈(12)(34), (12)(56), ..., (12)(2n− 1, 2n)〉. Thus, Bn is a semidirect

product of the normal subgroup K1
∼= Zn−1

2 and H ∼= Sn. For n even, the group Bn has

nontrivial center generated by z = (12)(34) · · · (2n−1, 2n). For n odd, Bn has trivial center.

We prove that Bn has only trivial weak Cayley table isomorphisms. The proof follows

the same basic structure as the proof for the group Cn. We let C1 be the class of (13)(24)

in Bn and C2 the class of (12)(34) in Bn. And let C = C1 ∪ C2.

Theorem 3.7.1. The group W(Bn) is trivial for all n ≥ 4.

Proof. As in the proof of Lemma 3.6.2, since Bn/K1
∼= Sn, we assume that φ sends each

coset of K1 to itself.
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Lemma 3.7.2. Up to composing with a trivial weak Cayley isomorphism, we have that

φ((13)(24)) = (13)(24). Thus φ(C1) = C1.

Proof. Let h = (13)(24) ∈ C1. Suppose first that n is even. The first part of the proof of

Lemma 3.6.3 we showed that φ(h) = hkh ∈ {h, hz, h(12)(34), h(12)(34)z}. By Proposition

2.8 of Franzsen [9], we have that multiplying each generators of H by z while fixing each

generator of K is an outer automorphism of Bn. Thus, we may assume that φ(h) = hkh ∈

{h = (13)(24), h(12)(34) = (14)(23)}. Since (14)(23) is conjugate to (13)(24) by (12)(56),

we may assume finally that φ((13)(24)) = (13)(24). As a consequence, we also have that

φ((14)(23)) = (14)(23) and φ((13)(24)G) = (13)(24)G.

Suppose now that n is odd. Since Bn has trivial center in this case, the same argument

above shows that φ(h) = hkh ∈ {h, h(12)(34) = (14)(23)}. And as above, since (14)(23) is

conjugate to (13)(24) by (12)(56), we may assume finally that φ((13)(24)) = (13)(24).

We now show that φ fixes pointwise all of the elements of C1.

Lemma 3.7.3. For all x ∈ C1, φ(x) = x.

Proof. The proof of Lemma 3.6.4 follows through exactly as in the Cn case. We note that the

above proof also shows that φ fixes pointwise all of the elements of the class of (135)(246).

We next show that φ fixes pointwise all of the elements of C2.

Lemma 3.7.4. For all x ∈ C2, φ(x) = x.

Proof. Let x ∈ C2. Without loss of generality, we write x = (12)(34). We have φ((12)(34)) =

φ((13)(24)(14)(23)) ∼ φ((13)(24))φ((14)(23)) = (13)(24)(14)(23) = x. Thus, φ(x) ∼ x and

φ(C2) = C2. Now suppose that φ(x) = (a, a + 1)(b, b + 1) ∈ C2. On the one hand, we have

φ(x(13)(24)) = φ((14)(23)) = (14)(23). But on the other hand, we have φ(x(13)(24)) ∼

φ(x)φ((13)(24)) = (a, a + 1)(b, b + 1)(13)(24). Thus, (14)(23) ∼ (a, a + 1)(b, b + 1)(13)(24).

But this is true only if (a, a + 1)(b, b + 1) = (12)(34). Thus φ((12)(34)) = (12)(34), as

required.
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Since C = C1 ∪ C2, we have shown above that for all x ∈ C, φ(x) = x.

Lemma 3.7.5. For all x ∈ C2, φ(x) = x.

Proof. The classes in C2 can be represented by the following set of elements,

{(12)(34), (14)(23), (135)(246), (12)(34)(56)(78),

(14)(23)(56)(78), (14)(23)(57)(68), (1423)(56)}.

We already showed that φ fixes pointwise all of the classes of (12)(34), (14)(23), (135)(246).

As before, since x ∈ C2, we have that φ(x) ∼ x. Suppose that x ∈ (12)(34)(56)(78)G.

Without loss of generality, we write x = (12)(34)(56)(78). Suppose that φ(x) = (a, a +

1)(b, b + 1)(c, c + 1)(d, d + 1). Let t = (12)(34). Then φ(tx) = φ((56)(78)) = (56)(78). But

φ(tx) ∼ φ(t)φ(x) = t(a, a+1)(b, b+1)(c, c+1)(d, d+1). Thus, we have (12)(34)(a, a+1)(b, b+

1)(c, c+ 1)(d, d+ 1) ∼ (56)(78). But this is true only if (a, a+ 1)(b, b+ 1)(c, c+ 1)(d, d+ 1) =

(12)(34)(c, c + 1)(d, d + 1). Similarly, if t = (56)(78), then the same argument will give us

that φ(x) = x.

