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Approximate solutions are sometimes very convenient and useful in engineering practices
if the analytical solution is in a complicated form and difficult to evaluate accurately. This
study develops four different approximate solutions for the problem of contaminant
transport in fractured media presented in Tang et al. (1981) [1]. Their problem was solved
analytically and the solutions of concentration distributions in the fracture and the rock
expressed in infinite integrals had to rely on numerical approaches to obtain the results.
The approximate solutions we develop herein include small-time solution, large-time solu-
tion, low-order approximate solution and high-order one based on the Padé approximation
technique. The small-time solution gives very accurate concentrations at early times while
the large-time solution yields excellent predictions at late times, as compared to Tang
et al.’s solution (Tang et al., 1981) [1]. In contrast, the solution based on low-order Padé
approximation with polynomials of degree one in the numerator and degree two in the
denominator gives fairly good predictions over the entire time domain, especially in the
intermediate period as compared with those of the small-time and large-time solutions.
In addition, the solution based on high-order Padé approximation with polynomials of
degree two in the numerator and degree three in the denominator is also developed and
its predicted concentrations are also compared with Tang et al.’s solution (Tang et al.,
1981) [1]. These results reveal that the Padé approximation has an advantage of being
capable of producing more accurate results than the relationships of SPLT and LPST in
the intermediate and late time periods.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Fracture–matrix interactions can significantly affect contaminant transport in fractured porous media and rock matrix. In
the past several decades, many attempts had been made at developing analytical models based on the advection–dispersion
equation for investigating the contaminants migration and fate in fractured media. The solutions of the model commonly
solved by the Laplace transform technique were used to predict the concentration distributions of the contaminants in
the fracture–matrix systems. Due to complexity, some Laplace-domain solutions are difficult to invert to real time domain
analytically. Moreover, a few time-domain solutions expressed in terms of infinite integrals or double integrals with com-
plicated integrands are rather arduous to evaluate accurately (e.g., [1–5]). The first analytical treatment in a fractured media
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may be attributed to Tang et al. [1], who presented analytical solutions in a single fracture imbedded in infinite matrix by
taking into account advection, dispersion, molecular diffusion, adsorption and radioactive decay. The effect of longitudinal
dispersion on contaminant penetration distances along fracture and into rock matrix was discussed and compared. Their
solution was extended by Sudicky and Frind [2] to account for the presence of adjacent parallel fractures. Their solutions
for the fracture and rock matrix were, however, expressed in terms of an infinite integral or a double integral with a
complicated integrand which relies on numerical integration to obtain the results. Note that Davis and Johnston [4] gave
a comment on the errors in the analytical expressions developed by Sudicky and Frind [2] and presented the correct
solutions for the concentration in the porous matrix.

To develop the approximate solutions, Yeh and Chang [6] mentioned three different approaches including the approxi-
mations to the governing equation, to the Laplace domain solution, and to the time domain solution. The use of perturbation
method for deriving the approximate solution allows hard problems in terms of the mathematical model to be solved by
perturbing easier problems as demonstrated by Farlow [7]. Batu and Van Genuchten [8] adopted a singular perturbation
method to solve the Boussinesq equation for a constant injection into a radial aquifer. Moutsopoulos and Tsihrintzis [9]
derived approximate solutions for transient flow through porous media by applying the perturbation technique. The approx-
imate solution derived from the perturbation approach is generally applicable over the entire time domain. In the areas of
groundwater and heat flow, the relationship of large p (Laplace variable) vs. small t (hereinafter referred to as LPST) is com-
monly applied to the Laplace-domain solution to determine the small-time solution while the relationship of small p vs.
large t (hereinafter referred to as SPLT) is employed to develop the large-time solution. Wallach and Parlange [10] applied
the LPST relationship to obtain the small-time solutions for the problem of contaminant transport in a crack/matrix system.
Yeh and Wang [11] presented a short review on the applications of LPST, SPLT, and both to groundwater flow problems for
obtaining the approximate solutions. The methods of series expansion (e.g., [12]) and asymptotic expansion (e.g., [13]) are
also commonly used to find the approximate time-domain solutions. Akin and Counts [14] and Longman [15] presented a
procedure to obtain rational approximations of the inverse Laplace transform by utilizing Taylor series expansion. Heavilin
and Neilson [16] used a rational expression to approximate the Laplace-domain solution for the problem of heat transport in
a stream system. Their solution method can be considered as a simplified approach of Padé approximation.

