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abstract

A Covering System with Minimum Modulus 42

Tyler Owens
Department of Mathematics, BYU

Master of Science

We construct a covering system whose minimum modulus is 42. This improves the
previous record of 40 by P. Nielsen.
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Chapter 1. Introduction

Covering systems were first introduced by Paul Erdős in his 1950 paper on integers of the

form 2k + p [1]. A covering system is a finite set of congruence classes with distinct moduli

greater than 1 such that every integer belongs to at least one of the classes. In that same

paper, Erdős wrote “It seems likely that for every c there exists such a system all the moduli

of which are > c.” This statement became known as the minimum modulus problem, and

it took over sixty years before the problem was resolved in the negative by Bob Hough [2],

who obtained the upper bound of 1016 on the smallest modulus.

While it is now known that the minimum modulus of a covering system cannot be ar-

bitrarily large, the question of how large the minimum modulus can be remains. The best

result to date is that of Pace Nielsen [3], who constructed a covering system with minimum

modulus 40. Building on his ideas and methods, in this paper we construct a covering system

with minimum modulus 42.

Chapter 2. A Covering Principle and Notation

In this work, it will be useful to use a different notation for congruence classes mod m than is

standard. Understanding this paper requires readers to be familiar with the notations used in

Nielsen’s paper [3], but for clarity we briefly review the main terminology here. Given a prime

p, there are exactly p distinct congruence classes modulo p. We denote those p classes as a

p-tuple, and we put a 1 in the ith position to signify that i (mod p) is in our covering system,

and an empty spot in the jth position to denote that the congruence class j (mod p) is not

in our covering system. We write p at the start of the p-tuple to make the modulus explicit.

For example, 3(1, , 1) represents the classes 1 (mod 3) and 3 (mod 3) but not 2 (mod 3).

(Note that this couldn’t be part of a covering system because the modulus 3 is repeated.)

We will often use the word ‘input’ to signify positions in p-tuples (informally thinking of such

p-tuples as functions with arguments/inputs to be filled). We will also nest tuples to signify
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higher powers of primes and composite moduli. For example, A = 3( , 1, 2(1, )) denotes

a partial cover containing two congruence classes, namely 2 (mod 3) and 3 (mod 3) ∩ 1

(mod 2) = 3 (mod 6). In this notation, we will also use x to represent a congruence class

that is included in the covering by a previously constructed congruence. For example, if we

have already constructed A as above, the x’s in 5( , , 3(1, x, 2(x, 1)), , ) denote that some

classes are already covered by A. One further bit of notation is the use of the addition symbol

when putting multiple congruence classes in the same input. For example, we will write

5( , , 2(1, ) + 3( , 2(x, 1), ), , ) to denote the fact that both 2(1, ) and 3( , 2(x, 1), )

are in the third input of a 5 (which is also why we can put an x in the second set).

Recall that p↑(c1, c2, . . . , cp−1) is recursively defined by the formula

p(c1, c2, . . . , cp−1, p
↑(c1, c2, . . . , cp−1)).

Thus 3↑( , 1) represents one class modulo 3n for each n ≥ 1. While this notation technically

creates an infinite cover, there is a standard procedure to finitize the process, as described

in Morikawa [4], Gibson [5], and Nielsen [3]. This finitization is performed in §4.

Finally, it should be noted that we will occasionally leave out inputs in p↑ when context

tells us what those inputs would be. For example, we will often write 2↑ instead of 2↑(1). As

another example, if we are restricted to the congruence classes 1 (mod 3) and 2 (mod 2),

then we may write 9↑(1, 2) to mean 3(3↑(1, 2( , 1)), , ). As a final example, if we know

from context that we are restricted to the classes 1 (mod 2), 1 (mod 3), and 2 (mod 5), we

may write 5 · 3 · 2 to represent 5( , 3(2(1, ), , ), , , ).