Suppose now that x = (14)(23)(56)(78). Suppose that φ(x) = (a, b)(a + 1, b + 1)(c, c +

1)(d, d+ 1). Let t = (14)(23). Then φ(tx) = φ((56)(78)) = (56)(78). But φ(tx) ∼ φ(t)φ(x) =

(14)(23)(a, b)(a + 1, b + 1(c, c + 1)(d, d + 1). Thus, we have (56)(78) ∼ (14)(23)(a, b)(a +

1, b + 1(c, c + 1)(d, d + 1). But this is true only if (a, b)(a + 1, b + 1(c, c + 1)(d, d + 1) =

(14)(23)(c, c+ 1)(d, d+ 1). If we let t = (56)(78), the same argument will force φ(x) = x.

Suppose that x = (14)(23)(57)(68). Suppose that φ(x) = (a, b)(a+1, b+1)(c, d)(c+1, d+

1). Let t = (14)(23) so that, as above, (57)(68) ∼ (14)(23)(a, b)(a+1, b+1)(c, d)(c+1, d+1).

But this implies that (a, b)(a+ 1, b+ 1)(c, d)(c+ 1, d+ 1) = (14)(23)(c, d)(c+ 1, d+ 1). The

same argument using t = (57)(68) forces φ(x) = x.

Suppose that x = (1423)(56). Write φ(x) = (a, b, a + 1, b+ 1)(c, c+ 1). Let t = (13)(24)

so that (12)(56) ∼ (a, b, a + 1, b + 1)(c, c + 1)(13)(24). But this implies that (a, b, a + 1, b +

1)(c, c+ 1) = (1423)(c, c+ 1). Now letting t = (12)(56) will force φ(x) = x.
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Lemma 3.7.6. For all x ∈ C3, φ(x) = x.

Proof. The classes in C3 not already covered in the C and C2 cases can be represented by

the following elements:

{(12)(34)(56)(78)(9, 10)(11, 12), (14)(23)(56)(78)(9, 10)(11, 12),

(14)(23)(57)(68)(9, 10)(11, 12), (1423)(5867), (1423)(56)(78)(9, 10),

(14)(23)(5768)(9, 10), (146)(235)(78)(9, 10), (146235)(78)}.

As before, we have φ(x) ∼ x for all x ∈ C3. The first three cases are straightforward.

Suppose x = (12)(34)(56)(78)(9, 10)(11, 12). Let s = (56)(78)(9, 10)(11, 12) so that s satisfies

Equation (3.6). But this gives us sφ(x) ∼ (12)(34). Thus, φ(x) must take on the form

(i, i + 1)(j, j + 1)(56)(78)(9, 10)(11, 12). Letting t = (13)(24) in Equation (3.6) will force

φ(x) = x.

Let x = (14)(23)(56)(78)(9, 10)(11, 12). If we let s = (56)(78)(9, 10)(11, 12) and t =

14)(23) and use Equation (3.6) above, we have that x is the only element in xG ∩ xK that

satisfies that necessary condition.

Let x = (14)(23)(57)(68)(9, 10)(11, 12). Let s = (14)(23)(57)(68) and

t = (9, 10)(11, 12)

will force φ(x) = x.

The next case where x = (1423)(5867) is the easiest case to deal with since |xG∩xK| = 4

independent of n. To eliminate all but x we use s = (1324)(56) and t = (5768)(12).

The remaining four cases are more involved since the set xG∩xK is generally bigger and

has a variety of different elements.

Let x = (1423)(56)(78)(9, 10). Then elements of xG ∩ xK take on the form (1423)′(i, i+

1)(j, j + 1)(k, k + 1), where (1423)′ denotes either (1423) or (1324). To eliminate the (1324)

possibility and force (i, i+ 1) = (56), we use t = (1324)(56) and to force (j, j+ 1)(k, k+ 1) =
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(78)(9, 10) we take s = (78)(9, 10).

Let x = (14)(23)(5768)(9, 10). The set xG ∩ xK consists of elements of the form

(13)(24)′(5867)′ or (1423)′(57)(68)′ where (13)(24)′ denotes either (13)(24) or (14)(23), (5867)′

denotes either (5867) or its inverse, (1423)′ denotes (1423) or its inverse, and (57)(68)′ de-

notes (57)(68) or (58)(67). Letting s = (14)(23) and t = (5867)(9, 10) will force φ(x) = x.

Let x = (146)(235)(78)(9, 10). Then

xG ∩ xK = {(135)(246)(i, i+ 1)(j, j + 1), (136)(245)(i, i+ 1)(j, j + 1), (145)(236)(i, i+

1)(j, j + 1), (146)(235)(i, i+ 1)(j, j + 1)}.

