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An engineering process is an output from a set of combined processes which may be homo-
geneous or heterogeneous. To study the lifetime of such processes, we need a model which
can accommodate the nature of such processes. Single probability models are not capable
of capturing the heterogeneity of nature. However, mixture models of some suitable life-
time distributions, have the potential to highlight such interesting feature. Due to time
and cost constraint, in the most lifetime testing experiments, censoring is an unavoidable
feature of most lifetime data sets. This article deals with the modeling of the heterogeneity
existing in the lifetime processes using the mixture of the inverse Rayleigh distribution,
and the spotlight is the Bayesian inference of the mixture model using non-informative
(the Jeffreys and the uniform) and informative (gamma) priors. We are considering this
particular distribution due to two reasons; the first one is due to its skewed behavior,
i.e. in engineering processes, an engineer suspects that high failure rate in the beginning,
but after continuous inspection, the failure goes down and the second reason is due to
its vast application in many applied fields. A Gibbs sampling algorithm based on adaptive
rejection sampling is designed for the posterior computation. A detailed simulation study is
carried out to investigate the performance of the estimators based on different prior distri-
butions. The posterior risks are evaluated under the squared error, the weighted, the qua-
dratic, the entropy, the modified squared error and the precautionary loss functions.
Posterior risks of the Bayes estimates are compared to explore the effect of prior informa-
tion and loss functions.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Mixture distributions occur in many contexts, especially when a statistical population contains two or more
sub-populations. Mixture densities express complex situations in terms of simpler ones, and are used to provide good
models for certain data sets. These densities can be used to model a statistical population with subpopulations, where
the mixture components are the densities of the subpopulations and the weights represent the proportions of each subpop-
ulation in the overall population. These densities may also be used to model experimental error or contamination, where we
assume that most of the samples measure the desired phenomenon. Sultan et al. [1] investigated the properties of a two-
component mixture of inverse Weibull distributions using a classical approach and the identifiably property of the mixture
model was also discussed. Recently, Kazmi et al. [2] introduced a mixture of the generalized class of distributions where the
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Maxwell distribution was a particular example of their defined class using censored data, and they studied different
properties of the developed mixture under various loss functions.

The Rayleigh distribution is often used in physics-related fields to model processes such as sound and light radiation,
wave heights, and wind speed, as well as in communication theory to describe the hourly median and instantaneous peak
power of received radio signals. It has been used to model the frequency of different wind speeds over a year at wind turbine
sites and the daily average wind speed. In probability and statistics, the Rayleigh distribution is used to study the wind
speed, while it is used as a lifetime model in reliability theory. This distribution also plays an important role in land mobile
radio because it can accurately describe the instantaneous amplitude and power of a multipath fading signal [3]. This dis-
tribution is an important distribution in statistics and operations research. It is applied in areas such as health, agriculture,
biology, and other sciences. Different studies have used the inverse Rayleigh distribution for various purposes. For example,
Soliman and Al-Aboud [4] used Bayesian and classical techniques for parameter estimation based on a set of upper record
values from the Rayleigh distribution. Bayesian estimators have been developed under symmetric (squared error) and asym-
metric (LINEX and general entropy (GE)) loss functions. Howlader et al. [5] used a Bayesian approach to predict the bounds
for Rayleigh and inverse Rayleigh lifetime models. Aslam and Jun [6] designed an acceptance sampling plan from a truncated
life test when the lifetime of an item followed either an inverse Rayleigh or a log–logistic distribution, where multiple items
in a group could be tested simultaneously by a tester. Soliman et al. [7] discussed the problems of Bayesian and non-Bayesian
estimation of an unknown parameter for an inverse Rayleigh distribution based on lower record values. They obtained a
maximum likelihood (ML) estimator of the unknown parameter and Bayesian analysis was addressed using squared error
and zero-one loss functions. The informative prior used to derive these estimators and the predictive intervals were also
addressed with a real life dataset. Later, Rosaiah and Kantam [8] discussed an acceptance sampling plan based on an inverse
Rayleigh model when the life test was truncated at a pre-assigned time. In the support of their results, they obtained and
discussed various properties, such as confidence levels, the ratio of the fixed experimental time to the specified mean life,
the minimum sample size, producer risk, and operating characteristics curves. Dey [9] obtained Bayesian estimates of an
inverse Rayleigh distribution using squared error and LINEX loss functions.

Several types of data are encountered in everyday life, including simple data, grouped data, truncated data, censored data,
and progressively censored data. In the present study, random observations taken from this population are assumed to be
characterized by one of two distinct unknown members of the inverse Rayleigh distribution. Right censoring is applied
and the observations greater than the fixed cut-off censor value, T, are taken as censored observations. The problem of esti-
mating unknown parameters in statistical distributions, especially in the mixture distributions used to study certain phe-
nomenon, is an important problem that is encountered constantly in applied statistics. In the present study, we consider
the estimation of unknown parameters in a mixture of inverse Rayleigh distribution. The aim of this study is to specify a
record by introducing a mixture of inverse Rayleigh distributions when data are censored using a Bayesian approach. A mix-
ture of this type has not been reported previously, to the best of our knowledge.

The remainder of this study is organized as follows: The mixture model and the statistical properties of its different
shapes, hazard rate of mixture, and ML functions are derived in Section 2. The posterior distributions that assume informa-
tive and noninformative priors are given in Section 3. For Bayesian computation, we need to specify the loss function, thus
some loss functions used to derive Bayesian estimators and their respective posterior risks are discussed in Section 4. Lim-
iting expressions are also given in the same section. A detailed simulation study based on Gibbs sampling is presented in
Section 5. In Section 6, a real-life mixture of inverse Rayleigh distribution is considered. Finally, the last section provides
some concluding remarks and proposals for future work.

2. Mixture model and its properties

A finite mixture distribution with k-component densities of specified parametric form and unknown mixing weights (p) is
defined as:
f ðxÞ ¼
Xk

i¼1

pi fiðxÞ; 0 < pi < 1;
Xk

i¼1

pi ¼ 1: ð1Þ
The following inverse Raleigh distribution is assumed for k components of the mixture:
fi xjhið Þ ¼ 2hi

x3 exp
�hi

x2

� �
; i ¼ 1;2; . . . k: ð2Þ
Thus, the mixture model (1) takes the form:
f ðxÞ ¼
Xk

i¼1

p1
2hi

x3 exp
�hi

x2

� �� �
; 0 < pi < 1;

Xk

i¼1

pi ¼ 1:
The corresponding mixture distribution function is:
FðxÞ ¼ pF1ðxÞ þ qF2ðxÞ ¼
Xk

i¼1

pi exp
�hi

x2

� �� �
; 0 < pi < 1;

Xk

i¼1

pi ¼ 1:
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Graphical representations of different selections of parameter’s values for the mixture model are shown in Fig. 1. The mode
and median of the two-component mixture of the inverse Rayleigh model are obtained by solving the following nonlinear
equations with respect to x
Fig.
2h2
1p exp � h1

x2

� �
� 3x2h1p exp � h1

x2

� �
� 3x2h2ð1� pÞ exp � h2

x2

� �
þ 2h2

2ð1� pÞ exp � h2

x2

� �
¼ 0
and
P2

i¼1pi exp �hi
x2

� �� 	
¼ 0:5, where p2 = 1 � p1.

The parameter values for the two-component mixture were selected to demonstrate unimodal and bimodal cases. Table 1
shows clearly that the mode and median exhibit decreasing trends as the proportions of the mixed components increase.

2.1. Reliability and failure rate functions

The survival function (reliability function) of the considered mixture model is given as
RðxÞ ¼ p 1� exp � h1

x2

� �� 	
þ ð1� pÞ 1� exp � h2

x2

� �� 	
. The hazard function is given as:

hðxÞ ¼
2h2
x3 exp

�h2
x2


 �
þ2h2

x3 exp
�h2
x2


 �
p 1�exp �h1

x2


 �n o
þð1�pÞ 1�exp �h2

x2


 �n o, which can be written as (Sultan et al. [1] and references cited therein) h(x) = h1

(x)r(x) + h2(x)(1 � r(x)) and it has the following form of derivative h0ðxÞ ¼ h01ðxÞrðxÞ þ h02ðxÞð1� rðxÞÞ � r0ðxÞ h1ðxÞ � h2ðxÞð Þ2

where i = 1,2; hiðxÞ ¼ fiðxÞ
RiðxÞ

; rðxÞ ¼ 1þ qR2ðxÞ
pR1ðxÞ


 ��1
, and RiðxÞ ¼ 1� exp � hi

x2

� �
.