The objective of this study is to develop four different approximate solutions for ease of computation. They are a
small-time solution, a large-time solution, a low-order Padé approximation solution and a high-order one. The small-time
solution and large-time solution are derived based on the relationships of LPST and SPLT, respectively. Comparisons of
temporal distributions of the dimensionless concentration predicted from the approximate solutions and Tang et al.’s solu-
tion [1] indicate that approximate solutions have good results over some specific time ranges. These approximate solutions
have simpler forms than the analytical solutions and are much easier in evaluating the transient behavior of contaminant
transport with desired accuracy.
2. Problem of contaminant migrating in a fractured medium

2.1. Laplace domain solution of contaminant concentration

Tang et al. [1] considered tritium (3H) transport from an injection well into a thin rigid fracture situated in a saturated
porous rock as shown in Fig. 1. The transport processes considered in their mathematical model included the advection
in the fracture, longitudinal dispersion in the fracture, molecular diffusion from the fracture into the rock matrix, adsorption
and radioactive decay. Certain assumptions were made to allow the model formulated as two coupled, one-dimensional
partial differential equations: one was for the fracture while the other for the rock matrix, which extends both along and
perpendicular to the fracture.
Fig. 1. Schematic representation of the fracture and porous rock matrix.
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The governing equation for the Laplace transformation of solute concentration (�Cf ) in the fracture is expressed as
d2 �Cf

dx2 �
v
D

d�Cf

dx
� R

D
ðpþ kÞ þ h

ffiffiffiffiffiffiffiffiffiffi
RrDr
p

bD

ffiffiffiffiffiffiffiffiffiffiffi
pþ k

p� �
�Cf ¼ 0; ð1Þ

�Cf ð0;pÞ ¼
C0

p
; ð2Þ

�Cf ð1;pÞ ¼ 0; ð3Þ
where p is the Laplace variable; v is the groundwater velocity in the fracture; k is the radioactive decay constant; h is the
porosity of the rock matrix; D the hydrodynamic dispersion coefficient defined as D = aLv + D⁄ with aL the longitudinal dis-
persivity and D⁄ the molecular diffusion coefficient; Dr is the effective micro-pore diffusion coefficient defined as Dr = sD⁄

with the matrix tortuosity s; R and Rr are the retardation factors in the fracture and rock matrix, respectively; C0 is the source
concentration.

The governing equation for the Laplace transformation of solute concentration (�Cr) in the rock matrix is
d2 �Cr

dz2 �
Rr

Dr
ðpþ kÞ�Cr ¼ 0; ð4Þ

�Crðb; pÞ ¼ �Cf ðx; pÞ; ð5Þ

�Crð1;pÞ ¼ 0: ð6Þ
The Laplace domain solutions for the fracture and the rock matrix are expressed, respectively, as [1]
�Cf ðx;pÞ ¼
C0

p
exp mx� x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jðpþ kÞ þ eðpþ kÞ1=2

q� �
; ð7Þ
and
�Crðz; pÞ ¼ �Cf ðx;pÞ exp �ðz� bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrðpþ kÞ

p� �
; ð8Þ
where m = v/2D, j = R/D, jr = Rr/Dr, and e ¼ h
ffiffiffiffiffiffiffiffiffiffi
RrDr
p

=bD.
The time domain solution for the fracture is [1]
Cf

C0
¼ expðmxÞffiffiffiffi

p
p

Z 1

l
exp �n2 � m2x2

4n2 � gx2
� � expð�k1=2YÞerfc Y

2T � k1=2T
� �

þ expðk1=2YÞerfc Y
2T þ k1=2T
� �

8><
>:

9>=
>;dn; ð9Þ
where l ¼ x
ffiffiffiffiffiffiffiffi
j=t

p
=2, g ¼ kj=4n2, Y = m2b2x2A/4n2, A ¼ h

ffiffiffiffiffiffiffiffiffiffi
RrDr
p

=bR, b2 = 4RD/v2, and T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � jx2=4n2

q
. The solution for the

rock-matrix can be written as [1]
Cr

C0
¼ expðmxÞffiffiffiffi

p
p

Z 1

l
exp �n2 � m2x2

4n2 � gx2
� � expð�k1=2Y 0Þerfc Y 0

2T � k1=2T
� �

þ expðk1=2Y 0Þerfc Y 0

2T þ k1=2T
� �

8><
>:

9>=
>;dn; ð10Þ
where Y 0 ¼ Y þ ffiffiffiffiffi
jr
p ðz� bÞ. These two solutions are in terms of infinite integrals with complicated integrands and have to

rely on numerical evaluations.

