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In this study we consider the mapping of the main characteristics, i.e., the structural prop-
erties, of a classical job shop problem onto well-known combinatorial techniques, i.e., posi-
tional sets, disjunctive graphs, and linear orderings. We procedurally formulate three
different models in terms of mixed integer programming (MIP) and constraint program-
ming (CP) paradigms. We utilize the properties of positional sets and disjunctive graphs
to construct tight MIP formulations in an efficient manner. In addition, the properties
are retrieved by the polyhedral structures of the linear ordering and they are defined on
a disjunctive graph to facilitate the formulation of the CP model and to reduce the number
of dominant variables. The proposed models are solved and their computational perfor-
mance levels are compared with well-known benchmarks in the job shop research area
using IBM ILog Cplex software. We provide a more explicit analogy of the applicability
of the proposed models based on parameters such as time efficiency, thereby producing
strong bounds, as well as the expressive power of the modeling process. We also discuss
the results to determine the best formulation, which is computationally efficient and struc-
turally parsimonious with respect to different criteria.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

In general, obtaining an optimal solution for a scheduling problem is non-trivial. In this study, we handle the job shop
scheduling problem from the viewpoint of a practitioner whose aim is to scrutinize a scheduling problem in a different com-
binatorial optimization framework. A practitioner with an inappropriate outlook would formulate a scheduling problem as a
mixed integer programming (MIP) problem and use the default settings in commercially available software, instead of using
problem-specific algorithms. Therefore, we initially focus on obtaining the optimal solution of the job shop scheduling
problem with the total weighted tardiness objective (JS-TWT) using mathematically robust procedures such as MIP and
constraint programming (CP).

It should be noted that few researchers have revisited the capacity of MIP given the many hardware and software
advances that have been made recently, thus we consider these formulations in this context. In particular, the mathematical
models used for single machine scheduling problems have received far less attention than heuristics and after nearly
50 years, the composition of the models introduced by Wagner [1], and Manne [2] still retain their original forms but they
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have also entered neglect. This might be due partially to their low efficiency and/or the absence of high-tech processors, but
there are few model development techniques based on these compositions. Nevertheless, the complexity of models depends
on the number of jobs and machines, but also on the formulation framework.

The classical job shop problem has many practical applications in processes where a number of tasks need to be sched-
uled in a specific order. These applications range from production and manufacturing environments, e.g., a semiconductor
factory, to service-based industries such as hospitals or transportation systems, e.g., railways. A classical job shop problem
that is independent of any objective form is known to be an NP-complete problem [3]. Thus, before the development of an
effective algorithm, the different structural properties of difficult scheduling problems such as JS-TWT should be addressed
based only on the nuances of general-purpose models [4], e.g., mathematical models. This can be achieved by traditional
combinatorics, but mapping the mathematical structures of these combinatorial techniques onto JS-TWT is a major
challenge.

In the widely used three-field notation of Graham, JS-TWT is written as: Jmk
P

wjTj where Tj ¼maxð0; cj � djÞ. The basic
characteristics of a classical job shop are defined as follows. The processing times are known, fixed, and independent of the
sequence. All jobs are ready to be processed at time zero. Recirculation is not allowed, i.e., all jobs should meet the machines
only once. Preemption is not permitted, i.e., once an operation has started on a machine, it must be completed before another
operation may be started on that machine. Only one job may be processed by a machine at any instant in time and each job
should encounter all machines.

The first study to describe the formulation of scheduling problems with a mathematical notation was published in 1959.
Early studies mostly addressed single machine scheduling as well as multi-machine scheduling. MIP formulations were
developed and treated as powerful combinatorics to investigate the computational aspects and structural properties of
scheduling problems. The first attempt to minimize the makespan with three machines in series, which is known as the flow
shop problem, was reported by Wagner [1]. In this formulation, the key binary variables are xjk; 1 if job j is placed in the kth
position in the sequence. In previous studies, these variables are known as assignment variables or positioning variables.
Another early study Manne [2] focused on the job shop problem with the aim of minimizing the makespan. In this formu-
lation, the key binary variables are yij; 1 if job i precedes j in the schedule. These variables are also referred to as precedence
variables and they are used in combination with big-M as a large constant to formulate precedence between jobs or oper-
ations (disjunctive constraints). In addition, Baker and Keller [5] used these variables to formulate a MIP model for single
machine scheduling with the tardiness objective.

