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1. Introduction

In this paper, we consider a VEISV network worm attack model, which is appropriate for measuring the effects of security
countermeasures on worm propagation that was investigated by Toutonji et al. in [1]. Their model is formulated as follows:

dV— —fEV—y,V + ¢S,

&=FEV— (o +y)E,

d— oF — (y+0),

&= UN + Y,V + yE + 91 — ¢S,
where V(t),E(t),I(t) and S(t) denote the number of vulnerable hosts, exposed hosts, infectious hosts and secured hosts at
time t, respectively. The parameter B is the contact rate. o, y/;,,,7 and ¢ are the state transition rates from E to I,V to
S,Eto S,Ito S and S to V, respectively. 0 represents the dysfunctional rate which is a constant. u is the replacement rate.

N is the total number of hosts, which is fixed and defined by N = V(t) + E(t) + I(t) + S(t). f = % is the force of incident.
Due to the physical restrictions the states of the system must be non-negative and it is easy to see that

F={(V,ELS)eR :V4+E+I+S=N}

(1)

is positively invariant with respect to system (1). Thus, we focus on the reduced system
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G =ON—FEV — (y; + )V — ¢E - ¢l
G =FEV—(a+)E (2)
4= oF — (y+0)l.
By calculation, we conclude that the reproduction rate of system (2) is
op
(Y1 + D) (o + )’

System (2) has two equilibria: the worm-free equilibrium

Ro =

; N
EQWf = (VylfvE{"rl() = (!/ll(bT(bQO)

and the worm-epidemic equilibrium

(4N o= (b + D)) y 2 )
p 7aﬁ(a+¢2+¢(1+ﬁ>) 07

Toutonji et al. [1] established the following results:

EQwe = (V;E;I;) = (

Theorem 1.1. If Ry < 1, the worm-free equilibrium EQ,,; of system (2) is globally asymptotically stable.
Theorem 1.2. If Ry > 1, the worm-epidemic equilibrium EQ,,. of system (2) is locally asymptotically stable.

Remark 1.1. We point out that the Jacobian matrix at EQ,, is not correct in [1]. We correct it as follows:

~(fE+y1+¢) —(a+iy+¢) ¢
](EQwe) = fE; 0 0
0 o —(y+0)
Thus, the characteristic polynomial of J(EQ,,.) is
h(}) = a3/l3 + Gz}vz + a1 A+ ao,
where
asz = 1,
a=fE5+y,+¢+7+0,
a = (fEy + +¢)(7 +0) +FEy (00 + 3 + ),
ao = fE[(0t -+ + ¢) (7 +0) + o).
It is obvious that ap > 0,a; > 0,a, > 0,az > 0 and a,a, > apas hold. Based on the Routh-Hurwitz theorem, the worm-epi-
demic equilibrium EQ,,, of system (2) is locally asymptotically stable when Ro > 1.
The main purpose of this paper is to study the global stability of the worm-epidemic equilibrium EQ,, for system (2)

when Ry > 1. We use the Li-Muldowney geometric approach (see [2]), which was adopted by many researchers (see, for
example, [3-13]), to obtain our main result.

2. Global stability of worm-epidemic equilibrium

In this section, we study the global stability of the worm-epidemic equilibrium EQ,, for system (2) by using the
Li-Muldowney geometric approach.

Similar to the proof of Theorem 3.2 in [14], system (2) is uniformly persistent, which implies that there exists a constant
¢ > 0 such that any solution (V(t),E(t),I(t)) of system (2) with (V(0),E(0),1(0)) € intI" satisfies

, lirtninfE(t), lirtninfl(t)}>c.

min{lirtn infV(t)

Then, the boundedness of solutions and the uniform persistence of system (2), imply the existence of a compact absorbing
set K c T (see [15]).
Now, we briefly outline the Li-Muldowney geometric approach. Consider the autonomous dynamical system:

X(t) = f(x), 3)
where f : D — R".D € R" open set and f € C' (D). Assume the following hypotheses hold:
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(H;y) System (3) has a unique equilibrium X in D;
(H2) There exists a compact absorbing set K c D.

Let P(x) be a <g> X <g> matrix-valued function that is C' on D. Assume that P~'(x) exists and is continuous for x € K.

