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In the present paper, we apply the truncated Bessel series approximation by using colloca-
tion scheme, for solving linear and nonlinear fractional optimal control problems (OCPs)
indirectly. Therefore, the necessary (and also sufficient in most cases) optimality conditions
are stated in a form of nonlinear (or linear) fractional two-point boundary value problem
(TPBVP). For solving this mentioned TPBVP, we generalize a new numerical method (which
is called the Bessel collocation method). One of the best advantages of this generalization is
that, there is no need to use operational matrices of differentiation and also the new gen-
eralized idea can be implemented in any mathematical software. Some numerical exam-
ples are provided to confirm the accuracy of the proposed method. All of the numerical
computations have been performed on a PC using several programs written in MAPLE 13.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Control problems for systems governed by ordinary (or partial) differential equations arise in many applications, e.g., in
astronautics, aeronautics, robotics, and economics [1,2]. Experimental studies of such problems go back recent years and
computational approaches have been applied since the advent of computer age. The solution of practical control systems
usually has special difficulties. Moreover, in classical theory of control, just input–output signals are considered and the basic
deficiency of this theory is that it is only applicable for time invariant linear systems. Therefore, presentation of an applicable
numerical approach for solving practical control problems has considerable importance.

We recall that, the approaches for numerical solutions of optimal control problems (OCPs) may be divided into two major
classes: indirect methods and the direct methods. The indirect methods are based on the Pontryagin maximum principle
(PMP) and require the numerical solution of boundary value problems that result from the necessary conditions of optimal
control [3]. Direct optimization methods transcribe the (infinite-dimensional) continuous problem to a finite-dimensional
nonlinear programming problem (NLP) through some parametrization of the state and/or control variables. In the direct
methods, initial guesses have to be provided only for physically intuitive quantities such as the states and possibly controls.
The indirect schemes are based on optimizing then discretizing the main OCPs, meanwhile the direct methods are based on
discretizing then optimizing the main OCPs. One of the best properties of the indirect schemes is the high credit of the
obtained approximate solution of the main OCPs. This specific property is based on satisfying the first order of necessary
conditions that originated from the calculus of variation and the PMP. In this paper, after imposing PMP to the considered
fractional OCPs, we obtain a fractional two-point boundary value problem (TPBVP) such that for solving this equation we
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generalize a new collocation method which is based on the truncated Bessel series [4]. It should be mentioned that, the Bes-
sel collocation method (BCM) which was used in the works [5–8] just can be applicable for solving linear and some special
nonlinear cases (in polynomial forms), because in these works the operational matrix of differentiation has a basic role.
Therefore, a generalization of this idea should be constructed, since in most case studies of real world, the problems appear
in a complex nonlinear form and operational matrices of differentiation (and also integration ones) are not efficient and
applicable. This is our basic motivation for presenting such this generalization.

For solving TPBVPs, we can use many ideas. One of the well-known methods is integrating from the mentioned problems
in an appropriate interval such that the boundary conditions may be imposed. After this procedure, one can use high accu-
rate Gauss quadrature rules or operational matrices of integration. However Gauss quadrature rules [9] have a high order of
accuracy for smooth data, but using them may give rise to ill-conditioned algebraic systems. On the other hand, by using
operational matrices of integration (specially for orthogonal functions and polynomials) we may reach to sparse algebraic
systems, but the order of accuracy is decreased usually. In practice, if we deal with a complex nonlinear problem, it is better
to use Gauss quadrature rules, because operational matrices of integration have low accuracy in these cases. Otherwise, if we
deal with simple (for instance polynomial forms) nonlinear problems, one may use operational matrices of integration. Using
operational matrices of integration goes back to last four decades. Typical examples of such matrices are related to the Walsh
functions [10], block-pulse functions [11], Laguerre polynomials [12], Chebyshev polynomials [13], Legendre polynomials
[14], Hermite polynomials [15], Fourier series [16], Bernstein polynomials [17] and Bessel functions [18].

