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abstract

Some Spectral Properties of a Quantum Field Theoretic Hamiltonian

Devin Burnell McGhie
Department of Mathematics, BYU

Master of Science

We derive the ground-state eigenvalues and eigenvectors for a simplified version of the 1-
D QED single electron-photon model that Glasgow et al recently developed [2]. This model
still allows for meaningful interaction between electrons and photons while keeping only the
minimum needed to do so. We investigate the interesting spectral properties of this model.
We determine that the eigenvectors are orthogonal as one would expect and normalize them.
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1 Introduction

Quantum Field Theory is one of the more important characterizations of Quantum Mechan-

ics created in the last 100 years in physics (although we reduce QFT to basic Quantum

Mechanics). It is the representation of physical objects by fields rather than as a wave or

a particle. This is useful because it gets around the concepts that are hard to grasp, such

as wave-particle duality. An important subset of Quantum Field Theory is known as Quan-

tum Electrodynamics. Quantum Field Theory is important because it is necessary for the

reconciliation of Quantum Mechanics with Special Relativity [4].

We will be using a few of the concepts from Quantum Field Theory. The concept of Cre-

ation and Annihilation operators, a simplified version of the QED Hamiltonian as described

by Cohen-Tannoudji [1], and bra-ket notation.

2 Bra-ket Notation and Creation/Annihilation

We will first define the notation as used for bras and kets. A bra looks like 〈p| and a ket

looks like |p〉. An informal way of thinking about bras and kets is to think of a ket as a vector

and a bra as its transpose, so that a bra applied on a ket is like an inner product. A more

formal definition of them is to treat a ket as an element of a Hilbert space and treat a bra as

an element of its dual-space. In other words we can think of a bra as a linear functional that

acts on a ket. So when we apply a bra-ket pair we have 〈p|q〉 and we should get a number

out since the ket 〈p| is a linear functional. Next we look at how bras and kets work together.

This is done using the concept of creation and annihilation for our model. We think of a bra

as annihilation of an electron with momentum p and a ket as creation of an electron with

momentum p (if it is of the form |p〉). Now we will look at exactly how they interact

〈p|q〉 = δ(p− q),

where δ(p− q) is the Dirac delta function.
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Also we now define the blank ket |〉 to be a “bare” electron or in other words an electron

without a photon. We say that this blank ket has the following inner product with itself

〈|〉 = 1.

Also we note that this bare electron has the following property as well when applied to a ket

of the following form

〈p|〉 = 0.

So in other words the blank ket and a dressed electron are orthogonal to each other. These

properties are very useful in our calculations and follow immediately from the relationship

between inner products and measurement in Quantum Mechanics. The calculations we

will do include finding the form of the eigenvectors (and associated eigenvalues) for our

Hamiltonian. It will also include determining if the eigenvectors that we find are orthogonal

to each other as we would expect. This is where the orthogonality of the blank ket and the

dressed electron will be useful. Also in the future we will be able to show completeness of

these eigenvectors. Completeness will be useful so that we can spectrally decompose our

Hamiltonian allowing for dynamics using our model.

3 Hamiltonian

We will define the Hamiltonian as

H = E0|〉〈|+
∫
dαE(α)|α〉〈α|+

∫
dαg(α)(|α〉〈|+ |〉〈α|), (1)

where E0 is the energy associated with a bare electron with momentum 0, E(α) is the energy

associated with an dressed electron with momentum α, and g(α) is the coupling between

electrons and photons.
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Note that

H|α〉 =

∫
dα′E(α′)|α′〉δ(α− α′) +

∫
dα′g(α′)|〉δ(α− α′)

= E(α)|α〉+ g(α)|〉

and

H|〉 = E0|〉〈|〉+

∫
dα′g(α′)|α〉〈|〉

= E0|〉+

∫
dαg(α)|α〉.

Notice that both |〉 and |α〉 change a fair amount when acted on by the Hamiltonian H.

|〉 becomes itself plus the integral of the coupling integrated over |α〉, and |α〉 becomes itself

plus the coupling multiplied by |〉. This means that H perturbs a state of one type into

another. Therefore in order to find eigenvectors we imagine they will start as some sort of

linear combination of |〉 and |α〉 already.

4 Eigenvectors

Recall equation (1) and note the following

E(−α) = E(α)

g(−α) = −g(α)

g(0) = 0

E0 < Emin := minα∈RE(α) = E(0).
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where E(α) is unbounded from above and monotonically increasing.

