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Size-dependent stability analysis of a fully clamped micro-electro-mechanical beam under
the effect of shock acceleration pulse is the objective of present paper. The size-dependent
Euler–Bernoulli beam model based on the modified couple stress theory (MCST) with von
Kármán-type geometric non-linearity is utilized in theoretical formulations. The non-linear
governing differential equation of motion is derived using Hamilton’s principle and solved
using a simple and computationally efficient single degree-of-freedom (SDOF) approach.
The model’s predictions based on the classical theory (CT) are compared with those
obtained using the finite element method (FEM) and six modes Galerkin approximations
in previous studies and an excellent agreement between them is achieved. It is shown that
the present SDOF predictions agree better with the FE results than those obtained using six
modes approximations for high shock accelerations. Furthermore, the present model can
remove the limitation of previous models in capturing dynamic pull-in instability under
enormous shock accelerations. A parametric study is also conducted to show the significant
effects of couple stress components on micro-beam motion. It is found that the size effect
on both dynamic pull-in voltage and maximum amplitude of micro-beam oscillations is
usually negligible, when the ratio of beam thickness to the material length scale parameter
is larger than 15.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Micro-electro-mechanical systems (MEMS) are mostly used as sensors and actuators. Because of their small size, low
power consumption and the reliability of batch fabrications, there are lots of potential applications in engineering.
Clamped–clamped micro-beams represent major structural components and play crucial roles in these systems. One of
the most important phenomena associated with electrostatically-actuated MEMS is pull-in instability which is occurred
when input voltage exceeds its critical value. In this manner the non-linear electrostatic force will overcome the elastic
restoring force, so the movable part is suddenly collapsed toward the substrate. Nathanson et al. [1] and Taylor [2] observed
pull-in phenomenon experimentally. If the rate of applied voltage is not negligible, the effect of inertia should be taken into
account for pull-in voltage. This type of instability is called dynamic pull-in instability.
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Mechanical shock can induce highly dynamic loads on structures causing several types of fracture problems. In MEMS,
shock loads can cause micro-structures to hit the stationary electrodes underneath them and causing some undesirable
problems such as stiction [3], short circuits [4] and hence failure in the device’s function. The majority of micro-structures
are fabricated of silicon or polysilicon which are very tough against bending stresses induced from shock acceleration, so
failure in MEMS unlike failure in large scale devices does not due to high stresses [5]. The most important source of failure
in MEMS is stiction and electric short circuits; however the incidents between a movable part and other parts or a substrate
may lead to failure due to the severe contact stresses.

A shock can be defined as a force applied suddenly over a short period of time relative to natural period of structure [6]. A
shock load can be characterized by its maximum value, duration and shape. The shock pulse shape in most of cases can be
considered as half-sine [6–8]. The response of micro-structures to shock loads has been studied by many researchers.
Béliveau et al. [9] characterized experimentally the response of commercial accelerometers due to shock loads and observed
some unexpected responses. Brown et al. [10] investigated commercial accelerometers and a pressure sensor to high-g tests.
They reported peculiar modes of failure under severe shock conditions and concluded that improved dynamic modeling and
characterization of MEM devices under shock load are needed. Fan and Shaw [11] simulated the response of a comb-drive
accelerometer subjected to severe dynamic shock loads in all directions. They developed a finite element (FE) model using
the software ABAQUS with full non-linear and contact stress capability and remarked that this problem requires a highly
non-linear transient dynamic analysis, which is computationally very expensive. Some authors used equivalent lumped
spring-mass model to approximate the dynamic response of micro-structures. Their point of view was proper for rough esti-
mation and could not provide an accurate analysis. For example, Li and Shemansky [12] studied the motion of MEM accel-
erometers during the drop tests. They used both of SDOF and distributed-parameter model to calculate maximum deflection
of cantilever and hinged-hinged beam. Some researchers analyzed micro-structures based on distributed-parameter models.
Fang et al. [5] investigated the response of a micro-cantilever to a half-sine shock pulse using beam model. They utilized the
assumed modes method to calculate displacement and bending stresses of the micro-beam. It is noted that most of the
authors investigated the effect of shock pulse lonely and they did not account for the interaction between electrostatic exci-
tation and shock pulse acceleration effect. Younis et al. [13] accounted for the dynamic interaction between these excita-
tions. They used both SDOF and beam model to investigate the response of micro-beam under combined effect of these
two excitations. They used the Galerkin based reduced order (six modes approximations) model to solve the governing equa-
tion of the beam. Younis et al. [14] also analyzed the response of mechanical shock on micro-structures incorporating the
effect of packaging. They used six modes approximation in the Galerkin-based reduced order model to simulate the response
of micro-structure to the combination of shock acceleration and electrostatic excitation. They verified their model by com-
paring its results with those prepared utilizing commercial finite element software ANSYS. It was shown that the combina-
tion of a shock load and an electrostatic actuation makes the instability threshold much lower than the threshold predicted,
considering the effect of shock alone or electrostatic actuation alone [13,14]. It should be noted that neither the FE nor six
modes reduced order model presented in Refs. [13,14] could capture dynamic pull-in instability for shock amplitudes higher
than 2400g.

