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This paper investigates the evolutionary impacts of size-selective harvesting and
size-dependent competition in predators on an evolving trait of predator individuals (e.g.
body size and maturation age) in a predator–prey model. By using population dynamics
and adaptive dynamics, we obtain the evolutionary conditions allowing for evolutionary
branching and continuously stable strategy under asymmetric competition in predators
for natural selection and size-dependent harvesting for artificial selection. The evolution
of polymorphism is explored by numerical analysis and simulations. It is shown that high
levels of sequence polymorphism may work up during adaptive evolution that leads to
biological diversity. First, increase in competition among predators can result in rapid evo-
lution towards larger body size or maturation age, but harvesting has an opposite effect.
Second, competition can make for evolutionary branching, while harvesting can go against
evolutionary branching and promote evolutionary stability. Last, from an evolutionary
point of view, that competition can promote species diversity among predator populations,
however, harvesting has an opposite effect.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

We know that, in recent years, great changes have taken place in the phenotype traits of many species, such as small body
size and earlier maturation [1–3], and we are also aware that natural selection and artificial selection play an important role
in phenotype traits’ evolution processes. However, they have different consequences of the phenotype traits [4].

Natural selection is good for improving individuals’ adaptability, and individuals which have high fitness values survive.
Thus it is not surprising that the mutant with a lager body size is easier to survive under natural selection. When competing
for limited resources, the larger individuals have competition advantage to survive relative to its small contestant [5], which
is a phenomenon known as asymmetric competition, for example, the bigger predator can catch more prey. The natural
selection due to the asymmetric competition is a persistent and continuing phenomenon in nature [6].
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Artificial selection happens all the time nowadays, for example, size-dependent harvesting where large individuals of a
particular species are preferentially taken, as a consequence a rapid evolution of smaller body mass occurs in both terrestrial
and marine resources [7,8]. Therefore, as a phenotype trait, body size will be taken as an object of study. Human-induced
evolution due to the artificial selection can be fast and harmful, which has been confirmed by both theoretical and empirical
studies [9,10].

The aim of this paper is to explore the influence of size-selective harvesting predators and competition in predators on
evolutionary changes in adaptive dynamics of a predator–prey system. In particular, we will seek the conditions, under
which evolutionary branches in predator phenotype and the mutant predator stably coexists with the resident predator
at a much longer timescale of evolution. Moreover, after the primary branching in predator phenotype, we further investi-
gate the final evolutionary state of such a dimorphic predator population and show an attractive dimorphism can proceed to
undergo a secondary branching which leads to a polymorphic population.

The rest of the paper is organised as follows. Next section, a predator–prey type of model is proposed. Population dynam-
ics and evolutionary dynamics are investigated and the invasion fitness for the mutant predators is derived in Section 3. We
then study the influence of competition for natural selection and harvesting for artificial selection on evolution changes in
the phenotype traits in Section 4. Moreover, Section 4 also discusses the dimorphic coexistence and the coevolution of
population model with two resident predators. Finally, we conclude the paper in Section 5 with discussions.

2. The mathematical model

Well known facts are that

� individuals with large body size (maturation age) have not only the higher probability to win the competition but also the
higher capture rates;
� it is common in nature that the large individuals of a particular species are preferentially taken.

In virtue of the importance of body size (maturation age) in size-selective harvesting and in determining interactions
between competing species, we regard body size (maturation age) as the phenotype trait. And in this study, we consider
effects of the trait on (a) the capital capture rate, (b) the harvesting rate and (c) the competition coefficient in the predator
population. Then, we reach a model governed by
N0ðtÞ ¼ rN 1� N
k

� �
�
Xn

i¼1

bðxiÞNPi;

P0iðtÞ ¼ hbðxiÞNPi � dPi � hðxiÞPi �
Xn

j¼1

aðxi � xjÞPiPj;

8>>>><
>>>>:

ð1Þ
where NðtÞ is the prey density and PiðtÞ; i ¼ 1;2; . . . ;n denote the population densities of the predators at time t; xi is the
phenotype trait of the predator population Pi; n is the number of strategies which present in the population; r is the intrinsic
growth rate of NðtÞ; k denotes the biggest environmental intake capacity; bðxiÞ and h stand for the capital capture rate and
the transform rate, respectively; d is the death rate of the predator population; hðxiÞ is the harvest rate of the predator
population PiðtÞ; the competition coefficient, aðxi � xjÞ, indicates the effect of strategy xj on strategy xi.

3. Adaptive dynamics

In this section, we shall derive the invasion fitness of a rare mutant predator in a resident-settled environment and seek
the general conditions for evolutionary branching and evolutionary stable strategy. We start with a singe resident population
and then proceed with higher level dimorphic populations. It assumes that the mutation occurs infrequently when the
resident populations are settling on their demographic attractor [11]. In addition, when a mutant with a slightly different
strategy appears in a resident system, its population density is assumed to be so rare that it has a negligible effect on the
resident populations. Thus the invasion fitness of the mutant is entirely determined by the demographic attractor of the
resident strategies.

3.1. Monomorphic adaptive dynamics

In this subsection, we first develop the population dynamics with a prey and a resident predator that has a trait x; then we
seek the invasion fitness that to be used to explore the evolutionary dynamics; and at last, we seek the conditions under
which the resident predator undergoes evolution branching.