Chapter 3. The Covering System

We will now construct a covering system with minimum modulus 42. We will work prime

by prime, encouraging the reader to verify at each step that the sets we construct do in fact

cover the congruence classes in which we are working, and also verify that no modulus is

repeated.
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The basic principle for constructing the covering system is to start with a covering system

with small moduli, and remove the moduli which are too small. This leaves behind holes.

We then fill in these holes with moduli involving larger primes. For example, if we wanted

a covering system with minimum modulus 4, we would start with 2↑(1). Because 2 < 4 we

would remove the class 1 (mod 2). We would then move to the prime 3. Since 3 < 4, we

could use the set 3↑(2(1, x), 2(2↑, x)) to fill in the hole left open when removing 1 (mod 2).

Accompanying some of the congruences in the following sections will be pictorial repre-

sentations of these holes in the covering system. In the diagrams, white circles will denote

completely empty holes in the covering system, grey circles will represent partially filled holes,

and black circles will represent completely covered congruences. The diagrams will branch

to denote which moduli are being used. For example, 3(1, 2(1, ), ) could be represented

by the following diagram:

Figure 3.1:

Notice that the center circle is grey because 2(1, ) only covers part of the input. Alterna-

tively, if we wanted to provide more detail, we could draw the following picture:

Figure 3.2:

Finally, it will sometimes be helpful to switch the order in which we branch. For example,

this same set of congruences could be represented as:

3



Figure 3.3:

3.1 The Prime 2

For both the prime 2 and the prime 3, we will use exactly the same congruence classes as in

the covering system of Nielsen [3]. As they form the framework in which we will construct

the rest of the covering, we give them again here.

We begin with 2↑(1). Because we want the minimum modulus of our covering system to

be 42, we must remove the congruences with moduli 2, 4, 8, 16, and 32. This leaves us with

a 64↑, which covers one class modulo 32. At this point it is not important which class mod

32 we choose, so for concreteness we choose 32 (mod 32).

2

4

8

16

32 64 ↑

Figure 3.4:
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3.2 The Prime 3

For the prime 3 we restrict ourselves to the branch 1 (mod 2) and attempt to cover as much

as possible. We start with the covering 3↑(2, 4↑) and once again remove the congruences with

moduli less than 42, namely 6, 12, 18, 24, and 36. Specifically, this leaves us with the set

3( , 2(2( , 2( , 2↑)), ), 3( , 2(2( , 2↑), ), 3↑(2(1, ), 2(2↑, )))).

We can represent these congruence classes with the following diagram:

6

12

24

18

36

Figure 3.5:

We then add the set 81↑(1, ) in the branch 21 (mod 27), which falls in the hole labeled 18

in Figure 3.5.

3.3 The Prime 5

The prime 5 marks the first, and most significant, departure from the covering system

described by Nielsen [3].

We now turn our attention back to the class 2 (mod 2). On this branch we only have four

classes to fill, one for each of the moduli 4, 8, 16, and 32 (see Figure 3.4). To simplify notation,

in this section 4, 8, 16, and 32 will always refer to the classes 2 (mod 4), 4 (mod 8), 8

(mod 16), and 16 (mod 32) respectively (which are the holes with the corresponding moduli
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in Figure 3.4), while 2 refers to 2 (mod 2). We use the prime 5 to fill as much of these classes

as possible. Because the minimum modulus is 42, the smallest power of 2 that we can use

in conjunction with the 5 is 16 (since 5 · 8 = 40 < 42). So in the first of the five inputs of

5( , , , , ) we put 16 + 32. For the next input we insert the set

3( , , 3↑(4 + 8, ) + 3↑(16, 32↑)) + 64↑

Here (and elsewhere in this section) the 32↑ inside of the 3↑ is restricted to the 16 branch

and the 64↑ is restricted to the 32 branch. For the third input we use the set

3(64↑, 4 + 8 + 16 + 32, 3↑(1, 2)).

The order of these inputs might seem arbitrary at this point, but we have chosen the inputs

in this order for use in later sections. We will remark on this more at the end of the section.

