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1. Introduction

The proven vast utility of piezoelectric ceramics as sensor/actuator/transducers in high-tech equipment have drawn the
attention of researchers to understand the crack behavior and mechanics of fracture of such materials. A lot of work has been
done on fracture analysis of piezoelectric material since nineties.

The present paper deals with semi-permeable crack-face boundary condition [1], mathematically, represented as:

D, =D,, Dy(¢"—¢ ) =—to(w" —w),

where D,, ¢ and w, & denote electric displacement component, potential and displacement, electric permitivity of crack
media. The superscripts +, — denote the value of the quantity on upper and lower crack rims, respectively.

Using non-local theory, the behavior of a mode-I crack subjected to a uniform tension loading in piezoelectric materials is
investigated in [2]. The influence of different crack-face boundary conditions on crack energy density for piezoelectric mate-
rial is studied in [3]. The semi-permeable crack problem in a non-local piezoelectric materials is solved in [4]| using Newton
iterative method. The effects of crack size and electric permeability of the crack on electromechanical properties of the
piezoelectric materials are obtained in [5].

A lot of work has been reported on crack problems but very few work on crack arrest problem for piezoelectric materials
using various suitable techniques has been reported. A strip-saturation zone model [6] for impermeable crack in an infinite
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piezoelectric ceramic plate was proposed under the assumption of Dugdale model [7]. They [6] also calculated local and glo-
bal energy release rates for strip-saturation for piezoelectric ceramics plate. A strip-electric saturation model for an imper-
meable crack weakening a piezoelectric material was studied in [8]. The strip-saturation model for piezoelectric ceramic was
further re-examined in [9].

Strip-yield models [10,11] were proposed for longitudinal and transverse crack in an orthotropic piezoelectric strip under
mode-III deformation. A strip-electrical and mechanical yielding model was developed [12] for a mode III interfacial crack
with electrical polarization reaching a saturation limit and shear stress reaching a yield stress along a line segment in front
of the crack. Their work was further extended [13] to crack problem in piezoelectric strip.

A strip-saturation model based on Dugdale-type assumption for electric displacement was proposed to evaluate the elec-
tric field induced stress intensity factor in a piezoelectric medium of limited electrical polarization in [14]. An electrically
dielectric Griffith crack in a piezoelectric layer under in-plane electro-mechanical loads and semi-permeable boundary con-
ditions was proposed in [15]. A strip-yield and saturation model for limited permeable crack situated in a thin interlayer
between two identical piezoelectric materials was analyzed in [16] using Stroh formalism and complex variable technique.

In present paper, for the first time a strip-electroelastic yield model under mode-III condition for a non-centric semi-
permeable crack in an infinitely long and narrow piezoelectric strip is proposed. The present paper is organized as follows:
In Section 2, fundamental formulation of the problem is presented; statement of the problem and mathematical model are
given in Sections 3 and 4, respectively; closed-form analytic expressions for crack sliding displacement (CSD), crack opening
potential drop (COP), field intensity factors (IFs) and energy release rate (ERR) and illustrative case study for BaTiO3 cracked
strip for three cases when saturation zone is bigger, smaller or equal to developed slide-yield zone are derived in Sections 5,
6 and 7, respectively; The last Section 8 gives conclusions of the problem.

2. Fundamental formulation

As are well-known, out-of-plane displacement and in-plane electric field problems may be written as

Ux(xd/az) = 07 u}’(xvyaz) = O and uZ(Xv,YVZ) = W(X./y), (1)

Ex(x.y,2) = Ex(x,y), E,(x,y,2) =E,(x,y) and E;(x,y,z)=0. (2)

Out-of-plane strain component, y,,(i = x,y), and electric field, E;, in term of displacement and electric potential, ¢, may be
expressed as

Vi = Wi, 3)

Ei=—-¢; (4)

respectively, where comma in subscript denotes the partial differentiation with respect to argument following it.
The constitutive relations for stress component, ¢,;, and electric displacement, D; (i = x,y), may be written as

Oz = C4aW;i + €150 ;3 (5)

D; =eisw; — ey, (6)

where c44, €5 and &;; denote elastic, piezoelectric and dielectric constants, respectively.
The governing equations for piezoelectric material under anti-plane deformation and in-plane electric loading are

Caa VW + e15V2p = 0, (7)

615V2W—€11v2¢:0, (8)

92 a2 . . . .
where V2 = &+ (;)? is two-dimensional Laplacian operator.