Note that when g = 0 we get

H|α〉 = E(α)|α〉

H|〉 = E0|〉.

By the symmetries of E(α) and g(α) we get

H|α〉g,+ := H(|α〉+ | − α〉)

= E(α)|α〉+ g(α)|〉+ E(−α)| − α〉+ g(−α)|〉

= E(α)|α〉+ g(α)|〉+ E(α)| − α〉+−g(α)|〉

= E(α)(|α〉+ | − α〉), α ≥ 0

and we have half of the “upper” eigenvectors are of this form. We try a simple form for the

other half and find that

H(|α〉 − | − α〉)

= E(α)|α〉+ g(α)|〉 − E(−α)| − α〉 − g(−α)|〉

= E(α)|α〉+ g(α)|〉 − E(α)| − α〉+ g(α)|〉

= E(α)(|α〉 − | − α〉) + 2g(α)|〉.

which are not eigenvectors so instead we try an eigenvector of the form

|α〉g,− = |α〉 − | − α〉+ c(α)|〉+

∫
dβfα(β)|β〉, α > 0.

If we try this form we get issues with fα(β) being singular near +α,−α because of the

symmetries noted above. A way to fix this is to have an eigenvector of the form
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|α〉g,− = |α〉 − | − α〉+ c(α)|〉+

∫
β>0

dβfα(β)(|β〉 − |α〉) +

∫
β>0

dβfα(β)(|β〉 − | − α〉)

= |α〉 − | − α〉+ c(α)|〉+

∫
β>0

dβfα(β)(|β〉 − θ+(β)|α〉 − θ−(β)| − α〉), α > 0

where

θ±(β) := θ(±β) :=


1 if ±β > 0

0 if ±β < 0

so that when fα(β) is singular, it is multiplied by the zero vector.

Now applying the Hamiltonian on |α〉g,− we get

H|α〉g,− = H(|α〉 − | − α〉) + c(α)H|〉+

∫
dβfα(H|β〉 − θ+(β)H|α〉 − θ−(β)H| − α〉)

= E(α)(|α〉 − | − α〉) + 2g(α)|〉+ c(α)(E0|〉+

∫
dβg(β)|β〉)

+

∫
dβfα(β)(E(β)|β〉+ g(β)|〉 − θ+(β)(E(α)|α〉+ g(α)|〉)− θ−(β)(E(α)| − α〉 − g(α)|〉))

= E(α)(|α〉 − | − α〉) + (2g(α)|〉 − E0c(α) +

∫
dβfα(β)(g(β)− (θ+(β)− θ−(β))g(α)))|〉

+

∫
dβ((fα(β)E(β) + g(β)c(α)|β〉 − E(α)fα(β)(θ+(β)|α〉+ θ−(β)| − α〉))

= Eg,−(α)|α〉g,−

= Eg,−(α)(|α〉 − | − α〉) + c(α)Eg,−(α)|〉+

∫
dβfα(β)(Eg,−(α)|β〉

−Eg,−(α)(θ+(β)|α〉+ θ−(β)| − α〉))

which holds iff
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Eg,−(α) = E(α)

E(α)c(α) = 2g(α)− E0c(α) +

∫
dβfα(β)(g(β)− (θ+(β)− θ−(β))g(α))

= 2g(α)− E0c(α) +

∫
dβfα(β)(g(β)− sign(β)g(α))

fα(β)E(β) + g(β)c(α) = fα(β)E(α)

or

c(α) = 2
g(α)

E(α)− E0 +
∫
dβ sign(β)g(β)

E(β)−E(α)
(sign(β)g(β)− sign(β)sign(β)g(α))

= 2
g(α)

E(α)− E0 +
∫
dβ g(|β|)

E(β)−E(α)
(g(|β|)− g(α))

= 2
g(α)

E(α)− E0 + 2
∫
β>0

dβg(β) g(β)−g(α)
E(β)−E(α)

and finally we get

|α〉g,− = |α〉 − | − α〉+ c(α)(|〉+

∫
dβfα(β)(|β〉 − θ+(β)|α〉 − θ−(β)| − α〉))

= |α〉 − | − α〉+ c(α)(|〉 −
∫
dβ

g(β)

E(β)− E(α)
(|β〉 − θ+(β)|α〉 − θ−(β)| − α〉))