The fourth input we leave blank. In the fifth input we insert the set

5(2, 4 + 8 + 16 + 32, 3↑(1, 2), 3↑(32↑, 4 + 8 + 16) + 64↑, 5↑(1, 2, 3↑(1, 2), 4↑)).

Here the 4↑ covers all of 2 (mod 2).

We note a few things now about our covering so far. First, it will be important later

(such as in sections 3.5 and 3.6) that the classes 2 (mod 3) and 3 (mod 9) are covered on

the third input of 5↑ in each of the holes. It will be useful to visualize what we have done so

far on this branch. We do so as follows:

Hole 4 : 5( , 3( , , 3↑(x, )), 3( , x, x), , 5(x, x, x, 3↑( , x), x))

Hole 8 : 5( , 3( , , 3↑(x, )), 3( , x, x), , 5(x, x, x, 3↑( , x), x))

Hole 16 : 5(x, 3( , , x), 3( , x, x), , x)

Hole 32 : 5(x, x, x, , x)

6



We note that there are still some unused moduli. We almost completely cover the last

empty input in the 8 hole, with the sets

125↑(3↑(4, x), 3↑(8, x), 3↑(16↑, x), 3↑( , x))))

leaving just a single 125↑ · 3↑ to fill.

Pictorially, on both of the branches 2 (mod 4) and 4 (mod 8) we have:

Figure 3.6:

On the branch 8 (mod 16) we have:

Figure 3.7:

Finally, on the branch 16 (mod 32) we have:

Figure 3.8:
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3.4 The Prime 7

Starting with the prime p = 7 and hereafter, we will be filling the entries of p↑, so that we

need only p− 1 inputs, in this case 6. With the prime 7 we will almost completely cover the

holes in our covering of the 8 and 16 branches from the previous section (pictured in Figures

3.6 and 3.7). Specifically we will fill all but the first input on the 5 on the 8 hole (which

is the leftmost white circle in Figure 3.6), and we will completely fill the 16 hole. To this

end, we fill the first input of the 7↑ with the set 8 + 16. The second input is filled by the set

3↑(8, 16↑) + 32↑ (of course, 16↑ is used to cover the hole 8 and 32↑ is used to cover the hole

16). The third input is filled by 3(2, 4, 3↑(1, 2)) (where here 4 corresponds to 4 (mod 4) so

that it covers both the 8 and 16 holes).

Next we consider the fourth, fifth, and sixth inputs. For the moment we will be working

only with the middle three classes modulo 5 because both the first and the final classes

modulo 5 are already covered on the 16 hole. We will fill the last class modulo 5 on the

8 hole later in the section. We thus write 5( , , ) with only three inputs to simplify the

notation. The fourth set in 7↑ is then 5(3(4, 8 + 16, 3↑(x, 4)), 3(1, x, x), 2). The fifth set is

5(8 + 16, 3(3↑(1, 2), x, x), 5↑(1, 2, 3↑(1, 2), 4)). The sixth and final set is more complex. Let

A = 32↑+3(3↑(8, ), , 3↑(x, 16↑))+5(8, 16↑, 3(3↑(x, 4), 4, x), 3(3↑(x, 8), 8, x), 3(3↑(x, 16↑), 16↑, x)).

Here, as usual, 32↑ covers the 16 hole, whereas 16↑ covers the 8 hole. Noting that A fills the

8 hole, in the second input of 5, we take as our sixth set 5(A, 3(2, x, x), 4).

We now notice that we have yet to use 125 · 3↑ · 4, 125↑ · 3↑ · 8, or 125↑ · 3↑ · 16↑. We can

add these sets to our covering to cover the last input of 5 on the 8 hole in the fourth, fifth,

and sixth inputs of 7↑. This leaves just a hole in the first input on 5 in the 8 hole.
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In summary, we use the following sets:

7↑(8 + 16,

3↑(8, 16↑) + 32↑,

3(2, 4, 3↑(1, 2)),

5( + x, 3(4, 8 + 16, 3↑(x, 4)), 3(1, x, x), 2, 125↑ · 3↑ · 4),

5( + x, 8 + 16, 3(3↑(1, 2), x, x), 5↑(1, 2, 3↑(1, 2), 4), 125↑ · 3↑ · 8),

5( + x,A, 3(2, x, x), 4, 125↑ · 3↑ · 16↑).