For a predator population of a single resident strategy x, population model (1) becomes
N0ðtÞ ¼ rN 1� N
k

� �
� bðxÞNP;

P0ðtÞ ¼ hbðxÞNP � dP � hðxÞP � að0ÞP2:

(
ð2Þ
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Obviously, if
hkbðxÞ > dþ hðxÞ; ð3Þ
(2) has a positive equilibrium E1ðN�ðxÞ; P�ðxÞÞ with
N�ðxÞ ¼ k½dbðxÞ þ hðxÞbðxÞ þ rað0Þ�
hkb2ðxÞ þ rað0Þ

; P�ðxÞ ¼ r½�dþ hkbðxÞ � hðxÞ�
hkb2ðxÞ þ rað0Þ

ð4Þ
and it is globally asymptotically stable. Therefore, condition (3) ensures the global asymptotical stability of E1ðN�ðxÞ; P�ðxÞÞ
before the mutant predators appear. To know how and why predators evolve, we first need to derive the invasion fitness for a
mutant predator population.

Suppose that mutant predators with a slightly different trait are rare when they appear in the resident populations. From
[11–14], also assume that mutations occur infrequently and the populations have reached their equilibria by the time the
next mutants come along. Thus, mutant predators can encounter the resident predator–prey community at E1ðN�ðxÞ; P�ðxÞÞ.

When rare mutant predators with a slightly different trait y appear in the resident predator–prey model at a low density,
the population dynamical model (1) becomes
N0ðtÞ ¼ rN 1� N
k

� �
� bðxÞNP � bðyÞNPy;

P0ðtÞ ¼ hbðxÞNP � dP � hðxÞP � að0ÞP2 � aðx� yÞPPy;

P0yðtÞ ¼ hbðyÞNPy � dPy � hðyÞPy � aðy� xÞPyP � að0ÞP2
y ;

8>><
>>: ð5Þ
where PyðtÞ is the population density of mutant predators at time t. Before the mutation occurs, the resident populations are
at E1ðN�ðxÞ; P�ðxÞÞ or close to it. This implies that the mutant and resident populations are close to the equilibrium
ðN�ðxÞ; P�ðxÞ;0Þ which is one of the equilibria of system (5) after the rare and slight mutations encounter the resident pop-
ulations. Thus, the stability of the equilibrium ðN�ðxÞ; P�ðxÞ;0Þ determines whether mutant predators can invade resident
predator population. That is, mutant predators can not invade if ðN�ðxÞ; P�ðxÞ; 0Þ is stable, otherwise they can.

We now analyze the stability of the equilibrium ðN�ðxÞ; P�ðxÞ;0Þ of system (5). Notice that the Jacobian is given by
J1 ¼
� rN�

k �bðxÞN� �bðyÞN�

hbðxÞP� �að0ÞP� �aðx� yÞP�

0 0 hbðyÞN� � d� hðyÞ � aðy� xÞP�

2
64

3
75 ¼ Jres J2

0 Jmut

� �
;

where
Jres ¼
� rN�

k �bðxÞN�

hbðxÞP� �að0ÞP�

" #
; J2 ¼

�bðyÞN�

�aðx� yÞP�
� �

;

0 ¼ ð0;0Þ; Jmut ¼ hbðyÞN� � d� hðyÞ � aðy� xÞP�
and is a block upper triangular matrix. So the eigenvalues of the diagonal blocks, Jres and Jmut are the eigenvalues of J1. When
(3) holds, ðN�ðxÞ; P�ðxÞÞ is globally asymptotically stable before mutant predators appear, that is, the eigenvalues of Jres have
negative real parts. Therefore, if Jmut < 0, then all eigenvalues of J1 have negative real parts, which means that the equilib-
rium ðN�ðxÞ; P�ðxÞ;0Þ of system (5) is stable, and mutant predators can not invade. Otherwise, they can invade. In view of the
property of Jmut, we define a function by
sxðyÞ ¼ hbðyÞN�ðxÞ � d� hðyÞ � aðy� xÞP�ðxÞ; ð6Þ
where sxðxÞ ¼ 0. Please notice that sxðyÞ is just a long-term exponential growth rate of the mutant predator population.
Therefore, if sxðyÞ > 0, the population density of mutant predators will initial increase, that is, mutant predators can invade;
while if sxðyÞ < 0, mutant predators can not invade, and they are doomed to extinct. Thus, function sxðyÞ is called the invasion
fitness [15,16], which determines the fate of mutant predators. References [11,12] suggest that the direction of gradual evo-
lutionary changes is determined by a quantity, DðxÞ, which is known as the local fitness gradient. Straightforward calculation
yields
DðxÞ ¼ @sxðyÞ
@y

����
y¼x

¼ hb0ðxÞN�ðxÞ � h0ðxÞ � a0ð0ÞP�ðxÞ; ð7Þ
where a0ð0Þ ¼ @aðy�xÞ
@y

���
y¼x

. Since when mutations are very small, traits y is similar to x, then from [11] the linear approximation

of the mutant’s fitness is given by
sxðyÞ ¼ sxðxÞ þ DðxÞðy� xÞ:
Notice that sxðxÞ ¼ 0, we know if the fitness gradient is positive, the mutant strategy y which is slightly larger than x can
invade and take over the resident, and if the fitness gradient is negative, smaller mutant strategy can invade and take over
the resident population.
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Since mutations are random and very small, the evolutionary adaptive dynamics of trait x can be approximated as [12]:
dx
dt
¼ 1