2.2. Small-time solution of contaminant concentration

In this section the perturbation method and the relationship of LPST are applied to Eq. (1) with considering the pertur-
bation parameter denoted as x which equals h

ffiffiffiffiffiffiffiffiffiffi
RrDr
p

=D. Assume the solution of Eq. (1) can be expanded as following per-
turbation series
�Cf ðx;pÞ ¼ �f 0ðx;pÞ þx�f 1ðx;pÞ þx2�f 2ðx;pÞ þ � � � ð11Þ
Substitute Eq. (11) into Eqs. (1)–(3) and expand the left-hand side (LHS) of the resulting equations in power series of e as,
respectively,
d2

dx2
�f 0 þx�f 1 þ � � �
� �

� 2m
d
dx

�f 0 þx�f 1 þ � � �
� �

� jðpþ kÞ þx
ffiffiffiffiffiffiffiffiffiffiffi
pþ k

p
b

 !
�f 0 þx�f 1 þ � � �
� �

¼ 0; ð12Þ

�f 0ð0;pÞ þx�f 1ð0; pÞ þ � � � ¼ 1=p; ð13Þ
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�f 0ð1;pÞ þx�f 1ð1; pÞ þ � � � ¼ 0: ð14Þ
According to the assumption of perturbation technique that the perturbation parameter is small and the perturbation ser-
ies is rapidly convergent, therefore, the high-order terms in the series are negligible when x is small. The first and the second
terms in the perturbation series lead to the zero-order and first-order perturbations, respectively, when equating terms
multiplied by x0 and x1 in Eqs. (12)–(14) as
d2�f 0

dx2 � 2m
d�f 0

dx
� jðpþ kÞ�f 0 ¼ 0; ð15Þ

�f 0ð0;pÞ ¼ 1=p; ð16Þ

�f 0ð1;pÞ ¼ 0; ð17Þ
and
d2�f 1

dx2 � 2m
d�f 1

dx
� jðpþ kÞ�f 1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
pþ k

p
b

�f 0; ð18Þ

�f 1ð0;pÞ ¼ 0; ð19Þ

�f 1ð1;pÞ ¼ 0: ð20Þ
The Laplace-domain solutions for the unknowns �f 0ðx; pÞ and �f 1ðx; pÞ can be obtained by solving the homogeneous and
non-homogeneous linear second-order ODEs. The zero-order perturbation can be obtained as
�f 0ðx;pÞ ¼
1
p

expðxðm�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðpþ aÞ

p
ÞÞ: ð21Þ
Substituting the zero-order perturbation, Eq. (21), into the RHS in Eq. (18), the non-homogeneous linear second-order
ODEs can be solved by homogeneous solution and particular solution separately. The first-order perturbation can then be
expressed as
�f 1ðx;pÞ ¼
�x

2b
ffiffiffiffi
j
p

ffiffiffiffiffiffiffiffiffiffiffiffi
pþ k
pþ a

s
1
p

expðxðm�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðpþ aÞ

p
ÞÞ; ð22Þ
where a ¼ v2=ð4DRÞ þ k.
Substituting Eqs. (21) and (22) into Eq. (11), the Laplace-domain solution in the fracture can be expressed as
�Cf ðx;pÞ
C0

¼ 1� xx
2b

ffiffiffiffi
j
p

ffiffiffiffiffiffiffiffiffiffiffiffi
pþ k
pþ a

s !
1
p

expðxðm�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðpþ aÞ

p
ÞÞ: ð23Þ
The Taylor series expansion for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ kÞ=ðpþ aÞ

p
in Eq. (23) results in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ kÞ=ðpþ aÞ

p
¼ 1þ ðk� aÞ=2ðpþ aÞ�

ðk� aÞ2=8ðpþ aÞ2 þ � � � and then substituting the series into Eq. (23) yields
�Cf ðx;pÞ
C0