3. Statement of the problem

An infinitely long transversely isotropic piezoelectric strip occupies the region —h, <y < h; (h; may not be equal to h,) and
|x] < oo in xoy-plane and is thick enough in z-direction to allow anti-plane deformations. The strip is poled along z-direction
and weakened by a mechanically stress free and electrically semi-permeable straight hairline crack, cut along [—a, a] on x-axis.
The crack is oriented parallel to the edges of the strip and situated off center line of the strip. The boundaries of the piezoelec-
tric strip are prescribed uniform constant anti-plane mechanical shear stress, g, = 7o, and in-plane electric displacement,
Dy, = Dy. Consequently, crack opens in self-similar fashion forming a slide-yield and a saturation zones ahead each tip of
the crack. These developed slide-yield and saturation zones occupy the intervals [—b, —al, [a, b] and [—c, —a], [a, c] on x-axis,
respectively. To stop the crack from further opening, the rims of developed slide-yield zone are prescribed cohesive yield point
anti-plane shear stress, 6, = 7,, and rims of developed saturation zone are subjected to in-plane normal cohesive polarization
limit of electric-displacement, D, = D;. Three cases considered are: when
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Case 1. Saturation zone is bigger than slide-yield zone (c > b),

Case II. Saturation zone is smaller than slide-yield zone (c < b),

Case III. Saturation zones and slide-yield zones are of equal length (c = b).
Schematic configuration of the problem is depicted in Fig. 1.

4. Mathematical model

Mathematically, the physical boundary conditions of the problem may be expressed as
(i) on the strip edges y = h; and y = —h,

Ty (X, 1) = Opy2) (X, —h2) = To,  Dya(x, 1) = Dya)(x, —h2) = Do,

where subscript (1) refers to piezoelectric material layer for upper region 0 < y < h; and subscript (2) refers to material in
lower region —h, <y < 0 of the strip.
(ii) boundary conditions on the developed slide- yield and saturation zones are

(@) o0

)(%,07) = O42)(%,07) =15, a<|x| <b,
(b) Dy (x,0"

)= D (xO) D, a< x| <c,

(iii) by principle of superposition, electro-elastic boundary conditions over the crack surfaces including rims of developed
zones along the line y = 0, may be written as

(@) 1) (X,07) = 0,2 (x,07) = —To + Hx — a)T;, 0<x <D,
(b) Dy1)(x,07) = Dy (x,07) = =Do(1 — D;) + H(x —a)D;, 0<x<c,

where D; is electric crack condition parameter (ECCP), introduced in [17]. D; is zero for impermeable condition case, (D;) e
for permeable condition case to be determined for each Cases I, Il and Il in Sections 5, 6, and 7 and for semi-permeable crack,
0 < Dy < (Dy) e+ H(-) denotes Heaviside function.

(iv) electro-elastic continuity conditions along the line y = 0 are defined as

(@) way(x, 0+) =wp)(X,07), 1) (x,07) = 04)(x,07) for |x| > b,
(b) ¢1y(x,07) = d’(z (X7 ™), Dya)(x,07) = Dy (x,07) for x| > c.

Governing Egs. (7) and (8) are solved under above boundary conditions.
Since the problem is symmetric, it is sufficient to consider for region 0 < x < cc.

h,

Fig. 1. Schematic representation of the problem.
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5. Case I: when saturation zone is bigger than slide-yield zone (c > b)

To simplify the mathematical computational, a new potential function, ¥'(x,y), is introduced as

P(x,y) = ¢'(x,y) - (e1s/€11)W (X.), 9)

where superscript I is refer to Case I.
This potential function reduces Egs. (3)-(8) to

0l = Caa)hy + €15\, (10)
D, =—en'V), )
Py =W, (12)
E, = -, — (e1s/€11)W,, (13)
V*w!' =0 and V*¥' =0, (14)
where C4q = Caq + (€25 /€11). (15)
The solutions of Eq. (14) is written using Fourier cosine integral transform as
why () = [ [Aq (&) cosh () + By (£) sinh () cos (x0)d, (16)
iyxy) = [ [Cof®)cosh () + Fiy(©)sinh (0] cos xc)de, (17)

where A (&), B (), Ci(¢) and F;)(¢) (i = 1,2) are arbitrary functions and to be determined using boundary conditions of
the problem.