Recently, variety of experiments showed that the material mechanical behavior in small scales is size-dependent [15–18].
Size-dependent behavior is an intrinsic property of certain materials, which emerges when the characteristic size, e.g. the
diameter or the thickness is comparable to the material length scale parameter. Material length scale parameter for a specific
material can be determined using some typical experiments such as micro-torsion test [15], micro-bend test [16,17] and
micro/nano indentation test [18–20]. For example, the length scale parameter for single crystals of Al, Ag, Ni, polycrystalline
Cu and ploy-synthetically twinned (PST) lamellar a2 � TiAl and c� TiAl have been determined, respectively, as: 2762 nm,
6233 nm, 4315 nm, 1120 nm, 74 nm and 49 nm [21].

The classical continuum mechanics cannot predict the size-dependent behavior of materials which occurs in micron and
sub-micron scale structures. To remove this incapability of the classical continuum mechanics, the size-dependent contin-
uum theories have been developed [15,22–27]. These theories contain some additional material constants besides two clas-
sical Lame’s constants for isotropic materials: The classical couple stress (CCST), the classical strain gradient (CSGT), the
modified couple stress (MCST) and the strain gradient (SGT) theories of elasticity include two, five, one and three additional
material constants, respectively [15,23,26,27]. The size-dependent behavior of mechanical structures at micron and sub-
micron scales motivated many researchers to develop some mechanical models using these size-dependent theories. Kong
et al. [28] as well as Kahrobaiyan et al. [29] developed linear and non-linear Euler–Bernoulli beam formulations based on the
SGT, respectively. Akgöz and Civalek [30] presented a bending analysis for uniformly loaded Euler–Bernoulli micro-beams on
the basis of SGT. They also investigated the size-dependent buckling of axially loaded micro-scale beams and tubules using
this theory [31,32]. Also, Ghayesh et al. [33] investigated non-linear forced vibration of a micro-beam under harmonic exci-
tation using the SGT.

In view of the difficulties involved in determining higher-order material constants [27,34] and the approximate nature of
beam theories, the MCST of elasticity has been elaborated by Yang et al. [26] which has very desirable features such as
including only one additional material length scale parameter and using a symmetric couple stress tensor.