= |α〉 − | − α〉+ c(α)(|〉 −
∫
β>0

dβ
g(β)

E(β)− E(α)
(|β〉 − |α〉)

−
∫
β<0

dβ
g(β)

E(β)− E(α)
(|β〉 − | − α〉))

= |α〉 − | − α〉+ c(α)(|〉 −
∫
β>0

dβ
g(β)

E(β)− E(α)
(|β〉 − |α〉)

6



−
∫
β>0

dβ
g(−β)

E(−β)− E(α)
(| − β〉 − | − α〉))

= |α〉 − | − α〉+ c(α)(|〉 −
∫
β>0

dβ
g(β)

E(β)− E(α)
(|β〉 − | − β〉 − |α〉+ | − α〉))

where

c(α) = 2
g(α)

E(α)− E0 + 2
∫
β>0

dβg(β) g(β)−g(α)
E(β)−E(α)

.

This gives us a well-defined state |α〉g,− that satisfies the eigenvalue-eigenvector equation,

with eigenvalue the same as for an unperturbed state |α〉. Note that if we have a state

|Ψ〉 =

∫
dαΨ(α)|α〉.

Then we can look at the inner product of it with |α〉g,−

(|Ψ〉, |α〉g,−) =

∫
dαΨ∗(α′)〈α′|(|α〉 − | − α〉+ c(α)(|〉

−
∫
β>0

dβ
g(β)

E(β)− E(α)
(|β〉 − | − β〉 − |α〉+ | − α〉)

=

∫
dαΨ∗(α′)(δ(α′ − α)− δ(α′ + α)− c(α)∫

β>0

dβ
g(β)

E(β)− E(α)
(δ(α′ − β)− δ(α′ + β)− (δ(α′ − α)− δ(α′ + α)))

= Ψ∗(α)−Ψ∗(−α)− c(α)

∫
β>0

dβ
g(β)

E(β)− E(α)
(Ψ∗(β)−Ψ∗(−β)−Ψ∗(α) + Ψ∗(−α))

= Ψ∗(α)−Ψ∗(−α)− c(α)

∫
β>0

dβg(β)
Ψ∗(β)−Ψ∗(α)

E(β)− E(α)
+ c(α)

∫
β>0

dβg(β)
Ψ∗(−β)−Ψ∗(−α)

E(−β)− E(−α)
.

This is well-defined for a fairly large class of functions Ψ(α) which means that |α〉g,− is

a well-defined linear functional for that class of functions.
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Another important aside to mention is the fact that the eigenvalues for these |α〉g,+

and |α〉g,− are both E(α). This is interesting because it is the energy associated with an

unperturbed state. Standard Perturbation Theory typically gives us an increase in the value

for the eigenvalues of the perturbed state for the “upper” eigenvalues. Our problem sees no

change in the energy values. For additional discussion on this see Van Hove [3].

Recall again equation (1). We now try to find an eigenvector corresponding to a perturbed

|〉. We assume it to be of the form

|〉g = |〉+ d(β)|β〉+

∫
dα′G(α′; β)|α′〉.

We then apply H onto |〉g

H|〉g = H|〉+ d(β)H|β〉+

∫
dα′G(α′; β)H|α′〉

= E0|〉+

∫
dαg(α)|α〉+

∫
dαE(α)|α〉δ(β − α)d(β) +

∫
dαg(α)d(β)|〉δ(β − α)

+

∫
dα

∫
dα′E(α)G(α′; β)|α〉δ(α′ − α) +

∫
dα

∫
dα′g(α)G(α′; β)|〉δ(α′ − α)

= E0|〉+

∫
dαg(α)|α〉+ E(β)d(β)|β〉+ g(β)d(β)|〉+

∫
E(α)G(α; β)|α〉+

∫
dαg(α)G(α; β)|〉.

Applying λ onto |〉g we get

λ|〉g = λE0|〉+ λd(β)|β〉+

∫
dα′λG(α′; β)|α′〉.

Which leads to the following system of equations for λ, d(β), G(α; β)
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λE0 = E0 + g(β)d(β) +

∫
dαg(α)G(α; β)

λd(β) = E(β)d(β)

λG(α; β) = g(α) + E(α)G(α; β).

and we choose d(β) = 0 because if we do not we end up with the same eigenvectors as before.

λ = E0 +

∫
dαg(α)G(α)

λG(α) = g(α) + E(α)G(α)

G(α) =
g(α)

λ− E(α)

λ = E0 −
∫
dα

g2(α)

E(α)− λ
.