2
lr2P�ðxÞDðxÞ; ð8Þ
where l is the probability of individual mutation which is born in resident predator population; r2 is the variance of muta-
tion distribution of predator population; 1

2 lr2 is mutational rate of the predators; P�ðxÞ is the population density of resident
predator at positive equilibrium. Furthermore, from [11] we know that a trait x� is called evolutionary singular strategy if
Dðx�Þ ¼ @sxðyÞ
@y

����
y¼x�
¼ 0: ð9Þ
Obviously, x� is the intersection of sxðyÞ ¼ 0 and y ¼ x, and it is easy to verify that when x� is an evolutionary singular
strategy, we have
h0ðx�Þ ¼ hb0ðx�ÞN�ðx�Þ � a0ð0ÞP�ðx�Þ: ð10Þ
The resident predator population is subjected to repeated invasions and substitutions, which results in directional
evolution until it reaches an evolutionary singular strategy x�, where directional evolution may come to a halt [11].

Next, we discuss the conditions under which the population of resident predator may undergo evolutionary branching.
It depends on the following two stability criteria [11]:

� First, singular strategy must lack evolutionary stability (ES) [17] so that x� can be invaded by nearby mutant predator if
@2sxðyÞ
@y2

�����
y¼x¼x�

> 0: ð11Þ
� Second, directional evolution of resident predator population can approach singular strategy. So the singularity must be
convergence stable [18,19] when
dDðxÞ
dx

����
x¼x�
¼ @

2sxðyÞ
@x@y

þ @
2sxðyÞ
@y2

�����
y¼x¼x�

< 0: ð12Þ
From the above criteria, we can classify the singular strategy. The singular strategy is called continuously stable strategy
(CSS) if it is both evolutionary stable and convergence stable[18]; while it is called evolutionary repeller if it is not conver-
gence stable [11].

Then in our case, we have
@2sxðyÞ
@y2

�����
y¼x¼x�

¼ hb00ðx�ÞN�ðx�Þ � a00ð0ÞP�ðx�Þ � h00ðx�Þ ð13Þ
and
@2sxðyÞ
@x@y

þ @
2sxðyÞ
@y2

�����
y¼x¼x�

¼ hb00ðx�ÞN�ðx�Þ þ hb0ðx�Þ½N��0ðx�Þ � a0ð0Þ½P��0ðx�Þ � h00ðx�Þ; ð14Þ
where ½N��0ðx�Þ ¼ dN�ðxÞ
dx

���
x¼x�

; ½P��0ðx�Þ ¼ dP�ðxÞ
dx

���
x¼x�

; a00ð0Þ ¼ @2aðy�xÞ
@y2

���
y¼x

.
We now obtain:

Proposition 3.1. Assume that (3) holds, which allows for stable equilibrium ðN�ðxÞ; P�ðxÞÞ of (2). Then if the singularity x� of (8)
satisfies that

(i) (13) is positive and (14) is negative, it is an evolutionary branching point;
(ii) both (13) and (14) are negative, it is a continuously stable strategy (CSS).

Please notice that if x� is a branching point, predator population evolves to a fitness minimum trait, therefore, predator
population undergoes evolutionary branching, monomorphic predator population may split into two different predator
subpopulations.

3.2. Dimorphic adaptive dynamics

When singular strategy reaches a branching point, resident predator population splits into two different resident predator
populations. Let one predator population be denoted by P1 with phenotype strategy x1 and the other P2 with phenotype
strategy x2. In the rest of this section, we will investigate the evolution of these two resident predator populations with traits
x1 and x2 and also study whether further evolutionary branching or evolutionary stable coexistence occurs.
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Evolutionary branching causes a monomorphic predator population of a singular trait to a dimorphism of two
substantially different strategies. Thus, the subsequent coevolution of the coexisting strategies can be modeled by
N0ðtÞ ¼ rN 1� N
k

� �
� bðx1ÞNP1 � bðx2ÞNP2;

P01ðtÞ ¼ hbðx1ÞNP1 � dP1 � hðx1ÞP1 � að0ÞP2
1 � aðx1 � x2ÞP1P2;

P02ðtÞ ¼ hbðx2ÞNP2 � dP2 � hðx2ÞP2 � aðx2 � x1ÞP2P1 � að0ÞP2
2;

8><
>: ð15Þ
which has an equilibrium E2ðN�ðx1; x2Þ; P�1ðx1; x2Þ; P�2ðx1; x2ÞÞ with
N�ðx1; x2Þ ¼ k
½xbðx1Þ � bðx2Þaðx2 � x1Þ�A1 þ ½xbðx2Þ � bðx1Þaðx1 � x2Þ�A2 þ r½x2 � aðx2 � x1Þaðx1 � x2Þ�
hkx½b2ðx1Þ þ b2ðx2Þ� � hkbðx1Þbðx2Þ½aðx1 � x2Þ þ aðx2 � x1Þ� þ r½x2 � aðx2 � x1Þaðx1 � x2Þ�

;

P�1ðx1; x2Þ ¼
½hkbðx1Þbðx2Þ þ raðx1 � x2Þ�A2 � ½hkb2ðx2Þ þ rx�A1 þ hkr½xbðx1Þ � bðx2Þaðx1 � x2Þ�

hkx½b2ðx1Þ þ b2ðx2Þ� � hkbðx1Þbðx2Þ½aðx1 � x2Þ þ aðx2 � x1Þ� þ r½x2 � aðx2 � x1Þaðx1 � x2Þ�
;