Another popular way to solve a TPBVP is direct solving. In other words, we do not integrate the mentioned TPBVP and
solve it directly by any idea in the field of approximation theory such as collocation, Galerkin, etc. Some other new direct
solvers do not use the classical collocation or Galerkin schemes and are based upon completeness of bases (for instance, Fou-
rier [19]) and operational matrices of differentiation. These new approaches are very applicable and fast for solving high
order linear delay (in both cases of neutral and difference) Fredholm integro-differential equations. Collocation and Galerkin
techniques have a wide range of application for solving linear and nonlinear differential (including hyperbolic partial differ-
ential equations) Fredholm Volterra integro-differential difference delay equations and their systems and one can refer to the
works [20–23] for collocation approaches.

It should be noted that, any direct solver has more efficiency with regard to the methods that deal with the integral forms
(specially oprational matrices of integration). For instance, one can refer to [24]. In this paper, the authors used direct col-
location scheme for solving high-order linear complex differential equations and transform the basic equations to the linear
algebraic systems directly. However, if we want to use operational matrices of integration or Gauss quadrature rules, a two
dimensional Volterra integral equation should be solved and this subject may be leads to the popularity decreasing of such
methods. Moreover, collocation methods are very faster than the Galerkin methods. For clarifying this subject, we can con-
sider a two dimensional Volterra integral equation. If we want to solve it by Galerkin schemes, four-dimensional integral
expression will be appeared in computations and this may increased the computational time. Accuracy of direct collocation
methods with respect to the operational matrices of integration (even in the case of Legendre polynomials) for solving Euler–
Lagrange equations was provided in numerical experiments of [25].

From the last paragraph, one can conclude that direct collocation methods are suitable for solving TPBVPs which arise
from OCPs. On the other hand, operational matrices of integration and Gauss quadrature rules have been used in a huge size
of research works, meanwhile direct collocation methods for solving the mentioned TPBVPs have had few results. This moti-
vate us to present a new idea. Therefore, in this paper we generalize a new collocation method, that was applied for solving
several classes of applied mathematics models [5–8] (in the form of differential or integral equations), for approximating the
solution of fractional ordinary differential equations (ODEs) systems. These systems of fractional ODEs, which are the nec-
essary (and also are sufficient in several special cases) conditions for optimal solutions of fractional OCPs, originate from the
PMP and have considerable importance in optimal control and calculus of variation. For saving computational time and clar-
ity of presentation, we modify and then generalize the basic idea of BCM in two aspects. The modification is based on time
saving. In all of the works [5–8], the authors collocate the basic equation at the whole of computational interval and then
remove last constraints (in algebraic system) with the number of boundary conditions and then replace the conditions which
appear from the boundary conditions. But, in this paper, we collocate the basic equations at the nodes with the number of
unknown coefficients which the boundary conditions are subtracted. This really decreased computational time. The
generalization is related to the representation of the truncated Bessel series and then removing the operational matrix of
differentiation writing. It should be mentioned that, the main reason of presenting the operational matrices of differentiation
is for obtaining the associated algebraic systems more clearly and no computational applicability may not be observed.
Moreover, instead of representing the truncated Bessel series JnðtÞ; n ¼ 0;1; . . . ;n in terms of monomials, we shall use
TaylorPolynomialðBesselJðn; tÞ; t; order ¼ NÞ command in MAPLE software, where N is the order of approximation.

It should be mentioned that, the structure of this research work is different from [26] in two important aspects. The prob-
lem of under investigation in this paper is a fractional OCP, meanwhile in [26] a typical OCP with integer order derivatives
has been considered. Moreover, in [26], we have used operational matrices, meanwhile in the present study a general col-
location method by using truncated Bessel series has been used for saving computational time and clarity of presentation.

The paper is organized as follows. Optimality conditions for fractional OCPs are introduced in the next section. In
Section 3, the basic idea for solving the obtained fractional TPBVPs are provided. Numerical experiments are given for
illustrating applicability of the presented technique in Section 4. Section 5 contains some conclusions and future works.
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2. Fractional optimal control problems

Before of introducing fractional OCPs, we recall two important definitions from fractional calculus [27]. Assume that b be
a real positive constant and n ¼ ½b� þ 1, where ½b� denotes the integer part of b. Right Reimann–Liouville fractional derivative
for kðtÞ can be defined as follows
tD
b
tf
kðtÞ ¼ ð�1Þn