Letting s = (164)(235) and t = (78)(9, 10) will give us φ(x) = x.

Finally, x = (146235)(78). Then

xG ∩ xK = {(135246)(i, i+ 1), (136245)(i, i+ 1), (145236)(i, i+ 1), (146235)(i, i+ 1)}.

We need three elements r = (16)(25), s = (12)(78) and t = (13)(24) to eliminate all but x

in xG ∩ xK.

Lemma 3.7.7. For all x, y ∈ G, x 6= y and x ∼ y, there exists c ∈ C or C2 such that

cx � cy.

Proof. The proof of this lemma follows exactly as the Cn case. The only difference is instead

of using the class (12) in Cn, we use the class (12)(34) in Bn.
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Chapter 4. The Sporadic Groups

Let G be the Mathieu group of degree 11, M11, with 7, 920 elements. We show that the

group W(G) is trivial. We view M11 as a subgroup of A11:

M11 = 〈(1, 10)(2, 8)(3, 11)(5, 7), (1, 4, 7, 6)(2, 11, 10, 9)〉.

We will rely on Magma to do most of our computations. All of the code for the following

computations is included in the Appendix.

Let C be the class of (1, 6, 8)(3, 4, 9)(5, 11, 7) in G. Then C has 440 elements. We show

that M11 and C satisfy the three conditions of the following lemma.

Lemma 4.0.8. Let G be a group and C a nontrivial class of G. Suppose that for any

φ ∈ W(G), there exists α ∈ W0(G) such that:

(i) αφ(x) = x, for all x ∈ C.

(ii) αφ(x) ∼ x, for all x ∈ G,

(iii) For all x 6= y, x ∼ y, there exists c ∈ C such that cx � cy.

Then W(G) is trivial.

Theorem 4.0.9. For the Mathieu group, G = M11, the group W(G) is trivial.

Proof. We define a graph Γ whose vertices are elements of C. Two vertices, M and N , of Γ

are connected by an edge if MN ∈ C.

We first note that any element of W(G) acts as a graph automorphism on Γ. To see

this, suppose φ ∈ W(G). Since C is the only class in G whose size is 440, we have that

φ(C) = C. Then for any M,N ∈ C connected by an edge, that is, MN ∈ C, we have

φ(MN) ∼ φ(M)φ(N). Since φ(MN) ∈ C, we have that φ(M)φ(N) ∈ C. Thus φ(M), φ(N)

are also connected by an edge in Γ.

By Magma, |Aut(Γ)| = 15, 840 = 2|G| while |Aut(G)| = 7, 920 = |G|. Since G is simple,

this implies that the automorphism group of G is composed of only inner automorphisms.
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In particular, we have that |W0(G)| = 15, 840 since W0(G) = 〈Aut(G), I〉. Thus |W0(G)| =

|Aut(Γ)|. And since we showed above that any automorphism or anti-automorphism is a

graph automorphism of Γ, this shows that any graph automorphism of Γ can be realized

by an element of W0(G). Now we check the first condition of the above lemma. Suppose

φ ∈ W(G). Then φ acts as an automorphism on Γ. But any graph automorphism of Γ can

be realized by an element of W0(G), say α. Thus, by composing with α−1 if necessary, we

may assume that φ(x) = x for all x ∈ C.

To check the second condition, we show that C2 = {xy : x, y ∈ C} = G. To see why

this suffices, suppose x ∈ G. Since C2 = G, we have that x = rs for some r, s ∈ C. Since

r, s are elements of C, we have, by the first condition, that φ(r) = r and φ(s) = s. Thus,

φ(x) = φ(rs) ∼ φ(r)φ(s) = rs = x, as required.

A check by Magma shows, indeed, that C2 = G.

Finally, we show that for all x 6= y, x ∼ y, there exists c ∈ C such that cx � cy. Again,

this is a simple Magma check. See the Appendix for the Magma code.

We now show that the Mathieu group G = M12 has only trivial weak Cayley table

isomorphisms. We view M12 as a subgroup of the alternating group A12 generated by the

set

〈(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), (1, 9)(2, 6)(4, 5)(7, 8), (1, 10)(2, 5)(3, 7)(4, 8)(6, 9)(11, 12)〉.

The Mathieu group M12 has 95, 040 elements. Let C be the conjugacy class of

(2, 5, 10)(6, 8, 9)(7, 12, 11)

and C2 be the class of

(1, 11)(2, 9)(3, 12)(4, 6)(5, 10)(7, 8).

Then C is the only class with 1, 760 elements and C2 is the only class with 396 elements.

