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A new approach, namely global residue harmonic balance method, was used to deal with
large-amplitude oscillations of a nonlinear system with inertia and static nonlinearities.
Unlike other harmonic balance methods, all the former residual errors are introduced in
the present approximation to improve the accuracy. Comparison of the result obtained
using this approach with the exact one and existing results reveals that the high accuracy,
simplicity and efficiency of the proposed procedure. The methods are valid for small as well
as large amplitudes of oscillation, and can be easily extended to other strongly nonlinear
oscillators.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The problems related to large-amplitude oscillations of non-linear engineering structures have received considerable
attention in the past years, where all the references cited in this section are only a small sample of the available literature
on this topic [1–13]. There are several methods for approximating solutions for nonlinear problems with large parameters,
such as harmonic based methods [5,6,13], coupled homotopy–variational formulation [7], variational approach [7,8], ampli-
tude–frequency formulation [7,9], optimal homotopy asymptotic method [10,11] have been used to find approximate
solutions to nonlinear problems.

In this paper, we put forward a novel approximate method, namely the global residue harmonic balance method, to deter-
mine the periodic solutions of free vibrations of cantilever beam. This oscillator is a conservative non-linear large-amplitude
oscillatory system having inertia and static non-linearities. To obtain higher-order analytical approximations, all the residual
errors are considered in the process of every order approximation. Excellent agreement of the approximate frequencies with
the exact ones has been demonstrated and discussed. As can be seen, the results obtained in this paper revel that the method
is very effective and convenient for conservative nonlinear oscillators.

2. Basic idea of global residue harmonic balance approach

For simplicity, we consider systems governed by equations of the form
Uð€u; _u;uÞ ¼ 0; uð0Þ ¼ A; _uð0Þ ¼ 0; ð1Þ
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where the over-dot denotes differentiation with respect to time t and A is the amplitude of the oscillations. For convenience,
we assume Eq. (1) is a conservative system (i.e. Uð�€u;� _u;�uÞ ¼ �Uð€u; _u;uÞ).

Eq. (1) describes a system oscillating with an unknown angular frequency x. To determine the unknown frequency, we
introduce a new independent variable s ¼ xt. Then Eq. (1) becomes
Uðx2u00;xu0;uÞ ¼ 0; uð0Þ ¼ A; u0ð0Þ ¼ 0; ð2Þ
where prime denotes the derivative with respect to s.
Considering the periodic solution does exist, it may be better to approximate the solution uðsÞ by such a set of base

functions
fcosðð2k� 1ÞsÞj k ¼ 1;2;3; . . .g: ð3Þ
According to Eq. (3), the initial approximate periodic solution satisfying initial conditions in Eq. (2) is
uð0ÞðsÞ ¼ AcosðsÞ; s ¼ xð0Þt; ð4Þ
where xð0Þ is an unknown constant to be determined later.
To improve the accuracy, we will use the residual of the initial approximation. Substituting Eq. (4) into Eq. (2), we obtain

the initial residual
R0ðsÞ ¼ U x2
ð0Þu

00
ð0Þ;xð0Þu

0
ð0Þ;uð0Þ

� �
: ð5Þ
If R0ðsÞ ¼ 0, then u0ðsÞ happens to be the exact solution. Generally, such case will not arise for nonlinear problems.
Eq. (5) should not contain secular terms of cosðsÞ. Equating its coefficients to zero, we can determine the unknown con-

stant xð0Þ and taking it as the approximation x0. Then, the zero-order approximation u0 is also obtained of the form
u0ðsÞ ¼ AcosðsÞ; s ¼ x0t; ð6Þ
This yields the initial residual
R0ðsÞ ¼ U x2
0u000;x0u00;u0

� �
: ð7Þ
In the following, we consider an iterative method by expanding uðsÞ in a series with respect to the embedding parameter
p of the form
uðsÞ ¼ uðk�1ÞðsÞ þ pukðsÞ; x2 ¼ x2
ðk�1Þ þ pxk; k ¼ 1;2;3; . . . ; ð8Þ
where
uðk�1ÞðsÞ ¼ uðk�2ÞðsÞ þ uk�1ðsÞ; x2
ðk�1Þ ¼ x2

ðk�2Þ þxk�1;

ukðsÞ ¼
Xk

i¼1

a2iþ1;k cosðsÞ � cosðð2iþ 1ÞsÞð Þ; k ¼ 2;3; . . . ;
ð9Þ
where p is the order parameter with values in the interval [0,1], and the kth-order approximate solutions of uðsÞ and x can
be obtained by taking p ¼ 1.