Recently, the MCST has been successfully utilized to predict mechanical behavior of micro-beams. Here some of these
works are reviewed. Park and Gao [35] showed that the bending rigidity predicted by the MCST is larger than that calculated
by the classical theory (CT) and the difference between the deflections predicted by these two models is significant when the
beam thickness is small. Kong et al. [36] investigated the size effect on natural frequency of the Euler–Bernoulli micro-beam.
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Ma et al. [37] developed a size-dependent Timoshenko beam model based on the MCST and solved the static bending and
free vibration problems of a simply supported micro-beam. They showed that both the deflection and rotation of the
size-dependent model are smaller than those predicted by the classical based Timoshenko beam model. Furthermore, the
natural frequency predicted by the MCST is larger than that obtained by the CT. Ke et al. [38] studied the thermal effect
on the free vibration and buckling of micro-beams using the MCST and Timoshenko beam theory through the differential
quadrature method (DQM). Ke and Wang [39] also investigated dynamic buckling instability of functionally graded (FG)
micro-beams utilizing the MCST and Timoshenko beam model. Ke et al. [40] also investigated non-linear free vibration of
FG Timoshenko micro-beam using the MCST and solved the resulting equations through iterative DQM. Kahrobaiyan
et al. [41] investigate the size effect on the resonant frequency and sensitivity of atomic force microscope (AFM) micro-can-
tilevers. Based on their numerical results, when the ratio of beam thickness to the material length scale parameter is less
than 10, the difference between the results of MCST and CT is considerable for both resonance frequencies and sensitivities.
Rahaeifard et al. [42] investigated the size effect on the deflection and static pull-in voltage using the MCST. They could
remove the gap between the experimental observations and the results of CT for the static pull-in voltage and calculated
the silicon length scale parameter as l ¼ 0:592 lm . Kong [43] introduced an analytic approximate solution to static pull-
in problem and calculated pull-in voltage and pull-in displacement based on the MCST using the Rayleigh–Ritz method.
He found that pull-in voltage predicted by the MCST is 3.1 times greater than that predicted by the CT when the micro-beam
thickness is equal to material length scale parameter. Furthermore, the normalized pull-in displacement is size-independent
and equals to 0.448 and o.398 for cantilever and clamped–clamped micro-beams, respectively.

Although many researchers have dealt with the mechanical behavior of micro-beams, the research effort devoted to
dynamic pull-in analysis of electrostatically actuated micro-beams are very limited. The objective of present work is to
establish a dynamic pull-in instability model for micro-beams under combined electrostatic actuation and shock pulse accel-
eration on the basis of MCST.

The present model is non-linear due to the inherent non-linearity of electrostatic excitation and geometric non-linearity
of the von Kármán midplane stretching. In this study, Hamilton’s principle plays a crucial rule in deriving the equation of
motion. A single mode Galerkin based reduced order modeling is used to convert the partial differential equation of motion
to an ordinary differential equation in time which is solved numerically using the fourth order Runge–Kutta method. It is
noted that in previous studies [13,14], the shock problem was solved using multi-mode approximations in the Galerkin
method. This approach for dynamic pull-in analysis is computationally expensive, so in present study an alternative simple
and computationally efficient single mode approximation is utilized to solve the problem. The model predictions for both
maximum amplitude of micro-beam vibration and dynamic pull-in voltage are validated through direct comparison with
those calculated based on the CT in the literature. It is found that the present SDOF model can capture dynamic pull-in insta-
bility for systems under high-g shock accelerations. Furthermore, our model can predict dynamic pull-in voltage closer to
available FE model than previous multi-mode approximations. A parametric study is also conducted to show the significant
effect of couple stress components on dynamic pull-in voltage. The results show that consideration of the couple stress com-
ponents in micro-system modeling is very essential especially for micro-beams in which the material length scale parameter
is close to the beam thickness.

2. The modified couple stress theory

According to the MCST presented by Yang et al. [26] in 2002, both strain tensor (conjugated with stress tensor) and cur-
vature tensor (conjugated with couple stress tensor) are included in the strain energy density. Based on this theory, the
strain energy U in a deformed isotropic linear elastic material occupying region P is given by
U ¼ 1
2

Z
P
ðr
$

: e
$
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$ÞdP; ð1Þ
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h ¼ 1
2

curl u: ð6Þ
Obviously, only one length scale parameter l involved in addition to two Lame’s constants in the constitutive equation of
the MCST. The material length scale parameter l is also mathematically defined as the square of the ratio of the curvature
modulus to the shear modulus and physically, is treated as a material property characterizing the effect of couple stress
[37]. It is noted that both r

$
and m

$
, as respectively defined in Eqs. (2) and (4) are symmetric due to the symmetry of

e
$

and v
$

given in Eqs. (3) and (5), respectively.