P�2ðx1; x2Þ ¼
½hkbðx1Þbðx2Þ þ raðx2 � x1Þ�A1 � ½hkb2ðx1Þ þ rx�A2 þ hkr½xbðx2Þ � bðx1Þaðx2 � x1Þ�

hkx½b2ðx1Þ þ b2ðx2Þ� � hkbðx1Þbðx2Þ½aðx1 � x2Þ þ aðx2 � x1Þ� þ r½x2 � aðx2 � x1Þaðx1 � x2Þ�
;

where dþ hðx1Þ ¼ A1; dþ hðx2Þ ¼ A2 and x ¼ að0Þ. Then it is easy to verify that when either
hkx½b2ðx1Þ þ b2ðx2Þ� � hkbðx1Þbðx2Þ½aðx1 � x2Þ þ aðx2 � x1Þ� þ r½x2 � aðx2 � x1Þaðx1 � x2Þ� > 0;
½xbðx1Þ � bðx2Þaðx2 � x1Þ�A1 þ ½xbðx2Þ � bðx1Þaðx1 � x2Þ�A2 þ r½x2 � aðx2 � x1Þaðx1 � x2Þ� > 0;
½hkbðx1Þbðx2Þ þ raðx1 � x2Þ�A2 � ½hkb2ðx2Þ þ rx�A1 þ hkr½xbðx1Þ � bðx2Þaðx1 � x2Þ� > 0;
½hkbðx1Þbðx2Þ þ raðx2 � x1Þ�A1 � ½hkb2ðx1Þ þ rx�A2 þ hkr½xbðx2Þ � bðx1Þaðx2 � x1Þ� > 0

8>>><
>>>:

ð16Þ
or
hkx½b2ðx1Þ þ b2ðx2Þ� � hkbðx1Þbðx2Þ½aðx1 � x2Þ þ aðx2 � x1Þ� þ r½x2 � aðx2 � x1Þaðx1 � x2Þ� < 0;
½xbðx1Þ � bðx2Þaðx2 � x1Þ�A1 þ ½xbðx2Þ � bðx1Þaðx1 � x2Þ�A2 þ r½x2 � aðx2 � x1Þaðx1 � x2Þ� < 0;
½hkbðx1Þbðx2Þ þ raðx1 � x2Þ�A2 � ½hkb2ðx2Þ þ rx�A1 þ hkr½xbðx1Þ � bðx2Þaðx1 � x2Þ� < 0;
½hkbðx1Þbðx2Þ þ raðx2 � x1Þ�A1 � ½hkb2ðx1Þ þ rx�A2 þ hkr½xbðx2Þ � bðx1Þaðx2 � x1Þ� < 0

8>>><
>>>:

ð17Þ
holds, E2ðN�ðx1; x2Þ; P�1ðx1; x2Þ; P�2ðx1; x2ÞÞ is a strictly positive ecological equilibrium. Furthermore, it is globally asymptotically
stable if
2að0Þ � ½aðx1 � x2Þ þ aðx2 � x1Þ� > 0: ð18Þ
A mathematically rigorous proof of global asymptotical stability of the positive equilibrium E2 is presented in Appendix A.
If mutant population of predator with a rare and slightly different trait y appears at a low density in the dimorphic pred-

ator populations, the model (15) can be modified into the following form.
N0ðtÞ ¼ rN 1� N
k

� �
� bðx1ÞNP1 � bðx2ÞNP2 � bðyÞNPy;

P01ðtÞ ¼ hbðx1ÞNP1 � dP1 � hðx1ÞP1 � að0ÞP2
1 � aðx1 � x2ÞP1P2 � aðx1 � yÞP1Py;

P02ðtÞ ¼ hbðx2ÞNP2 � dP2 � hðx2ÞP2 � aðx2 � x1ÞP2P1 � að0ÞP2
2 � aðx2 � yÞP2Py;

P0yðtÞ ¼ hbðyÞNPy � dPy � hðyÞPy � aðy� x1ÞPyP1 � aðy� x2ÞPyP2 � að0ÞP2
y ;

8>>>><
>>>>:

ð19Þ
where PyðtÞ is the population density of mutant predator at time t. By the same arguments as (6), we get invasion fitness
sx1 ;x2 ðyÞ ¼ hbðyÞN�ðx1; x2Þ � d� hðyÞ � aðy� x1ÞP�1ðx1; x2Þ � aðy� x2ÞP�2ðx1; x2Þ; ð20Þ
which determines whether mutants can invade. Similarly, the directions of evolutionary change of x1 and x2 are given by
D1ðx1; x2Þ ¼
@Sx1 ;x2 ðyÞ

@y

���
y¼x1

¼ hb0ðx1ÞN�ðx1; x2Þ � h0ðx1Þ � a0ð0ÞP�1ðx1; x2Þ � a0ðx1 � x2ÞP�2ðx1; x2Þ;

D2ðx1; x2Þ ¼
@Sx1 ;x2 ðyÞ

@y

���
y¼x2

¼ hb0ðx2ÞN�ðx1; x2Þ � h0ðx2Þ � a0ð0ÞP�2ðx1; x2Þ � a0ðx2 � x1ÞP�1ðx1; x2Þ;