Given the zero-order approximation equation (6) and the residual equation (7), then the first-order approximate periodic
solution and frequency can be written as
uðsÞ ¼ u0ðsÞ þ pu1ðsÞ; x2 ¼ x2
0 þ px1: ð10Þ
Substituting Eq. (6) into Eq. (2) and collecting the coefficients of p, we can get
F1ðs;x1;u1ðsÞÞ , x1
@

@ðx2Þ þ u001
@

@u00
þ u01

@

@u0
þ u1

@

@u

� �
U0; ð11Þ
where @U0=@u denotes that @U=@u is to be evaluated at the zero-order approximation after differentiation etc. It is noted that
Eq. (11) is linear with respect to x1 and u1.

Considering the solution has the form of Eq. (3), we choose
u1ðsÞ ¼ a3;1 cosðsÞ � cosð3sÞð Þ: ð12Þ
Substituting Eq. (12) into Eq. (11), we consider the following equation
F1ðs;x1;u1ðsÞÞ þ R0ðsÞ ¼ 0: ð13Þ
In this way, all the residual errors of the zero-order approximation R0ðsÞ are introduced into Eq. (13) which would improve
the accuracy.

The left hand side of Eq. (13) should not contain the terms cosðsÞ and cosð3sÞ based on Galerkin technique. Letting their
coefficients be zeros, we obtain two linear equations containing two unknowns x1 and a3;1. Then the two unknown
constants can be solved easily. Thus, we get the first-order approximation
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uð1ÞðsÞ ¼ u0ðsÞ þ u1ðsÞ; x2
ð1Þ ¼ x2

0 þx1; s ¼ xð1Þt; ð14Þ
where u0ðsÞ and u1ðsÞ are given by Eqs. (6) and (12) respectively.
For high order approximation can be obtained by the iterate method in Eqs. (8) and (9).
To determine the unknown parameters a2iþ1;k ði ¼ 2; . . . ; kÞ and xk, substituting Eq. (8) into Eq. (2) and collecting the coef-

ficients of the p, one yields
Fkðs;xk;ukðsÞÞ , xk
@

@ðx2Þ þ u00k
@

@u00
þ u0k

@

@u0
þ uk

@

@u

� �
Uk�1: ð15Þ
Eq. (15) is linear with respect to xk and uk.
Substituting the uðk�1ÞðsÞ and xðk�1Þ of Eq. (9) into Eq. (2), one yields the following residual
Rk�1ðsÞ ¼ U x2
ðk�1Þu

00
ðk�1Þ;xðk�1Þu0ðk�1Þ;uðk�1Þ

� �
: ð16Þ
Considering the following equation
Fkðs;xk;ukðsÞÞ þ Rk�1ðsÞ ¼ 0: ð17Þ
Avoiding the presence of the secular terms cosðsÞ; cosð3sÞ; . . . ; and cosðð2kþ 1ÞsÞ, there are the same number of linear
equations for the same number of unknowns a3;k; a5;k; . . . ; a2kþ1;k and xk.

Then, the kth-order approximate periodic solution and frequency can be obtained in the form
uðkÞðsÞ ¼ uðk�1ÞðsÞ þ ukðsÞ; x2
ðkÞ ¼ x2

ðk�1Þ þxk; ð18Þ
where uðk�1ÞðsÞ and ukðsÞ are given by Eq. (9).

