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1. Introduction

This paper is devoted to the study of a compact difference method for the partial integro-differential equation
t
u[:,uuxx+/ (t—s) uuds, 0<x<1,t>0, (1)
0

with g > 0 and the boundary conditions
u@©,t)=u(1,t)=0, t=0, 2)
and the initial condition

ux,0) =up(x), 0<x<1. (3)

Equation similar to (1) can be found in the modeling of physical phenomena involving heat flow in materials with mem-
ory [1,2], phenomena associated with linear viscoelastic mechanics [3,4]. The integral term in (1) represents the viscosity
part of the equation and ¢ > 0 in (1) is a Newtonian contribution to the viscosity.
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In the twentieth century decade, many considerable works on theoretical analysis [5-8,13-15] have been carried on. Yan
and Fairweather [5] presented orthogonal spline collocation method for some partial integro-differential equations with
smooth integral kernels. Xu [14,15] considered backward Euler method in time direction for a parabolic integro-differential
equation and derived the stability and convergence properties of the time discretizations. Lopez-Marcos [10] studied the
nonlinear partial integro-differential equation which is similar to problem (1)-(3), he used one order full discrete difference
scheme and used a convolution quadrature to treat the integral term. A compact difference scheme is presented by Chen and
Xu [8] for an evolution equation with a weakly singular kernel with the truncation error of order 3/2 in time and order 4
in space, the convergence and stability were obtained. The Crank-Nicolson scheme in time direction for solving problem
(1)-(3) are provided by Tang [6], and the O(k3/2 + hz) order conditional convergence is proved. It is well known that the
Crank-Nicolson scheme has O(k?) order accuracy, but due to the lack of smoothness of the integral kernel, the overall numer-
ical procedure in [6] does not achieve second-order convergence. In this article, we give a compact difference scheme for
problem (1)-(3) and proved that the compact difference scheme is stable and convergent in L, norm. The convergence order
is O(k>"? + h*).

Throughout the paper, we assume that u, in (3) is such that the problem (1)-(3) has a unique solution in [0, 1] x [0, T].
Furthermore, we suppose that u and ugyy are continuous for 0 < x < 1 and 0 < t < T, and we assume that there exists a posi-
tive constant Cy such that

U (%, O] < Cot 2, e (%, )] < Cot 2, [theee (%, 8)] < Cot /2. (4)

The outline of the paper is organized as follows: a compact finite difference scheme is introduced in Section 2. The anal-
ysis of stability and convergence of the scheme is given in Section 3. The numerical results are presented in Section 4. This
paper ends with a conclusion.

2. The derivation of the compact difference scheme

We introduce a grid wy, = {x|x; = jh,j =0,1,...,]J}, t, =nk,n =0, 1, ...,Nwithh=1/],k=1/Nand], N are positive inte-
gers. Moreover, we let ty 1, = (n+ 1/2)k, u} = u(x}, th), 0<j<J,0<n<N.

We first introduce the following product trapezoidal method to approx1mate I(f,t) f (t — s)"2f(s)ds which is intro-
duced by Tang [6]:

I(f.tn) = Auf(to) + > _Buf (tap) + O(K'?), 1T<n<N, (5)
p=0
where
tat+1 t t 5}
Ar=2 tl/z—l/ 0'2do)| /30:3/ 01/2d0+4\—mﬁ, B -2 / ()‘/Zd()—/ 0'2do —ﬂp’,
n k Ji, k Jo 3 kL, t
2 i1 tp
=% U e‘/zdaf/ 9”%19} p=2. (6)
Jtp Jty 4

where $ is a nonnegative constant and is dependent of k and h. i.e., 8 > 0 and 8 = O(1).
The following lemma will be used in the derivation of the compact difference scheme.

Lemma 2.1 ([9,11,12]). Suppose g(x) € C®[x;_1,X;.1]. Then

4

1 1 h
15 8" (i) + 108" (i) + 8" (xi:1)] — W [g(xi 1) — 28(X:) + 8(Xi11)] = mg@ W), Wi e (Xi1,Xis1). (7)
Lemma 2.2 [6]. Let I(f,t) = [; (t —5)""/*f(s)ds, then
1 2,32
I(f,fn+1/2):i[l(‘ﬂtn)—i—l(f,tmr])}-‘—o(k tn ), nx=1. (8)
Let
Vit = 200, ©)

ot
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then (1) becomes
V = plly + (U, £). (10)