Expressions for stress, electric-displacement, strain and electric field are obtained using Eqs. (10)-(13) substituting from
Egs. (16) and (17) as

Ol (X,Y) = /0 E[{Caah) (&) + e15Cy (&) } sinh (y¢) + {CaaBgi) (&) + e15F (&) } cosh (y&)] cos (x&)de, (18)
Dyx.y) = —en [ E[C(&)sinh (v2) + Fi (¢)cosh (y2)] cos (xO)dz, (19)
o (63) = [ <A@ sinh () + B (9) cosh ()] cos (). (20)
Ey(x.y) = - /0 [{(ers/€1)Aw (&) + Ciy (&)} sinh (&) + {(e15/€11)Byi) (£) + Fp) (&)} cosh (y¢)] cos (x&)dé. (21)
Applying boundary conditions (i) and (iv) in Egs. (18) and (19), one obtains relations amongst arbitrary functions as
Bu)(&) = —Aqy (&) tanh (hi&), Fu) (&) = —Cyy(&) tanh (hy &), (22)
By (¢) = Ap)(§)tanh (ha€), Fp)(¢) = Cpy(¢) tanh (hy¢), (23)
B1)(&) = Bz)(¢) and F) (&) = F) (£). (24)
Simplifying Eqs. (22)-(24), one obtains
Ap) (&) = —An) (M2 (&) and Cp)(&) = —C)(&)Mi2(8), (25)

where M, (¢) = tanh (hy &) coth (hy¢).
Using Egs. (16)-(19) and electro-elastic boundary conditions (iii) and (iv), two set of dual integral equations are obtained as

€11 /0°c ¢Cay(¢) tanh (hy¢) cos (x8)dé = —fi + DH(x —a), 0<x<c, 26)

/000[1 + Mi2(E){€11C1y (&) + ersAn) (&)} cos (xE)déE =0, ¢ <x< oo, 27)
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where f; = Do(1 —Dy),

and

/0‘ ¢[CasAn) (&) +esCiiy ()] tanh (hy &) cos (xE)dE = To — T:H(x —a), 0<x <D,

/j[l-s—Mn(é)}A (&) cos(x6)dé =0, b<x<oo.

To solve the Egs. (26) and (27) we introduce

Cauy(&) = W/ Vi @ (u)]o(cué)du
Aq (&) = 2b* ! Vu Q) ()] (bué)du
<1>()*mu0 (W)o(bug)

where J,(-) denotes zeroth order Bessel function of first kind.
Consequently by Eq. (31), Eq. (27) is identically satisfied and Eq. (26) leads to

C;i/ {/ ViIJo(cus)Qh (u )du} sin (x¢)d¢ = p(x),

where

px) = ~fi+DH(x-a) /” ¢ [1+Mia(§)

e - 1] cos (xeya
€11 2
changing of order of integration and using Ryzhik an Gradshteyn {[18] (6,671(8))}

d [* VuQ(u)du
dx Ju-o VX2 —u?

The solution of Eq. (35) standardly written as

= p(cx).

2 X [—f; + DsH(bu — a) < [T+ Mia(8)] £ du
O =2 [ [P [T e - costouande|

which on evaluation of right hand side integrals leads to
1
Lodt =YX — 2D cost &
+/t:01<2(x, H)Q, (t)dt = e {fl nDs cos cx}’
where kernel K, (x,t) is
Kz (x.t) \/_t y{y(y/c — 1o (xy)o(ty)dy

Analogously, 1(.) is obtained from the Eqgs. (29) and (30) as

! I f -1
+ Kq(x,6)Q; (t)dt = — —f3cos —,
| Kieogt@de= Y5 | - 2o 1
where f, = €1170 + e1sf1, f3 = €11Ts + €15Ds, and K, (x, t) kernel is defined as
Ki(x,t) = Vxt Oy{X(Y/b) = 1}Jo(xy))o(ty)dy,
y=
with 7(y) = 2tanh (hyy) /{1 + Myz()}.

5.1. Applications

In this section expressions are derived for slide-yield zone length, saturation zone length, IFs, CSD, COP and ERR.

5.1.1. Field intensity factors

Mode-III stress intensity factor, K, and strain intensity factor, K}, at x = b are determined as

Kf, = lim, - { 27(x — b)o—;ym(x,m)} = CuVTh Q) (1),

535

(28)

(29)

(30)

31)

(32)

33)

(34)

(35)

37)

(39)

(40)

(41)
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K}, = lim, {, [27(x — b)yh, ) (X, 0*)} = Vb Qi (1). (42)

Similarly, mode-I electric-displacement intensity factor, K, and electric-field intensity factor, KE, x = ¢ are obtained as

KP = llmx%+{\/27r — o)D), (x,0%) } = enVmc (1), (43)
KE 711mx%+{\/27r X— C)E,, (x.0) } Ve Qb (1). (44)