¼ 1
p
� xx

2b
ffiffiffiffi
j
p 1

p
þ r 1

p
� 1

pþ a

� �
� r2

2
1
p
� 1

pþ a
� a
ðpþ aÞ2

 ! ! !
expðxðm�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðpþ aÞ

p
ÞÞ; ð24Þ
where r ¼ ðk� aÞ=2a.
Note that the higher-order terms of p may be negligible when p is large. Consequently, Eq. (24) can be written as
�Cf ðx; PÞ
C0

¼ g1

P
þ g2

P � a

� �
expðxðm�

ffiffiffiffi
j
p

P1=2ÞÞ; ð25Þ
where P = p + a, g1 ¼ xxðr� r2=2Þ=2b
ffiffiffiffi
j
p

, and g2 ¼ 1� g1 � ðxx=2b
ffiffiffiffi
j
p
Þ.

The small-time solution for contaminant concentration in the fracture can then be obtained after taking the inverse
Laplace transform to Eq. (25) with two inverse Laplace transform formulas given in Carslaw and Jaeger [17]
Cf ðx; tÞ
C0

¼ g1 exp
vx
2D

� �
erfc

Rxffiffiffiffiffiffiffiffiffiffiffi
4DRt
p
� �

þ g2

2
expðatÞ

exp ðv�-1Þx
2D

� �
erfc Rx�-1tffiffiffiffiffiffiffiffi

4DRt
p

� �
þ exp ðvþ-1Þx

2D

� �
erfc Rxþ-1tffiffiffiffiffiffiffiffi

4DRt
p

� �
8><
>:

9>=
>;; ð26Þ
where -1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4DRk
p
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Substituting Eq. (25) into Eq. (8) yields the Laplace-domain solution for the rock matrix as
�Cr

C0
¼ g1

P
þ g2

P � a

� �
expðxðm�

ffiffiffiffi
j
p

P1=2ÞÞ exp �ðz� bÞ
ffiffiffiffiffi
jr
p

P � v2

4DR

� �1=2
 !

: ð27Þ
Taking the Taylor series expansion for (P � v2/4DR)1/2 in Eq. (27) and neglecting the second and higher-order terms for
large values of P results in (P � v2/4DR)1/2 � P1/2. Eq. (27) can then be reduced to
�Cr

C0
¼ g1

P
þ g2

P � a

� �
expðvx� fP1=2Þ; ð28Þ
where f ¼ x
ffiffiffiffi
j
p
þ ðz� bÞ ffiffiffiffiffijr

p
.

The small-time solution for the rock matrix can be obtained after taking the inverse Laplace transform to Eq. (28) as
Crðz; tÞ
C0

¼ g1 exp
vx
2D

� �
erfc

f

2
ffiffi
t
p

� �
þ g2

2
expðatÞ

exp vx
2D� f

ffiffiffi
a
p� �

erfc f
2
ffiffi
t
p �

ffiffiffiffiffi
at
p� �

þ exp vx
2Dþ f

ffiffiffi
a
p� �

erfc f
2
ffiffi
t
p þ

ffiffiffiffiffi
at
p� �

8><
>:

9>=
>;: ð29Þ
The small-time solutions of Eqs. (26) and (29) consisted of exponential function and complementary error function have
simpler forms than the solutions expressed in terms of an infinite integral developed by Tang et al. [1] shown in Eqs. (9) and
(10).

2.3. Large-time solution of contaminant concentration

Similarly, the large-time solution can be developed based on the Laplace-domain solution using series expansion and the

SPLT relationship. The Taylor series expansion for ðpþ kÞ1=2 inside the square root of Eq. (7) yields ðpþ kÞ1=2 ¼ k1=2

ð1þ p=2k� p2=8k2 þ � � �Þ subject to the constraint of p < k for ð1þ p=kÞ1=2. Likewise, the third and higher-order terms may
be neglected when p is small. Eq. (7) can be reduced to
�Cf ðx;pÞ
C0

¼ expðmxÞ
exp �x

ffiffiffiffi
j
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ Ak1=2 þ bp
q� �

p
; ð30Þ
where b ¼ 1þ A=2k1=2.
The solution for dimensionless concentration in the fracture can then be obtained by inverting the solution in Eq. (30)

using the formula given in Oberhettinger and Badii [18]. The result is
Cf ðx; tÞ
C0

¼ 1
2

exp
ðv �-2Þx

2D

� �
erfc

bRx�-2tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DRbt

p
 !