The number of variables and solution spaces are essential features of mathematical or MIP models. Thus, increasing the
dimensions of variables or using an ill-defined solution space in the techniques designed to handle MIPs may lead to their
collapse and the failure to obtain the optimum as an exponential function of time. In the last three decades, in order to alle-
viate this problem, computer scientists have developed a combinatorial framework with different variable data structures,
graph theory, artificial inference, novel computer programming techniques, and branch and bound trees. This framework is
called constraint programming (CP) and it is now used extensively for solving complex scheduling problems. In general, the
main features of CP are: (1) the ability to handle heterogeneous constraints, multiple disjunctions, and non-convex solution
spaces; (2) it is independent of the problem domain size; and (3) it allows the use of an optimization programming language
(OPL) [6]. In general, CP solvers are designed according to two concepts: propagation and filtering (or consistency and back-
tracking). In the first step, the solver must logically eliminate some of the values in the feasibility set whereas those that are
compatible with the model are retained. In the second step, the solver must then challenge its previously selected values and
test other values [7]. However, existing CP solvers cannot provide a global view of the problem and they cannot exploit the
lower bounds provided by linear relaxations, while in some cases, the artificial intelligence used in CP solvers fails to deter-
mine the optimal node within a reasonable amount of time. Thus, there is a trade-off between the careful selection of MIP
and CP models during the formulation of different aspects of the problem.

In contrast to job shops with the makespan objective, the solution procedures for the JS-TWT are very limited. We con-
sider that it is convenient to divide previous JS-TWT research into three categories: exact methods, heuristics, and theoretical
methods. For example, the branch and bound algorithm developed by Singer and Pinedo [8] belongs to the first category.
Heuristics are also divided into the local search approach [9,10] and the shifting bottleneck procedure [11]. Theoretical
approaches such as dynamic programming algorithms [12], as well as the first category, may be more appropriate for obtain-
ing deep insights into the structural properties and complexity of the JS-TWT.

The main goal of this study is to map the structural properties of the JS-TWT onto the well-known combinatorics, i.e.,
positional sets, disjunctive graphs, and linear orderings. The positional sets and the disjunctive graphs inherently possess
key properties that precisely define the convex hull of the MIP models. The origin of CP can be traced back to graph theory,
thus linear ordering properties are implemented in the present study to formulate a disjunctive graph in an efficient manner
and to translate it into an appropriate CP model. The properties are retrieved by the polyhedral structure of the linear order-
ing and defined on a disjunctive graph, thereby reducing the number of dominant variables in the CP model. In this study, we
also test the logic used by the CP solver when the processing times of different jobs sets have few variations and the schedule
is tight. A simple study of these models was conducted previously by Namakshenas and Sahraeian [13]. However, we
completely revise and tighten the MIP formulations presented in [13] by introducing new binary variables and different
constraint sets.

The remainder of this paper is organized as follows. Section 2 procedurally discusses the process of generating MIP for-
mulations based on the aforementioned properties. Section 3 presents the linear ordering properties and the translation of
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the graph-based results into the standard OPL expressions. The following section presents a comparison and an analysis of
the proposed formulations, and the final section provides a summary and our conclusions.

2. Mixed integer formulation

In this study, we use the following notations to develop the MIP formulations.
Parameters:
n number of jobs (N: jobs set);
m number of machines (M: machines set);
pjh processing time for job j on machine h;
wj weight of job j;
dj due date of job j;

rjlh
1 if the l th operation of job j requires machine;
0 o:w:

�

Decision variables:
cj completion time of job j;
sjh starting time of job j on machine h (a continuous non-negative variable);
Zj wj maxð0; cj � djÞ or the tardiness of job j;

xjkh
1 if job j is scheduled in position k on machine h;
0 o:w:

�

yijh
1 if job j follows job i on machine h ðnot necessarily immediatelyÞ;
0 o:w:

�

2.1. Disjunctive approach

The disjunctive formulation is one of the multi-purpose formulations that can be applied to many problem types, includ-
ing single-case and shop problems. This formulation technique employs disjunctive constraints, which utilize big-M and bin-
ary variables to decide the best ordering of tasks at each disjunction. This technique was first introduced by Manne [2]. In
general, the definition of the solution space is largely dependent on the size of the big-M parameter. The disjunctive (DJ) for-
mulation is closely involved with the disjunctive graph in a job shop. However, the relationship between the disjunctions is
implicit, which allows us to define the starting time sjh in combination with a key binary variable, yijh. Therefore, the disjunc-
tive constraints can be written as follows:
ðsih � sjhÞP pjh �M yijh; 8i; j 2 N; 8h 2 M; ð2:1Þ
ðsih � sjhÞP pjh �M ð1� yijhÞ; 8i; j 2 N; 8h 2 M: ð2:2Þ
One of the constraints (2.1) or (2.2) must be relaxed when job i precedes job j and j precedes i on machine k. The oper-
ational precedence between the sub-tasks should also be satisfied. In particular, it is necessary to indicate that the processing
of operation lþ 1 for job j on machine h must be started after the completion of operation l. This feature can be characterized
by considering the binary parameter rjlh.
X

h2M

rjlh ðsjh þ pjhÞ 6
X
h2M

rj;lþ1;h sjh; 8j 2 N; 8l 2 M � fmg: ð2:3Þ
The versatility of the binary parameter rjlh should also be emphasized. It can be utilized to produce the starting times of
the jobs on the machines,

P
h2Mrjlh sjh, or the processing times,

P
h2Mrjlh pjh. Therefore, the starting times of the jobs on the last

operation should be expressed as
P

h2Mrjmh sjh. It should be noted that the constraint set (2.5) is used to convert the max func-
tion in the tardiness term into a linear form.
min
X
j2N

Zj; ð2:4Þ

X
h2M

wj rjmh ðsjh þ pjhÞ �wj dj 6 Zj; 8j 2 N: ð2:5Þ
2.2. Hybrid approach

A simple version of this formulation was presented in Namakshenas and Sahraeian [13]. In our formulation, we attempt
to impose tighter constraints by introducing new variables. We constructed this alternative formulation by deploying both
the positional variables and the precedence variables, i.e., a hybrid formulation (HB). By defining variable xjkh to position the
operations in the sequence, the assignment constraints can be written as follows.
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X
j2N

xjkh ¼ 1; 8k 2 N; 8h 2 M; ð2:6Þ
X
k2N

xjkh ¼ 1; 8j 2 N; 8h 2 M: ð2:7Þ
In order to establish a consistent model using two sets of variables, we define variable vkh to decide the starting time of
the scheduled job in the kth position for processing on machine h. In addition, a set of constraints is needed to set delays
according to the processing times of the previously positioned jobs between the starting times of the consecutive positions.
vkh � vk�1;h P
X
j2N

xj;k�1;hpjh; 8k 2 N � f1g; 8h 2 M: ð2:8Þ
The operational precedence constraint set can also be written in terms of variable vkh in combination with parameter rjlh.
X
k2M

rj;lþ1;h vkh �
X
k2M

rjlh v th P
X
k2M

rjlh pjh; 8ðj; k; tÞ 2 N; 8l 2 M � fmg: ð2:9Þ
The constraint set (2.9) indicates that there is no relationship between the decision variables vkh and xjkh, which causes a
conflict between the constraints. To better illustrate this conflict, consider that job j is placed in position k. Hence, xjkh takes a
value of one, whereas variable vkh has a non-negative value for job j0 in position k, which has been reserved for job j. To avoid
having two or more reserved jobs in a single position, one of the terms must be relaxed in expression (2.10).
: 1�
X
k2M

rjlh xjth

 !
_ : 1�

X
k2M

rj;lþ1;h xjkh

 !
) relax constraint set ð2:9Þ: ð2:10Þ
Therefore, using big-M as a large constant and the expression above, the constraint set (2.9) can be modified into the con-
straint set (2.11).
M 2�
X
k2M

rjlh xjth �
X
k2M

rj;lþ1;h xjkh

 !
þ

X
k2M

rj;lþ1;h vkh �
X
k2M

rjlh v th

 !
P
X
k2M

rjlh pjh; 8ðj; k; tÞ 2 N; 8l 2 M � fmg: ð2:11Þ
Two steps are required to define the objective function. First, computing the completion time of job j, i.e., cj and second,
forming the expression