5.1.2. Size of slide-yield zone and saturation zone
Slide-yield zone length is determined assuming Dugdale’s [7] hypothesis for stress to remain finite at every point of the
strip. Consequently, at the slide-yield zone tip, x = b, Eq. (41) together with Eq. (39) yields following equation to determine b

b T fo — €11CaaRy
afsec <§7f3 ), (45)
where R, = [}, Ki(1,t) @} (t)dt and
K10 = VE [ y(v/b) - W lo(ty)dy. (46)
-

The slide-yield zone length is then obtained from |b — a|.
Analogously, assuming Dugdale hypothesis [7] to be true for electric-displacement to remain finite everywhere in the
strip, at the tip x = ¢, a transcendental equation is obtained to determine c using Eqs. (37) and (43) as

(o T fi —€1Ry
a ¢ (2 D, ) (47)

where R, = [}, K>(1,£)Q}(t)dt and
Ka(1,0) = VE | y{2r/e) = 1oy lo()dy
Y=
The saturation zone length is obtained using |c — a|.

5.1.3. Crack sliding displacement (CSD) and crack opening potential drop (COP)
Relative crack sliding displacement of crack-faces is obtained using

CSD = AW/ (x) = Wiy (x,0") — wh (x,07). (48)
Finding w{;,(x,0") and w{, (x,07) using Egs. (16) and (39) and substituting in Eq. (48), one obtains
AW (x) =2¢/b* —x2 @\ (1), a<x<bh. (49)
Crack opening potential drop (COP) across the developed saturation zone rims is obtained using
COP = A'(x) = 1, (X,07) — {5 (x,0"). (50)
Using Egs. (9), (16), (17), (31), (32), (37), and (49) together with Eq. (50) and simplifying, one obtains
( )—ZVCZ—XZQI( ) — (e1s/€1)AW (X), a<x<c. (51)

5.1.4. Determination of ECCP (D;)
Permeability condition across the crack surfaces yields a equation to determine D,

D)) 1 V2 — X2C44(2Ds cos™! (9) — €11R3) + b® —x2 (€11fs —2fscos™" (&) — €11CaaRy)
r/perm — % .
P DO(\/Cz,szM,e]vaZ fxz)

Note that when the size of saturation zone and slide-yield zone is very small, (D,
crack, 0 < D, < (Dy)

(52)

~ 1 and for the semi-permeable

r) perm

perm*

5.1.5. Energy release rate (ERR)
Energy release rate at crack tip, x = q, is obtained using

G, = 1AW (a) + D;A¢'(a), (33)
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for Case L. Substituting CSD and COP from Egs. (49) and (51) into Eq. (53), one obtains

GL = 2{t, — (e5/€11)Ds}\/ B> — @ @} (1) + 2D,V — a? Qb(1). (54)

5.2. lllustrative case study for Case 1

In this section, a qualitative study is presented for BaTiO3 piezoelectric ceramic and material constants of BaTiO3 piezo-
electric ceramic are given in Table 1 taken from [19].

Length of crack, prescribed electric displacement and mechanical load are taken as 10 mm, 0.02 C/m? and 40 MPa,
respectively.

Variation of electrical loading on COP over saturation zone is shown in Fig. 2. It is observed that COP increases as electric
displacement is increased from 0.01 to 0.02 C/m?. In this figure, a kink point on each of three graphs for applied electric
loading is observed. This kink point is the tip of slide-yield zone and indicates that up to this kink developed saturation zone
is effected both by electrical and mechanical loadings and beyond this point, only electric field effects the saturation zone.

ERR at the crack tip versus prescribed D, for various values of prescribed mechanical load (7o = 30, 35 and 40 MPa) is
plotted in Fig. 3. The results show that ERR decreases linearly as Dy is increased. It indicates that electric displacement always
retards the crack growth. It is also pointed out that as prescribed mechanical load is increased, the value of ERR increases too
but the decreasing trend continues as D, increases.

The effect of h; /a on ERR for centric (when h; = h,) and non-centric (when h; # h,) crack in a piezoelectric strip is drawn
in Fig. 4. This figure discloses the important fact that the effect of applied loads on the crack reduces as upper edge (or lower
edge) of piezoelectric strip is moved away from the crack. Consequently, energy release rate decreases. It is also observed
that ERR is maximum for centric crack as compare to eccentrically located crack for smaller value of h;/a < 3.

Fig. 5 show the variation of ERR versus ECCP (D) for three different electric displacement. It may be noted that as the
permittivity of the crack gap is increased, the ERR drops, as expected. This indicates that ECCP resists the crack growth.