Considering (10) at point (x;,t), we have

ou ou
V(xj7t)::uﬁ(xjv )+I<a z(xjvt)7t>' (11)
For g = (80,81, - - -, &), introduce the operator </ as follows:
gOs ]: 0
Ag =1 1581 +10g +g.1), 1<j<]—-1, (12)
g i=J
Acting </ on the both sides of (11), we obtain
& u ou
AV (xj,t) = aiua 5 (X, 1) + ;zfl(a 3 (x,,t),t). (13)
According to Lemma 2.1, we have
Pu(x;, 1
TUGD 12 [101.0) — 2u06.0) + w0, )] + O(h'). (14)

Using Taylor expansion, it follows from 9 that

0 n
S (1) = o + R, (Ry)] < 06, (15)

then substituting (8), (14), and (15) into (13), we obtain
n+1
ASU" = PSLUr + (A Sud + Zﬁpazu;*" + A 02U + Zﬁpaﬁu;“") + (Ro);, (16)
p=0

and there exists a constant C; such that
Rol! < C1 (K + h* + K2 + K*1,%). (17)
Noticing the initial and boundary condition (2) and (3), we have

uﬁ:u]”:O, 0<n<N. (18)

W =uolx), 1<j<J-1. (19)

Omitting the small term (Ro) in (16) and replacing u with U}, and constructing the compact difference scheme as follows:

AU} = ,u(S,ZCU}' + Enaﬁuf + %ioﬁp (5§UJ’7*P + (55[]]’,”1*1))7 A, = % (20)
P
Furthermore
Up=U'=0, n=0,1,...,N. (21)
U) =uo(x;), j=0,1,...J. (22)

3. Analysis of the compact difference scheme

In this section we will show that the proposed method is convergent with the convergence order O(k3 24 h4). However,
Tang [6] analysed a Crank-Nicolson and finite difference method for the time and space discretizations. He used the product
trapezoidal method to deal the integral term, which only obtained O(k*’* + h*) order convergence.

Let

Vi = {U|U = (Uo,Us,..., U1, Up), Up = U =0}, (23)

be the space of grid functions.
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For any grid functions U, W € V}, denote

n_ 1 n 1
S = LU U, o= (U~ Uy,
1 R L § o
5£Uj:h_2(uj+l — 20+ U, U =

J-1
HU”x:]L\T}g)f]‘UIL <U-,W>=h];U1Wj, |UJ* = (U, U).

Before we prove the stability and convergence, we give the following lemmas.
Lemma 3.1 [8, Lemma 3.1].

(1) Let U,W € V;, we have
J-1
(GRUW) = —h)_(5:U)(5:W))

j=0

(2) Let U™ U" € Vy, we have

4
[(52U™, U™)| < FHU"’II Ul

The following results is concerned with the nonnegative character of certain real quadratic forms with convolution structure is

due to Lopez-Marcos [10].

Lemma 3.2 [6, Lemma 1]. Let {a,},., be a sequence of real numbers with the properties
an = 0-, app1 — 0p < 07 Qny1 — 2an + Qni1 = 0.
Then for any positive integer M, and real vector (V1,V>,...,Vy) with M real entries,

M-1 n
Z (Zapvnﬂp) Via = 0.

n=0 \ p=0

Lemma 3.3 [6, Lemma 4]. If p satisfies

—3v3+8v2-6 _
3 ~X

then the sequence {/31,};10 defined by (6) satisfies (27).
Now we begin to prove the stability and convergence.

B<4—12V3+12V2,

3.1. Stability
First we will give the proof of stability.
Theorem 3.1. Assume {[)'p};io in (6) satisfies (27), let U" = (U}, U3, ..., U} ;) be the solution of

~ n J—
A8 U] = polU7 + And2U) + 3 B0 P, j=1,...J—-1, n=1,. N,
p=0
where

Us=U'=0, n=0,1,...,N,

U° = (up(x0), Uo(X1), ..., Up(X;)) given.

Then for N > 1, we have

(27)

(28)

(30)

31)

(32)



M. Luo et al./Applied Mathematical Modelling 39 (2015) 947-954

C\/—B/2

3
[l <§HU°||+ 1.

Proof. Multiplying (30) by hUj'.‘ and summing up j from 1 toJ — 1, and n from 0 to m, we can obtain

zm:(ﬂétU”7U" = uim: 5o, un +zm:2n:ﬁp<5fU”’p,U” +2m: A02U°, T").
n=0 —0

n=0 n=0 p=0 n

Now we estimate each term in the above Eq. (34). First, we have

1 h’ h’
k(60" U") =5 [(IIU"“IIZ —ﬁaxU"*‘nZ) - <||U"||2 —ﬁwa"nzﬂ

(see [8], Eq. 3.9), where

n 1 n 4 n
U™ hZ f“ E(ZN Ulal +1Y; 2)) == V"I
Because
n n n h2 n
U IIZ——HOXU P> U -5 —HU I,

12 p?