Lemma 1. limx?0h(x) = 0 and limx?1 h(x) = 0
Proof. Using a power series expansion, we can express hi(x) for i = 1, 2; which is given as hiðxÞ ¼ 2hi

x3 exp
hi
x2


 �
�1


 � ¼ 2

xþhi
2xþ

h2
i

6x3þ...:

.

Hence, limx?0h(x) = 0 and limx?1h(x) = 0. Moreover, limx?0 r(x) = p. Note that qR2ðxÞ
pR1ðxÞ

P 0, hence limx!1
qR2ðxÞ
pR1ðxÞ

– � 1, thus it fol-
lows that jr(x)j <1.

Interpretation of the failure rate curves: Let us assume that x1 ¼min x�1; x
�
2

� �
and x2 ¼max x�1; x

�
2

� �
, where for i ¼ 1;2; x�i

represents the mode of the density function fi(x). From hiðxÞ ¼ fiðxÞ
RiðxÞ, we can see that both fi(x) in the numerator of hi(x)

increases on (0,x1), where the denominator decreases on the same interval. Therefore, h(x) increases on (0,x1). In addition, at
x ?1,h(x) ? 0. The following two cases occur in the interval (x1,1).
(a) (b) (c)

(d) (e) (f)

1. Density function components and their mixtures: (a) (0.4,3,4), (b) (0.6,4,2.5), (c) (0.4,10,2), (d) (0.3,3.5,19), (e) (0.25,1,12), (f) (0.5,10,2).



Table 1
Modes and medians for the two-component mixture of the inverse Rayleigh distribution.

(p,h1,h2) Mode Median (p,h1, h2) Mode Median (p,h1,h2) Mode Median

(0, 3, 4) 1.63299 2.40224 (0.6, 3, 4) 1.49725 2.20684 (0.4, 10, 2) 1.17845 2.42475
(0.1, 3, 4) 1.61056 2.36947 (0.7, 3, 4) 1.47540 2.17481 (0.3, 3.5, 19) 1.69921, 1.82461 4.30867
(0.2, 3, 4) 1.58787 2.33673 (0.8, 3, 4) 1.45419 2.14309 (0.25, 1, 12) 2.67616, 2.82194 3.42954
(0.3, 3, 4) 1.56505 2.30407 (0.9, 3, 4) 1.43375 2.11155 (0.5, 10, 2) 1.19628 2.66691
(0.4, 3, 4) 1.54224 2.27151 (1.0, 3, 4) 1.41421 2.08041 (0.35, 10, 2) 1.17296 2.30763
(0.5, 3, 4) 1.51959 2.23909 (0.6, 4, 2.5) 1.48868 2.19614 (0.3, 1, 2) 1.04082 1.54461
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� Unimodal case: Suppose that x⁄ is the maximum point of the failure rate mixture. When the difference D between h1(x)
and h2(x) on the interval (x1,x⁄) is sufficiently small that the first two terms of h0(x) dominate the third term, then h0(x) > 0
on (x1, x⁄). In summary, the failure rate of the mixture model increases on (0,x⁄) and decreases on (x⁄,1), as
x ?1,h(x) ? 0 (see Fig. 2 (a-b)).
� Bimodal case: The failure rate of the mixture model increases on (0,x⁄), decreases on (x⁄, x⁄⁄⁄), increases on (x⁄⁄⁄,x⁄⁄) and

decreases again on (x⁄⁄,1), and x ? 1,h(x) ? 0 (see Fig. 2 (c-d)).

Identifiability: Using the approach adopted by Sultan et al. [1] based on the idea of [10], let / be a transform associated
with each Fi 2U, which has the domain defined by D/i

with the linear map M:Fi ? /i. If there exists a total ordering (6) of U
such that:

� F1 6 F2, (Fi 2U) implies D/1 # D/2 ;
� For each Fi 2U, (i = 1,2), there exists some s1 2 D/1 ;/1ðsÞ– 0 such that lims!s1 /2ðsÞ=/1ðsÞ ¼ 0 for F1 < F2,

then the class K of all finite mixture distributions is identifiable relative to U.
Using Chandra’s approach, we can prove the following proposition. h
Proposition. The class of all finite mixture distributions is identifiable relative to the inverse Rayleigh distribution.
Proof. It is immediate because the distribution that is considered belongs to one parameter family. h

2.2. Likelihood function

Assume that ‘n’ units from the defined mixture model are used in a lifetime testing experiment with a fixed test
termination time T. After the test has been conducted, it is observed that of n units, r units failed up to the test termination
(a) (b)

(c) (d)

Fig. 2. Hazard function components and their mixtures with parameters: (a) (0.4,3,4), (b) (0.4,3,10), (c) (0.6,1.5,9), (d) (0.45,1.5,8).
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time T whereas the remaining n � r units are still functioning. As described by Mendenhall and Hader [11], in many real-life
situations, only the failed items can be recognized easily as members of subpopulation 1 or subpopulation 2, etc. For exam-
ple, an engineer may categorize a failed electronic object as a member of the first or the second subpopulation based on the
reasons for its failure. Thus, depending on the cause of the failure, ri failures may be in the ith sub-population. Obviously, the

remaining n � r censored objects provide no information about the subpopulation to which they belong and r ¼
Pk

i¼1ri is the
number of uncensored observations. The information about the label, i.e., the cause of failure, can be obtained only after a
failure has occurred. Let us define xij as the failure time of the jth unit from the ith subpopulation, where j = 1,2,3, . . . ,ri,
i = 1,2, 0 < x1j,x2j 6 T. Hence, the likelihood function has the following form:
Lðh;p;xÞ /
Yr1

j¼1

p1f1ðx1jÞ
( ) Yr2

j¼1

p2f2ðx2jÞ
( )

� � �
Yrk

j¼1

pkfkðxkjÞ
( )

fSðTÞgn�r
;

where h ¼ ðh1; . . . ; hkÞ; p ¼ ðp1; . . . ; pkÞ; x ¼ ðx11; x12 . . . ; x1r1 ; x21; x22; . . . ; x2r2 ; . . . ; xk1; xk2; . . . ; xkrk
Þ are the observed failure

times for the non-censored observations. After simplification, the likelihood function becomes:
Lðh;p; xÞ /
XHk

n�r

k1 ;...;kk

n� r

k1; . . . ; kk

� �Yk

l¼1

prlþkl
l hrl

l exp �hl

Xnk

i¼1

1
x2

lj

þ kl

T2

( ) !
:

where Hk
n�r denotes the number of all the k-array sequences (k1, . . . ,kk) of non-negative integers with

Pk
l¼1ki ¼ n� r and

n� r
k1; . . . ; kk

� �
¼ ðn�rÞ!

k1 !;...;kk !
in the expansion of the multinomial {S(T)}n�r, as discussed in Chuan-Chong and Mhee-Meng [12].

For a two-component mixture, the likelihood function can be written as:
Lðh1; h2;pÞ /
Xn�r

k¼0

Xk

m¼0

ð�1Þk
n� r

k

� �
k

m

� �
pr1þkþmqr2þmhr1

1 exp �h1

Xr1

i¼1

1
x2

1j

þ k�m

T2

( ) !
hr2

2 exp �h2

Xr2

i¼1

1
x2

2j

þ m

T2

( ) !
:

ð3Þ
Taking A ¼
Pr1

j¼1
1

x2
1j
þ k�m

T2

� �
and B ¼

Pr2
j¼1

1
x2

2j
þ m

T2

� �
, Eq. (3) can be simplified to:
Lðh1; h2;pÞ /
Xn�r

k¼0

Xk

m¼0

ð�1Þk
n� r

k

� �
k

m

� �
pr1þkþmqr2þmhr1

1 expð�h1AÞhr2
2 expð�h2BÞ:
2.3. ML estimators and variances

This method is very important for estimation in classical statistics and it is also used widely for estimating the parameters
in mixture models. The ML estimates are obtained by differentiating the log of the likelihood with respect to the unknowns
h1, h2, p and then solving the resulting nonlinear equations, as given in Appendix A. The equations reported in Appendix A
require some iterative methods, such as Newton Raphson. Kazmi et al. [13] also showed that the ML equations of mixture
of Maxwell distributions are not in closed form. The variances of the ML estimates are on the main diagonal of the inverted
information matrix, which is the expectation of the negative Hessian matrix. However, we focus on the Bayesian analysis so
we do not discuss ML estimation further. However, it will be interesting to study different properties of ML estimators for the
proposed mixture.