P
wjTj; where Tj ¼maxð0; cj � djÞ. The starting time and the processing time of job j for the last oper-

ation can be defined as expressions
P

h2Mxjmh vmh and
P

h2Mxjmh pjh, but the first term is nonlinear and this term casts the
model as a non-convex model. Thus, the linear form of expression

P
h2Mxjmh vmh is written as follows by defining a non-neg-

ative variable cjh:
cj ¼
X
h2M

cjh þ
X
h2M

xjmh pjh; 8j 2 N; ð2:12Þ

cjh ¼ xjmh vmh; 8j 2 N; 8h 2 M; ð2:13Þ
cjh 6 vmh; 8j 2 N; 8h 2 M; ð2:14Þ
cjh 6 M xjmh; 8j 2 N; 8h 2 M; ð2:15Þ
cjh P vmh �Mð1� xjmhÞ; 8j 2 N; 8h 2 M: ð2:16Þ
Then, the objective is written as follows:
min
X
j2N

wjZj: ð2:17Þ

Subject to : Zj P cj � dj; 8j 2 N: ð2:18Þ
3. Constraint programming formulation

3.1. Graph translation

A disjunctive graph-based model for the JS-TWT with variables sij
! (the starting time of job i on machine j on a digraph) is

represented as follows:
Objective min
Xn

j¼1

Zj: ð3:1Þ
Constraints
wjðsij
!þ pij � djÞ 6 Zj; 8i 2 N; 8j 2 M; ð3:2Þ

sik
�!� sij

!P pij; 8i 2 N; 8ðj; kÞ 2 M; with hi; ji ! hi; ki; ð3:3Þ
ð sih
�!� sjh

�!Þ _ ð sjh
�!� sih

�!ÞP pðjhÞ_ðihÞ; 8ði; jÞ 2 N; 8h 2 M; ð3:4Þ
sij; Zi P 0; 8i 2 N; 8j 2 M: ð3:5Þ
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This formulation is conceptually essential when building any graph-based model and each constraint, either conjunctive
or disjunctive, can be translated into its own model-building syntax. The model building processes are highly interrelated in
graph theory and CP, thus we utilize the linear ordering concept, which is one of the most important combinatorics in graph
theory, in order to translate these constraints into an appropriate CP model with the least possible dominant variables and
the highest computational efficiency (Fig. 1). In this formulation, the first set of constraints is considered to linearize the
objective function. The second set ensures that operation ði; kÞ cannot start before the completion of operation ði; jÞ. The third
set of constraints considers the ordering of the operations of different jobs that have to be assigned to the same resource.

The concept of linear ordering appears in the context of combinatorial problems. Grotschel et al. [14] first utilized this
approach to perform a cutting plane algorithm. In another study, Chrissof and Reinelt [15] claimed that this approach can
be employed to solve proportionately large instances by inferring that a linear ordering approach yields good results when
linear relaxation is performed on large instances, such that the amount of time required to solve the relaxation would be
significantly small.

A linear ordering technique with n jobs can be treated as a problem on a complete digraph with n vertices. Suppose that kij

has a value of one when job i is processed before job j, but zero otherwise. For each pair of vertices, i and j, we want to pick
exactly one of two arcs ði; jÞ or ðj; iÞ. Therefore, in any feasible solution, the constraint set kij þ kji ¼ 1; 8ði; jÞ 2 N; with i – j
should be imposed on the resulting digraph. Furthermore, there should be no directed cycles in the resulting directed sub-
graph. This type of acyclic digraph is called a tournament [16]. To avoid directed cycles, it is necessary to prevent the solu-
tions of this form with three jobs ði; j; kÞ : kij ¼ kjk ¼ kki ¼ 1. This can be satisfied by the inequality kij þ kjk þ kki 6 2; 8ði; j; kÞ 2
N; withfi – j; j – k; k – ig.