Theorem 4.0.10. The group W(M12) is trivial.
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Proof. As before, we define a graph Γ whose vertices are elements of C. Two vertices, M

and N , of Γ are connected by an edge if MN ∈ C2.

In this case, a Magma computation shows that |Aut(Γ)| = 380, 160 and |Aut(G)| =

190, 080. Thus, |W0(G)| = |〈Aut(G), I〉| = Aut(Γ). And thus, any action on Γ by a weak

Cayley table isomorphism has an inverse inW0(G). Thus we have checked the first condition

of Lemma 4.0.8.

A Magma calculation shows that C2 = G \D, where D is the class of

(1, 8, 4, 7, 11, 3, 5, 10, 6, 9)(2, 12).

As above, for any x ∈ C2, we have that φ(x) ∼ x. And since φ sends classes to classes, the

fact that C2 = G \ D shows that φ(D) = D and thus φ(x) ∼ x for any x ∈ G. A Magma

check shows that the last condition of Lemma 4.0.8 is also satisfied.

We show that the Mathieu group G = M22, where |G| = 443, 520, has only trivial weak

Cayley table isomorphisms. The generators of G as a subgroup of A22 are

{(1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12)(5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14),

(1, 18, 4, 2, 6)(5, 21, 20, 10, 7)(8, 16, 13, 9, 12)(11, 19, 22, 14, 17),

(1, 18, 2, 4)(3, 15)(5, 9)(7, 16, 21, 8)(10, 12, 20, 13)(11, 17, 22, 14)}.

In this case, we let C be the class of

(1, 12, 19)(2, 9, 13)(4, 22, 7)(5, 10, 16)(8, 20, 15)(11, 21, 17),

with unique size 12, 320. Let C2 be the unique class of involutions with 1, 155 elements.

Theorem 4.0.11. The group W(M22) is trivial.

Proof. As before, we define a graph Γ whose vertices are elements of C. Two vertices, M

and N , of Γ are connected by an edge if MN ∈ C2.
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Since Magma shows that |Aut(Γ)| = 1, 774, 080 and

|Aut(G)| = 887, 040 = 1/2|Aut(Γ)|,

we see that the trivial weak Cayley table isomorphisms can realize all of the automorphisms

of the graph Γ. Thus, the first condition of Lemma 4.0.8 is satisfied.

Magma shows that C2 = G. Thus for x ∈ G, we have that φ(x) ∼ x and the second

condition is satisfied. The last condition is similarly checked by Magma.

We next show that the first simple group of Janko, J1, also has only trivial weak Cayley

table isomorphisms. This group is embedded in the alternating group of degree 266 and has

size 175, 560. Let C be the class of

(1, 167, 120, 133, 203, 155, 198, 240, 119, 224, 33)(2, 16, 34, 26,138, 94, 196, 184, 249,

29, 124) (3, 208, 230, 67, 150, 79, 114, 194,36, 222, 221)(4, 175, 159, 263, 144, 136, 185, 158,

251, 172, 69) (5,179, 13, 256, 62, 212, 30, 178, 207, 65, 73)(6, 258, 191, 219, 56,52, 262, 244,

148, 160, 41) (7, 90, 183, 190, 134, 96, 32, 49, 106,218, 55)(8, 95, 238, 128, 137, 266, 48, 140,

126, 254, 264) (9, 46,109, 17, 50, 157, 14, 131, 70, 195, 84)(10, 27, 66, 202, 11, 187,104, 170,

139, 75, 193) (12, 177, 210, 82, 63, 214, 85, 231, 20, 182,116)(15, 227, 259, 163, 201, 110,

253, 100, 197, 23, 44) (18, 80, 77,186, 181, 211, 200, 260, 122, 92, 76)(19, 213, 43, 111, 42,

232,252, 25, 168, 250, 123) (21, 180, 237, 223, 118, 22, 246, 234, 58,54, 228)(24, 117, 135, 47,

233, 173, 147, 87, 261, 68, 102) (28, 107,45, 241, 64, 243, 74, 83, 255, 143, 129)(31, 108, 88,

161, 99, 216,86, 169, 205, 59, 164) (35, 145, 152, 242, 78, 188, 132, 226, 105,154, 265)(37,

235, 229, 93, 149, 146, 40, 239, 225, 60, 153) (38,130, 192, 53, 113, 165, 220, 217, 72, 209,

257)(39, 91, 162, 204,236, 156, 101, 247, 142, 127, 174) (51, 166, 215, 115, 206, 61, 248,81,

171, 199, 176)(57, 189, 125, 103, 89, 245, 71, 97, 121, 151,141) with 15, 960 elements and C2

be the unique class of involutions in G.