Here we use + x to signify that we are not covering the first input modulo 5 on the 8 hole,

but that this class is already filled on the 16 hole.

Our diagram from the previous section is now:

Hole 4 : 5( , 3( , , 3↑(x, )), 3( , x, x), , 5(x, x, x, 3↑( , x), x))

Hole 8 : 5( , x, x, x, x)

Hole 16 : 5(x, x, x, x, x)

Hole 32 : 5(x, x, x, , x)

Pictorially, we have (where we use grey holes only when they are mostly filled):

Figure 3.9:
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We note at this point that we have yet to use 125↑ · 8↑ or 9↑ · 4. First, restrict to the fifth

input of the 7↑, in the fourth input of a 5. Here, on the entirety of the 4 hole we are only

missing one input in a 7↑ · 25↑. We use 125↑ · 8↑ to reduce this hole to only missing a single

input in a 7↑ · 25. We will use this in our work with the primes 61 and 67 in Section 3.18.

Finally, we use 9 · 4 to fill the third entry of a 7↑ on the intersection 1 (mod 4)∩ 6 (mod 9);

this will be used when dealing with the prime 31 in Section 3.11.

3.5 The Prime 11

For the prime 11 we use the same congruences constructed by Nielsen [3], with the exception

of moving the class modulo 11 · 5 to fall in 4 (mod 5) instead of 1 (mod 5). This simple

permutation of the inputs does not affect the combinatorial approach we take to constructing

the sets, as long as we make the same shift in all of the congruences cited from Nielsen’s

paper. This change will be vital in later sections, beginning with 3.14 .

3.6 The Prime 13

For the prime 13 we use the same congruences constructed by Nielsen [3], again permuting

the inputs so that the class modulo 13 · 5 falls in 2 (mod 5). This will make work in Section

3.13 easier.

We note that the congruence sets of this and the previous section taken together cover

the holes left over (from our work with the prime 3) when we removed the moduli 6 and 18

(see Figure 3.5).

3.7 The Prime 17

For the prime 17 we will focus on the hole left when we removed the congruence class with

modulus 12 during our work with the prime 3 (see Figure 3.5). In his paper, Nielsen used

the prime 19 to partially fill this hole. Specifically, he constructed seventeen sets to use in

10



filling inputs on a 19↑. As only one of these sets involved the prime 17, we may use the

other sixteen sets to completely fill the desired 17↑, again making the necessary changes to

accommodate the rearranged inputs.

3.8 The Prime 19

We now return to the branch 2 (mod 4). We will use 19↑ to completely fill the first input in

the 5 on the 4 hole. (This is the left-most empty hole in Figure 3.9.) Any use of the prime 5

in this section will be restricted to that branch. Beginning in this section and for the rest of

our construction, we will suppress the idea of inputs being filled, and instead just construct

sets which can be used to fill these inputs. This is because the order of the sets used to fill

each p↑ will not matter to us. So, we begin with the sets 1, 2, 4 and 8↑ (remembering that we

will need to drop 1 and 2 as inputs in the 19↑, due to our minimum modulus restriction). We

can then take these four sets and use them in conjunction with 5 and 25↑ to make five more

sets. Because the sixth input in 11↑ is already covered on this branch, we can fill a copy of

11↑. We now have ten sets, so we can fill five copies of 3↑ (using these sets in sequence). We

then fill 13↑, and 17↑. This gives us seventeen sets. Because 7↑ needs only one input of a 3

in its third entry on this branch, we can fill three copies of 7↑ (making sure one of the sets is

7↑(1, 2, 3(x, 1, x), 4, 8↑, 3↑(2, 4))). This gives us a total of twenty sets, which after removing 1

and 2 gives us the eighteen needed inputs for 19↑. We note that five of these inputs apply to

the entire 4 hole, so that on the 4 hole any future 19↑ will need only thirteen inputs filled.