þ exp
ðv þ-2Þx

2D

� �
erfc

bRxþ-2tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DRbt

p
 !( )

; ð31Þ
where the lumped parameter -2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4DRðkþ AÞ

p
.

Substituting Eq. (30) into Eq. (8) and neglecting the third and higher-order terms of Taylor series expansion for ðpþ kÞ1=2

inside the square root of Eq. (8) yields the Laplace-domain solution for the rock matrix at late times
�Crðz; pÞ
C0

¼ exp mx� ðz� bÞ
ffiffiffiffiffiffiffiffi
jrk

p� �1
p

exp �x
ffiffiffiffi
j
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ Ak1=2 þ bp
q

� 1
2

ffiffiffiffiffi
jr

k

r
p

 !
: ð32Þ
The large-time solution for contaminant concentration in the rock matrix is subsequently obtained after taking the
inverse Laplace transform to Eq. (32) as
Crðz; tÞ
C0

¼
exp �

ffiffiffiffiffiffiffiffi
jrk
p

ðz� bÞ
� �

2

exp ðv�-1Þx
2D

� �
erfc bRx�-1tffiffiffiffiffiffiffiffiffi

4DRbt
p
� �

þ exp ðvþ-1Þx
2D

� �
erfc bRxþ-1tffiffiffiffiffiffiffiffiffi

4DRbt
p
� �

8>>><
>>>:

9>>>=
>>>;

dðTÞ; ð33Þ
where d(T) is a delayed unit step function and T ¼ t �
ffiffiffiffiffiffiffiffi
jrk
p

ðz� bÞ=2k.
The large-time solutions for both the fracture and rock matrix are simpler than Tang et al.’s solutions [1] and much easier

to evaluate the transient behavior of contaminant transport at late times.

2.4. Padé approximation solution

Consider that a function of F(x) defined over an interval a 6 x 6 b is approximated by a rational function in the form of
F(x) = P(x)/Q(x), where P(x) and Q(x) are polynomials with no common zeros.
FðxÞ ¼ PmðxÞ
Q nðxÞ

¼ a0 þ a1xþ a2x2 þ � � � þ amxm

1þ b1xþ b2x2 þ � � � þ bnxn
: ð34Þ
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The constant term in the denominator b0 can be taken as unity without loss of generality [19], because it can always
obtain this form by dividing both numerator and denominator by b0. Herein we begin by expanding the argument, p, in

the exponential function on Eq. (7), �f ðx; pÞ ¼ exp x m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jðpþ kÞ þ eðpþ kÞ1=2

q� �	 

, and equate this expansion to a

rational function with a polynomial of degree two in the denominator and a polynomial of degree one in the numerator.
The Maclaurin series expansion for the argument, p, within the exponential function in �f ðx; pÞ can be expressed as
�f ðx;pÞ ¼ exp½xðm� cÞ�ð1� pg1ðxÞ þ p2g2ðxÞ � p3g3ðxÞ þ � � �Þ; ð35Þ
with
g1ðxÞ ¼
qx
2c

; ð36Þ

g2ðxÞ ¼
1
2!
ðc�3xþ c�2x2Þq

2

4
þ c�1ex

8k3=2

� �
; ð37Þ

g3ðxÞ ¼
1
3!
ð3c�5xþ 3c�4x2 þ c�3x3Þq

3

8
þ ð3c�3xþ 3c�2x2Þ eq

16k3=2 þ
3c�1ex

16k5=2

� �
; ð38Þ
where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jkþ ek1=2

p
and q ¼ jþ ðe=2k1=2Þ.