Thus we find that |〉g is

|〉g = |〉+

∫
dα

g(α)

λ− E(α)
|α〉.

An important side note is whether λ is well-defined in the equation

λ = E0 −
∫
dα

g2(α)

E(α)− λ
.

Note that left-hand side will be a straight line on a graph (if plotted versus itself), while

on the right-hand side if we start λ down at −∞ and move up we start at close to E0 on

the right-hand side and push down closer and closer to the E0 we are looking for. However

when we start from −∞ and increase λ, then we have that it is increasing on the left-hand

side, so they must cross somewhere since both sides consist of smooth functions. Therefore
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there must be at least one root to this equation. We pick the smallest root to be our value

of λ and note that this smallest root is the classical one (i.e. one where we do not need to

use principal values).

5 Orthonormality of Eigenvectors

Now we would like to check if the eigenvectors we have found are an orthonormal set. We

first look at a nicer form of |α〉g,− by multiplying by the denominator of c(α) onto it.

(E(α)− E0 + 2

∫
β>0

dβg(β)
g(β)− g(α)

E(β)− E(α)
)|α〉g,−

= E(α)|α〉 − E(α)| − α〉 − E0|α〉+ E0| − α〉+ 2

∫
β>0

dβg(β)
g(β)− g(α)

E(β)− E(α)
(|α〉+ | − α〉)

+2g(α)( |〉 −
∫
β>0

dβ
g(β)

E(β)− E(α)
(|β〉 − | − β〉 − |α〉+ | − α〉))

= (E(α)− E0)(|α〉 − | − α〉) + 2g(α)|〉+ 2

∫
β>0

dβ
g2(β)

E(β)− E(α)
(|α〉 − | − α〉)

−2

∫
β>0

dβ
g(α)g(β)

E(β)− E(α)
(|β〉 − | − β〉)

= (E(α)− E0)(|α〉 − | − α〉) + 2g(α)|〉

+2

∫
β>0

dβg(β)
g(β)(|α〉 − | − α〉)− g(α)(|β〉 − | − β〉)

E(β)− E(α)
.

This form will be much easier to work with than the standard |α〉g,− and we will call it

k|α〉g,− for simplicity.

Now we check if |α〉g,− and |〉g are orthogonal.
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(E(α)− E0 + 2

∫
β>0

dβg(β)
g(β)− g(α)

E(β)− E(α)
) g,−〈α|〉g = 2g(α)

−(E(α)− E0)

∫
dα′

g(α′)

E(α′)− Eg
δ(α− α′) + (E(α)− E0)

∫
dα′

g(α′)

E(α′)− Eg
δ(α + α′)

+2

∫
β>0

dβ

∫
dα′

g(β)g(α)

E(β)− E(α)

g(α′)

E(α′)− Eg
δ(α′ − β)

−2

∫
β>0

dβ

∫
dα′

g(β)g(α)

E(β)− E(α)

g(α′)

E(α′)− Eg
δ(α′ + β)

−2

∫
β>0

dβ

∫
dα′

g2(β)

E(β)− E(α)

g(α′)

E(α′)− Eg
δ(α′ − α)

+2

∫
β>0

dβ

∫
dα′

g(β)

E(β)− E(α)

g(α′)

E(α′)− Eg
δ(α′ + α)

= 2g(α)− 2(E(α)− E0)
g(α)

E(α)− Eg
− 4

∫
β>0

dβ
g2(β)

E(β)− E(α)

g(α)

E(α)− Eg

+4

∫
β>0

dβ
g2(β)

E(β)− E(α)

g(α)

E(β)− Eg

= 2g(α)− 2(E(α)− E0)
g(α)

E(α)− Eg
+ 4

∫
β>0

dβ
g2(β)g(α)

E(β)− E(α)

(E(β)− Eg)− (E(α)− Eg)
(E(β)− Eg)(E(α)− Eg)

= 2g(α)− 2(E(α)− E0)
g(α)

E(α)− Eg
+ 4

∫
β>0

dβ
g2(β)g(α)

E(β)− E(α)

E(β)− E(α)

(E(β)− Eg)(E(α)− Eg)

= 2g(α)− 2(E(α)− E0)
g(α)

E(α)− Eg
+ 4

∫
β>0

dβ
g2(β)g(α)

(E(β)− Eg)(E(α)− Eg)

= 2g(α)− g(α)

E(α)− Eg
(2(E(α)− E0)− 4

∫
β>0

dβ
g2(β)

E(β)− Eg
)

= 2g(α)− g(α)

E(α)− Eg
(2(E(α)− E0) + 2(E0 − Eg))

= 2g(α)− g(α)

E(α)− Eg
2(E(α)− Eg) = 2g(α)− 2g(α) = 0.
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Thus we have that |α〉g,− and |〉g are orthogonal as desired.