Theorem 4.0.12. The group W(J1) is trivial.

Proof. The vertices of the graph Γ are elements of C and two vertices of Γ, M and N , are
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connected by an edge if their product MN is in C2.

Since |Aut(Γ)| = 351, 120 and |Aut(G)| = 175, 560 = 1/2|Aut(Γ)|, we see that the trivial

weak Cayley table isomorphisms can realize all of the automorphisms of the graph Γ. Thus,

the first condition of Lemma 4.0.8 is satisfied.

Magma shows that C2 = G. Thus for x ∈ G, we have that φ(x) ∼ x and the second

condition of Lemma 4.0.8 is satisfied. The last condition is similarly checked by a short

Magma program.

The second simple group of Janko, J2, also has trivial weak Cayley table isomorphisms.

This group can be viewed as a subgroup of A100 and has size 604, 800. We let C be the class

of

(2, 96, 37)(3, 11, 33)(4, 78, 48)(5, 7, 53)(6, 75, 83)(8, 63, 16)(9,44, 32)(10, 21, 79)(13, 19,

39) (14, 23, 95)(15, 97, 17)(18, 49,52)(20, 61, 80)(22, 69, 28)(24, 25, 82)(26, 50, 56)(27, 42,

86) (29, 62, 77)(30, 40, 54)(31, 35, 73)(36, 60, 85)(38, 46, 87)(41, 66,92)(43, 67, 84)(45, 72,

71) (47, 90, 88)(51, 99, 81)(55, 65, 74)(57,89, 58)(59, 98, 76)(64, 100, 70)(91, 93, 94) with

16, 800 elements and C2 be the unique class of involutions of size 315.

Theorem 4.0.13. The group W(J2) is trivial.

Proof. The vertices of the graph Γ are elements of C and two vertices M and N are connected

by an edge if MN ∈ C2.

We have that |Aut(Γ)| = 2, 419, 200 and |Aut(G)| = 1/2|Aut(Γ)|. Thus, as before, all of

the automorphisms of Γ can be realized by trivial weak Cayley table isomorphisms and the

first condition is proven.

The second condition is satisfied since Magma does show that C2 = G. The last condition

is similarly checked by Magma.
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Appendix A. Conjugacy Classes of PSL(2, pn)

The conjugacy classes of G is given in the following lemma. A proof can be found in [7].

Lemma A.0.14. Let G = PSL(2, pn) where p is an odd prime. Let z =
( −1 0

0 −1

)
, and ε be

a generator of F∗pn. Then G has exactly pn + 4 classes given in Tables A.1 and A.2.

g ∈ G Notation |gG| |CG(g)|
( 1 0

0 1 ) 〈z〉 I 1 pn(p2n − 1)/2
( 1 1

0 1 ) 〈z〉 C (p2n − 1)/2 pn

( 1 ε
0 1 ) 〈z〉 D (p2n − 1)/2 pn(

ε 0
0 ε−1

)n 〈z〉 Ln pn(pn + 1) (pn − 1)/2(
ε 0
0 ε−1

)(pn−1)/4 〈z〉 L(pn−1)/4 pn(pn + 1)/2 (pn − 1)
( x y
yε x )m 〈z〉 x 6= ±1, y 6= 0 Bm pn(pn − 1) (pn + 1)/2

Table A.1: Conjugacy Classes of PSL(2, pn), p ≡ 1 mod 4, where 1 ≤ n ≤ (pn − 5)/4 and
1 ≤ m ≤ (pn − 1)/4.

g ∈ G Notation |gG| |CG(g)|
( 1 0

0 1 ) 〈z〉 I 1 pn(p2n − 1)/2
( 1 1

0 1 ) 〈z〉 C (p2n − 1)/2 pn

( 1 ε
0 1 ) 〈z〉 D (p2n − 1)/2 pn(

ε 0
0 ε−1

)n 〈z〉 Ln pn(pn + 1) (pn − 1)/2
( x y
yε x )m 〈z〉, x 6= ±1, y 6= 0 Bm pn(pn − 1) (pn + 1)/2

( x y
yε x )(pn+1)/4 〈z〉, x 6= ±1, y 6= 0 B(pn+1)/4 pn(pn − 1)/2 (pn + 1)

Table A.2: Conjugacy Classes for PSL(2, pn), p ≡ 3 mod 4 where 1 ≤ n ≤ (pn − 3)/4 and
1 ≤ m ≤ (pn − 3)/4.
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Appendix B. Character Tables of PSL(2, pn)

The character table of PSL(2, pn) is given in the following lemma [7].