Cðn� bÞ
dn

dtn

Z tf

t
ðg� tÞn�b�1kðgÞdg:
Also, left Caputo fractional derivative for xðtÞ can be defined in the following form
C
toDb

t xðtÞ ¼ 1
Cðn� bÞ

Z t

t0

ðt � gÞn�b�1xðnÞðgÞdg:
We now suppose that a be a real number in (0,1), and F;G : ½t0; tf � �R2 ! R be two continuously differentiable functions. A
general form of fractional OCPs can be introduced as
Minimize Jðx;uÞ ¼
Z tf

t0

Fðt; xðtÞ; uðtÞÞdt; ð1Þ
subject to the fractional dynamic control system
A _xðtÞ þ B C
toDa

t xðtÞ ¼ Gðt; xðtÞ;uðtÞÞ; ð2Þ
and the initial condition
xðt0Þ ¼ x0; ð3Þ
where ðA;BÞ – ð0;0Þ and x0 is a given constant. According to discussions in [27], if ðx;uÞ be a minimum solution of (1)–(3),
then there exists a kðtÞ which ðx;u; kÞ satisfies
A _kðtÞ � B tD
a
tf
kðtÞ ¼ � @H

@x
ðt; x;u; kÞ;

A _xðtÞ þ B C
toDa

t xðtÞ ¼ @H
@k
ðt; x;u; kÞ;

@H
@u
ðt; x;u; kÞ ¼ 0; t 2 ½t0; tf �;

xðt0Þ ¼ x0; kðtf Þ ¼ 0;

ð4Þ
where H denotes the Hamiltonian and is defined in the form of Hðt; x;u; kÞ ¼ Fðt; x;uÞ þ kGðt; x;uÞ. It should be mentioned
that in practice, we obtain u in terms of k and x from the condition @H

@u ðt; x;u; kÞ ¼ 0. Therefore, the above-mentioned system
can be rewritten in the following form
A _kðtÞ � B tD
a
tf
kðtÞ ¼ Mðt; xðtÞ; kðtÞÞ;

A _xðtÞ þ B C
toDa

t xðtÞ ¼ Nðt; xðtÞ; kðtÞÞ;
xðt0Þ ¼ x0; kðtf Þ ¼ 0;

ð5Þ
where Mðt; xðtÞ; kðtÞÞ and Nðt; xðtÞ; kðtÞÞ are known functions in terms of x and k.
As it was pointed out in [27], the above-mentioned fractional system contains necessary conditions for optimality

of solutions of (1)–(3). If Fðt; x;uÞ and Gðt; x;uÞ be two convex functions in terms of x and u, then (5) contains nec-
essary and sufficient condition for optimal solutions x� and u�. It should be recalled that, we should approximate
xðtÞ and kðtÞ by xNðtÞ and kNðtÞ, respectively in (5). Therefore, one may obtain an approximate optimal solution
of (1)–(3). In the next section, we provide our basic idea, in which the numerical solutions xNðtÞ and kNðtÞ will
be obtained.

3. Method of the solution

In this part of paper, we will focus on the numerical solution of fractional TPBVM (5) by proposing the generalized
Bessel collocation method (BCM) [4]. It should be noted that, in all of the research works [4–8], the authors used
operational matrix of differentiation even for nonlinear problems. Moreover, all of the considered nonlinear problems
have polynomial forms and no attempts was done for a general complex nonlinear problem by BCM. On the other
hand, the selected Bessel basis in the mentioned references is the truncated Bessel series, so that one can comput
it by some suitable commands in mathematical softwares such as MAPLE and MATLAB. In the sequel, we will illus-
trate this fact clearly. We now assume that, the solutions of (5) can be approximated by the truncated Bessel series as
follows
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xðtÞ � xNðtÞ ¼
XN

n¼0

XnJnðtÞ;

kðtÞ � kNðtÞ ¼
XN

n¼0

KnJnðtÞ;
ð6Þ
where Xn and Kn; n ¼ 0;1;2; . . . ;N are the unknown Bessel coefficients to be determined and JnðtÞ; n ¼ 0;1;2; . . . ;N are the
Bessel polynomials of first kind defined by [4]
JnðtÞ ¼
XN�n