3. MCST formulation for geometrically non-linear Euler–Bernoulli micro-beam

Fig 1 shows a schematic of clamped–clamped electrically actuated micro-beam under combined action of electrostatic
and mechanical shock force. The length, width and density of micro-beam are L, b and q, respectively. The initial gap
between the non-actuated beam and the stationary electrode is d. Also, x, y and z are the coordinates along the length, width
and thickness, respectively, w is deflection of the beam and t is time.

The electrostatic excitation by polarized DC voltage V without the effect of fringing field per unit length of the beam can
be expressed as [44]:
Fes ¼
ebV2

2ðd�wÞ2
; ð7Þ
where e is the dielectric constant of medium. It is noted that the fringing field does not have a sizable effect especially for the
case of wide micro-beams [45].

As depicted in Fig. 1, the micro-beam is subjected to the mechanical shock force. This force is induced by an idealized
impact acceleration pulse of a half-sine waveform according to JEDEC (Joint Electron Devices Engineering Council) regula-
tions [7,8]. The shock force is transmitted to the micro-structure through its supports. According to the support excitation
scheme [46], this base excitation is equivalent to apply the shock acceleration as a distributed force over the micro-structure.
A shock force pulse per unit length of the micro-beam Fsh, can be defined as Fsh ¼ F0gðtÞ. The shock force amplitude is
F0 ¼ qbha0; ð8Þ
where a0 is the amplitude of shock acceleration pulse. The half-sine shock profile can be expressed mathematically as
gðtÞ ¼ sin
pt
T

� �
UðtÞ þ sin

p
T
ðt � TÞ

� �
Uðt � TÞ; ð9Þ
where T is the shock duration and UðtÞ is the unit step function.
Due to the mismatch of both thermal expansion coefficient and crystal lattice period between substrate and micro-beam

film which is unavoidable in surface micro-machining techniques, a resultant axial force Fr is applied to the micro-beam [47]
as
Fr ¼ rrbh; ð10Þ
where rr represents the axial residual stress.
According to the basic hypothesis of the Euler–Bernoulli beams, the displacement field ð~u; ~wÞ of an arbitrary point on the

micro-beam can be expressed as [48]
Fig. 1. Schematic of an electrically actuated micro-beam under the effect of mechanical shock.
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~u ¼ uðx; tÞ � z
@ ~w
@x

; ~w ¼ wðx; tÞ; ð11Þ
where (u,w) are the axial and transverse displacement of a point on the mid-plane of micro-beam (i.e. z = 0). For micro-beam
with small slopes after deformation, the strain components associated with the displacement field presented in Eq. (11), can
be approximated by the von Kármán-type non-linear strain as [48]
ex ¼
@u
@x
� z

@2w
@x2 þ

1
2

@w
@x

� �2

; ey ¼ ez ¼ exy ¼ exz ¼ eyz ¼ 0: ð12Þ
Hereafter, Eq. (12) will be used instead of the infinitesimal definition presented in Eq. (3). Substitution of Eq. (11) into Eq.
(6) and the subsequent result into Eq. (5) yields
vxy ¼ �
1
2
@2w
@x2 ; vx ¼ vy ¼ vz ¼ vxz ¼ vyz ¼ 0: ð13Þ
For slender beam, the Poisson’s effect is negligible [49], so by substituting Eqs. (12) and (13) into Eqs. (2) and (4), respec-
tively, the non-zero components of the Cauchy stress and high-order couple stress can be determined as
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where E is the Young modulus of the micro-beam. Upon substitution of Eqs. (12)–(15) into Eq. (1), the following result is
obtained
U ¼ 1
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where I is the moment of inertia of the cross-sectional area about the y axis and A is the cross-sectional area of the micro-
beam.