8><
>: ð21Þ
respectively. From [11,12], when individual mutations are random and sufficiently small, the evolutionary adaptive dynam-
ics of trait x1 and x2 can be approximated as
dx1
dt ¼ 1

2 l1r2
1P�1ðx1; x2ÞD1ðx1; x2Þ ,m1ðx1; x2ÞD1ðx1; x2Þ;

dx2
dt ¼ 1

2 l2r2
2P�2ðx1; x2ÞD2ðx1; x2Þ ,m2ðx1; x2ÞD2ðx1; x2Þ;

(
ð22Þ
where P�i ðx1; x2Þ is the equilibrium population density of predator Pi; miðx1; x2Þ ¼ 1
2 lir2

i P�i ðx1; x2Þ is evolutionary rate of the
resident predator population; li is the probability of individual mutation which is born in predator population Pi; r2

i is
the mutation distribution variance of predator population Pi.
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Now, we are ready to discuss whether there exists a CSS or branching point of evolutionary dynamics (22). We mainly
analyse evolution dynamics of dimorphic predator populations numerically as a general condition for convergence stability
is not straightforward in polymorphic populations.

As we know that the evolutionary singular coalitions is point ðx�1; x�2Þ at which fitness gradients vanish, namely
D1ðx�1; x�2Þ ¼ 0; D2ðx�1; x�2Þ ¼ 0:
Then the point ðx�1; x�2Þ is an evolutionary stable strategy if
@2sx�
1
;x�

2
ðyÞ

@y2

�����
y¼x�1

< 0;
@2sx�

1
;x�

2
ðyÞ

@y2

�����
y¼x�2

< 0: ð23Þ
By the straightforward calculation, we have
@2sx�
1
;x�

2
ðyÞ

@y2

����
y¼x�

1

¼ hb00ðx1ÞN�ðx1; x2Þ � h00ðx�1Þ � a00ð0ÞP�1ðx�1; x�2Þ � a00ðx�1 � x�2ÞP
�
2ðx�1; x�2Þ < 0;

@2sx�
1
;x�

2
ðyÞ

@y2

����
y¼x�2

¼ hb00ðx2ÞN�ðx1; x2Þ � h00ðx�2Þ � a00ðx�2 � x�1ÞP
�
1ðx�1; x�2Þ � a00ð0ÞP�2ðx�1; x�2Þ < 0:

8>>>><
>>>>:

ð24Þ
From previous analysis, the local convergence stability of the interior singular dimorphism ðx�1; x�2Þ can be gotten from the
eigenvalues of the Jacobian matrix of evolutionary dynamics (22) at this point
J ¼
m1ðx1; x2Þ @D1ðx1 ;x2Þ

@x1
m1ðx1; x2Þ @D1ðx1 ;x2Þ

@x2

m2ðx1; x2Þ @D2ðx1 ;x2Þ
@x1

m2ðx1; x2Þ @D2ðx1 ;x2Þ
@x2

2
4

3
5

x1 ¼ x�1
x2 ¼ x�2

:

Thus, the strong convergence stability of ðx�1; x�2Þ is determined by detðJÞ > 0, trðJÞ < 0 [20], which implies, in our case, that
@Diðx1; x2Þ
@xi

���� x1 ¼ x�1
x2 ¼ x�2

< 0 ð25Þ
for i ¼ 1; 2 and
@D1ðx1; x2Þ
@x1

@D2ðx1; x2Þ
@x2

� �
x1 ¼ x�1
x2 ¼ x�2

>
@D1ðx1; x2Þ

@x2

@D2ðx1; x2Þ
@x1

� �
x1 ¼ x�1
x2 ¼ x�2

: ð26Þ
Then we can conclude the following.

Proposition 3.2. Assume that the conditions (16) and (18) are satisfied. For the evolutionary singular point ðx�1; x�2Þ of system (22),
(i) if conditions (23), (25) and (26) are satisfied, then it is a continuously stable strategy; however,
(ii) if conditions (25) and (26) are satisfied and condition (23) is not satisfied, then it is a evolutionary branching point.

4. Application for size-selective harvesting

In this section, we apply our theoretic results to a size-selective harvesting model. First, we assume that the capital cap-
ture rate is trait-independent to concentrate on the role of harvesting disturbance. Then we consider asymmetric competi-
tion among predator individuals and use the concave–convex function for the asymmetric competition [21],
aðxi � xjÞ ¼ c 1� 1
1þ q expð�dðxi � xjÞÞ

� �
; ð27Þ
where c; q, and d are positive constants. We let parameter q donate the strength of competition, that is, the higher the value
of q, the more competitiveness between resident predator population and mutant predator population. Such competition
coefficient implies that individuals with big body size have competitive advantage to survival relative to its small contestant.
Mathematically, we have aðxÞ > 0 for any x and a0ð0Þ < 0.

For the harvesting disturbance hðxÞ, biological considerations dictate the following properties:

(i) hðxÞ should be a continuous and increasing function, because big individuals generally mean great harvesting rates.
(ii) hð0Þ ¼ 0 because no individuals can be harvested when body size is equal to zero.
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By which, the harvesting function hðxÞ can be modeled using a Chi square distribution function (Fig. 1)
hðxÞ ¼ a� ðaþ pxÞe�px; ð28Þ
where the non-negative p governs the strength of harvesting effort.