To facilitate this procedure and to implement the polyhedral properties of the linear ordering, we consider Fig. 2 as a
digraph that represents a job shop problem with three jobs and three machines. Fig. 2 indicates a feasible solution where
each job meets each machine once (conjunctions) and each machine should process each decided job (disjunctions). In addi-
tion, Onm denotes the operation of job n on machine m. Hence, for machine 1 and subgraph ðO11;O21;O31Þ, constraint
k12 þ k13 þ k23 6 2 should be imposed; for machine 2 and subgraph ðO32;O12;O22Þ, constraint k31 þ k32 þ k12 6 2 should be
imposed; and for machine 3 and subgraph ðO33;O23;O13Þ, constraint k32 þ k31 þ k21 6 2 should be imposed.

As mentioned above, to observe the precedence of jobs, constraint set kij þ kji ¼ 1; 8ði; jÞ 2 f1;2;3g; with i – j must be sat-
isfied. From Fig. 2 and by applying the linear ordering properties on the digraph, two subgraphs kij and rilk can be extracted.
The critical path of each job, which satisfies the decided order of the disjunctions and the conjunctions, can be obtained by
determining the symmetric difference in these spanning subgraphs. We let K denote the incidence matrix of the disjunctive
subgraphs, Rl is a two-dimensional matrix of the conjunctive subgraphs, and P is the processing time of the jobs on the
machine subsets, and we have the following property.
ðon machine hÞ : @Rl D@K :¼ @ðRl DKÞ ) sjh
�!

:¼maxj½@ðRl DKÞP�: ð3:6Þ
Expression (3.6) implies that the starting time of job j on machine h can be computed as whether we should maximize the
multiplication of matrices K and P, which only consider the disjunctive subgraphs, or calculating the symmetric difference in
the spanning subgraphs on matrices K and Rl. For example, we apply this property on subgraph ðO11;O21;O31Þ in Fig. 2.
ðon machine 1Þ : S :¼ PK :¼ ðp11;p21; p31Þ:
0 1 1
0 0 1
0 0 0

2
64

3
75 ) S :¼ ð0;p11; p11 þ p21

zfflfflfflfflfflffl}|fflfflfflfflfflffl{last operation

Þ:
Then, we apply it on machine 2, S :¼ ðp32; p12 þ p32;0Þ and on machine 3, S :¼ ðp23 þ p33; p33;0Þ. In this case, all of the start-
ing times of the jobs in their final operations are greater than the other terms in the matrix S. Therefore, it can easily be
inferred that there is no need to check the evaluation function based on the resulting expression (3.6) over the complete
subset of machines in a job shop. The philosophy that underlies the introduction of this idea is based on reducing the number
of dominant variables in the objective function. Hence, expression (3.6) is taken as the starting time criterion of job j on
machine h to develop the CP formulation.

3.2. Proposed CP model

In contrast to mathematical models, CP models are highly dependent on the CP packages employed because of the differ-
ences in the functional structures of various modeling languages. In the present study, we used ILOG OPL Studio 11.1 syntax
Disjunctive
Model

CP Model
Linear

Ordering
Model

Fig. 1. Translation framework for building the CP model.



Fig. 2. Illustration of the tournament property of the linear ordering technique for a job shop digraph with three jobs and three machines.
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as the modeling language. Table 1 shows the definitions of the syntax used in the OPL model. It should be noted that we
completely revised the earlier version of the CP model presented in Namakshenas and Sahraeian [13] based on the properties
retrieved by the polyhedral structure of the linear ordering.

A basic OPL modeling framework comprises a set of intervals (jobs) that needs to be assigned to a set of resources, e.g.,
machines or operators. An interval variable is a decision variable with three components, i.e., start, end, and duration, which
are linked together logically. For the interval variables, the search methodology does not enumerate the values in the vari-
ables domain and the search space is usually independent of the problem domain size. The data structure of the interval vari-
ables is not pseudo-polynomially entangled with the domain of interval variables; therefore, the search space is estimated as
the number of possible orderings of the n interval variables, and the complexity of the problem is estimated as n:log2ðnÞ.
Some properties of the global constraint kij þ kji ¼ 1 and the tournament properties of subgraphs are declared by the terms
precedes and requires. From expression (3.6), which is defined based on the last operation, the objective of the proposed
CP formulation is introduced as follows:
min cumfw½j�:maxðItv ½j;m�
zfflfflfflfflfflffl}|fflfflfflfflfflffl{last operation