Lemma B.0.15. Let p be an odd prime. Let ρ ∈ C be a (p− 1)th root of unity and σ ∈ C

be a (p + 1)th root of unity. Then the character table of G = PSL(2, pn) is given in Tables

B.1 and B.2.

I C D Ln L(pn−1)/4 Bm

1G 1 1 1 1 1 1
ψ pn 0 0 1 1 −1
χi pn + 1 1 1 ρin + ρ−in ρi(p

n−1)/4 + ρ−i(p
n−1)/4 0

θj pn − 1 −1 −1 0 0 −σjm − σ−jm

ζ1
pn + 1

2

1 +
√
pn

2

1−
√
pn

2
(−1)n (−1)(pn−1)/4 0

ζ2
pn + 1

2

1−
√
pn

2

1 +
√
pn

2
(−1)n (−1)(pn−1)/4 0

Table B.1: The Character Table for PSL(2, pn), p ≡ 1 mod 4 where i = 2, 4, 6, ..., (pn −
5)/2, j = 2, 4, 6, ..., (pn − 1)/2, 1 ≤ n ≤ (pn − 5)/4 and 1 ≤ m ≤ (pn − 1)/4.

I C D Ln Bm Bk

1G 1 1 1 1 1 1
ψ pn 0 0 1 −1 −1
χi pn + 1 1 1 ρin + ρ−in 0 0
θj pn − 1 −1 −1 0 −σjm − σ−jm −σjk − σ−jk

η1
pn − 1

2

−1 +
√
pn

2

−1−
√
pn

2
0 (−1)(m+1) (−1)k+1

η2
pn − 1

2

−1−
√
pn

2

−1 +
√
pn

2
0 (−1)(m+1) (−1)k+1

Table B.2: The Character Table for PSL(2, pn), p ≡ 3 mod 4 where i = 2, 4, 6, ..., (pn −
3)/2, j = 2, 4, 6, ..., (pn − 3)/2, 1 ≤ n ≤ (pn − 3)/4, 1 ≤ m ≤ (pn − 3)/4 and k = (pn + 1)/4.
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Appendix C. PSL(2, p)

For completeness, we provide the proof that W(PSL(2, p)) is trivial for all primes p. Let

G = PSL(2, p) where p is a prime.

Proposition C.0.16. Let φ ∈ W(G). There exists α ∈ W0(G) such that αφ(x) = x for all

x ∈ C.

Proof. We first treat the case p ≡ 1 mod 4. We note that this implies that −1 is a quadratic

residue [16, Therem 5.3].

We define a graph Γ as follows. The vertices of Γ are elements of the class C. Two vertices

M,N are connected by an edge if MN ∈ C. We show that φ acts as an automorphism of Γ.

By assumption, φ is a bijection. Recall that we may assume φ(C) = C. Suppose M,N are

adjacent in Γ so that MN ∈ C. By assumption, φ(MN) ∈ C. But φ(MN) ∼ φ(M)φ(N),

thus φ(M)φ(N) ∈ C and φ(M), φ(N) are also adjacent.

We analyze the graph Γ. Consider the vertex A = ( 1 1
0 1 ) of Γ. Since φ(A) ∈ C, after

conjugating if necessary, we may assume that φ(A) = A. We investigate the immediate

neighbors of A. Any element of C is conjugate to A and can be written in the form

Aa,c = ( a bc d ) ( 1 1
0 1 )

(
d −b
−c a

)
=
(

1−ac a2

−c2 1+ac

)
,

for some a, c ∈ Fp.

Thus a neighbor of A would have to satisfy one of the following two equations.

AAa,c =
(

1−ac−c2 a2+1+ac
−c2 1+ac

)
=
(

1−ef e2

−f2 1+ef

)
= Ae,f (C.1)

or,

AAa,c = −Ae,f , (C.2)

for some e, f ∈ Fp.
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Equation (C.1) gives four equations,

1− ac− c2 = 1− ef, (C.3)

a2 + 1 + ac = e2, (C.4)

− c2 = −f 2, (C.5)

1 + ac = 1 + ef. (C.6)

Adding (C.3) and (C.6) gives 2 − c2 = 2, and thus c = 0. It follows that ef = 0 and so

f = 0. Thus, Aa,0 =
(

1 a2
0 1

)
is a neighbor of A for a 6= ±1, a 6= 0, a ∈ Fp such that a2 + 1 = e2

for some e 6= 0 ∈ Fp. We call these neighbors the noncycle neighbors of A, for reasons that

will be clear later.