3. Solution method

We consider free vibrations of a slender inextensible cantilever beam carrying an intermediate lumped mass with a rotary
inertia, described by the nonlinear equation
€uþ uþ au2€uþ au _u2 þ bu3 ¼ 0; uð0Þ ¼ A; _uð0Þ ¼ 0: ð19Þ
The third and fourth terms in Eq. (19) represent inertia-type cubic nonlinearity arising from the inextensibility assump-
tion. The last term is a static-type nonlinearity associated with the potential energy stored in bending.

With a new independent variable s ¼ xt, Eq. (19) becomes
x2 ð1þ au2Þu00 þ auu02
� 	

þ uþ bu3 ¼ 0 ð20Þ
and
uð0Þ ¼ A; u0ð0Þ ¼ 0; ð21Þ
where the prime denotes differentiation with respect to s.

3.1. Zeroth-order approximation

Following Eq. (6), the initial approximation with initial conditions Eq. (21) is
u0ðsÞ ¼ AcosðsÞ: ð22Þ
Substituting Eq. (22) into Eq. (20), yields
�xþ 1� 1
2
axA2 þ 3

4
bA2

� �
AcosðsÞ þ 1

4
b� 1

2
ax

� �
A3cosð3sÞ ¼ 0: ð23Þ
Equating the coefficient of cosðsÞ to zero, we obtain the zero-order analytical approximate frequency x0:
x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� 4þ 3bA2

2þ aA2

s
ð24Þ
agreeing with Refs. [6,7].
At this time, we have the zeroth-order analytical approximate periodic solution in the form Eq. (22), where s ¼ x0t.
Taking u0ðsÞ and x0 into the left-hand side of Eq. (19), we have the residual error R0ðsÞ.
R0ðsÞ ¼
�2aþ b� aA2b

4þ 2aA2

 !
A3cosð3sÞ: ð25Þ
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3.2. First-order approximation

To obtain the first-order analytical approximation, substituting Eqs. (10) and (12) into Eq. (20), one gets all the coeffi-
cients of p
F1ðs;x1;u1Þ ,
F11cosðsÞ þ F13cosð3sÞ þ F15cosð5sÞ

4þ 2aA2 ; ð26Þ
where
F11 ¼ 2aA2a3;1 � a2A5x1 þ 3aA4a3;1b� 4x1A3a� 4x1Aþ 3A2a3;1b;

F13 ¼ �2x1A3a� a2A5x1 þ 12aA2a3;1 þ 24A2a3;1bþ 9aA4a3;1bþ 32a3;1;

F15 ¼ 18aA2a3;1 þ 12aA4a3;1b� 3A2a3;1b:

ð27Þ
According to Eq. (13), yields
F1ðs;x1;u1Þ þ R0ðsÞ ¼ 0: ð28Þ
Equating the coefficients of cosðsÞ; cosð3sÞ to zero in Eq. (28), one can obtain
�4x1A� a2A5x1 þ 3a3;1bA2 � 4x1A3aþ 2aA2a3;1 þ 3aA4a3;1b

4þ 2aA2 ¼ 0;

1

4þ 2aA2 �2aA3 � 2x1A3a� a2A5x1 þ 24a3;1bA2 þ 12x1A2a3;1 þ 9aA4a3;1bþ bA3 � A5abþ 32a3;1

� �
¼ 0:

ð29Þ
From Eq. (29), we obtain the constants a3;1 and x1 as below
a3;1 ¼ A3 4aþ aA2bþ a2A4bþ 2a2A2 � 2b
C1

;

x1 ¼ A4 ð2aþ aA2b� bÞð3aA2bþ 3bþ 2aÞ
ð2þ aA2ÞC1

;

ð30Þ
where C1 ¼ 48bA2 þ 56aA2 þ 39aA4bþ 64þ 10A4a2 þ 6a2A6b.
Then, we obtain the first-order approximate frequency and periodic solution from Eq. 14
uð1ÞðsÞ ¼ AcosðsÞ þ A3ð4aþ aA2bþ a2A4bþ 2a2A2 � 2bÞ
C1

ðcosðsÞ � cosð3sÞÞ;

xð1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� 4þ 3bA2

2þ aA2 þ
A4ð2aþ aA2b� bÞð3aA2bþ 3bþ 2aÞ

ð2þ aA2ÞC1

s
;

ð31Þ
where s ¼ xð1Þt; C1 ¼ 48bA2 þ 56aA2 þ 39aA4bþ 64þ 10A4a2 þ 6a2A6b.
The further higher-order approximation can be obtained by the same technique.