Set
B=P;P ' + PP,
where the matrix P; is

api\ "
@iy = (Ge) 00 = Iy £ 0

and ! is the second additive compound matrix of the Jacobian matrix J, i.e., ] = Z,
Define a quantity g, as

t
@ = limsupsup ¢ | u(Bx(s, %0)ds

t—oo  xpeK 0
where u(B) is the Lozinskil measure with respect to a vector norm | - | in R™, m = <g> and
. |I+hBl -1
B)=lim——F—.
p(B) = lim ——

The following theorem is proved in [2].
Theorem 2.1. Assume that D is simply connected and that the assumptions (H;) and (H,) hold, then the unique equilibrium x of
system (3) is globally asymptotically stable in D if g, < 0.

Next, we discuss the global stability of the worm-epidemic equilibrium EQ,,, for system (2).

Theorem 2.2. When Ry > 1 and one of the following condition is satisfied:

(D) g >o+y,and d+y+0 >0y
(i) Y1 <oty and g+ + 7 + 0 > 200+,

the worm-epidemic equilibrium EQ,,. of system (2) is globally asymptotically stable.

Proof. The Jacobian matrix of system (2) is

~SfE-(Wy+¢) —SfV-¢ —¢
J= fE fV = (a+ys) 0
0 o —(y+0)
and its second additive compound matrix is
fV —fE — M 0 ¢
JP = x —fE-n, —fV—¢ |,
0 fE fV—n;s

where
M=oty Yo+, M=y, +d+7+0 and ny=o+7+y;+0.
Choose the function P(x) = P(V,E,I) = diag(¥,%,%), then

and
fV—fE-m 0 ¢
PP = o ~fE-n, —fV-¢
0 fE fV—n3

The matrix B = P;P"! + PJ2P"" can be written as
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Bi1 B
B ( 1 12)7
Byi By
where

V E
BllZV—E-i-fV—fE—nl, Bz = (0,4), 321:(0C70)T,

<I<-

~EfE-n,  —fV-¢
Bzz = v i .
fE V—f+fV—ns

Consider the following norm in R3:

|(u, v, w)| = max{[ul, [v] + W]},
where (u, »,w) is the vector in ®®. Let u(B) be the Lozinskil measure with respect to this norm. Then, from [16], we have

JMB) < sup{g;, &>},
where

8= Uy (Bi) +|By] for i=1,2 and i#],

where |By;|, |B,1| are matrix norms with respect to the I; vector norm, and y, denotes the Lozinskil measure with respect to [
norm. Moreover, we obtain

vV E
Ml(Bn):V—E‘FfV—fE—nh [Bi2| = ¢, |Bai| =2,

and

E .
— - MIn{Yy @+ 7+ 0,047+ ¢+ + 0}

<I<

V E Vv E
u](Bzz):max{VEnz, VE¢n3}:

From system (2), we have

E
E:fV—(“+l//2)~
Thus, we get
vV E v v
gl=VfE+fofEfn1+¢>=‘7*fEﬂ//1<Vf¢17
v E .
gz:V—E—mm{!/ﬁ+¢+V+97°‘+V+¢+¢2+9}+“
v .
=y fV-min{yy + ¢+ 7+ 0,047+ ¢+ +0h+ 200+

74 .
<‘77(m1n{¢1+¢+y+0,oc+y+¢+¢2+6}72a7l//2).
Case 1: If y; > a+, and ¢ + y + 0 > o, then we have
min{y; +¢+y+0,0+y+d+y, +0} 20—y, =p+7y+0—0>0.
Case 2: If yy <o+, and ¥q + ¢ + 7+ 0 > 200 + y,, then we get
min{y; + ¢+ 7 +0,0+7+ ¢+ + 0} =200 =y =y + o+ 7 +0 - 20—, > 0.
Combining these two cases, we let

n=min{yy, Y +¢+y+0-20-y,;, y+o+0-0}

Therefore,

1%
W(B) <=1
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We have

1/t 1 (v 1, V()
?/O/J(B)dsg?/o v ds_?lnm—n,

which implies that g, < —% < 0. Then from Theorem 2.1, the worm-epidemic equilibrium EQ,,, is globally asymptotically
stable. This completes the proof. O

3. Conclusions

The purpose of this paper is to investigate the global stability of the worm-epidemic equilibrium for a VEISV network
worm attack model which proposed by Toutonji et al. in [1]. By using the Li-Muldowney geometric approach, we establish
that the worm-epidemic equilibrium EQ,,. is globally asymptotically stable under some conditions.
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