� d½j�;0Þg in j : j in r½j;m;h�: ð3:7Þ
In this OPL formulation, we deploy two key variables, Itv and Opr, as interval variables, and Mac as resource variables or
machines. The objective allows the solver to accumulate the sequences of the interval variables and to select the minimum
value that corresponds to the combination. The local and global constraints are written as follows.
Itv½j; k� assigns Opr½j;nb resource�:end; for all ðj in N; k in MÞ; ð3:8Þ
Opr½j;nb resource� precedes Itv ½j; k�; for all ðj in N; k in MÞ; ð3:9Þ
Opr½j; k� precedes Opr½j; kþ 1�; for all ðj in N; k in M : k 6 m� 1Þ; ð3:10Þ
Opr½j; k� requires Mac½Opr½j; k�; k�; for all ðj in N; k in MÞ; ð3:11Þ
Mac½Opr½j; k�; k� waits Mac½Opr½j; k�; kþ 1�; for all ðj in N; k in M : k 6 m� 1Þ; ð3:12Þ
The first set of constraints (3.8) assigns the jobs based on their last operations in interval variable Itv from a dynamic
resource pool. This concept is applied by defining one of the interval variables as optional, thus the solver can alternate
the intervals when branching the nodes (for more information on alternating interval variables, see [17]). These auxiliary
variables help the modeler to impose a global deadline constraint on the entire planning horizon. The constraint set (3.9)
adjusts the precedences between the operations of the consecutive jobs, i.e., in their final operations, the jobs cannot bypass
the interval Itv , and constraint set (3.10) indicates that all interval variables should be dedicated to a unary resource variable
(Mac). Note that there is no alternative resource for interval variables, therefore they must be dedicated to only one source.
The last set of constraints suggests that the resource assignments should not overlap.
Table 1
Syntax definitions for the declared OPL local or global constraints.

Syntax Definition

cum Accumulates over interval variables
precedes Imposes a precedence constraint on interval variables
requires Imposes resource requirements
wait Imposes a precedence constraint on the assignment of resource variables
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4. Test problems and experiments

To evaluate the computational performance of the proposed models, we considered that the information retrieved by the
solutions of all-embracing instances might be useful in a global sense compared with other conditions. In this case, all-
embracing instances denote any instances where jobs possess variations in their processing times and various degrees of
due date satisfiability. In order to demonstrate this property and to obtain a fair assessment compared with previously
reported methods, our benchmarks were derived from well-known test problems, e.g., ABZ05, ABZ06, and MT10. These
benchmarks are employed mainly to assess the makespan objective, thus we revised them by adding a due date and a weight
vector to each of the jobs according to the following scheme in Pinedo and Singer [11]: 40% of the tasks were given weights of
4 and 1, and the remainder had a weight of 2. Thus, a vector of weights ð4;4;2;2;2;2;2;2;1;1Þ was assumed for an instance
of 10 jobs. Pinedo and Singer [11] used Eq. (4.1) to generate the due dates of jobs according to tightness factor b. Thus, the
due date of job i was set as equal to the floor of the sum of the processing times on all machines multiplied by the tightness
factor.
Table 2
Model c

Prob

4 � 4
6 � 6
8 � 8
10 �
12 �
15 �
di ¼ bb
Xm

k¼1

pikc; b ¼ 1:3;1:5;1:6: ð4:1Þ
4.1. Pre-analysis

Table 2 shows the sizes of the MIP and CP formulations generated in terms of the numbers of binary and integer variables,
and the constraints for all three alternatives. Among the MIP alternatives, the HB formulation obtained the highest number
of variables and constraints. The DJ formulation employed a moderate number of constraints compared with the HB, which
appeared to explain its efficiency in solving larger problems. However, the first set of constraints, i.e., the disjunctive con-
straints, included a larger proportion of the constraints set in the DJ model. This might be a disadvantage because this type
of constraint cannot define the solution space in a tight manner. A simple option may be keeping the value of big-M as low as
possible. As mentioned earlier, in order to bypass this ‘‘loose’’ behavior, we proposed a hybrid model where the first set of
constraints, the assignment constraint set (2.6) and (2.7), was replaced by the disjunctive counterparts in the DJ model.
These hard constraints are assumed to define a tighter solution space, but this approach should be assessed based on the
computational efficiency to justify whether this property holds.