Equating the Maclaurin series expansion to the low-order rational function described above results in
�f ðx;pÞ ¼ exp½xðm� cÞ�ð1� pg1ðxÞ þ p2g2ðxÞ � p3g3ðxÞÞ � exp½xðm� cÞ� 1þ a1p
1þ b1pþ b2p2 : ð39Þ
Multiplying both sides by 1 + b1p + b2p2 and arranging the powers of p yields the coefficients appearing on the RHS of Eq.
(39) as
a1 ¼
2g1g2 � g3 � g3

1

g2
1 � g2

; ð40Þ

b1 ¼
g1g2 � g3

g2
1 � g2

; ð41Þ

b2 ¼
g2

2 � g1g3

g2
1 � g2

: ð42Þ
With Eqs. (39)–(42), �Cf ðx; pÞ in Eq. (7) can be approximated as
�Cf ðx;pÞ
C0

¼ expðxðm� cÞÞ 1
p
þ A

pþ 11
� Aþ 1

pþ 12

	 

; ð43Þ
with
A ¼ a1=b2 � 12

212 � ðb1=b2Þ
; ð44Þ

11 ¼
b1

2b2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2b2

� �2

� 1
b2

s
; ð45Þ

12 ¼
b1

2b2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2b2

� �2

� 1
b2

s
: ð46Þ
Finally, the low-order Padé approximation solution for the fracture after taking the inverse Laplace transform to Eq. (43)
can be obtained as
Cf ðx; tÞ
C0

¼ expðxðm� cÞÞ 1þ A expð�11tÞ � ðAþ 1Þ expð�12tÞ½ �: ð47Þ� �	

Similarly, the exponential function on the RHS of Eq. (8), �f rðz; pÞ ¼ exp x m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jðpþ kÞ þ eðpþ kÞ1=2

q
�

ðz� bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrðpþ kÞ

p
�, is developed as the Maclaurin series and equates this series to a low-order rational function
�f rðz;pÞ ¼ exp xðm� cÞ � ðz� bÞ
ffiffiffiffiffiffiffiffi
jrk
p� �

1� ph1ðxÞ þ p2h2ðxÞ � p3h3ðxÞ
� �

� exp xðm� cÞ � ðz� bÞ
ffiffiffiffiffiffiffiffi
jrk
p� � 1þc1p

1þd1pþd2p2

; ð48Þ
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with
h1ðxÞ ¼
qx
2c
þ ðz� bÞ j

1=2
r

2k1=2 ; ð49Þ

h2ðxÞ ¼
1
2!

c�3xq2

4
þ c�1ex

8k3=2 þ ðz� bÞ j
1=2
r

4k3=2 þ h2
1ðxÞ

 !
; ð50Þ

h3ðxÞ ¼
1
3!

3c�5xq3

8 þ 3c�3exq
16k3=2 þ 3c�1ex

16k5=2 þ ðz� bÞ 3j1=2
r

8k5=2

þ c�3xq2

4 þ c�1ex
8k3=2 þ ðz� bÞ j1=2

r

4k3=2

h i
h1ðxÞ þ h3

1ðxÞ

0
B@

1
CA; ð51Þ
and
c1 ¼
2h1h2 � h3 � h3

1

h2
1 � h2

; ð52Þ

d1 ¼
h1h2 � h3

h2
1 � h2

; ð53Þ

d2 ¼
h2

2 � h1h3

h2
1 � h2

: ð54Þ
Accordingly, the Laplace-domain solution for the rock matrix can be obtained as
�Crðz; pÞ
C0

� exp xðm� cÞ � ðz� bÞ
ffiffiffiffiffiffiffiffi
jrk

ph i
� 1

p
þ B

pþ 13
� Bþ 1

pþ 14

	 

; ð55Þ
with
B ¼ c1=d2 � 14

214 � ðd1=d2Þ
; ð56Þ

13 ¼
d1

2d2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1

2d2

� �2

� 1
d2

s
; ð57Þ

14 ¼
d1

2d2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1

2d2

� �2

� 1
d2

s
: ð58Þ
The low-order Padé approximation solution for the rock matrix after taking the inverse Laplace transform can then be
obtained as
Crðz; tÞ
C0

¼ exp xðm� cÞ � ðz� bÞ
ffiffiffiffiffiffiffiffi
jrk

ph i
½1þ B expð�13tÞ � ðBþ 1Þ expð�14tÞ�: ð59Þ
Note that both approximate solutions for concentration distributions in the fracture and the rock matrix are closed-form
and much easier to evaluate when compared with the solutions given by Tang et al. [1].