4.1. Adaptive dynamics with size-selective harvesting and size-dependent competition

The singular strategy is sitting at a fitness maxima, i.e., an evolutionarily stable strategy (or ESS) if
a00ð0Þ
a0ð0Þ h0ðx�Þ � h00ðx�Þ < 0: ð29Þ
The singular strategy is convergence stable, i.e., it can be approached by gradual evolution, if
a0ð0Þ
hkb2=r þ að0Þ

h0ðx�Þ � h00ðx�Þ < 0: ð30Þ
Then if the singular strategy x� is both evolutionarily stable and convergence stable, x� is a CSS such that selection drives the
evolving trait toward x� and ceases there, i.e., x� is the endpoint of the evolutionary process. As shown in Fig. 2(a), x� is a CSS.
If a singular strategy x� is convergence stable but evolutionarily stable, then the evolutionary branching occurs, and x� is
called the evolutionary branching point. As shown in Fig. 2(b), where at x�, the resident is actually located at a fitness
minima, and any nearby mutant can invade.

It follows from inequality (30) that the singularity is always convergence stable if hðxÞ is convex or linear, and may be
convergence stable if hðxÞ is concave. However, the singularity may be not convergence stable, i.e., an evolutionary repeller
when hðxÞ is concave. It can be seen from inequality (29) that evolutionary stability of the singularity is decided by the
concave–convex shapes of hðxÞ at x� and aðy� xÞ near y� x ¼ 0. It is easy to see that the evolutionary outcome, regarding
the stability of evolutionarily singular strategy, is the most sensitive to the chosen parameters when a concave disturbance
function is employed in combination of a concave asymmetric competition function. In contrast, a convex disturbance
function combined with a convex asymmetric competition gives rise to a singular strategy that is both evolutionarily and
convergence stable. Hence in the latter situation there is no evolutionary branching.

4.2. The influence of natural selection and artificial selection

The objective of this section is to investigate the impacts of competition for natural selection and harvesting for artificial
selection on evolution changes in the phenotype trait which is related to body size. Natural selection is always displayed by
competition coefficient, while artificial selection is displayed by size-selective harvesting.

Competitive interaction are ubiquitous in nature, and is likely to be an important force of natural selection. So in this
subsection, we mainly discuss the effect of competition for natural selection in the evolutionary process using the trade-
off function aðxi � xjÞ which is given in (27). Again, we use parameter q to donate the strength of competition. From the
bifurcation diagram for trade-off function aðxi � xjÞ, namely Fig. 3(a), we see that a small increase in competitiveness may
result in an increase in the singular strategy value. However, intense competition can lead to a decrease in the singular
strategy value. So natural selection causes rapid stable evolution towards larger body size. In addition, we also know the
evolutionary stability of singular strategy will alter once the strength of competition goes beyond a threshold value.
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A

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

a

B

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

x

y

b

Fig. 2. Pairwise invasibility plots. The shaded areas marked with ‘+’ mean that mutants have positive invasion fitness, whereas the white areas means the
opposite. Arrows indicate the direction of disruptive selection which ceases at the evolutionarily stable singular strategy A. The singular point B is a
branching point. (a) Only the generalist singular strategy is a CSS when p ¼ 0:3; (b) The singular strategy is an evolutionary branching point when p ¼ 0:2;
Other parameter values: d ¼ 0:2; h ¼ 0:5; b ¼ 1:5; r ¼ 2; k ¼ 2; c ¼ 0:08; d ¼ 2:5; q ¼ 3:8; a ¼ 1.

Branching Point

CSS

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

q

x

a

CSS

Branching Point

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

p

x

b

Fig. 3. Red dashed lines indicate unstable singular strategy x (i.e. evolutionary branching point) while black solid lines the CSS. (a) Bifurcation diagram for
competition function (27) when p ¼ 0:2. (b) Bifurcation diagram for selective harvesting under the trade-off disturbance function (28) when q ¼ 3:8. Non-
varying parameter values are: d ¼ 0:2; h ¼ 0:5; b ¼ 1:5; r ¼ 2; k ¼ 2; c ¼ 0:08; d ¼ 2:5; a ¼ 1. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

X. Meng et al. / Applied Mathematical Modelling 39 (2015) 574–585 581
Thus it is clearly to know that a small competitiveness can lead to evolutionary stable while a large competitiveness
can undergo evolutionary branching. This condition means that natural selection promotes predator population undergoing
evolution branching.

Artificial selection can also be aware of making an important influence except natural selection. So in this subsection, we
use the similar way to investigate the effect of harvest for artificial selection by considering trade-off function hðxÞ which is
given in (28). Assume p donates the strength of harvesting, that is, the high value of p, the more harvest of predator popu-
lation. A bifurcation diagram for trade-off function hðxÞ is carried out in Fig. 3(b). We can see that increase in harvesting on
predators can lead to quick stable evolution towards smaller body size. Moreover, we also know the evolutionary stability of
singular strategy will alter once the strength of harvesting goes beyond a threshold value. A small harvest in predators can
undergo evolutionary branching, but a large harvest can prevent branching to reach evolutionary stable. This condition
means that artificial selection can reduce evolutionary branching and promote evolutionary stable.
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4.3. Dimorphic coexistence and coevolution

A singular coalition represents a final evolutionary endpoint, that is, after branching in original predator phenotype,
monomorphic predator population evolves to an evolutionary stable dimorphism in which they have maximum fitness
and continue to coexist. A singular coalition that is convergence-stable but for which at least one strategy lacks evolutionary
stability will cause further evolutionary branching. At last, monomorphic predator population evolves to a polymorphism
population. After the first evolutionary branching, the resident predator population may reach an evolutionary stable
coalition of strategies x1; x2 which is showed in Fig. 4(f); the resident predator population also may continue to undergo
evolutionary branching, and there are two conditions of branching. The first condition is that one strategy undergoes
branching; another strategy reaches an evolutionary stable state which is showed in Fig. 4(e). Fig. 4(d) shows both strategies
undergo evolutionary branching.