Table 2 shows clearly that the number of binary variables in the mathematical formulations tended to grow exponentially
with the problem size, thereby demonstrating the NP-hard complexity. The data structure of the CP model was not the same
as that of the MIP models, thus it cannot be compared explicitly with the ordinary variables developed in the MIP models.
Nevertheless, we felt that the simple correspondence between the problem size and the interval variables might be useful
information.

Detailed information about the tuning of the CP package is shown in Table 3. The configuration of the CP package did not
employ the default settings and we selected the best options based on the following scheme. The ‘‘Restart’’ option was
selected as ‘‘search strategy’’ according to Regin [18]. The ‘‘long tail phenomenon’’ caused by ‘‘depth-first search’’ during
the ordering of the variables was avoided by randomizing the search, which restarted when the solver began to backtrack
[18]. In addition, the high degree of dependency on the ‘‘inference level’’ with the CP option was counter-productive in many
cases [17]. The test problems were encoded by the IBM Ilog Cplex 11.1 solver and run on a single PC with a 2.66 GHz Intel
Core 2 Quad processor (4 MB cache) and 6 GB of memory. The solver was restricted to a 3600 s time limit, which terminated
a specific run if the optimal schedule had not been verified.

4.2. Computational results and post-analysis

Information about the experimental runs is summarized in Tables 4–6 for cases where b = 1.3, 1.5, 1.6. A set of 30 bench-
marks was tested for each formulation with different tightness factors for a total of 270 runs. However, measuring the com-
omparison based on the number of variables generated and the constraints.

lem size (job �machine) Variables Constraints

Binary Integer or interval Non-negative

DJ HB CP DJ HB CP DJ HB CP DJ HB CP

24 64 0 0 0 20 21 56 0 64 318 16
90 216 0 0 0 36 43 125 0 216 1374 36

224 512 0 0 0 72 73 197 0 512 4088 64
10 450 1000 0 0 0 110 110 292 0 1000 9790 100
12 792 1728 0 0 0 156 157 435 0 1728 20148 144
15 1575 3375 0 0 0 240 241 678 0 3375 49035 225



Table 3
Detailed information about the CP solver configuration.

Parameter Setting

Inference level Medium
Search type Restart
Restart fail limit 30
Restart growth factor 1.3

Table 4
Summary of the computational results; b ¼ 1:3.

Model Problem solved Average time (s) Maximum time (s) Average gap (%) Maximum gap (%)

DJ 27 985.13 3600+ 11.13 30.00
HB 11 3600+ 3600+ 46.25 100.00
CP 30 748.02 1985.22 0.00 0.00
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putational performance of the dedicated models required time-based and gap measurement criteria rather than the conver-
gence rate, or the near-optimal analyses used to investigate heuristics. We focused on five important parameters to highlight
various differences with these exact models.

The first criterion represented the number of problems solved within the time limit. Therefore, the overall average and
maximum gaps were reported if the number did not reach 30 problems and the optimal schedule could not be found in
at least one case. Note that a gap was the difference between the solution returned by a truncated run and the optimum,
which was computed as the ratio relative to the optimum. The gaps were also useful for determining the convergence to
the optimal schedule by the proposed models. Other important criteria reported in the tables are the average and maximum
times (in seconds) for running all 30 benchmarks of a specific case. This was essential for investigating the algorithmic
speed-up obtained with each model.

Overall, the results suggest that the HB formulation is very weak and inefficient compared with the other methods. Thus,
we tested the hypothesis proposed in the previous section: the set of constraints used to define the solution space is unjus-
tifiable compared with other formulations. Clearly, the CP formulation solved all cases where b ¼ 1:3, but its computational
speed-up declined compared with DJ in terms of the tightness factor. The DJ formulation converged to the optimal schedule
almost as fast as the CP when b ¼ 1:3, but in three cases, it was highly exhaustive with the branch and bound procedure.
Nevertheless, the DJ model was the most efficient when b ¼ 1:5;1:6. As shown in the tables, the tightness factor had a dra-
matic effect on the average and the maximum times required to obtain the best schedules, which may be explained by its
effect on the due dates. The declining effect of the tightness factor influenced the CP model much more than the DJ model
because the growth in the size of the due dates bucket greatly affected the decisions made based on the inherent structures
of the interval variables. Clearly, the CP model obtained the desired results in the cases with the tightness factor, thereby
supporting its theoretical basis. Hence, a standard CP formulation concept was not sufficient to improve the runtime behav-
ior in a consistent manner. Almost 20% of the cases could be solved using a specific CP procedure. This tightness can be illus-
trated graphically using a Gantt chart, such as Fig. 3. For example, case ABZ05 appears to be a moderately difficult example in
terms of the schedule tightness or the gaps between the scheduled operations.