2½ �

k¼0

ð�1Þk

k!ðkþ nÞ!
t
2

� �2kþn

; 0 6 t <1:
The Bessel polynomials JnðtÞ can be written in the MAPLE software in the form
JnðtÞ ¼ TaylorPolynomialðBesselJðn; tÞ; t; order ¼ NÞ;
where N is the order of approximation. This representation is more clear than the matrix forms that were used in [4–8]. Now,

we assume that ts ¼ t0 þ
tf�t0

N s; s ¼ 0;1; . . . ;N. Since there exists 2N þ 2 unknown coefficients Xn and Kn (n ¼ 0;1; . . . ;N), we
should construct the associated system of 2N þ 2 algebraic equations in a manner which needs less computational time. For
this purpose, we collocate the first equation of (5) at the nodes tk, where k ¼ 0;1; . . . ;N � 1 and collocate the second equation
of (5) at the nodes tj, where j ¼ 1;2; . . . ;N as follows
A _kNðtkÞ � B tk
Da

tf
kNðtkÞ ¼ Mðtk; xNðtkÞ; kNðtkÞÞ; k ¼ 0;1; . . . ;N � 1;

A _xNðtjÞ þ B C
toDa

t xNðtjÞ ¼ Nðtj; xNðtjÞ; kNðtjÞÞ; j ¼ 1;2; . . . ;N;
ð7Þ
where ts ¼ t0 þ
tf�t0

N s; s ¼ 0;1; . . . ;N. Therefore, the above system consists of 2N algebraic equations. These equations
together with the two boundary conditions xNðt0Þ ¼ x0 and kNðtf Þ ¼ 0 form a system that has 2N þ 2 algebraic equations
and 2N þ 2 unknowns. For solving this system one can apply the Newton algorithm in many softwares such as MAPLE. This
procedure may be done by f solve command in MAPLE software. After solving the above-mentioned system of nonlinear
algebraic equations, the unknown Bessel coefficients Xn and Kn (n ¼ 0;1; . . . ;N) will be extracted and replaced in (6).

Remark 1. As it was noted in [28], since in our computations we have the expression tD
a
tf
kNðtÞ, it is desirable to use its

equivalent form as follows
tD
a
tf
kNðtÞ ¼

kNðtf Þ
Cð1� aÞ ðtf � tÞ�a � 1

Cð1� aÞ

Z tf

t
ðg� tÞ�ak0ðgÞdg:
Evidently, we may check the accuracy of our collocation approach. Since xNðtÞ and kNðtÞ are the numerical solutions of (5),
the expressions xNðtÞ; kNðtÞ; _xNðtÞ; _kNðtÞ;Ct0

Da
t xðtÞ and tD

a
tf
kðtÞ can be replaced in Eq. (5). Therefore, (5) may be satisfied

approximately. In other words for t ¼ tq 2 ½t0; tf �; q ¼ 0;1;2; . . .
E1ðtqÞ ¼ jA _kNðtqÞ � B tq Da
tf
kNðtqÞ �Mðtq; xNðtqÞ; kNðtqÞÞj ffi 0;

E2ðtqÞ ¼ jA _xNðtqÞ þ B C
toDa

t xNðtqÞ � Nðtq; xNðtqÞ; kNðtqÞÞj ffi 0;
and Ei;NðtqÞ � 10�kq ; i ¼ 1;2 (kq positive integer).

4. Numerical examples

In this section, we conduct three numerical examples to illustrate the efficiency and applicability of the presented idea. It
should be mentioned that, in the first example, we select an OCP from [29] and extend its integer order derivative to the
fractional order derivative. Since we assume that 0 < a < 1 and the case a ¼ 1 are easy to handel, we approximate the solu-
tion of this example for several values of a such as =0.6, 0.7, 0.8, 0.9 and 1. On the other hand, since we have the analytical
solution for the case of a ¼ 1, we can show the credit of the proposed idea by depicting numerical solutions associated to
these values of a in Figs. 1 and 2. As we have seen numerical solutions x8ðtÞ and u8ðtÞ tend to the exact solutions xðtÞ and
uðtÞ as a tends to 1. Moreover, in Figs. 3–10, we provide numerical results of the first and second example associated to
the trajectory and control variables in the case of a ¼ 1. In addition, in Tables 1–5, numerical results of all examples in
the case of a ¼ 1 are given to show the effectiveness of our presented technique.