The virtual work done by transverse loading is
dW trans ¼
Z L

0
ðFes þ FshÞ dwdx ¼

Z L

0

ebV2

2ðd�wÞ2
þ F0gðtÞ

 !
dwdx ð17Þ
and the virtual work done by axial residual force is
dWaxial ¼
Z L

0
Frdudx: ð18Þ
The kinetic energy of the slender micro-beam with symmetric cross-section can be expressed as
KE ¼ 1
2
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The Hamilton principle for an elastic body is [50]
Z tf

ti

dKE� dU þ dW trans þ dWaxialð Þ dt ¼ 0: ð20Þ
By substitution of Eqs. (16)–(19) into Eq. (20), the non-linear equations of motion are obtained as
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and the equations of corresponding boundary conditions can also be determined as
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Using Eqs. (23)–(25), the corresponding boundary conditions for clamped–clamped micro-beam are obtained as
uð0; tÞ ¼ 0; EA
@u
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þ 1
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¼ 0; ð26Þ
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The MEMS micro-beams are usually slender (L=h > 10), so the longitudinal oscillation in comparison to the transverse
vibration is quite small and negligible [51]. Hence, the inertia term qA @2u

@t2 in Eq. (21) can be neglected. By setting
qA @2u

@t2 ¼ 0 in Eq. (21), this equation can be solved analytically for micro-beams with constant tensile rigidity (i.e.
EA � const:). By imposing the boundary conditions given in Eq. (26), one can obtain
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By substitution of Eq. (29) into Eq. (22), the governing equation of motion can be reduced to
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The initial conditions are assumed as
wðx;0Þ ¼ 0;
@wðx;0Þ

@t
¼ 0: ð31Þ
For convenience, the following dimensionless variables are introduced
ŵ ¼ w
d
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L
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Upon substitution of the dimensionless quantities given in Eq. (32) into Eq. (30) and dropping the hats, the following result
will be obtained
ð1þ a1Þw
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where dot and prime signs denote derivatives with respect to t and x, respectively. The non-dimensional parameters of the
system for rectangular cross section are introduced as
a1 ¼
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The non-dimensional shock profile is also obtained as
�gðtÞ ¼ sin
pt

Tnon

� �
UðtÞ þ sin

p
Tnon
ðt � TnonÞ

� �
Uðt � TnonÞ: ð36Þ
It is noted that, t in Eqs. (34) and (36) is non-dimensional time and Tnon is non-dimensional shock duration expressed by
Tnon ¼
T
~t
: ð37Þ
The non-dimensional boundary conditions are
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wð0; tÞ ¼ w0ð0; tÞ ¼ wð1; tÞ ¼ w0ð1; tÞ ¼ 0 ð38Þ
and the non-dimensional initial conditions are assumed as
wðx;0Þ ¼ _wðx;0Þ ¼ 0: ð39Þ
In this paper a1, a2, a3, N and b are non-dimensional parameters of the system and called couple stress, gap, shock ampli-
tude, axial force and electrostatic parameters.

4. Solution procedure

Due to the high non-linearity involved in Eq. (34), a closed-form solution for this equation cannot be found. Hence, an
approximate solution based on the Galerkin weighted residual method [50] will be developed. To this end, the deflection
is expressed as
wðx; tÞ ¼
XM

i¼1

uiðxÞuiðtÞ; ð40Þ
where uiðtÞ is the ith generalized coordinate and uiðxÞ is the ith non-dimensional linear un-damped mode shape of the un-
deformed clamped–clamped micro-beam, normalized such that

R 1
0 uiuj ¼ dij, where d refers to the Kronecker delta. Since the

first mode is dominant in vibration analysis [44,52], the one mode approximation has been widely used in previous studies
[53–55] and proved to be very accurate for MEMS modeling. For convenience, the micro-beam deflection can be expressed as
wðx; tÞ ¼ wðxÞfðtÞ; ð41Þ
where fðtÞ is the mid-point deflection of the micro-beam and wðxÞ can be determined as [56]
wðxÞ ¼ K coshðcxÞ � cosðcxÞ � cosh c� cos c
sinh c� sin c