The influence of crack-face boundary conditions on CSD over slide-yield zone is plotted in Fig. 6. From the figure, it is
observed that as we move toward the tip of slide-yield zone, CSD decreases parabolically and becomes zero at x = b, as
expected. Apart from this, it is also observed that CSD is maximum for impermeable and minimum for permeable crack-face
conditions, whereas in case of semi-permeable crack-face boundary condition, CSD lies in between impermeable and perme-
able crack cases. Which implies that the electric field between the crack gaps cannot be ignored. This is observed experimen-
tally also.

5.3. Validation of obtained results for Case I

Results are validated with Shen et al. [12] when in our results D, = 0, b < ¢, h; — oo and h, — oo is substituted in Egs.
(45) and (47), which reduces to the following form of [12]

b T ento+elsDo>
—=sec (5. ) 55
a <2 €175 + e15D, (53)

c_ 7 Do
= sec (TD_S) (56)

6. Case II: when saturation zone is shorter than slide-yield zone (c < b)

For this case, the new potential function ¥"(x,y) is defined as

lIl"(th) = W”(X7y) + (915/C44)¢"(X7y)7 (57)

where superscript Il denotes that the quantities refer to Case IL.
Similar to Case I, substituting Eq. (57) into Egs. (3)-(8), the constitutive equations, gradient equations transform to

ol =cu'', (58)

Dy = e;s ¥, — €14, (59)

Table 1
The material constants of piezoelectric material.

Materials Ca4 (10'° N/m?) es (C/m?) €11 (1071° C/Vm)
BaTiO; 4.4 114 98.7
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Fig. 6. CSD over the slide-yield zone with different crack-face electric boundary conditions for Case I.

and governing equations reduce to
V2¥" = 0 and V?¢" = 0. (63)

General solution of Egs. (63), analogous to Case I, may be written in the form

hxy) = [ [Aue)cosh(y2) + B (©)sinh (v0)] cos (xd, (64)

bi(x,¥) = /O% [Ci(8) cosh (y&) + Fiy (¢) sinh (y¢)] cos (x&)d¢, (65)

where arbitrary functions Ag; (&), B(¢), Ci (&) and F;)(¢) remain the same as in Case |,
With the aid of Egs. (58)-(61) together Egs. (64) and (65), the components of stress, electric displacement, strain and elec-

tric field are determined and written as

afy<i>(x,y) = Cy4 /OOO A (¢) sinh (y&) + Bi) (&) cosh (y&)] cos (x&)dé, (66)
D;,'(i)(x,y) = /OOO ¢[{esAp (&) — €1C (&)} sinh (y€) + {Bg;) (&) — €11F i) (€)} cosh (y¢)], cos (x&)de, (67)
Voo (X Y) = /OC E[{Aw (&) — (e15/caa)Ci) (&)} sinh (V&) + {By (&) — (e15/casa)F (i) (€)} cosh (y&)] cos (x&)de, (68)

0
E;’O-) (x,y) = — /OOc E[C (&) sinh (y&) + Fy) (&) cosh (yé)] cos (x&)de. (69)
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Boundary conditions (iii) and (iv) substituting into Eqs. (57), (64)-(67) and simplifying, following two sets of dual integral
equations are obtained

Cas /ao EAq(¢) tanh (hy&) cos (x&)dE = 1o — TsH(x —a), 0<x <D, (70)
/ 1+ M2 (&) {CasAn (&) — e1sCory (€)} cos (x&)dé =0, b < x < oo, (71)
/ ¢lesAny (&) — €11Cy(€)] tanh (hy &) cos (xé)de = —f; + DH(x —a), 0<x<c, (72)
/ [T+ Mi2(8)]Cay (&) cos (x&)dE =0, ¢ <x < oo (73)
For this case, we introduce A (¢) and Cg;y(¢) in term of new auxiliary functions QY(.) and Q5(.), respectively, as
A= [ Vol euoa (74)
Cod =y ae [ Viok e (75)

Analogous to Case I, substituting Egs. (74) and (75) into Egs. (70)-(73), two Fredholms integral equations of second kind
are obtained to determine QY(.) and QJ(.), as

Q(x / Ky (x, Q" (t)dt = f{ _2 0 cos! i}, (76)
T bx
1
QX))+ [ Ka(x,0)Q5(t)dt = VX {f;;——f cos™ } (77)
Jt=0 C44€11 (04

where f; = caafi — €570, fs = CaaDs — €157Ts.
6.1. Applications

Carrymg the calculation analogous to Case |, stress intensity factor, KJ,, strain intensity factor, K}, electrical displacement
factor, KP, and electric-field intensity factor, K%, for Case II are obtained as

K}, = caaVmbQll (1), (78)
Kj, = Vbl (1), (79)
KP = €1 vy (1), (80)
Ki = VrcQy(1). (81)

The explicit expressions for slide-yield zone and saturation zone size may be obtained using Dugdale hypothesis as in
Case I. The size of slide-yield zone is determined using |b — a|, where b may be determined from the following equation

b T To— C44R3
Z_ 3 82
7= SeC (2 . , (82)
where R; = [} Ki(1,0)Q (t)dt.