3.9 The Prime 23

We use the same congruences (again up to rearrangement) constructed in Nielsen’s paper to

completely cover the hole that arose from the removal of the congruence class with modulus

24 during our work with the prime 3 (see Figure 3.5). In particular, we replace the entry

5↑(1, 2, 4, 8) with 5↑(2, 1, 4, 8) so that on the fourth from the left empty hole in Figure 3.9,

we only need nineteen inputs in 23↑. This will be used in Section 3.13.
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3.10 The Prime 29

We will now fill two more holes left over from our work with the prime 5. We will restrict

ourselves to the first input of a 3, and also restrict ourselves to both the second and third

inputs of a 5, on the 4 hole. (These are the third and fifth from the left empty holes in Figure

3.9.) We begin with the sets 1, 2, 4, 8↑, 3 · 1, 3 · 2, 3 · 4, 3 · 8↑, 9↑(1, 2), and 9↑(4, 8↑). We then

have ten sets to use in conjunction with 5, so we can create five more sets (remember that

we are filling two different inputs in the 5), bringing us up to fifteen sets. The sixteenth set

is 25↑(1, 2, 4, 8↑) + 25↑(3 · 1, 3 · 2, 3 · 4, 3 · 8↑). We use these sixteen sets to fill a 17↑. There are

only two inputs in the 7↑ that we need to fill on the third input of the 5, whereas we need

five entries filled for the second input of the 5. Thus, if we use congruences which apply to

both inputs on the 5, we can maximize the effectiveness of the 7. We can thus construct

four more sets as follows:

7↑( , , x, 5 · 1, 5 · 2, 5 · 4) + 7↑(1, 2, x, x, x, x)

7↑( , , x, 5 · 8↑, 5 · 3 · 1, 5 · 3 · 2) + 7↑(4, 8↑, x, x, x, x)

7↑( , , x, 5 · 3 · 4, 5 · 3 · 8↑, 25↑(1, 2, 4, 8↑)) + 7↑(3 · 1, 3 · 2, x, x, x, x)

25↑(9↑(1, 2), 9↑(4, 8↑), , )

+ 7↑( , , x, 25↑(x, x, 3 · 1, 3 · 2), 25↑(x, x, 3 · 4, 3 · 8↑), 25↑(x, x, 9↑(1, 2), 9↑(4, 8↑)))

+ 7↑(3 · 4, 3 · 8↑, x, x, x, x)

We have now constructed 21 sets which we use to fill two copies of 11↑. We can then fill

a 23↑. This gives us 24 sets which we can use to fill two copies of 13↑. This gives us 26

sets, which we can use to fill two copies of 19↑, since five of the inputs from our work in

Section 3.8 still apply. This brings our total number of sets to twenty-eight; however, we

cannot use the set 1 because 29 < 42, so we need one more set. We now create the set

7↑( , , x, 5 ·9↑(1, 2), 5 · (9↑(4, 8↑)), B) + 7↑(9↑(1, 2), 9↑(4, 8↑), x, x, x, x). Here, B is the set 17↑

filled with the first sixteen sets.
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3.11 The Prime 31

We now return to the branch 1 (mod 2). We are going to use 31↑ to fill the hole left open

when we removed the congruence with modulus 36 in our work with the prime 3. Specifically,

we are restricted to the branches 1 (mod 4) and 6 (mod 9). We can easily make fourteen

sets to start off with, namely 1, 2, 4, 8↑, 3 · 1, 3 · 2, 3 · 4, 3 · 8↑, 9 · 1, 9 · 2, 9 · 4, 9 · 8↑, 27↑(1, 2),

and 27↑(4, 8↑). Using the first twelve of these fourteen sets we can fill three copies of 5↑,

making sure that one of the sets is 5↑(2, 4, 8↑, 1) (which will be used in Section 3.16). We also

create the set C = 5↑(27↑(1, 2), 27↑(4, 8↑), , ) to be used shortly. This gives us seventeen

complete sets, the first fifteen of which we use to fill three copies of 7↑ (noting, that 7↑ only

needs five entries filled on this branch). We can then create one more set by using C plus

7↑(5↑(x, x, 3 · 1, 3 · 2), 5↑(x, x, 3 · 4, 3 · 8↑), x, 5↑(x, x, 9 · 1, 9 · 2), 5↑(x, x, 9 · 4, 9 · 8↑),

5↑(x, x, 27↑(1, 2), 27↑(4, 8↑))).