Overall, these observations suggest that the proposed CP model outperformed the MIP models when there were more
disjunctive decision nodes. The complexity of the JS-TWT is pseudo-polynomially locked on the processing times for jobs
Table 5
Summary of the computational results; b ¼ 1:5.

Model Problem solved Average time (s) Maximum time (s) Average gap (%) Maximum gap (%)

DJ 25 1805.78 3600+ 18.21 18.00
HB 5 3600+ 3600+ 46.25 100.00
CP 22 2614.48 3600+ 26.54 0.00

Table 6
Summary of the computational results; b ¼ 1:6.

Model Problem solved Average time (s) Maximum time (s) Average gap (%) Maximum gap (%)

DJ 19 2771.36 3600+ 21.00 100.00
HB 0 3600+ 3600+ 100.00 100.00
CP 8 2914.65 3600+ 78.00 100.00
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Fig. 3. Gantt chart for ABZ05 and b ¼ 1:5 with the optimal schedule, which was obtained using the proposed CP model (the first and second indices indicate
the job and the operation number, respectively).
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[17], thus the CP model is convenient for handling larger problems in terms of the problem domain, such as the processing
time (the data structures of CPs are independent of the size of the interval). The expressive power of CP solvers is also of
crucial importance because they allow the declaration of global and meta constraints, thereby facilitating the model-building
process. However, the inference techniques provided in recent high-tech CP solvers are not reliable for obtaining the optimal
schedule in a reasonable amount of time. They also lack algebraic techniques in favor of general-purpose MIP solution meth-
ods such as linear relaxation. Thus, the linear relaxation of the HB model provides a stringent and strong bound, although it is
inherently inferior to other models. The DJ model also provides a rapid test of the complexity of a specific case in terms of the
binary variables and/or the explicit manipulation of the constraints due to their smooth nature.

5. Conclusion

Evidently, the implementation of the methods considered in this study remains the crucial step during the problem-
solving process. However, the richness of these models and their associated expressive powers are also highly significant.
The fact that a scheduling problem can be formulated via mathematical programming should not imply that there is a sat-
isfactory off-the-shelf standard solution procedure. Again, we emphasize that the JS-TWT is still a very hard problem using
enumeration methods or heuristics.

In this study, we conducted computational experiments based on two mathematical models and a CP model, which we
programmed using a state-of-the-art software package, Cplex 11.1. We tested the efficiency of the proposed formulations
with well-known job shop benchmarks, each of which employed different tightness criteria. In the first set, all cases were
solved by the CP model within the time limit of 3600 s. The tightness factor and its effect on the due dates deteriorated
the computational efficiency of the CP model, but it also provided insights into the merits of the DJ formulation. The most
important feature of the CP solution procedure is that its data structure was developed to be pseudo-polynomially indepen-
dent of the problem domain size. We also found that the formulation based on disjunctive graphs, the DJ model, was highly
consistent with our expectations, where it produced the lowest number of variables and constraints compared with the HB
formulation and it yielded a tight model. We suggest that modelers should be aware of the capabilities of MIP and CP given
the many recent hardware and software advances. For example, the usage of big-M as a large constant should be avoided for
two reasons: the solver might require an unacceptable amount of time to prune the branches, i.e., software failure, and it
might require excessive amounts of memory, i.e., hardware failure.

In general, we only recommend using the proposed MIP and CP models with low or moderate numbers of disjunctive
nodes. Specialized algorithms may be preferable only for problems with a larger number of disjunctive nodes and longer pro-
cessing times. Furthermore, a deeper consideration of the CP formulation might be justified if it provides insights into the
combinatorial characteristics of the JS-TWT. Finally, we suggest the combination of other graph-based combinatorics to con-
struct models with fewer variables in future research.
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