Similarly, the explicit expression for the saturation zone size is obtained as

c T fa — €11CaaR4
a” ¢ (2 5 ) (83)

where Ry = .[[1:0 K (1,0)Q(t)dt. The size of saturation zone is then determined using |c — a|.
Crack opening potential drop across the faces of saturation zone is obtained as

A" (x) = D (x,07) — By (x,07) =2v2 —x2Qj(1), a<x<c (84)

Similarly, crack sliding displacement across the slide-yield zone faces is given as



R.R. Bhargava, P.R. Verma/Applied Mathematical Modelling 39 (2015) 531-547 541

AW (x) = Wiy (x,07) = why (x.07) = 2/ b* — 2QI{(1) — (e15/cas)Ad" (1), a<x<b. (85)
The ECCP D, for this case under permeable condition may be written as

_e1sTo + (2/T)fs cos™'(a/c) + €11CaaRy

(Dr)perm = 1 C44D0 (86)
For permeable crack, Dr = (Dy),erm and for semi-permeable crack 0 < Dy < (Dr)perm-
Energy release rate at the crack tip x = g, is calculated using formula
Gl = t,Aw'(a) 4+ D;AG" (a),
(87)

=1, <2\/b2 — 20" (1) — 2(e15/Caa) V2 — a29'2'(1)) +2DV — a2l (1).

6.2. Numerical case study for Case Il

Case study similar to Case I is carried for Case II as well.

Fig. 7 depicts the variation of COP over the saturation zone for a non-centric semi-permeable cut in BaTiO3; piezoelec-
tric strip. Magnitude of COP decreases parabolically and becomes zero at saturation zone tip, as expected. Also the
effect of prescribed electric-displacement (Dy) on COP shows that a slight increase in electric displacement
(Do from 0.01 to 0.02 C/m?) increases the magnitude of COP (although in negative sense).

Fig. 8 shows the variation of ERR versus applied electric displacement (D) for various values of prescribed mechanical
load (7o). It is noted that ERR decreases linearly continuously with increasing the value of Dy. It shows that electric load
retards the crack opening for this case too. However increasing the mechanical loads, the ERR increases but the decreasing
trends with respect to D, of ERR continues, affirming the crack arrest. It is also pointed that ERR for this case is high as com-
pare to the ERR for Case L.

Fig. 9 depicts ERR variation with respect to h;/a for different h,/h; ratio. It is seen that ERR is higher when the crack is
situated on the center line of the strip and when the crack is situated off center line of the strip, the ERR is less with continues
decreasing trend.

The effect of electric displacement on ERR versus electric crack condition parameter is plotted in the Fig. 10. It is observed
that trend of ERR with respect to ECCP is same as in Case I and ERR is higher in impermeable case, D, = 0, as compare to
Case 1.

The effect of semi-permeable crack-face boundary conditions on CSD versus normalized slide-yield zone is shown in
Fig. 11. It is observed that behavior of CSD with respect to slide-yield zone and electric boundary conditions over the
crack-faces is same as in Case L. From the figure, one interesting point is observed that the electric crack-face boundary con-
dition is effecting CSD up to saturation zone tip {(x — a)/a ~ 0.1}. And beyond this point, the effect of crack media on CSD is
negligible.

6.3. Validation of obtained results for Case II
Our results validate with those of Shen et al. [12] by putting h; = h, — o0 and D, = 0.
7. Case III: when saturation and slide-yield zones are of equal length (b = ¢)

For mathematical convenience, two potentials functions ¥" (x,y) and @"(x,y) are introduced as

0 T T T T T T T T T
——"‘——‘
-0.5F _-_-__________-—____-—-——-_--- "”" |
; 1+ .""“ —
© o’
‘O_ ‘.-"‘
=_e_ 15 '-"'.- PLd |
< —=D, = 0.01 C/m?
—D_=0.015 C/m?
2t JpPPTC 0 |
===+ D, = 0.02 C/m?
-2 5.'"-"- 1 1 1 1 1 1 1 I 1
) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

(x-a)/a

Fig. 7. COP profile over saturation zone with different prescribed D, for Case II.
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Fig. 8. Effect of 7, for non-centric crack on ERR with variation in D, for Case II.
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Fig. 9. Variation in ERR with respect to h; /a for different width ratio of strip for Case II.
4 T T T 2
—---Do =0.01 C/m
- 2
3 —D0 =0.015C/m
++++D =0.02 C/m’
E
=
S
= 1
(L)
0 ..-'.,....... -

-1

0.2 0.4
D

r

Fig. 10. Variation of ERR with respect to D, for different D, for Case II.
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Fig. 11. CSD profile over slide-yield zone with different crack medium for Case II.