SO
2 ny 2 n 2 hz ny 2 n 2
S IUTIE < IURIF = g5 o U71° < U

Consequently,

n=0
In addition, the first term of the right equality (34) will be estimated:

J-1 J-1
k(020" U") = kuh> " (5;07)(U}) = —kuh> " (5,U7)(8,U7) = k|6, U"||* < 0.
j=1 Jj=1
In the second equality above, we have used Lemma 3.1(1).
For the second term of the right equality (34), we have

m_n m n J-1 m n J-1
K> D B3 Um 2, U™ = kh> S > 4, (0207 7) (U7) =~k -S> 4, (0077 (8,07

n=0 p=0 n=0 p=0 j=1 n=0 p=0 j=1

)

for 0 < m < N — 1. It follows from Lemma 3.2 and Lemma 3.3 that the above term of (39) is nonpositive.

For the last term of the right equality (34), using Cauchy-Schwarz inequality and Lemma 3.1(2).

62 v, ) 4k

ZA

In the second inequality above, we have used Lemma 3.1(2).
According to (6), and using the mean value theorem of integrals and Rolle theorem, we have

ZA

m m J-1
K> (And2U0°, U7 = kDS hA, (azu")( ) <k 1| 1Tm]].
n=0

n=0 j=1

m m tos m m
KS An = k> 2 (t}/z 7,1 / 1 el/zde) ~ 2K (1 - 0)7) < 2k e, 2
n=0 n=0 < Jtn n=0 n=0 2

k 1 1 1 k dx
=k2—[—+—+---+—}<k3/2 < 2KV,
K2 [Vik V2K mk 0 VRS

m — 1 h’ 1 1
n ym\ _ ° m+1p2 b m+1)2 ) 02__ 0 2 m+1,2 _ % 02
> ki<z6,U", U") =5 [(IIU " =35 10Ul ) (IIU I” =35 loxU7l )} > Z U7 =5 U7

(33)

(34)

(35)

(36)

37)

(38)

—

39)

(41)
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where 0; € (t;, t,1), and

m

rtnio thi1 m m m
kZ/fn+1 Z </ 0"2do — / el/zde) ~ CkZ% (032K = 03°K] < CkY (6% - 62) < aY e, 2
0 thi1 Jtn n=0 n=0 n=0
< R / X T, (42)
0 VX

where 0, € (tni1,tni2), 03 € (Ens try).
Since Ay =1 (An + Ans1 + Buyq), substituting (37)-(42) into (34), we obtain

1 1 4k
U™ =S IU°) < Zwa U, Um < Z (An02U°,T") ZA [uep o
n=0
< (2KVT 4+ 2KVT + VT ~2—hz||u°|| o, (43)
so we have
JU™ 2 < 3(4°2VT + GPPVT) - S U TP + 2 U0
h? 2
Choosing M so that ||UM|| = maxg<,<n||U"||. So
4 302 o cf ST -

IUMIP < 3(4kPVT + GV -5 U UM 45 U < 01U+ 2 U U (44)

Therefore, for N > 1, we obtain
3/2
3 CVTk
U™ < UM< SIU°0+ 2 Uyl (45)

This completes the proof. O

3.2. Convergence

We can derive the convergence of the numerical method (20)-(22) as similarly as proving Theorem 3.1. Denote

ef=u'-U/, 0<j<J, 0<n<N.

Theorem 3.2. Assume that {u"|0 <j <J,0 <n <N} be the solution of problem (1)-(3) and they satisfies the smoothness
requirements stated in (4). Let (U°, ... U") be the solution of compact difference scheme (20)-(22). If § in (6) satisfies (29), when
h and k tend to zero independently, we have

e - O™ + ), )

Proof. Subtracting (16)-(19) from (20)-(22), respectively, we obtain the error equations

A el 7u52—"+2pp52"1’ R0 1<j<J-1,1<n<N-1, (47)
e=¢ =0 n=01,..,N. (48)
ef=0, 1<j<J-1. (49)

Multiplying (47) by khe!' and summing up j from 1 to J — 1 and N from 0 to m, we can obtain
m
k> (t5ie" 8" k,uz (628", ") + kZZﬁp (528" P 8" + kz ((Ro)",&". (50)
n=0 n=0 p=0
Just as the proof of Theorem 3.1, denote ||eM| = max;<n<n|/€"|, we can get

1 1 mo m mo,
3117 5 <k (o 2) < Ok IR -] < {CE%(’? R ki)

lle™]

<G (1) 2 O a0 (1 +h4)] e (51)

n=0
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therefore
leM]I* < 3C(k + ) e (52)
The above inequality implies that ||eM|| < C(k** + h*). Hence, we have obtained the convergence result (46). O
4. Numerical experiment

In order to demonstrate the effectiveness of our schemes, we compute the following examples.