Note that

g〈|〉g = 〈|〉+

∫
dα

∫
dα′

g(α)

(E(α)− Eg)
g(α′)

(E(α′)− Eg)
〈α|α′〉

= E0
2 +

∫
dα

∫
dα′

g(α)

(E(α)− Eg)
g(α′)

(E(α′)− Eg)
δ(α− α′)

= E0
2 +

∫
dα

g2(α)

(E(α)− Eg)2
.

Thus if we divide |〉g by

√
1 +

∫
dα

g2(α)

(E(α)− Eg)2

we get an orthonormal vector.

Now we check if |α〉g,− is orthogonal to another vector of its same type i.e. |γ〉g,−

g,−〈γ|α〉g,− = [〈γ| − 〈−γ|+ c(γ)( 〈| −
∫
ρ>0

dρ
g(ρ)

E(ρ)− E(γ)
(〈ρ| − 〈−ρ| − 〈γ|+ 〈−γ|))][|α〉

−| − α〉+ c(α)( |〉 −
∫
β>0

dβ
g(β)

E(β)− E(α)
(|β〉 − | − β〉 − |α〉+ | − α〉))]

= 2δ(γ − α)− 2δ(γ + α) + c(α)c(γ)

−c(γ)

∫
ρ>0

dρ
g(ρ)

E(ρ)− E(γ)
(2δ(ρ− α)− 2δ(ρ+ α)− 2δ(γ − α) + 2δ(γ + α))

−c(α)

∫
β>0

dβ
g(β)

E(β)− E(α)
(2δ(β − γ)− 2δ(β + γ)− 2δ(α− γ) + 2δ(γ + α))

+c(α)c(γ)

∫
β>0

dβ

∫
ρ>0

dρ
g(β)

E(β)− E(α)

g(ρ)

E(ρ)− E(γ)
(2δ(ρ− β)− 2δ(ρ+ β)

−2δ(β − γ) + 2δ(β + γ)− 2δ(ρ− α) + 2δ(ρ+ α) + 2δ(γ − α)− 2δ(γ + α))
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= 2δ(γ − α)− 2δ(γ + α) + c(α)c(γ)− 2c(γ)
g(α)

E(α)− E(γ)
+ 2c(γ)

g(−α)

E(−α)− E(γ)

+c(γ)

∫
ρ>0

dρ
g(ρ)

E(ρ)− E(γ)
(2δ(γ − α)− 2δ(γ − α))− 2c(α)

g(γ)

E(γ)− E(α)

+2c(α)
g(−γ)

E(−γ)− E(α)
+ c(α)

∫
β>0

dβ
g(β)

E(β)− E(α)
(2δ(γ − α)− 2δ(γ + α))

+2c(α)c(γ)

∫
β>0

dβ
g(β)

E(β)− E(α)

g(β)

E(β)− E(γ)
− 2c(α)c(γ)

∫
β>0

dβ
g(β)

E(β)− E(α)

g(−β)

E(−β)− E(γ)

−2c(α)c(γ)

∫
ρ>0

dρ
g(γ)

E(γ)− E(α)

g(ρ)

E(ρ)− E(γ)
+ 2c(α)c(γ)

∫
ρ>0

dρ
g(−γ)

E(−γ)− E(α)

g(ρ)

E(ρ)− E(γ)

−2c(α)c(γ)

∫
β>0

dβ
g(β)

E(β)− E(α)

g(α)

E(α)− E(γ)
+ 2c(α)c(γ)

∫
β>0

dβ
g(β)

E(β)− E(α)

g(−α)

E(−α)− E(γ)

+c(α)c(γ)

∫
β>0

dβ

∫
ρ>0

dρ
g(β)

E(β)− E(α)

g(ρ)

E(ρ)− E(γ)
(2δ(γ − α)− 2δ(γ + α))

= [2δ(γ − α)− 2δ(γ + α)]