Equation (C.2) gives us another four equations,

1− ac− c2 = −1 + ef, (C.7)

a2 + 1 + ac = −e2, (C.8)

− c2 = f 2, (C.9)

1 + ac = −1− ef. (C.10)

Since p ≡ 1 mod 4, Equation (C.9) above does have nonzero solutions. As before, adding

(C.7) and (C.10) gives c = ±2. Thus, if we let c = 2 then Aa,2 is a neighbor of A for all

a ∈ Fp such that (C.10) holds. But since f is nonzero by Equation (C.9), e is determined by

a and thus Aa,2 =
(

1−2a a2

−4 1+2a

)
is a neighbor of A for all a. If we let c = −2, we show that

we do not get any new neighbors. In this case, we have Aa,−2 =
(

1+2a a2

−4 1−2a

)
is a neighbor of

A for all a. But Aa,2 = A−a,−2. Thus, Aa,2 for all values of a ∈ Fp gives us a second type of

neighbors to A. We call these neighbors the cycle neighbors of A.

Next we show that the cycle neighbors of A and the noncycle neighbors of A are not
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adjacent. Suppose Aa,2 is a cycle neighbor of A for some a and Ab,0 is a noncycle neighbor

of A for some b 6= ±1. Since

Aa,2Ab,0 =
(

1−2a −4
b2−2ab2+a2 −4b2+1+2a

)
is an element of C only if b = ±1, we have a contradiction. Thus, the cycle neighbors and

noncycle neighbors of A are not adjacent.

Lemma C.0.17. The graph Γ is connected.

Proof. Suppose that Γ decomposes into multiple components. We first notice that these

components must have the same size since any two vertices of the graph are images of each

other by an automorphism of G. Thus to show that Γ has only one component, we only need

to show that the component containing A contains more than |C|/2 = (p2 − 1)/4 elements.

We show that the neighbors of A of the form Aa,2, that is, the cycle neighbors of A, form

a cycle of length p around A, where Aa,2 is adjacent to Aa+1,2, for all a ∈ Fp. We can check

that Aa,2Aa+1,2 = ( 1 −1
0 1 ), which is in C, since p ≡ 1 mod 4.

Each cycle neighbor Aa,2 of A, has its own cycle neighbors. These can be found by

conjugating by a fixed element D such that D−1AD = Aa,2. If we let D = ( 0 b
−2 a ), where

2b ≡ 1 mod p, then we have that D−1AD = Aa,2. Thus the cycle neighbors of Aa,2 are

D−1Ax,2D =
(

1+2x−2ax2 (ax−1)2

−4x2 1−2x+2ax2

)
,

x ∈ Fp.

Now, we show that for each a ∈ Fp, A and Aa,2 have exactly two cycle neighbors in

common, Aa−1,2 and Aa+1,2. To see this, we suppose that D−1Ax,2D is a cycle neighbor of

both Aa,2 and A. Then the trace of AD−1Ax,2D must be −2. But the trace of AD−1Ax,2D

is 2− 4x2. Thus, x = ±1. But substituting x = ±1 into D−1Ax,2D give Aa−1,2 and Aa+1,2 as

required.

Next, for all a, b ∈ Fp, a 6= b, we show that Aa,2 and Ab,2 have two cycle neighbors in
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common, namely A and
(

1+2x−2ax2 (ax−1)2

−4x2 1−2x+2ax2

)
, where x ≡ −2/(b − a) mod p. To see this,

we solve (
1+2x−2ax2 (ax−1)2

−4x2 1−2x+2ax2

)
=
(

1+2y−2by2 (by−1)2

−4y2 1−2y+2by2

)
.

This gives y = ±x from the (2, 1) entry. But since a 6= b, from the (1, 2) entry, we have

either y = x = 0 or y = −x. The first case gives A as a common cycle neighbor. In the

second case, we substitute y = −x into the above matrices and equate their (1, 1) entries to

get

−2ax2 + 1 + 2x = −2bx2 + 1− 2x.

This gives x ≡ −2/(b− a) mod p, as required.

Now we find a lower bound for the number of elements in the same component as A. We

start with A and its p cycle neighbors for a total of p + 1 elements. Since any two distinct

cycle neighbors, Aa,2 and Ab,2, of A have exactly one common cycle neighbor, not including

A, we have that we can get at least

(p− 3) + (p− 4) + · · ·+ 2 + 1 = (p− 3)(p− 2)/2

distinct cycle neighbors of Aa,2 not including A and its cycle neighbors, for all a ∈ Fp. Thus

we have at least (p2 − 3p+ 8)/2 elements in the same component as A. But this number is

strictly bigger than |C|/2 = (p2 − 1)/4, for all p. Thus Γ can have at most one component

and hence must be connected.

Lemma C.0.18. The stabilizer of A under the action of Aut(Γ) is isomorphic to the dihedral

group of order 2p, D2p.