Example 4.1 [29]. As the first example, we consider a single-input scalar system as follows
C
0Da

t xðtÞ ¼ �xðtÞ þ uðtÞ;

J ¼ 1
2

Z 1

0
ðx2ðtÞ þ u2ðtÞÞdt;
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Fig. 1. History of approximate solution x8ðtÞ by assuming different values of a for the first example.
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Fig. 2. History of approximate solution u8ðtÞ by assuming different values of a for the first example.
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with free terminal condition and the initial condition
xð0Þ ¼ 1:
According to [29], the analytical solution of the above-mentioned problem (in the case of a ¼ 1) is
xðtÞ ¼ coshð
ffiffiffi
2
p

tÞ þ b sinhð
ffiffiffi
2
p

tÞ;
uðtÞ ¼ ð1þ

ffiffiffi
2
p

bÞ coshð
ffiffiffi
2
p

tÞ þ ð
ffiffiffi
2
p
þ bÞ sinhð

ffiffiffi
2
p

tÞ;
where
b ¼ � coshð
ffiffiffi
2
p
Þ þ

ffiffiffi
2
p

sinhð
ffiffiffi
2
p
Þffiffiffi

2
p

coshð
ffiffiffi
2
p
Þ þ sinhð

ffiffiffi
2
p
Þ
:



Fig. 3. History of xðtÞ and xNðtÞ for N ¼ 6.

Fig. 4. History of uðtÞ and uNðtÞ for N ¼ 6.

Fig. 5. History of jx�ðtÞ � xNðtÞj for N ¼ 6.
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According to (5) we should have
C
0Da

t xðtÞ ¼ �xðtÞ � kðtÞ;
tD

a
1kðtÞ ¼ xðtÞ � kðtÞ;

xð0Þ ¼ 1; kð1Þ ¼ 0:
Also, the following optimal control law may be computed by using @H
@u ¼ 0
u�ðtÞ ¼ �kðtÞ:



Fig. 6. History of ju�ðtÞ � uNðtÞj for N ¼ 6.

Fig. 7. History of xðtÞ and xNðtÞ for N ¼ 5.

Fig. 8. History of uðtÞ and uNðtÞ for N ¼ 5.

E. Tohidi, H. Saberi Nik / Applied Mathematical Modelling 39 (2015) 455–465 461
As it is declared before, we obtain the numerical solutions x8ðtÞ and u8ðtÞ for several values of a and depict them in Figs. 1
and 2, respectively. Moreover, we obtain the approximate solutions by applying the presented method for N ¼ 6 in the case
of a ¼ 1. In Figs. 3 and 4, the approximate solutions xNðtÞ and uNðtÞ of the suggested idea for N ¼ 6 are compared with the
exact solutions. For the approximate solutions xNðtÞ and uNðtÞ which are gained by the proposed technique for N ¼ 6, we
depict the error functions associated with trajectory and control functions in Figs. 5 and 6. According to [29], the optimal
value of the performance index is J� ¼ 0:1929092981. The numerical values of performance index which obtained by the
presented algorithm, are given in Table 1 for different values of N. Moreover in Table 2, absolute error histories of the state
and control functions at the selected points for N = 6 are provided. As seen from this Table, our method converges more
rapidly than [30]. These results confirm the accuracy of the presented technique.



Fig. 9. History of jx�ðtÞ � xNðtÞj for N ¼ 5.

Fig. 10. History of ju�ðtÞ � uNðtÞj for N ¼ 5.

Table 1
The optimal cost functional JN of Example 4.1 for different values of N.