3. Posterior distribution using the gamma prior (GP, a conjugate prior)

Our distribution belongs to the skewed family and it is also a member of the natural exponential family, thus the natural
conjugate prior for the inverse Rayleigh distribution is a gamma distribution. The GP for the unknown parameter hi is defined
as hi � Gamma(li,di) and pl � Dir(al), where Dir stands for Dirichlet distribution. The joint prior distribution is

gðh;pÞ /
Qk

l¼1h
ll�1
l e�hldl pal�1

l and the joint posterior distribution is:
gðh;pjxÞ /
XHk

n�r

k1 ;...;kk

n� r
k1; . . . ; kk

� �Yk

l¼1

prlþalþkl�1
l hrlþll�1

l exp �hl

Xnk

i¼1

1
x2

lj

þ kl

T2 þ dl

( ) !
:

For a two-component mixture, the joint posterior distribution of h1, h2, p is
gðh1; h2; pjxÞ ¼

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k

m

� �
pr1þkþmþa�1qr2þmþb�1ðh1Þr1þl1�1e�h1fAþd1gðh2Þr2þl2�1e�h2fBþd2g

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r
k

� �
k

m

� �
bðr1 þ k�mþ a; r2 þmþ bÞ Cðr1þl1Þ

ðAþd1Þr1þl1

Cðr2þl2Þ
ðBþd2Þr2þl2

: ð4Þ
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The marginal posterior distribution of h1 is:
gðh1jxÞ ¼

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k

m

� �
bðr1 þ k�mþ a; r2 þmþ bÞðh1Þr1þl1�1e�h1fAþd1g Cðr2þl2Þ

ðBþd2Þr2þl2

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k

m

� �
bðr1 þ k�mþ a; r2 þmþ bÞ Cðr1þl1Þ

ðAþd1Þr1þl1

Cðr2þl2Þ
ðBþd2Þr2þl2

ð5Þ
The marginal posterior distribution of h2 is:
gðh2jxÞ ¼

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k

m

� �
bðr1 þ k�mþ a; r2 þmþ bÞðh2Þr2þl2�1e�h2fBkþd2g Cðr1þl1Þ

ðAþd1Þr1þl1

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k

m

� �
bðr1 þ k�mþ a; r2 þmþ bÞ Cðr1þl1Þ

ðAþd1Þr1þl1

Cðr2þl2Þ
ðBþd2Þr2þl2

: ð6Þ
Finally, for ‘p’
gðpjxÞ ¼

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k

m

� �
pr1þk�mþa�1qr2þmþb�1 Cðr2þl2Þ

ðBþd2Þr2þl2

Cðr2þl2Þ
ðAþd1Þr1þl1

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k

m

� �
bðr1 þ k�mþ a; r2 þmþ bÞ Cðr1þl1Þ

ðAþd1Þr1þl1

Cðr2þl2Þ
ðBþd2Þr2þl2

ð7Þ
The predictive distribution contains information about independent future random observations given the known
observations. Bansal [14] provided a detailed discussion of the predictive distribution. For details of the posterior predictive
distribution and the credible interval derivation based on GP, see Appendix B.

3.1. Bayesian estimation of the mixture model assuming noninformative priors

Among the techniques that have been proposed for determining uninformative priors, Jeffreys [15] suggested a
method based on the square-root of the Fisher information, which is the most widely used method. Box and Taio
[16] defined a noninformative prior as a prior that provides little information related to the experiment. Later, Geisser
[17] also proposed techniques for noninformative priors. Bernardo and Smith [18] used a similar definition, where they
stated that noninformative priors have a minimal effect on the final inference relative to the data and they regarded
noninformative priors as a mathematical tool. Bernardo [19] argued that a noninformative prior should be regarded
as a reference prior, i.e., a prior that is convenient for use as a standard when analyzing statistical data. The most com-
mon examples of noninformative priors are uniform priors and the Jeffreys priors. Both priors are used only when no
formal prior information is available.

3.1.1. Posterior distribution using uniform prior
The uniform prior for the unknown parameter hi can easily be written as hi � Uniform (0,1), i = 1,2. We assume a priori

that (hi,p), i = 1,2 are independent and we also assume that p � Uniform (0,1). Thus, the joint prior distribution of h1, h2, p is
g(h1,h2, p) / 1. By combining the likelihood function given in (3) and uniform prior information, we obtain the joint posterior
distribution of h1, h2, p as:
gðh1; h2; pjxÞ ¼

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k

m

� �
pr1þkþmqr2þmðh1Þr1 e�h1Aðh2Þr2 e�h2B

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k

m

� �
bðr1 þ k�mþ 1; r2 þmþ 1Þ Cðr1þ1Þ

ðAÞr1þ1
Cðr2þ1Þ
ðBÞr2þ1

; ð8Þ

� � � �

where A ¼

Pr1
j¼1

1
x2

1j
þ k�m

T2 ;B ¼
Pr2

j¼1
1

x2
2j
þ m

T2 . The marginal posterior distribution of h1 is simply the probability distribu-

tion of h1 that ignores other irrelevant information about h2 and p, which is calculated by integrating the joint probability
distribution with respect to other parameters as
gðh1jxÞ ¼

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k

m

� �
bðr1 þ k�mþ 1; r2 þmþ 1Þ Cðr2þ1Þ

ðBÞr2þ1 ðh1Þr1 e�h1A

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k
m

� �
bðr1 þ k�mþ 1; r2 þmþ 1Þ Cðr2þ1Þ

ðAÞr1þ1
Cðr2þ1Þ
ðBÞr2þ1

: ð9Þ
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Similarly, the marginal posterior distribution of h2 is obtained as
gðh2jxÞ ¼

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k

m
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bðr1 þ k�mþ 1; r2 þmþ 1Þ Cðr1þ1Þ

ðAÞr1þ1 ðh2Þr2 e�h2B
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ðAÞr1þ1
Cðr2þ1Þ
ðBÞr2þ1

: ð10Þ
For the mixing proportion ‘p’, we have:
gðpjxÞ ¼

Pn�r
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k

m
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pr1þk�mqr2þm Cðr1þ1Þ
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Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k
m

� �
bðr1 þ k�mþ 1; r2 þmþ 1Þ Cðr1þ1Þ

ðAÞr1þ1
Cðr2þ1Þ
ðBÞr2þ1

: ð11Þ
3.1.2. Posterior distribution using the Jeffreys prior
Jeffreys [15] proposed a formal rule for obtaining a noninformative prior, as follows: if h is a k-vector valued parameter,

gðhÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet IðhÞj

p
, where I(h) is a k � k Fisher’s (information) matrix, in which the (i,j)th element is

�E @2 log Lðh=xÞ
@hi@hj

h i
; i; j ¼ 1;2; . . . ; k. Fisher’s information matrix is not related directly to the notation of the lack of information.

The relationship is derived from the role of Fisher’s matrix in asymptotic theory. The Jeffreys prior is based on Fisher’s infor-
mation matrix, which often leads to a family of improper priors. The Jeffreys prior for the unknown parameter hi can easily be
calculated as gðhiÞ / 1

hi
. We assume that (hi,p),i = 1,2, are a priori independent and we also assume that p � Uniform (0,1).