� �
½sinhðcxÞ � sinðcxÞ�


 �
; ð42Þ
where
K ¼ 0:6297; c ¼ 4:7300: ð43Þ
Next, we multiply Eq. (34) by wðxÞ, substitute Eq. (41) into the resulting equation, integrate the outcome from x = 0 to 1 to
obtain
€fþ K1fþ K2f
3 ¼ K3�gðtÞ þ b

Z 1

0

w

ð1� fwÞ2
dx; ð44Þ
where
K1 ¼ ð1þ a1Þ
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ww
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dx� N

Z 1

0
ww00dx; K2 ¼ a2

Z 1

0
w02dx; K3 ¼ a3

Z 1

0
wdx: ð45Þ
The motion of micro-beam can be simulated by solving Eq. (44) with its zero initial conditions. Herein, this initial value
problem is solved numerically using the fourth order Runge–Kutta method. It is noted that the integral

R 1
0

w

ð1�fwÞ2
dx should be

calculated numerically and repeated at the each step of integration time.

5. Results and discussions

5.1. Effect of mechanical shock on micro-structures

A micro-beam can experience the shock pulse acceleration as a quasi-static load (the response is similar to the shock pro-
file) or as a dynamic one. Dynamic loading is experienced when the pulse duration closes to the first natural period of the
micro-beam, and if the ratio of the pulse duration to the first natural period of the micro-beam is much more than the unity,
the quasi-static loading will be observed. A silicon micro-beam in 110-direction with material and geometric properties
listed in Table 1 is considered and no axial residual stress is assumed in this case (N ¼ 0). The first natural period of this
micro-beam is s1 ¼ 0:062 ms. It should be noted that a clamped–clamped micro-beam under sinusoidal shock profile can
ric and material properties of the 110-direction silicon micro-beam.

Þ bðlmÞ hðlmÞ dðlmÞ EðGPaÞ lðGPaÞ qðkg=m3Þ l (lm) [42]

100 1.5 2 169 65 2332 0.592
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presented in Table 1 and those presented by Younis et al. [14]. (a) Quasi-static loading and (b) dynamic loading case.
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experience a quasi-static loading for cases with T=s1 > 4:5 [14] and dynamic loading may be experienced in other cases. The
duration of shock pulse is typically ranges from 0.2 to 1 ms for the drop table test [8], so quasi-static is more usual than
dynamic loading. In this study, shock durations T ¼ 1 ms and T ¼ 0:1 ms will be used for simulating quasi-static and
dynamic loading cases, respectively, for the silicon micro-beam with properties presented in Table 1. To validate the present
analysis, the time response of both quasi-static and dynamic loading cases are compared to the results of four symmetric
modes approximation presented by Younis et al. [14] for the case with no input voltage. Fig. 2(a) and (b) depict this com-
parison for quasi-static and dynamic loading cases, respectively. It is noted that Younis et al. [14] utilized the classical theory
(CT) in their analysis, so we set a1 ¼ 0 in our calculations. A very good agreement between four symmetric modes approx-
imations and our alternative single mode solution can be observed. It should be noted that Younis et al. [14] multiply both
sides of the governing equation of motion by the denominator of electrostatic forcing term, but we solved the problem with-
out this multiplication. Hence, using the fractional term of electrostatic forcing instead of multiplication both sides of the
governing equation by the denominator of this term is proposed for non-linear dynamic MEMS problems. The MCST results
are also plotted in Fig. 2 to illustrate the difference between the classical continuum theory and MCST predictions. The rel-
ative difference between the CT and MCST predictions for maximum mid-point deflection, fCT

max � fMCST
max

� �
fCT

max, is 31.16% and
37.10% for quasi-static and dynamic loading cases, respectively. Hence, the size-effect is more considerable for dynamic than
quasi-static loading case.