The expression for the truncation error made by Padé approximation solution to a function is given [20]
Rm;nðtÞ ¼
PmðtÞ
Q nðtÞ

� FðtÞ: ð60Þ
To estimate the truncation errors incurred in the Padé approximation solution, a high-order Padé approximation solution
with polynomials of degree two in the nominator and degree three in the denominator is also adopted as follow
�Cf ðx;pÞ
C0

¼ expðxðm� cÞÞ 1þ â1pþþâ2p2

1þ b̂1pþ b̂2p2 þ b̂3p3
; ð61Þ
with
â1 ¼ b̂1 � g1; ð62Þ

â2 ¼ b̂2 � g1b̂1 þ g2; ð63Þ
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b̂1 ¼
ðg1g3 � g4Þðg1g2 � g3Þ þ ðg2g3 � g5Þðg2 � g2

1Þ
ðg1g2 � g3Þ

2 � ðg4 � g2
2Þðg2 � g2

1Þ
; ð64Þ

b̂2 ¼
ðg1g3 � g4Þ � b̂1ðg1g2 � g3Þ

ðg2 � g2
1Þ

; ð65Þ

b̂3 ¼ g1b̂2 � g2b̂1 þ g3; ð66Þ

where g4ðxÞ ¼
1
4!

ð15c�7xþ 15c�6x2 þ 6c�5x3 þ c�4x4Þ q4

16 þ ð9c�5xþ 9c�4x2 þ 3c�3x3Þ eq2

16k3=2

þðc�3xþ c�2x2Þ 3eq
8k5=2 þ ðc�3xþ c�2x2Þ 3e2

64k3 þ 15c�1xe
32k7=2

0
@

1
A; and

g5ðxÞ ¼
1
5!

ð105c�9xþ 105c�8x2 þ 45c�7x3 þ 10c�6x4 þ c�5x5Þ q5

32

þð15c�7xþ 15c�6x2 þ 6c�5x3 þ c�4x4Þ 5eq3

32k3=2 þ ð3c�5xþ 3c�4x2 þ c�3x3Þ 15eq2

32k5=2

þð3c�5xþ 3c�4x2 þ c�3x3Þ 15e2q
128k3 þ ðc�3xþ c�2x2Þ 75eq

64k7=2 þ ðc�3xþ c�2x2Þ 15e2

64k4 þ 105c�1xe
64k9=2

0
BBB@

1
CCCA:
The inversion routine DINLAP of IMSL [21] was developed based on a numerical algorithm originally proposed by Crump
[22] and later modified by de Hoog et al. [23]. The DINLAP is used to evaluate the time-domain results of Eqs. (7), (43), and
(61) with accuracy to the sixth decimal. This algorithm approximates Laplace inversion of the inverted function in a Fourier
series and accelerates the computation using Shanks method [24]. Note that the routine DINLAP has been successfully
applied in groundwater area (e.g., [5]).

3. Results and discussion

A hypothetical case concerning tritium (3H) transport in fractured medium due to well injection is chosen to illustrate the
applications of the developed approximate solutions. The hydrogeological parameters used in the case are listed in Table 1.
The results predicted by the small-time, large-time solutions, low-order Padé approximation solution and high-order one are
compared with Tang et al.’s solution (Eqs. (9) and (10)) evaluated by Gaussian quadrature with 60 Gauss points.

Fig. 2a shows the temporal distributions of contaminant concentration in the fracture predicted by Tang et al.’s solution
and the respective approximate solutions given in Eqs. (26), (31), (47), and (61) at the location of x = 1 m. The figure shows
that the small-time solution (Eq. (26)) matches with the analytical solution prior to t = 2 years and the large-time solution
(Eq. (31)) shows excellent agreement with the Tang et al.’s solution after about t = 7 years. In addition, the Padé approxima-
tion solutions (Eqs. (47) and (61)) give fairly good results when compared with those predicted by the small-time and large-
time solutions as indicated in the figure. However, the predicted concentration of small-time solution gets more accuracy
than the Padé approximation solutions prior t = 0.1 year. Steady state is essentially attained after about t = 20 years for this
specific condition. To examine the accuracy, absolute errors of the predicted concentrations are subsequently calculated as
shown in Fig. 2b. As expected, the predicted error of the small-time solution increases with elapsed time, from 2.3% at
t = 2 years to 7% at t = 14 years. In addition, the error made by the large-time solution is large at early times, but gradually
decreases as time increases, and finally becomes negligible after 7 years. Over the entire time period, the errors made by the
low-order Padé approximation or high-order one are always less than 3% after t = 2 years.