[
1 + c(α)

∫
β>0

dβ
g(β)

E(β)− E(α)
+ c(γ)

∫
ρ>0

dρ
g(ρ)

E(ρ)− E(γ)

+c(α)c(γ)

∫
β>0

dβ

∫
ρ>0

dρ
g(β)

E(β)− E(α)

g(ρ)

E(ρ)− E(γ)

]

+c(α)c(γ)− 4c(γ)
g(α)

E(α)− E(γ)
− 4c(α)

g(γ)

E(γ)− E(α)

+4c(α)c(γ)

∫
β>0

dβ
g(β)

E(β)− E(α)

g(β)

E(β)− E(γ)
− 4c(α)c(γ)

∫
ρ>0

dρ
g(γ)

E(γ)− E(α)

g(ρ)

E(ρ)− E(γ)

−4c(α)c(γ)

∫
β>0

dβ
g(β)

E(β)− E(α)

g(α)

E(α)− E(γ)

= [2δ(γ − α)− 2δ(γ + α)]

[
1 + c(α)

∫
β>0

dβ
g(β)

E(β)− E(α)
+ c(γ)

∫
ρ>0

dρ
g(ρ)

E(ρ)− E(γ)
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+c(α)c(γ)

∫
β>0

dβ

∫
ρ>0

dρ
g(β)

E(β)− E(α)

g(ρ)

E(ρ)− E(γ)

]
+ c(α)c(γ) + 4

c(γ)g(α)− c(α)g(γ)

E(γ)− E(α)

+4c(α)c(γ)

∫
β>0

dβg(β)
g(β)(E(γ)− E(α))− g(γ)(E(β)− E(α)) + g(α)(E(β)− E(γ))

(E(β)− E(α))(E(β)− E(γ))(E(γ)− E(α))

= 2δ(γ − α)

[
(E(α)− E0)(E(γ)− E0) + 2

∫
β>0

dβ
g(β)

E(β)− E(α)
(E(γ)− E0)g(β)

+2

∫
ρ>0

dρ
g(ρ)

E(ρ)− E(γ)
(E(α)− E0)g(ρ) + 4

∫
β>0

dβ

∫
ρ>0

dρ
g(β)

E(β)− E(α)

g(ρ)

E(ρ)− E(γ)

]

This is orthogonal when γ 6= α as we would expect (assuming α > 0 and γ > 0).

6 Conclusion

We have found that the eigenvectors do properly exist and correlate to eigenvalues that cor-

respond to the unperturbed states. We have also found that the eigenvectors are orthogonal

to each other as we would expect. This is very important for a few reasons. The first being

that since they are orthogonal that means they are independent which is another check that

they are eigenvectors since all eigenvectors corresponding to distinct eigenvalues are inde-

pendent. Another reason that it is important that these eigenvectors are orthogonal is for

what we want to look at in the future. We want to be able to show completeness of these

eigenvectors.

The reason completeness of the eigenvectors is important is because when we have com-

pleteness that means we can spectrally decompose our Hamiltonian into its eigenvalues and

eigenvectors. Decomposing our Hamiltonian allows for functions to act on our Hamiltonian.

This is essential because dynamics only works when we are able to apply an exponential

function onto our Hamiltonian and dynamics allows us to do very useful calculations using

our model.

14



Bibliography

[1] Claude Cohen-Tannoudji, Bernard Diu, and Frank Laloe. Quantum Mechanics. Wiley-
VCH, 1992.

[2] Scott Glasgow, Dallas Smith, Luke Pritchett, John Gardner, and Michael J. Ware. Space-
time-resolved quantum electrodynamics: A (1+1)-dimensional model. Physical Review
A, 93:062106, 2016.

[3] Leon Van Hove. Energy corrections and persistent perturbation effects in continuous
spectra. Physica, 22:343 to 354, 1956.

[4] Wikipedia. Quantum field theory, 2016.

15


	Brigham Young University
	BYU ScholarsArchive
	2016-12-01

	Some Spectral Properties of a Quantum Field Theoretic Hamiltonian
	Devin Burnell McGhie
	BYU ScholarsArchive Citation


	Title Page
	Abstract
	Contents
	1 Introduction
	2 Bra-ket Notation and Creation/Annihilation
	3 Hamiltonian
	4 Eigenvectors
	5 Orthonormality of Eigenvectors
	6 Conclusion

	Bibliography