The maximum normalized amplitude of the micro-beam versus the amplitude of shock acceleration for both quasi-static
and dynamic loading cases has been also plotted in Fig. 3 and compared with those obtained by Younis et al. [14] (both four
modes Galerkin approximations and three-dimensional FEM predictions) as well as the MCST results. It should be noted that
neglecting the effect of couple stresses may lead to very inaccurate results especially for dynamic loading case.

Fig. 4 shows both linear and non-linear ratio of the MCST to CT results for the maximum amplitude of micro-beam oscil-
lations versus the size effect parameter h=l under two different shock acceleration amplitudes. Based on Fig. 4, neglecting the
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non-linear von Kármán strains may lead to under-estimation of this ratio especially for dynamic loading case. In addition,
higher amplitudes of shock accelerations may cause more sizeable difference between linear and non-linear results. Hence,
it is essential to account for geometric non-linearity of mid-plane stretching as well as the components of high-order couple
stress for systems under high amplitudes of shock accelerations especially in dynamic loading case. It is noted that, the size
effect is negligible for h=l > 15.

Also, Fig. 5 emphasizes on the effect of couple stresses on the variation of maximum normalized amplitude of the micro-
beam oscillations (fmax) versus the non-dimensional shock amplitude (a3) for both quasi-static and dynamic loading cases.
Based on the results of this figure, decreasing the size effect parameter, reduces the maximum normalized amplitude of the
micro-beam oscillations in both quasi-static and dynamic loading cases. This is due to the fact that, accounting for couple
stresses increases the bending rigidity of the micro-beam which has been addressed in some previous papers for other types
of loadings [35,36,42]. In MEMS applications, Rahaeifard et al. [42,57] showed that the maximum static deflection under the
certain input voltage may be decreased, if the effect of couple stresses are taken into account. Furthermore, the static pull-in
voltage will also be increased in this manner. It should be noted that the results of Fig. 5 also emphasizes on the fact that the
size effect can usually be ignored for shock excited micro-beams with h=l > 15.
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5.2. The interaction between electrostatic actuation and mechanical shock

Consider the previous silicon micro-beam with material and geometric properties reported in Table 1. Dynamic pull-in
voltage for this micro-beam is calculated as 3.11 V based on the CT, which agrees very well with VDPI ¼ 3:11 V presented
by Younis et al. [14]. This voltage can be evaluated as 3.88 V on the basis of MCST. Fig. 6 depicts the mid-point deflection
time history of this micro-beam under the combined effect of 1000g shock acceleration (a0 ¼ 1000g) and electrostatic actu-
ation in both quasi-static (T ¼ 1 ms) and dynamic (T ¼ 0:1 ms) loading cases. It should be noted that neglecting the couple
stress components may lead to under-estimation of dynamic stability threshold.

Dynamic pull-in voltages for this micro-beam versus the amplitude of shock acceleration in both quasi-static and
dynamic loading cases are plotted in Fig. 7. These values are also compared and validated with the six modes approximations
and FE results (the coupled electrostatic-structural element TRANS126 in commercial ANSYS software) obtained by Younis
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Table 2
The influence of size effect parameter on the ratio of dynamic pull-in voltages calculated by the MCST to those evaluated by the CT
for a micro-system with non-dimensional properties m ¼ 0:3, a2 ¼ 6, a3 ¼ 200;400 and N ¼ 0 in both quasi-static and dynamic
loading cases.

h
l VMCST

DPI =VCT
DPI

Quasi-static loading case (Tnon ¼ 5) Dynamic loading case (Tnon ¼ 0:5)