Thus, the joint prior distribution of h1, h2, p is gðh1; h2; pÞ / 1
h1h2

. The joint posterior of h1, h2, p is as follows:
gðh1; h2; pjxÞ ¼

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k

m

� �
pr1þkþmqr2þmðh1Þr1�1e�h1Aðh2Þr2�1e�h2B

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r
k

� �
k

m

� �
bðr1 þ k�mþ 1; r2 þmþ 1Þ Cðr1Þ

ðAÞr1
Cðr1Þ
ðBÞr2

: ð12Þ
The marginal posterior distributions for the Jeffreys prior using (8) are:
gðh1jxÞ ¼

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k

m

� �
bðr1 þ k�mþ 1; r2 þmþ 1Þðh1Þr1�1e�h1A Cðr2Þ

ðBÞr2

Pn�r
k¼0

Pk
m¼0ð�1Þk
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k

m

� �
bðr1 þ k�mþ 1; r2 þmþ 1Þ Cðr1Þ

ðAÞr1
Cðr2Þ
ðBÞr2

; ð13Þ

gðh2jxÞ ¼
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m¼0ð�1Þk
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m

� �
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ðAÞr1
Cðr2Þ
ðBÞr2

ð14Þ
and
gðpjxÞ ¼

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k

m

� �
pr1þk�mqr2þm Cðr2Þ

ðBÞr2
Cðr1Þ
ðAÞr1
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Cðr2Þ
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: ð15Þ
4. Bayesian estimation under different loss functions

For the evaluation of Bayes estimators and their respective posterior risks, we need to specify a loss function. The selec-
tion of a loss function is a difficult task, and its choice is often made for the reasons of mathematical convenience without any
particular decision problem of current interest except cost effect. Since in the risk analysis, both the potentiality of an unde-
sired event and its consequences are investigated. This potentiality is usually measured by either a probability or a failure
rate. The Bayesian approach is widely applied to estimate this failure rate. When dealing with disastrous consequences, it
can be worse to underestimate the potentiality of an event rather than to overestimate it. This is important when the risk
level is the basis of a risk-reducing initiative, either by reducing the potentiality or the consequences. An erroneously low
estimate of the risk level can lead to the lack of necessary steps to reduce the risk level. Thus, it is unreasonable to use a loss
function that allows the estimation of a failure probability of zero. A positive loss at the origin allows the estimation of zero
and, in a risk analysis, estimating a zero failure probability simply means that no risk is anticipated [20]. This section



522 S. Ali / Applied Mathematical Modelling 39 (2015) 515–530
presents the derivation of different loss functions for the posterior distributions. Six different loss functions are used to
obtain the Bayesian estimators and their respective posterior risks, i.e., the squared error loss function (SELF), weighted
squared error loss function (WSELF), quadratic loss function (QLF), entropy loss function (ELF), modified squared error loss
function (MSELF), and the precautionary loss function (PLF).

The SELF is the most commonly used loss function and it was proposed to develop the least squares theory. It is defined as

L1 = L(h, d) = (h � d)2. The WSELF is L2 ¼ Lðh; dÞ ¼ ðh�dÞ2
h and the QLF is L3 = L(h, d) = (1 � d/h)2. In many practical applications, it

appears to be more reasonable to express the loss in terms of the ratio h
_

=h. Thus, the entropy loss allows the explicit esti-
mation of the natural parameter, which is the canonical form of the exponential family (which makes it suitable because the
inverse Rayleigh distribution belongs to this family). Calabria and Pulcini [21] defined the generalized ELF as L4 = L(h,
d) = b[(d/h)c � c log(d/h) � 1],c – 0, which is a valid alternative to the modified linex loss function. For a special case of
entropy loss function where c = 1, we have L4 = L(h, d) = [d/h � log(d/h) � 1]. Norstrom [20] introduced an alternative asym-
metric PLF and also presented a general class of precautionary loss functions as a special case, which is defined as
L5 = L(h,d) = (h � d)2/d. According to Norstrom [20], this loss function approaches infinitely close to the origin to prevent
underestimation, thereby yielding conservative estimators, especially when underestimation may lead to serious results.
Thus, using nonsymmetric loss functions, we can handle cases where it is more damaging to miss the target on one side than

the other. The MSELF was introduced by Degroot [22] and it is defined as: L6 ¼ Lðh; dÞ ¼ h�d
d

� �2
. These loss functions have also

been studied for different purposes. Recently, Ali et al. [23] used these loss functions for Lindley distribution parameter esti-
mation. Fig. 3 shows graphical presentation of these loss functions.

The mathematical expectation of each parameter with respect to its marginal distribution gives the Bayesian estimator of
that parameter (we can find the posterior risk of the respective parameter in a similar manner). Table 2 shows the Bayes
estimators and their respective posterior risks under different loss functions.

4.1. Bayes estimators using GP for SELF

The Bayes estimator and the respective posterior variance under different loss functions can be obtained easily using
Eqs. (5)–(7). These estimators are simply obtained by multiplying the respective parameter by its marginal density and
integrating, i.e., EðhijxÞ ¼

R1
0 higðhijxÞdhi, where g(hijx) is the respective marginal distribution. The following is the Bayesian

estimator of h1
SELF
PLF

WSELF

MSELF

QLF

ELF

5 10 15 20
d
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20

25

30

35

LF

Fig. 3. Effects of the estimates of h on decision d using h = 15.

Table 2
Bayesian estimators and posterior risks under different loss functions.

Loss function Bayesian estimator Posterior risk

SELF E(hjx) E(h2jx) � (E(hjx))2

WSELF 1
Eðh�1 jxÞ EðhjxÞ � 1

Eðh�1 jxÞ

QLF Eðh�1 jxÞ
Eðh�2 jxÞ 1� ½Eðh

�1 jxÞ�2

Eðh�2 jxÞ

ELF (E(h�1jx))�1 E(log hjx) + log(E(h�1jx))
MSELF Eðh2 jxÞ

EðhjxÞ
VarðhjxÞ
Eðh2 jxÞ

PLF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðh2jxÞ

q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðh2jxÞ

q
� EðhjxÞ

� �
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k
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bðr1 þ k�mþ a; r2 þmþ bÞ C r1þl1ð Þ
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Cðr2þl2Þ
ðBþd2Þr2þl2
and for h2, we have
d�2 ¼
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k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k
m

� �
bðr1 þ k�mþ a; r2 þmþ bÞ C r1þl1ð Þ

ðAþd1Þr1þl1

Cðr2þl2þ1Þ
ðBþd2Þr2þl2þ1

Pn�r
k¼0

Pk
m¼0ð�1Þk

n� r

k

� �
k

m

� �
bðr1 þ k�mþ a; r2 þmþ bÞ Cðr1þl1Þ
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Cðr2þl2Þ
ðBþd2Þr2þl2
Finally, for the mixing proportion parameter, the Bayesian estimator is as follows.
d�3 ¼
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m¼0ð�1Þk

n� r
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m

� �
bðr1 þ k�mþ aþ 1; r2 þmþ bÞ Cðr1þl1Þ
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Cðr2þl2Þ
ðBþd2Þr2þl2
4.2. Posterior risk/variances for SELF

To determine the posterior risk/variance, we need to find Eðh2
i jxÞ ¼

R1
0 h2

i gðhijxÞdhi with the addition of E(hijx). The poster-
ior risk under SELF is simply the variance. For h1, the risk estimator is
Vðh1jxÞ ¼

Pn�r
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m¼0
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For h2, the risk estimator is
Vðh2jxÞ ¼

Pn�r
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Finally, for p we have:
VðpjxÞ ¼
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For reasons of space, we do not present the expressions for the Bayesian estimators and the respective posterior risks using
other loss functions for noninformative and informative priors.

4.3. Limiting expressions for the complete dataset

Suppose that T ?1, where all of the observations included in our analysis are uncensored, therefore r tends to n, n1 + n2

tends to n, r1 tends to unknown n1, and r2 tends to unknown n2. As a result, the amount of information in the sample is
increased, thereby reduces the risks of the estimates. Thus, we can easily obtain the limiting expressions for GP and ML.
The expressions of the complete Bayesian estimates and the risks for the samples are simplified in Table 3.

Note that in Table 3, A ¼
Pn1

j¼1
1

x2
1j

and B ¼
Pn2

j¼1
1

x2
2j
.

Table 3
Limiting expressions for the BE (GP) and ML estimators as T ?1.

Parameter BE (GP) Risk (GP) ML Variance

h1
n1þl1
Aþd1

n1þl1

ðAþd1Þ2
n1
A h

_
2
1

n1

h2
n2þl2
Bþd2

n2þl2

ðBþd2Þ2
n2
B h

_
2
2

n2

p n1þa
nþaþb

ðn1þaÞðn2þbÞ
ðnþaþbÞ2ðnþaþbþ1Þ

n1
n

n1ð1�pÞ2þn2p2

p2ð1�pÞ2
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5. Simulation study

A simulation study was conducted to determine the Bayesian estimates and the respective posterior risks, and to high-
light the effects of small and large sample sizes, different censoring rates, loss functions, and prior distributions. Samples of
n = 25, 50, 100, 500, and 1000 were generated from the two-component mixture of the inverse Rayleigh distribution with the
parameters: T = 5,h1 = 3,h2 = 4, and p 2 (0.40,0.60). Probabilistic mixing was used to generate the mixture data. To generate
observations from the mixture model, a random number ‘u’ was generated from the uniform distribution on (0, 1). If ‘u < p’,
the observation was taken randomly from F1 (the inverse Rayleigh distribution with parameter h1) and if ‘u > p’, the obser-
vation was taken randomly from F2 (the inverse Rayleigh distribution with parameter h2). The hyperparameters for the GP
were l1 = 6,d1 = 2,l2 = 8,d2 = 2. Right censoring was performed using a fixed censoring time T. All observations that exceeded
T were treated as censored. Different fixed censoring times T were used to evaluate the effect of the censoring time on the
estimates. For each of the combinations of parameters, sample sizes, and censoring rates, we generated 10,000 samples using
the statistical package R. In each case, only failures were recognized as members of subpopulation-1 or subpopulation-2 of
the mixture. For each of the 10,000 samples, the Bayesian estimates and posterior risks were computed using the package R,
and Tables 4–9 show the averages of the 10,000 estimates. A Gibbs sampling algorithm was designed to compute the
posterior summary. The joint posterior distribution is
Table 4
Bayesia