4. Comparison and discussion

In order to illustrate the applicability, accuracy and effectiveness of the proposed approach, we compare the analytical
approximate frequency and periodic solution with the exact ones.

The exact frequency is given by [6]
xe ¼
p

2
R p=2

0 ½2ð1þ aA2cosðhÞ2Þ=ð2þ bA2ð1þ cosðhÞ2ÞÞ�
1
=2dh

: ð32Þ
Wu et al. [6] using the harmonic balance method with linearization obtained
xW1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40þ ð18aþ 31bÞA2 þ 15abA4 þ

ffiffiffiffi
D
p

72þ 68aA2 þ 14a2A4

s
: ð33Þ

uW1 ¼ ½Aþ x1ðAÞ�cosðsÞ � x1ðAÞcosð3sÞ; s ¼ xW1t; ð34Þ
where D ¼ 1024þ 896aþ 1472bð ÞA2 þ 212a2bþ 1364abþ 421b2� �
A4 þ 344a2bþ 420ab2� �

A6 þ 120a2b2A8.
x1ðAÞ ¼ �
ð4Aþ 3bA3Þ � ð4Aþ 2aA3Þx2

W1

�4x2
W1 þ 4þ 6bA2 : ð35Þ
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Fig. 1. Comparison between analytical approximate solutions and exact solution for A ¼ 1.
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Fig. 2. Comparison between analytical approximate solutions and exact solution for A ¼ 10.
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Fig. 3. Comparison between analytical approximate solutions and exact solution for A ¼ 1000.
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For a ¼ 1 and b ¼ 1, the periodic solution achieved by numerical integration of Eq. (19) using a fourth-order Runge–Kutta
scheme and the approximate periodic solution given by Eq. (31) are plotted in Figs. 1–3. These figures represent, respectively,
three different amplitudes A ¼ 1;10 and 1000. They show that the approximate periodic solution provides relatively good
approximation comparing to the exact periodic solution for small as well as for large amplitude of oscillation.

Furthermore, for any a > 0 and b > 0,
lim
A!1

xe ¼
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb=aÞ

p
4
R p=2

0 ðcost=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2t
p

Þdt
: ð36Þ
Wu et al. [6] obtained
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lim
A!1

xW1

xe
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
105þ 14

ffiffiffiffiffiffi
30
pp

7p

Z p=2

0

costffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2t
p dt � 0:96278: ð37Þ
Akbarzade and Khan [7] using the coupled homotopy–variational formulation obtained
lim
A!1

xCHV2

xe
� 0:9993: ð38Þ
Furthermore, we have the following equation
lim
A!1

xð1Þ
xe
¼ 4

p

Z p=2

0

costffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cost2

p dt ¼ 1: ð39Þ
It is important to point out that the exact behavior of the approximate frequency when A tends to infinity is not obtained
when other approximate methods as used including the energy balance method [5], the method of harmonic balance with
linearization [6], the coupled homotopy–variational formulation [7], the He’s amplitude–frequency formulation [8] and He’s
variational approach method [9].

5. Conclusions

In this paper, a novel analytical technique, namely the global residue harmonic balance method, has been presented to
determine accurate analytical approximate periodic solutions of a conservative system having inertia and static non-linear-
ities. Having taken all the residual errors into the process of solving the approximation, the new method has great difference
with the residue harmonic balance approach. Excellent agreement between approximate periods and the exact one has been
demonstrated and discussed. Finally, we can see that the method considered here is very simple in its principle and we think
that the method has great potential and can be applied to other strongly nonlinear oscillators.
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