Example 1.

t
u[:‘/‘(t—s)”/%hﬂx,ﬂdx (53)

0
u(0,t)=u(1,t)=0, 0<t<T. (54)
u(x,0) =sin(nx), 0<x<1. (55)

The exact solution of this problem is u(x, t) = M(7>/2t>/3)sin(nx), where M denotes the entire function
0 3 -1

M(z) = -1 ”F(—n+1> z". 56
@=2 1T (5 (56)

In the calculation we set f=0.1,J =10 or J = N'/, take h = 1/J,k = 1/N, Tables 1 and 2 present the maximum errors of
numerical solutions obtained with different step-size, and presents rates of convergence in time for T=0.5 and T =1,
respectively. In Tables 1 and 2 we take J = 10 for calculation. The numerical results reflect a convergence rate ~ 3 in time.
Also in Tables 1 and 2 we list the errors and rates for numerical solutions with g = 0. Table 3 we present the maximum errors
of numerical solutions obtained with different step-size, and presents rates of convergence in space for T = 0.5. In order to
calculation the convergence order in space, we have to take k> < h*, so we set N = J* in Table 3. We also list the errors and
rates for numerical solutions with g = 0 in Table 3.

Example 2. We consider the partial integro-differential equation

t
Up = Uy +/ (t —5) " Puy(x,s)ds, (57)
0
u(0,6)=u(1,t)=0, 0<t<T. (58)
u(x,0) =sin(nx), 0<x<1. (59)

In the calculation we also set T = 0.5, take h = 1/J,k = 1/N,J = 10. We use the numerical solution of u corresponding to
N x J =640 x 10 is used as the “exact” reference solution. Table 4 presents the maximum errors of numerical solutions
obtained with different step-size, and presents rates of convergence in time for Example 4 with g = 0.1 and g = 0, respec-
tively. Because the value of x; are difference in different grid, and they have not relationship with each other directly, so
we can not calculate the convergence order in space.

This work is a supplement of Tang’s work [6] by using the compact difference method in space. The numerical results
from Table 3 reflect the convergence rate in space is 4. Our results are similar to the numerical solution in [8] because
we use the same method, but the authors in paper [8] did not compute the rates in space. Comparing the results in Tables
3 and 4 to the tables in papers [6,8], we can see our computational solution in this paper is much better. For example, when
N = 40, the error in paper [6] is 3.05e—003, the error in paper [8] is 6.62e—003, but the errors in this paper is 3.52e—004 in
Table 4.

Table 1
Errors and convergence rates for T = 0.5.
N Error Rate
20 8.93117e—002(8.71410e—002) -
40 3.21568e—002(3.13501e—002) 1.47372(1.47488)
80 1.15715e—002(1.13353e—-002) 1.47455(1.46764)
160 4.16970e—003(4.10482e—003) 1.47256(1.46544)
320 1.50417e—003(1.48438e—003) 1.47098(1.46745)

640 5.46742e—004 (5.37661e—004) 1.46004(1.46510)
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Table 2
Errors and convergence rates for T = 1.
N Error Rate
20 2.49400e—-001(2.40633e—001) -
40 8.93117e—002(8.71410e—002) 1.48154(1.46541)
80 3.21568e—002(3.13501e—002) 1.47372(1.47488)
160 1.15715e—002(1.13353e—002) 1.47455(1.46764)
320 4.16970e—003(4.10482e—003) 1.47256(1.46544)
640 1.50417e—003(1.48438e—003) 1.47098(1.46745)
Table 3
Errors and convergence rates for T = 0.5.
N=p J Error Rate
729 9 4.30775e—004(4.06896e—004) -
1728 12 1.63014e—004(1.51780e—004) 4.35482(4.41924)
3375 15 7.72578e—005(7.08549e—005) 4.09544(4.17832)
5832 18 4.22009e—005(3.82675e—005) 3.92284(3.99631)
9261 21 2.54077e—005(2.28692e—005) 3.79976(3.85536)
Table 4
Errors and convergence rates at T = 0.5.
N Error Rate
10 2.87067e—003(1.85121e—-003) -
20 1.00346e—003(6.50154e—004) 1.51641(1.50962)
40 3.52049e—004(2.27852e—004) 1.51113(1.51268)
80 1.21334e-004(7.84763e—005) 1.53679(1.53777)

5. Conclusion

In this article, we constructed a compact difference scheme for the partial integro-differential equation with a weakly sin-
gular kernel and we proved the stability and L, convergence by energy method. In this article a Crank-Nicolson time-step-
ping is used to approximate the differential term and a product trapezoidal method is used to approximate the integral term.
The convergence order in L, is 3/2 in time and four in space. Two numerical example about ¢t = 0 and u = 1 supported the
theoretical results.
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