P (x,y) = w(x,y) + (e15/caa)p" (x,¥)., (88)
?"(x,y) = " (x,y) — (e1s/€11)W"(x,¥). (89)

With the help of Egs. (88) and (89), the Egs. (3)-(8) reduce to
ol = caV, (90)
Dj,” = —611@5’,’, (91)
P = (1/Cas) [c44‘lf’y" - e15¢f§f], (92)
EM— (1/€n) [elsw{'y’ + enqﬂ;'], (93)

and

V2P (x,y) = 0 and V?@"(x,y) = 0. (94)

Superscript Il denotes that the quantities refer to Case III.
General solution of Laplace Eq. (94) may be written as

Wi (x.y) = /O h [A) (&) cosh (y&) + By (¢) sinh (y¢)] cos (x&)dé, (95)

Py(x,y) = /OOo [Cii(¢) cosh (y&) + Fiy (¢) sinh (y¢)] cos (x&)dé. (96)

Substituting Eqs. (95) and (96) into Eqgs. (90)-(93), one obtains desired components of stress, electric displacement, strain,
electric field as

O (X,Y) = Caa /O-oo ¢[Aw(¢) sinh (y¢) 4 By (¢) cosh (y¢)] cos (x&)de, (97)
Dy (%,y) = —€n /: €[C (&) sinh (y¢) + Fp)(€) cosh (y¢)] cos (x&)de, (98)
Vg %,¥) = (1/Caa) /Om Elcaahiy (&) — e1sCpy (&)} sinh (¥E) + {caaByi) (&) — e1sF i) (&)} cosh (y¢)] cos (x&)de, (99)

Eyy(x.y) = (1/€n) /O ) El{e1sAn (&) + €nCp ()} sinh (&) + {e1sB (&) + €11F ) (€)} cosh (y&)] cos (x&)de. (100)
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As in the previous cases, with analogous calculation following two sets of dual integral equations are obtained

c44/ EAq(¢) tanh (hy¢) cos (x¢)dé = 1o — TsH(x —a), 0<x <D, (101)
/ [T+ M12(&)[{CaaA1) (&) — €15Cqy (&)} cos (xE)dE =0, b <x < 0, (102)
€11 /0‘5o ECqy (&) tanh (hy &) cos (x8)dé = —fi + DsH(x —a), 0<x<b, (103)
/m[l + Mu2(&){e1sAn) (€) + €11Cr) (&)} cos (x¢)dE =0, b <x < oo (104)

Introducing A (¢ ) and Cy(¢) for this case as

Any(&) = ]/ Vi Q' (u)]o (bué)du (105)

1 +M12

Cny(&) = - / Vi Q5 ()] (bug)du (106)

[1 + M]z

Substituting these values into Eqs. (101)-(104), one obtains following Fredholm integral equation of second kind to
determine Q'(-) and QY () as

1
. L S
A+ [ Kixofode =2 {ro =1, cos bx}, (107)
o0+ [ Koo =¥ - 2p.cost 2], (108)

where K (x,t) and K,(x,t) are kernels and defined as

Ki(x,t) = Ky (x,t) = Vxt /y :y{ﬂy/b) — 1}Jo(xy)o(ty)dy. (109)

7.1. Applications for Case III

Similar to the Case I and Case II, we calculate mode-III stress and strain intensity factors at the tip x = b as

K,T,,:limxﬂ,ﬁ{ 27(x — b)oly (X, 0+)}:c44\/7rb9’]"(1), (110)
Iq;,:limxﬂ,ﬁ{ 27(x — byl (x,0+)} = Vrb Q' (1). (111)

And mode-I electric-displacement and electric field intensity factors at the tip of saturation zone are obtained as

KP = limxﬂb+{,/2n(x — b)Dyy;, (x, 0*)} = enVrb QY (1), (112)
KE =lim, - { \/27(x — b)Ey( (x, 0*)} = Vb Q(1). (113)

Length of developed slide-yield zone and saturation zone may be calculated from the following expressions

b T To— C44Rs
and
b_ T fi — €11Rs
5= sec <2 D ) (115)

respectively, where Rs = [} K (1,6)Q¥ (t)dt and Rs = [}, K>(1,6)Q5'(¢t)dt.