Prior

n
25

50

100

500

1000

n
25

50

100

500

1000
gðh;pjxÞ /
Yr1

j¼1

p1f1ðx1jÞ
( ) Yr2

j¼1

p2f2ðx2jÞ
( )

fSðTÞgn�r
Y2

l¼1

hll�1
l e�hldl pal�1

l :
The conditional distribution for the mixing proportion component can be written as follows:

gðpjh;xÞ / pr1þa1�1
1 pr2þa2�1

2

n o
fSðTÞgn�r . This conditional does not have a standard form, thus adaptive rejection sampling

(ARS) is useful in this situation. However, ARS requires that we prove that it is a log-concave function with respect to the
mixing proportion. Taking the second derivative of the logarithmic conditional distribution with respect to ‘‘p,’’ we can show
that it is strictly negative and hence the conditional distribution is log-concave in the mixing proportion p, so the parameter
p can be generated using the ARS procedure.

Remark. As a special case when r = n (complete data case), the conditional distribution of the mixing proportion is a
standard beta distribution and random numbers from this distribution can be generated directly using a standard beta
random number generator instead of the ARS technique.

Similarly, by ignoring the terms that are not related to h1, we can find the conditional density as follows.
gðh1jh2;p;xÞ / ðh1Þr1þl1�1e
�h1

Xr1

j¼1

1
x2
1j

þd1

( )
þðn�rÞ ln SðTÞ
n estimates and posterior risk using SELF (UP: uniform prior; JP: Jeffreys prior; GP: gamma prior).

UP JP GP

E(h1jx) E(h2jx) E(pjx) E(h1jx) E(h2jx) E(pjx) E(h1jx) E(h2 jx) E(pjx)

p = 0.6
3.69887
(0.769719)

4.09724
(2.2489)

0.692305
(0.009074)

3.60181
(0.732527)

3.5674
(1.98766)

0.695204
(0.008998)

2.98707
(0.445278)

4.44854
(1.161750)

0.59544
(0.007173)

3.03982
(0.321328)

4.21958
(0.906406)

0.588797
(0.005378)

2.94333
(0.311907)

4.01657
(0.867389)

0.58938
(0.005305)

2.95376
(0.257657)

4.21059
(0.603972)

0.591293
(0.004381)

3.19252
(0.176785)

4.04239
(0.434158)

0.599075
(0.002726)

3.14179
(0.17417)

3.94063
(0.428438)

0.599381
(0.002727)

3.1128
(0.155332)

4.13650
(0.417463)

0.596302
(0.002451)

3.02118
(0.032189)

4.05135
(0.088993)

0.599843
(0.000561)

3.01144
(0.0320928)

4.0306
(0.0885852)

0.599905
(0.000560)

3.01124
(0.031409)

4.09237
(0.084803)

0.599912
(0.000547)

3.02118
(0.016074)

4.04097
(0.044407)

0.600082
(0.000281)

3.0115
(0.016049)

4.03059
(0.044305)

0.600113
(0.000280)

3.0114
(0.015877)

4.02996
(0.043338)

0.600115
(0.000278)

p = 0.4
3.47587
(1.27856)

5.36504
(1.87148)

0.390375
(0.010355)

3.12999
(1.16533)

5.05368
(1.76963)

0.38849
(0.010324)

3.38765
(0.454278)

4.14854
(1.101705)

0.365443
(0.009137)

3.43305
(0.623137)

4.39402
(0.658448)

0.399853
(0.005388)

3.26188
(0.595239)

4.25811
(0.639389)

0.399111
(0.005384)

3.25379
(0.276557)

4.11509
(0.639702)

0.391923
(0.004918)

3.1008
(0.257177)

4.32929
(0.321842)

0.397987
(0.002702)

3.02202
(0.251204)

4.26089
(0.317022)

0.397663
(0.002700)

3.21182
(0.175323)

4.10651
(0.447613)

0.396320
(0.002561)

3.02576
(0.052807)

4.01902
(0.056708)

0.400545
(0.000556)

3.01026
(0.049289)

4.00606
(0.056535)

0.400481
(0.000556)

3.15124
(0.032405)

4.07273
(0.084913)

0.399129
(0.000616)

3.01446
(0.024661)

4.01621
(0.028323)

0.399809
(0.000278)

3.00671
(0.024607)

4.00973
(0.044305)

0.399777
(0.000279)

3.08145
(0.016807)

4.03986
(0.043638)

0.400151
(0.000287)



Table 5
Bayesian estimates and posterior risk using WSELF (UP: uniform prior; JP: Jeffreys prior; GP: gamma prior).

Prior UP JP GP

E(h1jx) E(h2jx) E(pjx) E(h1jx) E(h2jx) E(pjx) E(h1jx) E(h2jx) E(pjx)

n p = 0.6
25 3.48972

(0.209152)
3.5414
(0.555842)

0.677977
(0.014328)

3.30577
(0.209576)

3.00174
(0.565668)

0.681049
(0.014155)

2.83755
(0.149518)

4.18629
(0.262224)

0.582648
(0.012793)

50 2.93382
(0.105999)

4.00358
(0.215998)

0.579249
(0.009549)

2.83704
(0.106290)

3.7993
(0.217271)

0.579835
(0.009545)

2.86636
(0.087400)

3.85956
(0.151028)

0.58361
(0.007682)

100 3.13707
(0.055451)

3.93471
(0.107679)

0.594419
(0.004656)

3.08628
(0.055515)

3.83266
(0.107973)

0.594727
(0.004654)

3.06285
(0.049955)

4.23851
(0.096484)

0.592108
(0.004195)

500 3.01053
(0.010657)

4.02937
(0.021078)

0.598904
(0.000939)

3.00078
(0.010660)

4.00861
(0.021991)

0.598966
(0.000939)

3.00081
(0.010433)

4.0081
(0.021057)

0.598996
(0.000916)

1000 3.01104
(0.005329)

4.02997
(0.010992)

0.599612
(0.000469)

3.00617
(0.005330)

4.01959
(0.010995)

0.599643
(0.000469)

3.00631
(0.005273)

4.0192
(0.010757)

0.599951
(0.000464)

n p = 0.4
25 3.10487

(0.370996)
5.01313
(0.351911)

0.361514
(0.028861)

2.75397
(0.376024)

4.69993
(0.353752)

0.359602
(0.028881)

2.98575
(0.159411)

4.28619
(0.264245)

0.426548
(0.013723)

50 3.25076
(0.182281)

4.24361
(0.150410)

0.385772
(0.014081)

3.07855
(0.183323)

4.10735
(0.150762)

0.385016
(0.014095)

2.98686
(0.089409)

4.21965
(0.151182)

0.418364
(0.007729)

100 3.01772
(0.083079)

4.25483
(0.074460)

0.391049
(0.006938)

2.93875
(0.083271)

4.18636
(0.074527)

0.390723
(0.006940)

3.03259
(0.051956)

4.18354
(0.106844)

0.402918
(0.004285)

500 3.00939
(0.016372)

4.0049
(0.014145)

0.399151
(0.001394)

2.99388
(0.016379)

3.99194
(0.014117)

0.399087
(0.001395)

3.02801
(0.010443)

4.15018
(0.021175)

0.401996
(0.000967)

1000 3.00628
(0.008182)

4.00916
(0.007053)

0.399111
(0.000696)

3.00617
(0.008178)

4.01959
(0.007050)

0.399079
(0.000696)

3.03601
(0.005372)

4.10129
(0.010689)

0.409953
(0.000478)

Table 6
Bayesian estimates and posterior risk using ELF (UP: uniform prior; JP: Jeffreys prior; GP: gamma prior).