This gives us a total of twenty-one sets.

Because we are working with the branch 2 (mod 4), some of the congruences from or

work with the prime 11 carries over. In particular, we only need to fill eight entries, one of

which needs three inputs in a 5↑ and one needs just one input in a 5↑. Thus, our previous

sets can easily fill three copies of 11↑. These twenty-four sets fill two copies of 13↑. The

twenty-six constructed sets fill two copies of 17↑ (noting we only needed thirteen entries).

Finally, we fill one copy each of 19↑, 23↑, and 29↑. This gives us thirty-one sets, which after

dropping 1, fills our 31↑.

3.12 The Prime 37

With 1 (mod 2) completely filled, we return now to the branch 2 (mod 2). We work to fill

in the hole left in the first input of 5 on the 8 hole, which is the second empty hole (from the

left) in Figure 3.9. We will restrict to the first two inputs of a 3, and fill the third input later

(in Section 3.16 using the prime 53). Start with the sets 1, 2, 4, 8, and 16↑. The next four
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sets will be 3(1, 2), 3(4, 8), 3(3↑(1, 2), 3↑(4, 8)), and 3(16↑, ) + 5 · 3( , 16↑). We can create

eight more sets by multiplying each of the first eight of these sets by 5. We can also use

them to fill two copies of 25↑, giving us 19 sets to work with. From our work in Section 3.4,

we only need three inputs to fill a 7↑ on this branch, thus giving us six more sets bringing

our total number of sets to 25. We can use these sets to fill two copies of 13↑, then two

copies of 19↑ noting that we need only thirteen inputs because of our work with 19 earlier.

This gives us twenty-nine sets which we use to fill a 29↑, then a 31↑, three copies of 11↑, two

copies of 17↑ and finally a 23↑. This gives us a total of thirty-seven sets, which means we

can completely fill the thirty-six inputs of the 37↑, remembering that we cannot use the set

1 because 37 < 42.

3.13 The Prime 41

Now turn to the fourth open hole (from the left) in Figure 3.9. We use the prime 41 to fill

this hole, which is the second input in a 3, in the second input of a 5, on the 4 hole. We

begin with the sets 1, 2, 4, and 8↑. We use these, in conjunction with 3 and 9↑ to get ten

sets. Next fill an 11↑ and then a 13↑ (noting that 13↑ only requires eleven inputs on this

branch). With the twelve sets thus constructed, we create another twelve using the prime 5,

and another three with 25↑. These twenty-seven sets fill 19↑ twice over (since we only need

thirteen inputs), and then we fill a 29↑. The thirty constructed sets fill six copies of 7↑. Then

we sequentially fill a 31↑, two copies of 17↑, a 37↑, and finally two copies of 23↑ (noting that

on this hole, only nineteen inputs are needed). This results in forty-one sets, which after

dropping 1 fills the 41↑.

3.14 The Prime 43

We will use the prime 43 to partially cover the hole in the fourth input of a 5 on the 4 hole.

(This is the second-to-last empty hole in Figure 3.9.) Specifically we will cover the middle
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input of a 3 on that branch. We start with the sets 1, 2, 4, and 8↑. Using 5 and 25↑ we

fill five more inputs, bringing us to nine sets. Since one input on 11↑ is already covered on

this branch, we can fill 11↑ bringing us to ten sets. We then use 3 and 9↑, bringing us to

twenty-five sets. Because 7↑ needs only five inputs on this branch, we can fill five copies of

7↑, bringing us to thirty sets. We then fill 31↑, 29↑, and two copies of 17↑, bringing us to

thirty-four sets. We then fill 23↑ and 37↑ (noting it is partially filled here) to bring us to

thirty-six sets. Then fill three copies of 13↑, bringing us to thirty-nine sets. Finally, since

19↑ only needs thirteen inputs on this branch, we fill three copies of 19↑, bringing us to the

needed 42 sets.