Fig. 3 demonstrates the comparisons of predicted concentrations from four different solutions within the rock matrix at
the location x = 1 m and z = 0.1 m. This figure shows close agreement between the Padé approximation solution (Eq. (59))
and Tang et al.’s solution (Eq. (10)) for estimated tritium concentrations over the entire elapsed times. The absolute error
in predicted concentration in the rock matrix is less than 3% before t = 6 years for the small-time solutions and after
Table 1
Parameter values for the fracture and rock matrix.

Parameters Values

Fracture half-aperture, b 5 � 10�4 m
Average velocity of groundwater in the fracture, v 0.01 m/day
Half-life of 3H, T1/2 12.35 years
Longitudinal dispersivity in the fracture axis, aL 0.5 m
Coefficient of molecular diffusion in water, D⁄ 5.475 � 10�5 m2/day
Tortuosity of rock matrix, s 0.1
Retardation factor, R 1.0
Rock-matrix retardation factor, Rr 1.0
Porosity of rock matrix, h 0.01



Fig. 2. (a) Predicted temporal concentration distributions in the fracture by the approximate solutions and Tang et al.’s solution [1]. (b) Truncation errors
estimated by the respective approximate solutions given in Eqs. (26), (31), (47), and (61) as compared to the Tang et al.’s solution [1].
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t = 16 years for the large-time solutions. The error made by the Padé approximation solution is greater than 5% prior to
t = 1 year, but it gradually decreases as time increases and finally matches with the results predicted by Tang et al. [1]. Those
results demonstrated that the proposed approximate solutions provide a simple and useful tool for simulating contaminant
transport through the fractured media.

In Fig. 4, we compare the contaminant concentrations in the fracture predicted by the low-order Padé approximation
solution (Eq. (47)) and the high-order one (Eq. (61)) and Tang et al.’s solution (Eq. (9)). The results reveal that prior to
t = 0.1 year, the predicted concentration by the low-order Padé approximation solution is slightly better than the high-order
one. The truncation errors made by the low-order Padé approximation and high-order one are �6.979E�03 and �1.994E�02
at t = 0.09 year, respectively. In the intermediate period, on the contrary, the predicted concentration by the high-order Padé
approximation solution is mildly better than the low-order one. The errors made by Eq. (61) are smaller than those of Eq.
(47) at t = 0.9 year, which are 8.089E�03 and 2.438E�02, respectively. In addition, the low-order and high-order Padé
approximation solutions give excellent results in late times as compared with Tang et al.’s solution. The results show that
the low-order Padé approximation solution is acceptable with smaller errors when compared the high-order one.



Fig. 3. Predicted temporal concentration distributions within the rock matrix by the approximate solutions and Tang et al.’s solution [1] at (x, z) = (1, 0.1 m).

Fig. 4. Predicted temporal concentration distributions in the fracture by low-order Padé approximation, high-order one and Tang et al.’s solution [1].
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4. Concluding remarks

Four different approximate solutions for the problem of contaminant transport in a single fractured medium presented in
Tang et al. [1] have been developed. The small-time and large-time solutions are derived based on the relationships of LPST
and SPLT, respectively. The solutions with low-order and high-order approximations over the entire time domain are
developed in accordance with the Padé approximation technique. These solutions can reduce to a very simple expression
in terms of an exponential function and a complementary error function. We have investigated the accuracy of the present
solutions by comparing with Tang et al.’s solution [1]. Following conclusions can be drawn in regard to the applicability and/
or accuracy of the present solutions:

1. The predicted results indicate that the small-time solution provides an accurate approximation within a relatively small
period of time while the large-time solution shows excellent agreement with the Tang et al.’s solution at late times.

2. The low-order Padé approximate solution gives excellent results in the intermediate and late periods. The predicted
concentration by the high-order Padé approximation solution is slightly better than the low-order one, especially in
the intermediate time.
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3. It can be concluded that the Padé approximation solution has an advantage of being capable of producing more accurate
results than the relationships of SPLT and LPST in the intermediate and late time periods.

Those results indicate that the present approximate solutions have the advantages of easy calculation and good accuracy
from engineering viewpoint. They may be used as convenient tools to evaluate the temporal and spatial concentration
distributions in performing risk assessment and site screening for industrial waste landfill and radioactive waste disposal.
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