Prior UP JP GP

E(h1jx) E(h2jx) E(pjx) E(h1jx) E(h2jx) E(pjx) E(h1jx) E(h2jx) E(pjx)

n p = 0.6
25 3.27936

(0.195322)
3.97763
(0.543212)

0.662249
(0.014310)

3.28782
(0.189576)

3.92634
(0.542686)

0.665506
(0.014148)

3.23892
(0.184342)

4.07763
(0.534221)

0.652298
(0.014130)

50 3.18751
(0.103978)

3.98629
(0.207854)

0.569258
(0.009494)

3.17342
(0.101200)

3.98059
(0.207712)

0.569847
(0.009445)

3.18719
(0.101108)

4.06796
(0.207654)

0.569485
(0.009442)

100 3.08154
(0.053249)

3.98674
(0.106481)

0.589655
(0.004566)

3.03068
(0.053215)

3.97438
(0.106173)

0.589965
(0.004554)

3.11584
(0.053209)

4.05764
(0.106099)

0.589534
(0.004546)

500 2.99987
(0.010578)

4.00738
(0.021061)

0.597961
(0.000929)

2.99012
(0.010570)

3.98660
(0.021054)

0.598023
(0.000925)

3.10978
(0.010564)

4.03738
(0.020986)

0.597899
(0.000918)

1000 3.00571
(0.005279)

4.01898
(0.010952)

0.599141
(0.000457)

3.00084
(0.005280)

4.00860
(0.010951)

0.599172
(0.000449)

3.07571
(0.005269)

4.01975
(0.010950)

0.599138
(0.000443)

n p = 0.4
25 2.73049

(0.370869)
4.09259
(0.351879)

0.360031
(0.028798)

2.87396
(0.365968)

4.14182
(0.348962)

0.382119
(0.027889)

3.07409
(0.364879)

4.08256
(0.347895)

0.390031
(0.027798)

50 2.87968
(0.172819)

4.12959
(0.150407)

0.371046
(0.013989)

2.89435
(0.172189)

3.95593
(0.150396)

0.370279
(0.013979)

3.05968
(0.172119)

4.06529
(0.150279)

0.397146
(0.013965)

100 2.93845
(0.083065)

4.18024
(0.074399)

0.383957
(0.006929)

2.85533
(0.082897)

4.11171
(0.074378)

0.392297
(0.006920)

3.03495
(0.082765)

4.04644
(0.074367)

0.398957
(0.006919)

500 2.99301
(0.016289)

3.99079
(0.014138)

0.39775
(0.001382)

2.07749
(0.016194)

3.97782
(0.014127)

0.397686
(0.001379)

3.01381
(0.016181)

4.01979
(0.014118)

0.397541
(0.001380)

1000 2.99810
(0.008159)

4.00210
(0.007047)

0.398411
(0.000685)

2.99034
(0.008149)

3.99562
(0.007040)

0.398379
(0.000686)

3.00981
(0.008139)

4.00187
(0.007038)

0.398741
(0.000675)
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The conditional distribution of h1 does not have a standard form, but its form suggests that a gamma distribution can be used
as a source distribution, i.e., gamma (r1 + l1,/), where / is a parameter that can be obtained by solving the saddle point prob-
lem maxh1 min/ADRð/; h1Þ, where ADR (/,h1) is the acceptance rate, which is defined by the ratio of the conditional distribu-
tion (as given above) relative to the distribution source adopted (gamma in this case), and the logarithm of this ratio is given
by:
ln ADRð/; h1Þ ¼ �h1

Xr1

j¼1

1
x2

1j

þ d1 � /

( )
þ ðn� rÞ ln SðTÞ � ðr1 þ l1Þ ln /



Table 7
Bayesian estimates and posterior risk using PLF (UP: uniform prior; JP: Jeffreys prior; GP: gamma prior).

Prior UP JP GP

E(h1jx) E(h2jx) E(pjx) E(h1jx) E(h2jx) E(pjx) E(h1jx) E(h2jx) E(pjx)

n p = 0.6
25 3.801494

(0.205248)
4.363058
(0.531636)

0.698828
(0.013045)

3.702102
(0.200585)

3.835884
(0.536967)

0.701646
(0.012884)

3.060697
(0.147254)

4.577254
(0.257429)

0.601433
(0.011986)

50 3.092221
(0.104803)

4.325652
(0.212143)

0.593346
(0.009099)

2.995847
(0.105034)

4.123133
(0.213125)

0.593863
(0.008966)

2.997058
(0.086595)

4.085193
(0.149207)

0.594986
(0.007385)

100 3.220088
(0.055137)

4.095739
(0.106697)

0.601347
(0.004543)

3.169387
(0.055194)

3.994622
(0.107983)

0.601652
(0.004541)

3.137651
(0.049703)

4.382886
(0.095772)

0.598354
(0.004104)

500 3.026503
(0.010645)

4.062318
(0.021936)

0.60031
(0.000934)

3.016764
(0.010648)

4.041574
(0.021948)

0.600372
(0.000934)

3.016451
(0.010422)

4.039879
(0.021019)

0.600368
(0.000912)

1000 3.023839
(0.005318)

4.046461
(0.010982)

0.600316
(0.000469)

3.014164
(0.005327)

4.036082
(0.010985)

0.600347
(0.000469)

3.014035
(0.005270)

4.035333
(0.010747)

0.600346
(0.000463)

n p = 0.4
25 3.655165

(0.358590)
5.536708
(0.343336)

0.40342
(0.026091)

3.310916
(0.361853)

5.225831
(0.344302)

0.401557
(0.026135)

3.166095
(0.172454)

4.672574
(0.274592)

0.401334
(0.014968)

50 3.522637
(0.179173)

4.468317
(0.148595)

0.406535
(0.013363)

3.35188
(0.180000)

4.332538
(0.148857)

0.4058
(0.013378)

3.147506
(0.126955)

4.385913
(0.249270)

0.409968
(0.011358)

100 3.141996
(0.082392)

4.366302
(0.074024)

0.401367
(0.006759)

3.0633
(0.082561)

4.29793
(0.074081)

0.401044
(0.006762)

3.137564
(0.097430)

4.288816
(0.205727)

0.398435
(0.009140)

500 3.034474
(0.017427)

4.026069
(0.014097)

0.401239
(0.001387)

3.018436
(0.016352)

4.01311
(0.014100)

0.401175
(0.001387)

3.064751
(0.070425)

4.209789
(0.041109)

0.400386
(0.001102)

1000 3.018548
(0.008175)

4.019735
(0.007049)

0.400157
(0.000696)

3.010799
(0.008178)

4.015251
(0.011042)

0.400125
(0.000696)

3.030345
(0.008261)

4.135334
(0.020774)

0.400364
(0.000936)

Table 8
Bayesian estimates and posterior risk using QSELF (UP: uniform prior; JP: Jeffreys prior; GP: gamma prior).

Prior UP JP GP

E(h1jx) E(h2jx) E(pjx) E(h1jx) E(h2jx) E(pjx) E(h1jx) E(h2jx) E(pjx)

n p = 0.6
25 3.27934

(0.195222)
3.90774
(0.543209)

0.662234
(0.014130)

3.27782
(0.189566)

3.90639
(0.542678)

0.665511
(0.014128)

3.18392
(0.184332)

4.07673
(0.534120)

0.642928
(0.014130)

50 3.19875
(0.103978)

3.97628
(0.207754)

0.569238
(0.009490)

3.19342
(0.101200)

3.98050
(0.207710)

0.569827
(0.009420)

3.17191
(0.101018)

4.06966
(0.207653)

0.639845
(0.009440)

100 3.16154
(0.053249)

3.98762
(0.106294)

0.589675
(0.004560)

3.13068
(0.053213)

3.97483
(0.106170)

0.589865
(0.004545)

3.15184
(0.053204)

4.05746
(0.106069)

0.629354
(0.004543)

500 3.09987
(0.010574)

4.00734
(0.021060)

0.597861
(0.000920)

3.10992
(0.010569)

3.98657
(0.021050)

0.598230
(0.000923)

3.13987
(0.010563)

4.04783
(0.020986)

0.617989
(0.000916)

1000 3.07571
(0.005271)

4.01889
(0.010950)

0.599101
(0.000450)

3.08084
(0.005263)

4.00852
(0.010950)

0.599100
(0.000445)

3.08571
(0.005259)

4.02957
(0.010941)

0.609183
(0.000440)

n p = 0.4
25 3.07349

(0.370861)
4.08295
(0.351869)

0.350301
(0.028788)

3.07396
(0.365965)

4.10182
(0.348892)

0.342191
(0.027789)