Proof. We first show that D2p is a subgroup of the stabilizer group. Let P = ( 1 d
0 1 ), where

d = −1/s. Then P commutes with A and we can check that P−1AP = A and P−1Aa,sP =

Aa+1,s, for all a. Thus conjugating by P rotates Γ about A. Now let Q =
(
x−1 0

0 x

)
, where

x2 = −1. Then, by composing the inverse map with conjugation by Q, we get the map
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β : Γ→ Γ, which sends A to itself and Aa,s to Q−1A−1
a,sQ = A−a,s, realizing a reflection fixing

A’s cycle neighbor A0,s.

We next show that the elements of D2p are the only automorphisms that fix A. To do

this, we show that any automorphism fixing A and its cycle neighbors fixes all of Γ.

We suppose that A and all of its cycle neighbors Aa,2, for all a ∈ Fp are fixed. We will

show that any element of distance less than or equal to two from A is also fixed. To do this,

we will show that all of the cycle and noncycle neighbors of Aa,2 are fixed for all a, and all

of the noncycle neighbors Ae,0 of A and their cycle and noncycle neighbors are also fixed.

We now show that since A and all of its cycle neighbors Aa,2 are fixed, all of the cycle

neighbors for Aa,2 for all a ∈ Fp are also fixed. This is clear since for each fixed a, each of

A,Aa−1,2 and Aa+1,2 is part of the cycle neighbors for Aa,2 and is fixed by assumption. Thus

all of the cycle neighbors of Aa,2 are fixed.

Now we show that all of the noncycle neighbors, Ae,0, of A for all e ∈ Fp such that e2 + 1

is a square in Fp and their cycle neighbors are fixed. We first show that for any given b ∈ Fp,

the Ae,0’s cycle neighbors meet with exactly two cycle neighbors of Ab,2. As we have shown

before, the cycle neighbors of Ab,2 take the form(
1+2x−2bx2 (bx−1)2

−4x2 1−2x+2bx2

)
, x ∈ Fp.

Conjugating by
(

1/e 0
0 e

)
sends the cycle neighbors of A to the cycle neighbors of Ae,0, which

take the form (
1−2a a2e2

−4/e2 1+2a

)
, for all a ∈ Fp.

Thus by equating the above matrices, we see that the two cycle neighbors of Ab,2 given by

x = ±1/e are also the same two cycle neighbors of Ae,0 given by a =
b± e
e2

. Thus given any

noncycle neighbor Ae,0 of A, we can find say two different cycle neighbors of A, Ab1,2 and

Ab2,2 whose cycle neighbors meet with exactly four cycle neighbors of Ae,0. But the cycle

neighbors of Ab1,2 and Ab2,2 are fixed, thus forcing the cycle neighbors of Ae,0 to be fixed.

This also shows that Ae,0 itself is fixed.
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Applying this same argument to Aa,2 for all a shows that all of the noncycle neighbors of

Aa,2 are also fixed. And applying this argument to Ae,0 shows that their noncycle neighbors

are also fixed.

Thus, we have shown that any automorphism of Γ all of elements of C of distance at

most 2 away from A are fixed. By fixing A and its cycle neighbors fixes all vertices distance

less than or equal to 2 away from A. Thus, by repeating the argument, we have shown that

all vertices connected to A are fixed. And since Γ is connected, all of Γ is fixed.

We have just shown by Lemma C.0.18 that W0(G) can realize all of the elements of the

stabilizer group, D2p, fixing A. Thus, we have that W0(G) acting on Γ can realize all of

Aut(Γ).

Now, we prove Proposition C.0.16. The weak Cayley table isomorphism φ acts as an

automorphism on Γ. Since W0(G) can realize any element of Aut(Γ), let α be the element

of W0(G) which is the inverse element of φ in Aut(Γ). Then αφ(x) = x, for all x ∈ C as

required.

For the case, p ≡ 3 mod 4, the proof is the same except for the construction of Γ. In this

case, we define two elements A,B ∈ C to be connected by an edge if AB ∈ D. The rest of

the proof follows as before.
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Appendix D. Magma Code

We include here the Magma code for checking the last condition of Lemma 4.0.8.

load ”M11”;

g:=G;

x:=g!(1, 6, 8)(3, 4, 9)(5, 11, 7);

cc:=Classes(g);

tf:=false;

for i in {2..#cc} do

x:=cc[i][3];

c1:=Class(g,x);

for y in c1 do

if(not x eq y) then

tf:=false;

for z in c do

if(not IsConjugate(g,z*x,z*y)) then

tf:=true; break;

end if;

end for;

if(tf eq false) then

print i,tf;

end if;

end if;

end for;

end for;
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