a3 ¼ 200 a3 ¼ 400 a3 ¼ 200 a3 ¼ 400

0.5 6.68 14.49 7.54 34.05
1 3.36 6.75 3.80 15.72
5 1.14 1.33 1.22 2.24
10 1.04 1.08 1.06 1.33
15 1.02 1.00 1.03 1.15
20 1.00 1.00 1.00 1.08
30 1.00 1.00 1.00 1.00
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et al. [14]. It can be observed from this figure that the present SDOF model can predict the dynamic stability threshold under
high amplitude of shock acceleration closer to the FE results than six modes approximations presented by Younis et al. [14],
especially for dynamic loading case. Furthermore, their FE model and six modes approximations cannot predict dynamic
pull-in voltage for cases with a0 > 2400g for quasi-static and a0 > 2000g for dynamic loading case [14]. This is due to the
fact that Younis et al. [14] pre-multiplied the equation of motion by the denominator of electrostatic forcing term which adds
the effect of higher-order modes. Therefore, it is essential to account for the effects of these higher-order modes in the
Galerkin procedure. It is to be noted that the present approach solves the problem without this pre-multiplication. As
Fig. 7 depicts, using the present SDOF model can remove the abovementioned limitation of previous multi-mode Galerkin
approximations and capture dynamic pull-in instability for every desired loading case. Hence, using present SDOF model
instead of the six modes approximations presented in [14] is suggested due to its lower run time and its ability to capture
the unstable mechanical behavior of micro-systems especially for cases with high amplitudes of shock accelerations. Based
on the results of Fig. 7, increasing in the amplitude of shock acceleration can reduce the dynamic stability threshold. There-
fore, it is very essential to account for the interaction between shock and electrostatic forces before designing MEM devices
even for cases which operate within small ranges of electrostatic forces. This type of dynamic pull-in instability in high-g
shock excited micro-systems has been also reported by Tanner et al. [4] as a strange mode of failure where the stationary
comb fingers contact to the ground plane resulting in electrical short circuits.

The interaction between electrostatic and shock excitations in micro-switches can be utilized for sensing the level of
shock acceleration [14]. This sensing method can have applications in systems which preserve the portable devices upon
impact. The vehicles airbags can be considered as an example of these systems. In this sensing method the micro-switch
can be tuned using applied DC voltage for a special shock acceleration level, in which the movable part of micro-switch col-
lapses toward the substrate underneath it and sets the micro-switch in ON state. Therefore, it is very important to predict the
dynamic stability threshold in these MEM devices accurately.

Table 2 represents the ratio of MCST to CT results for dynamic pull-in voltage in some different size effect parameters h=l.
Based on this table, accounting for the size effect in shock modeling of MEM devices is very essential especially for systems
under high amplitude of shock accelerations. In addition, the size effect is more considerable in dynamic than quasi-static
loading case. It should be noted that the size effect can be usually ignored for cases with h=l > 15 and the ratio of
VMCST

DPI =VCT
DPI is calculated as bMCST

DPI =bCT
DPI

� 1=2
in Table 2.
6. Conclusions

Size-dependent dynamic pull-in analysis of clamped–clamped micro-beams is the main purpose of present paper. The
mathematical model of the problem was prepared using non-linear and size-dependent Euler–Bernoulli beam theory on
the basis of MCST. The non-linear governing equation of motion was derived utilizing Hamilton’s principle and solved
through simple and computationally efficient single mode approximation in Galerkin weighted residual method. The CT pre-
dictions of present model for dynamic pull-in voltage and maximum amplitude of micro-beam oscillations were compared
with available FE and six modes reduced order model results in the literature and an excellent agreement between them was
achieved. It was shown that the proposed model can predict dynamic pull-in voltage for a system under high shock accel-
erations better than previous six modes approximations in comparison to available FE results in the literature. In addition,
our SDOF model could remove the limitation of previous models in capturing dynamic pull-in instability for systems under
enormous shock accelerations. A parametric study was also conducted to illustrate the significant effect of couple stress
components on micro-beam motion. Based on this parametric study, decreasing the size effect parameter (h=l) increases
the bending rigidity of the micro-beam resulting in reducing the maximum normalized amplitude of micro-beam
oscillations and increasing the dynamic stability threshold. Furthermore, the size effect on both dynamic pull-in voltage
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and maximum amplitude of micro-beam oscillations can be usually neglected, when the beam thickness is 15 times or
greater than the material length scale parameter.
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