3.05490
(0.359879)

4.06165
(0.347885)

0.390021
(0.027788)

50 3.05968
(0.172814)

4.07959
(0.150400)

0.340746
(0.013979)

3.04935
(0.172180)

4.09553
(0.150395)

0.330729
(0.013971)

3.04868
(0.172109)

4.05629
(0.150269)

0.397132
(0.013957)

100 3.03845
(0.083062)

4.06024
(0.074389)

0.333057
(0.006911)

3.05353
(0.082890)

4.08171
(0.074362)

0.329297
(0.006910)

3.03459
(0.082756)

4.04638
(0.074360)

0.398867
(0.006914)

500 3.01993
(0.016280)

4.04979
(0.014136)

0.327175
(0.001380)

3.04749
(0.016184)

4.07782
(0.014120)

0.317866
(0.001369)

3.02318
(0.016171)

4.03997
(0.014108)

0.397540
(0.001370)

1000 3.01998
(0.008155)

4.03210
(0.007045)

0.308141
(0.000680)

3.02934
(0.008146)

4.05629
(0.007038)

0.308397
(0.000676)

3.01981
(0.008129)

4.01087
(0.007028)

0.398701
(0.000655)
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Differentiating ln ADR(/,h1) with respect to /,h1 and by equating the results to zero, the optimal value of the parameter / is
ðr1þl1Þ

h1
, where h1 can be obtained by solving the nonlinear equation:
�
Xr1

j¼1

1
x2

1j

þ d1

( )
þ ðr1 þ l1Þ

h1
þ ðn� rÞ

p exp �h1
T2


 �
SðTÞT2 ¼ 0
Note that for the complete sample, the conditional distribution is a gamma r1 þ l1;
Pn1

j¼1
1

x2
1j
þ d1

� �
. Using the same proce-

dure, we can obtain the conditional distribution of h2. Hence, the final Gibbs sampling algorithm can be written as follows.



Table 9
Bayesian estimates and posterior risk using MSELF (UP: uniform prior; JP: Jeffreys prior; GP: gamma prior).

Prior UP JP GP

E(h1jx) E(h2jx) E(pjx) E(h1jx) E(h2jx) E(pjx) E(h1jx) E(h2jx) E(pjx)

n p = 0.6
25 3.906965

(0.053263)
4.646122
(0.118138)

0.705412
(0.018581)

3.805187
(0.053447)

4.124574
(0.135086)

0.708148
(0.018277)

3.136139
(0.047532)

4.709692
(0.055450)

0.607486
(0.019830)

50 3.145525
(0.033605)

4.43439
(0.048442)

0.59793
(0.015276)

3.049301
(0.034752)

4.232523
(0.051022)

0.59838
(0.015042)

3.040991
(0.028685)

3.963530
(0.036190)

0.598702
(0.012375)

100 3.247894
(0.017049)

4.149792
(0.025881)

0.603628
(0.007538)

3.197226
(0.017339)

4.049354
(0.02685)

0.603932
(0.007533)

3.162700
(0.015778)

4.643948
(0.021732)

0.600413
(0.006846)

500 3.031835
(0.003514)

4.073316
(0.005393)

0.600777
(0.001557)

3.022097
(0.003526)

4.052578
(0.005423)

0.600839
(0.001554)

3.021671
(0.003452)

3.988061
(0.005196)

0.600824
(0.001518)

1000 3.026500
(0.001758)

4.051959
(0.002712)

0.600550
(0.000780)

3.016830
(0.001767)

4.041581
(0.002720)

0.600581
(0.000777)

3.016672
(0.001748)

4.040713
(0.002661)

0.600577
(0.000771)

n p = 0.4
25 3.843709

(0.095699)
5.713869
(0.061049)

0.416901
(0.063626)

3.502300
(0.106305)

5.403846
(0.064800)

0.415064
(0.064026)

2.959030
(0.045318)

5.262803
(0.050461)

0.440750
(0.056727)

50 3.614562
(0.050217)

4.543870
(0.032979)

0.413329
(0.032601)

3.444363
(0.052980)

4.408267
(0.034063)

0.412601
(0.032695)

3.044694
(0.027916)

4.674559
(0.033255)

0.428844
(0.029261)

100 3.183739
(0.026051)

4.403630
(0.016882)

0.404776
(0.016773)

3.105144
(0.026770)

4.335292
(0.017162)

0.404454
(0.016787)

3.065025
(0.017810)

4.479215
(0.024335)

0.400561
(0.016132)

500 3.043213
(0.005735)

4.033130
(0.003499)

0.401934
(0.003454)

3.026634
(0.005410)

4.020172
(0.003510)

0.401870
(0.003455)

2.980636
(0.003450)

4.351460
(0.004791)

0.401647
(0.003843)

1000 3.022642
(0.002707)

4.023263
(0.001753)

0.400505
(0.001736)

3.014894
(0.002715)

4.020780
(0.002748)

0.400473
(0.001743)

2.980088
(0.001830)

4.233064
(0.002552)

0.400577
(0.001790)

Table 10
Bayesian estimates and posterior risk for the real dataset (UP: uniform prior; JP: Jeffreys prior).

Prior UP JP

LF E(h1jx) E(h2jx) E(pjx) E(h1jx) E(h2jx) E(pjx)

SELF 0.183057
(0.00172821)

7.62493 (19.8644) 0.676655
(0.0412756)

0.127617
(0.00102926)

6.13288 (15.0845) 0.60305936
(0.0229137)

PLF 0.187718 (0.009322) 8.831985
(2.41411)

0.706497
(0.059683)

0.131588
(0.0079417)

7.25925
(2.252741)

0.621767 (0.037415)

MSELF 0.192498
(0.0014904)

10.23012
(0.254659)

0.737654
(0.042694)

0.135682
(0.0009442)

8.592491
(0.180251)

0.641055 (0.019272)

QLF 0.185073 (0.001531) 6.96423
(11.86104)

0.626505
(0.043272)

0.107414 (0.009918) 6.25828
(9.980451)

0.613603 (0.020524)

ELF 0.170573 (0.001613) 6.96423 (17.8464) 0.646545
(0.039267)

0.117471 (0.001018) 6.05882
(13.90845)

0.603610 (0.020942)

WSELF 0.180537
(0.0016228)

7.64923 (18.8446) 0.656565
(0.040276)

0.117627 (0.001022) 6.08828 (14.0854) 0.593060 (0.021924)
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Initialize the starting points h0
1; h

0
2 and p0

For j = 1,. . .,N
Generate hj

1 from g h1jh2 ¼ hj�1
2 ; pj�1


 �
.

Generate hj
2 from g h2jh1 ¼ hj

1; p ¼ pj�1

 �

.

Generate pj from g pjh1 ¼ hj
1; h2 ¼ hj

2


 �
.

Based on Tables 4–9, some points are very clear. The first important point that requires attention is that the posterior risk
decreases as we increase the sample size. The second point is related to the comparison of loss functions. In the case of SELF,
the Bayesian estimates are overestimated and the Bayesian estimates become very close to the true values of the parameters
as we increase the sample size (this is not specific to the SELF because it was also verified for all other loss functions). With a
large parameter value, the associated posterior risk has a high value. The second parameter value is overestimated when
using a mixing component probability with a small value (Tables 4–9). There is a direct relationship between the mixing
component probability and the posterior risk, where the posterior risk decreases as we increase the mixing probability.
Kazmi et al. [2] reported the same relationship between the mixing component and the posterior risk for a mixture of the
Maxwell distribution. For the Jeffreys prior, there is a smaller posterior risk compared with its counterpart: the uniform
prior. Using an informative prior (the GP), the posterior risk is smaller than that with the noninformative priors (the uniform
prior and the Jeffreys prior). The MSELF performs the best based on its lower posterior risk value.



Fig. 4. Graphical representation of the original dataset.
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6. Real data application

The following dataset was obtained from Aarset [24] and it represents the lifetimes of 50 devices.

1,7,18,40,45,50,55,86,85,85,85,84,84,84,79,75,72,67,67,63,60,18,11,6,3,2,1,1,0.2,0.1
1,18,86,85,85,83,82,82,67,67,63,47,46,36,32,21,18,12,7,1

Fig. 4 shows a graphical presentation of this dataset, which shows that its behavior approximates the mixture of inverse
Rayleigh distribution.