R.R. Bhargava, P.R. Verma/Applied Mathematical Modelling 39 (2015) 531-547 545

o T T T T
'0.5' ___————————————————— .
s
™ -1 ]
o
= a5 . ==D,=0.01C/m* |
4 et
=D, =0.015 C/m?
2T s+22 D =0.02C/m?
2 5 I I I I ! ! | | |
] 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
(x-a)/a
Fig. 12. Variation in COP over normalized saturation zone with Dy for Case IIL
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Fig. 13. Effect of 7o for non-centric crack on ERR with variation in D, for Case III.

Crack opening potential drop and crack sliding displacement for this case across the saturation and slide-yield zones are

written as
o 2Vbh —x?
AP (x) = ‘1’% (x,0) — (I)I(Izl) (x,07) = e [315911”(1) - 511912"(1)]7 0<x<b, (116)
o 2Vbh —x2
AW = wif (x,07) —wi} (x,07) = === [cas @l (1) + €503/ (1)] . 0<x<b, (117)
and
(Dp)pury = 1 — e15To — (2/T)[e15Ts + CaaDs] cos!(a/b) — ey5CaaRs + C44611R6. (118)
P Ca4Do
Energy release rate at the crack tip, x = a, using Eqgs. (116) and (117) may be written as
G — 1. AwW" () + DAY (a), = 21/ b — a2 K%““ T, +gﬁos) Q")+ (iﬁ T - ?Ds) Q'z"(l)}. (119)
44 11 44 1

7.2. Illustrative study for Case III

For this case, a case study is presented for cracked BaTiOs; piezoelectric strip under out-of-plane mechanical loading

To = 40 MPa and in-plane electric displacement Dy = 0.02 C/m?.
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Fig. 16. CSD versus slide-yield zone with different crack medium for Case III.

Variation in COP over the developed slide-yield/saturation zones is depicted in Fig. 12. From the figure, it is observed that
COP profile shows a similar variation as in Cases I and II. Since both zones are equal so no kink point is observed on the

graphs of COP.

The effect of combined electromechanical loadings on energy release rate is drawn in Fig. 13. From the figure, it is
observed that ERR linearly decreases with increase in Dy. And as the prescribed mechanical loads are increased the ERR also

increases although the decreasing trends continue with respect to Dy.



R.R. Bhargava, P.R. Verma/Applied Mathematical Modelling 39 (2015) 531-547 547

ERR versus h; /a ratio is plotted in Fig. 14. The variation is same as in Cases I and II with width ratio with a difference that
the ERR starts with lower values.

Variation of ERR versus ECCP for different electric displacement is plotted in the Fig. 15. The behavior is same as in Case |
and Case II with ECCP and D, with a difference that the ERR starts with lower values for impermeable case as compare to
Case I and Case 1L

Fig. 16 depicts the behavior of CSD over the slide-yield zone for impermeable, semi-permeable and permeable crack. The
behavior of CSD over the slide-yield zone is similar as in Case I and Case II. From Figs. 6, 11 and 16, it is observed that CSD is
maximum for Case Il and minimum for Case III, while for semi-permeable case it lies in between.

7.3. Validation of results for Case Il

For this case also the results match with those of Shen et al. [12] by putting b = ¢, also D, = 0, h; — co and h, — oo.

8. Conclusions

e An electrical and mechanical yielding model is proposed for semi-permeable non-centric crack and solved using Fourier
integral transform technique. The cases considered are: when saturation zone is bigger, smaller and equal to slide-yield
zone.

e A comparison between ERR for Cases I, I and III concludes that crack opens more for case when slide-yield zone is bigger
than saturation zone followed by saturation zone bigger than slide-yield zone. And it will be minimum when both
saturation and slide-yield zones are equal. It is also noted that ERR is low for non-symmetrically located crack
vis-a-vis centrically located crack.

e It is noted that the crack-sliding displacement strongly depends on crack-face boundary conditions. As the permittivity of
the medium inside the crack increases the relative crack sliding decreases.

o Energy release rate also depends on permittivity of the crack media. As permittivity of the crack media increases the ERR
decreases, indicates the less crack growth for high value of ECCP.

e Finally, numerical case study affirms that considered crack model is capable to crack arrest for non-centric case semi-
permeable crack conditions under small-scale mechanical yielding and electric yielding.
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