3.15 The Prime 47

We will use the prime 47 to completely fill the first input of a 3 in the fourth input of a 5

on the 4 hole. We begin with the same twenty-five sets constructed in the section on the

prime 43 (where here the 3 and 9↑ refer now to the first class modulo 3). Because 7↑ only

needs four inputs on this branch, one of which only needs a 25, we can use 7↑ to bring us

to thirty-two sets (the 25↑ breaks into five sets, giving us twenty-nine sets to work with in

filling the four inputs of the 7↑, making sure that the 25’s are used in the correct input).

We then fill two copies of 17↑, 29↑, 31↑, and three copies of 13↑, bringing us to thirty-nine

sets. Because 19↑ needs only thirteen inputs on this branch, we can fill three copies of 19↑,

bringing us to forty-two sets. We then fill 41↑, 43↑, and two copies of 23↑, bringing us to the

forty-six sets we need.

3.16 The Prime 53

We will use the prime 53 to fill the last input of a 5 on the 4 hole. Note that we only need

to fill one hole mod 25 · 3↑ · 4. We begin with the sets 1, 2, 4, and 8↑. We then use these in

conjunction with the prime 3 to bring our total number of sets to eight. We can use these
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eight sets in conjunction with 5 and 25, along with filling two copies of 125↑ to bring our

total number of sets to twenty-six. Because 19↑ needs only thirteen inputs, we can fill two

copies of 19↑, bringing us to twenty-eight sets. We can now fill a 29↑. Noting that one of the

inputs from our work with the prime 31 carries over on this branch, we can fill 31↑, bringing

us to thirty sets. Since the third input in 7↑ is already covered on this branch from our

earlier work, we can use these 30 sets to make six copies of 7↑, bringing us to thirty-six sets.

We then sequentially fill three copies of 13↑, 37↑, four copies of 11↑, 41↑, and 43↑, giving us

forty-six sets. We can then fill 47↑, two copies of 23↑, and three copies of 17↑, bringing us to

the fifty-two sets we need.

3.17 The Prime 59

We will now fill the last input on the 3 in the first input of the 5 on the 8 hole. We begin

with the sets 1, 2, 4, 8, and 16↑. We then use these in conjunction with 3 and 9↑ to bring

our total to twelve sets, with a half-filled 9↑ still at our disposal. We can use these twelve

sets with 5 to bring our total to twenty-five sets, the last set being 5 · 9↑(16↑, ) + 9↑( , 16↑).

We can also fill three copies of 25↑. This gives us a total of twenty-eight sets. We then fill

29↑ and 23↑ giving us thirty sets. Because we only need three inputs on a 7↑ on this branch,

we can then fill ten copies of 7↑, bringing us to forty sets. We then fill 41↑, four copies of

11↑, 43↑, 47↑, 37↑, three copies of 17↑, four copies of 13↑, and three copies of 19↑, bringing us

to the fifty-eight sets needed to fill 59↑.

3.18 The Primes 61, 67, and 89

We will use the primes 61, 67, and 89 to fill the third input in the 3 in the fourth input of

the 5 on the 4 hole, by splitting the input in half as was done for 11 and 13. We begin by

creating twenty-eight sets, in the same manner as in the previous section. We then fill a 29↑

and 31↑ (noting the latter needs only twenty-nine inputs). On this branch, we only need to
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fill 7↑( , , x, x, 25(x, x, x, , x), ). Using the previous sets, we can easily do this nine times,

bringing our total to thirty-nine sets. We then fill 19↑ three times, 37↑, 41↑, 43↑, 23↑ twice,

47↑ 17↑ three times, 13↑ four times, 53↑, 11↑ six times (because it only needs nine inputs),

and 59↑. This totals in sixty-three sets, easily filling the 61↑.