This can also be derived from the geometrical argument presented in Fig. 4(a)–(c). We draw the red dashed straight line
sðy; x1; x2Þ ¼ 0, where x1; x2 are evolutionarily singular coalition so that the invasibility condition sðy; x1; x2Þ > 0 and the
opposite condition sðy; x1; x2Þ < 0, which determines whether the mutant predator can invade, are easily seen. In panel
(a), mutants near strategies either x�1 or x�2 have positive fitness. Therefore, both of the two strategies can undergo evolution-
ary branching. In panel (b), mutants near strategy x�2 have positive fitness so can invade, while mutants near x�1 have negative
fitness and as a consequence not invade. So the phenotype trait x�1 is evolutionarily stable, but phenotype trait x�2 continues to
undergo evolutionary branching. However, in panel (c), mutants near strategies both x�1 and x�2 are below the line
sðy; x1; x2Þ ¼ 0, so can not invade successfully. Thus they are CSS.

Corresponding to Fig. 2(b), the Fig. 5(a) is a simulative evolutionary tree which starts with a monomorphic population,
evolution first converges to x ¼ 1:108 where it undergoes evolutionary branching and becomes two strategies; then two
strategies evolve to x1 ¼ 0:4604; x2 ¼ 1:285, where the strategies are evolutionary stable and come to a halt. Fig. 5(b) starts
with a monomorphic predator population, repeated invasions and substitutions lead to an evolutionary stable strategy at
x ¼ 0:4568 which can not undergo evolutionary branching and attain a evolutionary halt (corresponding to Fig. 2(a)).
Fig. 4. Fitness landscape (a,b,c) at the singular coalition B1 ¼ ðx�1; x�2Þ, trait coevolution (d,e, f) for different harvesting efforts p ¼ 0:15 (a,d), 0.17 (b,e) and
0.2 (c, f). The second row: shaded areas indicating protected dimorphism are separated by stable (black) and unstable (red) isoclines at which selection
gradient vanishes in either x1-direction (solid) or x2-direction (dash). Red ‘ ’ B = initial branching point, red ‘ ’ Bi = branching singular coalition and black
‘�’ Bi= evolutionarily stable singular coalition, blue ‘ ’ Bi = one evolutionarily stable and another branching singular coalition. Arrows on the main diagonal
show the evolutionary directions in a monomorphic environment. The vector fields obtained from the deterministic model (22) denote the directions of
evolutionary change of traits x1 and x2. Parameter values: d ¼ 0:2; h ¼ 0:5; b ¼ 1:5; r ¼ 2; k ¼ 2; c ¼ 0:08; d ¼ 2:5; q ¼ 3:8; a ¼ 1.



0.5 1.0 1.5 2.0 2.5 3.0
x0

1 106

2 106

3 106

4 106

5 106

6 106
time

0.5 1.0 1.5 2.0 2.5 3.0
x0

1 106

2 106

3 106

4 106

5 106

6 106
time
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5. Discussion and conclusion

In a classic model based on the predator–prey community, we have considered the evolution of phenotype trait and
acquired the invade fitness which is the key to investigate evolution. The conditions that predator phenotype trait will
undergo evolutionary branching, and the mutant predator and the resident predator can stably coexist have been obtained,
please see Propositions 3.1 and 3.2. Our study shows that repeated evolutionary branching can lead to high levels of poly-
morphism. Moreover, our analysis reveals a resident predator population can undergo branching, then evolution towards the
singular coalition leads to further branching and become an evolutionary tree, that is, an attractive dimorphism can further
undergoes secondary branching giving rise to a polymorphic population. This benefits the biological diversity.

Next we have demonstrated the different effect of competition for natural selection and harvesting for artificial selection
by considering different trade-off function aðxi � xjÞ and hðxÞ. Our analysis results show that (i) A small increase in the
strength of the aðxi � xjÞ increases evidently in the singular strategy, and eventually turns the continuously stable strategy
into branching point. Natural selection is advantageous to which predator population evolves to large values of phenotype
trait, this becomes people’s common understanding. However, large values of the trait come to a halt at last because the cost
of large trait values increase and eventually outweighs the advantage, or because population density decreases so that com-
petition is relaxed. (ii) However, any increase in the strength of the hðxÞ decreases evidently in the singular strategy, and
eventually turns the branching point into continuously stable strategy. This has been also confirmed by [22]. Artificial selec-
tion is disadvantageous to which predator population evolves to small values of the phenotype trait, which also agrees well
with general knowledge. In short, as seen from the above analysis, natural selection can promote species diversity and spatial
differentiation of populations; whereas artificial selection is apparently opposite.