We used the Kolmogorov Smirnov test and the difference obtained was 0.165421. Thus, this dataset followed the inverse
Rayleigh distribution. Fig. 4 shows clearly that first 30 observations behaved differently compared with the other 20 obser-
vations. Thus, we took n1 = 30 and n2 = 20, and using this information we found p = 0.60. By taking the censoring time T = 70,
the remainder of the information for the mixture setup is as follows.
n1 ¼ 30; n2 ¼ 20; r1 ¼ 20; r2 ¼ 14;
Xr1

j¼1

x�2
1j ¼ 128:4266;

Xr2

j¼1

x�2
2j ¼ 2:039164
We have no prior information about the process, thus we restrict our attention to the noninformative priors. Table 10 shows
that MSELF had the best performance based on its minimum risk value, and the Jeffreys prior had lower posterior risks com-
pared with the uniform prior.

7. Final remarks

In this study, we proposed a mixture of inverse Rayleigh model for lifetime study in engineering processes and we
discussed its properties. Because of the effectiveness of Bayesian analysis, we performed a comprehensive study to address
the problems of selecting priors (comparing informative and noninformative priors) and loss functions (based on the
posterior risk using different asymmetric and symmetric loss functions) for the mixture of the inverse Rayleigh model.
The simulation study obtained some interesting results related to the Bayesian estimates. The posterior risks of the estimates
of the parameters appeared to be quite large with relatively larger values of the parameters, and vice versa. However, the
posterior risk of parameters decreased as the sample size increased in each case. Another interesting finding related to
the posterior risk of the estimates of the parameters is that increasing (decreasing) the proportion of the component in
the mixture reduced (increased) the posterior risk of the estimate of the corresponding parameter. To address the problem
of selecting priors and loss functions, we can categorize the posterior risk under different loss functions in the following
order: MSELF 6 ELF 6 QSELF 6 PLF < WSELF < SELF; and GP < JP < UP. The same pattern was observed for the real-life
application. In the future, this method could be extended by comparing MLE with Bayesian estimates. Moreover, we also
plan to use mixtures with record values and to obtain their predictions.
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Appendix A

The log-likelihood equation of the two-component mixture of the inverse Rayleigh distribution is given as
l ¼ r1 ln pþ r1 ln h1 �
Xr1

j¼1

h1

x2
1j

þ r2 ln qþ r2 ln h2 �
Xr2

j¼1

h2

x2
2j

þ n� rð Þ ln 1� p exp � h1

T2

� �
þ q exp � h2

T2

� �� �� �
:
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The normal equations used to obtain the ML estimates are as follows:
@l
@h1
¼ r1

h1
�
Xr1

j¼1

1
x2

1j

þ ðn� rÞðpT�2 expð�h1T�2ÞÞ
ð1� p expð�h1T�2Þ � q expð�h2T�2ÞÞ

¼ 0;

@l
@p
¼ r1

p
� r2

q
� ðn� rÞðexpð�h1T�2Þ � expð�h2T�2ÞÞ
ð1� p expð�h1T�2Þ � q expð�h2T�2ÞÞ

¼ 0;

@l
@h2
¼ r2

h2
�
Xr2

j¼1

1
x2

2j

þ ðn� rÞðqT�2 expð�h2T�2ÞÞ
ð1� p expð�h1T�2Þ � q expð�h2T�2ÞÞ

¼ 0:
To derive the variance of the likelihood estimates, the partial derivatives used in the Fisher information matrix are as
follows:
@2l

@h2
1

¼ � r1

h2
1

þ ðn� rÞðpT�4 expð�h1T�2Þ � pqT�4 expð�ðh1 þ h2ÞT�2ÞÞ
ð1� p expð�h1T�2Þ � q expð�h2T�2ÞÞ2

@2l

@h2
2

¼ � r1

h2
2

þ ðn� rÞðpqT�4 expð�ðh1 þ h2ÞT�2Þ � qT�4 expð�h2T�2ÞÞ
ð1� p expð�h1T�2Þ � q expð�h2T�2ÞÞ2

@2l
@p2 ¼ �

r1

p2 �
r2

q2 þ
ðn� rÞðexpð�h1T�2Þ � expð�h2T�2ÞÞ2

ð1� p expð�h1T�2Þ � q expð�h2T�2ÞÞ2

@2l
@h1@h2

¼ ðn� rÞðpqT�4 expð�ðh1 þ h2ÞT�2ÞÞ
ð1� p expð�h1T�2Þ � q expð�h2T�2ÞÞ2

@2l
@p@h1

¼ ðn� rÞðT�2 expð�h1T�2Þ � T�2 expð�ðh1 þ h2ÞT�2ÞÞ
ð1� p expð�h1T�2Þ � q expð�h2T�2ÞÞ2

@2l
@p@h2

¼ ðn� rÞðT�2 expð�h2T�2Þ � T�2 expð�ðh1 þ h2ÞT�2ÞÞ
ð1� p expð�h1T�2Þ � q expð�h2T�2ÞÞ2
Appendix B

Predictive distribution using GP
The posterior predictive distribution of a future observation y can be obtained as:

pðyjxÞ ¼
R1

0

R1
0

R 1
0 gðh1; h2; pjxÞpðyjh1; h2; pÞdpdh1dh2, where pðyjh1; h2; pÞ ¼ p 2h1

y3 exp � h1
y2


 �
 �
þ q 2h2

y3 exp � h2
y2


 �
 �
, and g(h1,

h2,pjx) is given in (4). After simplification, we obtain the posterior predictive distribution of the future observation y as
follows:
pðyjxÞ ¼ 2
C

Xn�r

k

Xk

m

ð�1Þk
n� r

k

� �
k

m

� � bðr1 þ k�mþ aþ 1; r2 þmþ bÞ Cðr1þl1þ1Þ

y3 C1þ 1
y2


 �ðr1þl1þ1Þ
Cðr2þl2Þ
ðC2Þðr2þl2 Þ

þbðr1 þ k�mþ a; r2 þmþ bþ 1Þ Cðr2þl2þ1Þ

y3 C2þ 1
y2


 �ðr2þl2þ1Þ
Cðr1þl1Þ
ðC1Þðr1þl1Þ

2
66664

3
77775;

� �� �

where C2 = B + d2 and C1 ¼ Aþ d1C ¼

Pn�r
k

Pk
mð�1Þk n� r

k
k
m

Cðr2þl2Þ
ðC2Þðr2þl2 Þ

Cðr1þl1Þ
C1ð Þðr1þl1 Þ

fbðr1 þ k�mþ aþ 1; r2 þmþ bÞþ

bðr1 þ k�mþ a; r2 þmþ bþ 1Þg. A (1 � a)100% Bayesian interval (L, U) can be obtained by solving the following two
equations

R L
0 pðy=xÞdy ¼ a

2 ¼
R1

U pðy=xÞdy,
which can also be expressed after simplification as:
a
2
¼ 1

C

Xn�r

k¼0

Xk

m¼0

ð�1Þk
n� r

k

� �
k

m

� � bðr1 þ k�mþ aþ 1; r2 þmþ bÞ Cðr1þl1Þ

C1þ 1
L2


 �ðr1þl1 Þ
Cðr2þl2Þ
ðC2Þðr2þl2 Þ

þbðr1 þ k�mþ a; r2 þmþ bþ 1Þ Cðr2þl2Þ

C2þ 1
L2


 �ðr2þl2 Þ
Cðr1þl1Þ
ðC1Þðr1þl1 Þ

2
66664

3
77775
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and
a
2
¼ 1

C

Xn�r

k¼0

Xk

m¼0

ð�1Þk
n� r

k

� �
k

m

� �
bðr1 þ k�mþ aþ 1; r2 þmþ bÞ

C1U2 �1þ 1þ 1
C1U2


 �ðr1þl1þ1Þ
� �

�1

� �
Cðr1þl1Þ

U2 C1þ 1
U2


 �ðr1þl1þ1Þ

Cðr2þl2Þ
ðC2Þðr2þl2Þ

þbðr1 þ k�mþ a; r2 þmþ bþ 1Þ
C2U2 �1þ 1þ 1

C2U2


 �ðr2þl2þ1Þ
� �

�1

� �
Cðr2þl2Þ

U2 C2þ 1
U2


 �ðr2þl2þ1Þ

Cðr1þl1Þ
ðC1Þðr1þl1Þ

2
66666666666666664

3
77777777777777775
These predictive intervals can be used to evaluation the precision of the Bayesian estimates in terms of hyperparameters. If a
trend is observed in terms of the hyper-parameters for the narrower predictive intervals, then a form of objectivity may be
added based on prior information provided by a number of experts.
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