Using the same construction as above (but restricted to a different class modulo 8), we

get sixty-three sets. We then can use 61↑ to fill two more entries, using the doubling idea

from Nielsen’s work with the prime 13. This leaves one entry in a 67↑, which is then easily

filled using the prime 89.

3.19 The Primes 71 and 73

We will use these two primes to fill the hole remaining in the last input of a 3 in the second

input of a 5 on the branch 2 (mod 4). We note that we need only fill one input in a 9↑ on

this branch, and we will split the hole in two as was done with 11 and 13 (and again with

61 and 67). We begin with the sets 1, 2, 4, 8, and 16↑. Since 7↑ needs only five inputs we

get another set, and then in conjunction with 3 and 9↑ we have eighteen sets. Now fill a 17↑,

19↑, 11↑ twice, and 13↑ twice (since we only need eleven inputs), giving a total of twenty-four

sets. Using 5 and 25↑, we then have fifty-four sets. Sequentially fill 53↑, 47↑, 43↑, 41↑, 59↑,

37↑, 31↑ twice, 61↑, 23↑ three times (since it only needs twenty-one inputs), 29↑ three times

(since it only needs twenty-two inputs), and a 67↑. This yields the seventy sets to fill a 71↑.

Repeat for the other class modulo 8, to get seventy sets. Then 71↑ can be filled twice

(using the doubling trick) and we thus can completely fill the 73↑.

3.20 The Primes 79 and 83

We will now fill the final empty hole, which is in the fourth input of a 5 on the 32 hole. (This

is the right-most empty hole in Figure 3.9.) We will split this hole into two parts, using 79↑

to fill the first input of a 3↑ and 83↑ to fill the second. We begin with the sets 1, 2, 4, 8,
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16, 32, and 64↑. We then use these with 3↑ to bring our total number of sets to fourteen.

Since 7↑ only needs two inputs on this branch, we can fill seven copies of 7↑, bringing us to

twenty-one sets. We can then use 5 and 25↑ to bring us to forty-seven sets. We then fill 47↑,

three copies of 17↑, five copies of 11↑, two copies of 29↑, 59↑, 53↑, 61↑, two copies of 31↑, five

copies of 13↑, 67↑, three copies of 23↑, four copies of 19↑, 71↑, 73↑. This gives us enough sets

to fill a 79↑.

Now using 79↑, 43↑, and two copies of 41↑, this gives us a total of eighty-two sets, which

fills the 83↑, and finishes the construction.

Chapter 4. Conclusion

Now that we have an infinite cover, we can utilize any large (unused) prime to finitize the

covering, giving us the desired covering system with minimum modulus 42. The final covering

system can be visually represented by Figure 4.1, which shows where the primes are used in

relation to each other.

How would one go about improving this result? In Nielsen’s covering system, there were

no small primes left over to be able to fill the hole created by removing the congruence

class with the modulus 40. Raising the minimum modulus of the covering system required

fundamentally changing the approach used in constructing the covering system, most notable

in the change of placement of the prime 5. In the case of this covering system, there is a

similar lack of freedom among the placement of small primes. So if we remove the class

with modulus 42, it would be difficult to fill in the resulting hole. To improve the cover

further, one would likely need to make a similar dramatic change early on in the process of

constructing the covering system, perhaps in the sets used with the prime 3, or perhaps by

choosing a better place to put the extra 81↑.

It is worth noting that Nielsen’s covering system with minimum modulus 40 used a scheme

with all of the primes up to 103. My covering system with minimum modulus 42 only uses a
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scheme utilizing all of the primes up to 89. A natural question for future research is whether

one can use fewer primes still. If so, can a covering system with minimum modulus 43 or

higher be constructed? It is likely that it would require the use of at least the primes used

in constructing this covering system, and would likely require even more large primes.

3
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Figure 4.1: The Primes Used in Constructing the Covering System
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