Appendix A

The system of the monomorphic population (15) has eight equilibria. Besides E�2ðN
�; P�1; P

�
2Þ, they are
O0ð0;0;0Þ; O1ðk;0;0Þ; O2 0;� dþ hðx1Þ
að0Þ ;0

� �
; O3 0;0;� dþ hðx2Þ

að0Þ

� �
;

O4
k½dbðx1Þ þ hðx1Þbðx1Þ þ rað0Þ�

hkb2ðx1Þ þ rað0Þ
;
r½�dþ hkbðx1Þ � hðx1Þ�

hkb2ðx1Þ þ rað0Þ
;0

 !
;

O5
k½dbðx2Þ þ hðx2Þbðx2Þ þ rað0Þ�

hkb2ðx2Þ þ rað0Þ
;0;

r½�dþ hkbðx2Þ � hðx2Þ�
hkb2ðx2Þ þ rað0Þ

 !
;

O6 0;
aðx1 � x2Þdþ aðx1 � x2Þhðx2Þ � að0Þd� að0Þhðx1Þ

a2ð0Þ � aðx1 � x2Þaðx2 � x1Þ
;
aðx2 � x1Þdþ aðx2 � x1Þhðx1Þ � að0Þd� að0Þhðx2Þ

a2ð0Þ � aðx1 � x2Þaðx2 � x1Þ

� �
:

From (16) or (17), we can see that the system has a positive equilibrium. The Jacobian matrix of system (15) at E�2ðN
�; P�1; P

�
2Þ

is
J2 ¼
� rN�

k �bðx1ÞN� �bðx2ÞN�

hbðx1ÞP�1 �að0ÞP�1 �aðx1 � x2ÞP�1
hbðx2ÞP�2 �aðx2 � x1ÞP�2 �að0ÞP�2

2
64

3
75:
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The associated characteristic equation is
k3 þ a1k
2 þ a2kþ a3 ¼ 0; ð31Þ
where
a1 ¼
rN�

k
þ að0ÞP�1 þ að0ÞP�2 > 0;

a2 ¼ hb2ðx1ÞN�P�1 þ hb2ðx2ÞN�P�2 � aðx1 � x2Þaðx2 � x1ÞP�1P�2 þ
rað0Þ

k
N�P�1 þ

rað0Þ
k

N�P�2 þ a2ð0ÞP�1P�2;

a3 ¼
ra2ð0Þ

k
� ½aðx1 � x2Þ þ aðx2 � x1Þ�hbðx1Þbðx2Þ þ ½b2ðx1Þ þ b2ðx2Þ�hað0Þ � r

k
aðx1 � x2Þaðx2 � x1Þ

� �
N�P�1P�2:
Let
H2 ¼ a1a2 � a3; H3 ¼ ða1a2 � a3Þa3: ð32Þ
Then by the Routh–Hurwitz criteria, we know that if the signs of H2 and H3 are positive then E�2ðN
�; P�1; P

�
2Þ is asymptotically

stable. By direct calculations, we have
H2 ¼
r
k

N� þ að0ÞP�1
h i

N�P�1 hb2ðx1Þ þ
r
k

að0Þ
h i

þ r
k

N� þ að0ÞP�2
h i

N�P�2 hb2ðx2Þ þ
r
k

að0Þ
h i

þ að0ÞP�1P�2ðP
�
1

þ P�2Þ a2ð0Þ � aðx1 � x2Þaðx2 � x1Þ
	 


þ 2r
k

a2ð0Þ þ hbðx1Þbðx2Þðaðx1 � x2Þ þ aðx2 � x1ÞÞ
� �

N�P�1P�2;

H3 ¼
r
k

a2ð0Þ � aðx1 � x2Þaðx2 � x1Þ
	 


þ hað0Þ b2ðx1Þ þ b2ðx2Þ
	 


� hbðx1Þbðx2Þ aðx1 � x2Þ þ aðx2 � x1Þ½ �:
We can easily see that H3 is positive is equivalent to the first equation of (16). So when (16) and (32) hold, E�2ðN
�; P�1; P

�
2Þ is

asymptotically stable. Next, we investigate whether it is globally asymptotically stable. To this end, define
VðN; P1; P2Þ ¼ h N � N� � N� ln
N
N�

� �
þ P1 � P�1 � P�1 ln

P1

P�1

� �
þ P2 � P�2 � P�2 ln

P2

P�2

� �
:

Obviously VðN; P1; P2Þ is positive definite, its total derivative along the system (15) is
_VðtÞ ¼ hðN � N�Þ r 1� N
k

� �
�
X2

i¼1

bðxiÞPi

" #
þ
X2

i;j¼1;i–j

ðPi � P�i Þ½hbðxiÞN � d� hðxiÞ � að0ÞPi � aðxi � xjÞPj�

¼ � hr
k
ðN � N�Þ2 � að0ÞðP1 � P�1Þ

2 þ að0ÞðP2 � P�2Þ
2 þ ½aðx1 � x2Þ þ aðx2 � x1Þ�ðP1 � P�1ÞðP2 � P�2Þ

n o
:

Then when
D ¼ �½4a2ð0Þ � ½aðx1 � x2Þ þ aðx2 � x1Þ�2� < 0;
that is
2að0Þ > aðx1 � x2Þ þ aðx2 � x1Þ;
we have _VðtÞ is negative definite. According to the above discussion, if (16) and (18) hold, E2ðN�ðx1; x2Þ; P�1ðx1; x2Þ; P�2ðx1; x2ÞÞ is
globally asymptotically stable.
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