N JN

3 0.1923867316
4 0.1929041515
5 0.1929065847
6 0.1929092756

Table 2
Absolute error histories of the state and control functions at the selected points for N = 6.

ti ju�ðtiÞ � uNðtiÞj jx�ðtiÞ � xNðtiÞj

0 8.9399e�007 0
0.2 1.2469e�006 6.2315e�008
0.4 1.5108e�006 2.4565e�007
0.6 1.9190e�006 5.3182e�007
0.8 2.6017e�006 6.2441e�007
1.0 8.3000e�011 7.4770e�006
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Example 4.2 [29]. As the second example we consider the following linear OCP
_x ¼ uðtÞ;

J ¼
Z 1

0
ðx2ðtÞ þ u2ðtÞÞdt;



Table 3
The optimal cost functional JN of Example 4.2 for different values of N

N Performance index value

2 0.32872544026
3 0.32776465094
4 0.32826209799
5 0.32825878417

Table 4
Absolute error histories of the state and control functions at the selected points for N = 5.

ti ju�ðtiÞ � uNðtiÞj jx�ðtiÞ � xNðtiÞj

0 9.3588e�007 0
0.2 3.6901e�007 8.8267e�008
0.4 5.9620e�007 9.4765e�008
0.6 3.9054e�007 1.0804e�007
0.8 9.9867e�007 4.5014e�007
1.0 8.9136e�006 3.5843e�006

Table 5
Numerical results of Example 4.3.

N Max Res1ðtÞ ð0 6 t 6 1Þ Max Res2ðtÞ ð0 6 t 6 1Þ JN obtained by the presented method

2 2.147e�02 8.390e�01 0.0318147
3 5.793e�03 2.864e�01 0.0280687
4 4.373e�04 1.523e�01 0.0287585
5 2.385e�04 4.779e�02 0.0289898
6 7.013e�05 2.119e�02 0.0290147
7 1.498e�05 6.378e�03 0.0290266
8 4.862e�06 2.557e�03 0.0290278
9 1.071e�06 7.625e�04 0.0290275
10 4.326e�07 2.853e�04 0.0290273
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with the initial condition
xð0Þ ¼ 0:
The analytical solution of this linear OCP is [29]
xðtÞ ¼ eðet � e�tÞ
2ðe2 � 1Þ ; uðtÞ ¼ eðet þ e�tÞ

2ðe2 � 1Þ :
Therefore, we should have
_x ¼ uðtÞ;
_k ¼ �2x;

xð0Þ ¼ 0; kð1Þ ¼ 0:
Also, we can obtain the following optimal control law
u�ðtÞ ¼ � k
2
:

Therefore, we reach to the following Hamiltonian system
_xðtÞ ¼ �1
2

kðtÞ; ð8Þ
_kðtÞ ¼ �2xðtÞ; ð9Þ
xð0Þ ¼ 0; kð1Þ ¼ 0: ð10Þ
Similar to the previous example, we obtain the approximate solutions by applying the presented method for N ¼ 5. In Figs. 7
and 8, the approximate solutions xNðtÞ and uNðtÞ of the suggested idea for N ¼ 5 are compared with the exact solutions. For
the approximate solutions xNðtÞ and uNðtÞ which are gained by the proposed technique for N ¼ 5, we depict the error
functions associated with trajectory and control functions in Figs. 9 and 10. According to [29], the optimal value of the
performance index is J� ¼ 0:3282588215. The numerical values of performance index which are obtained by the presented
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algorithm, are provided in Table 3 for different values of N. Moreover in Table 4, absolute error histories of the state and
control functions at the selected points for N = 5 are given. Again, robustness of our presented method can be observed from
these Tables and Figures.
Example 4.3. As a complex test problem, we now consider the following nonlinear OCP
_x ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðtÞuðtÞ

p
; t 2 ½0:1; p2�; xð0:1Þ ¼ 0:009967; uð0:1Þ ¼ 0:009769;

J ¼
R p

2
0:1 xðtÞ þ uðtÞð Þdt:
In this problem, the control function must have the condition uðp2Þ – 0 at the end point of the computational interval. It
should be mentioned that, this nonlinear OCP is more general than the forms that introduced in Section 2. After considering
the Hamiltonian function in the form Hðx; k; tÞ ¼ ðxþ uÞ þ kð2

ffiffiffiffiffiffi
xu
p
Þ, one can use the PMP and reach to the following results
_kðtÞ ¼ �Hx ¼ � 1þ kuffiffiffiffiffiffi
xu
p

� �
;

Hu ¼ 1þ kxffiffiffiffiffiffi
xu
p ¼ 0:
A simple computation yields to the following nonlinear Hamiltonian system
_kðtÞ ¼ �ð1þ kðtÞ2Þ; xð0:1Þ ¼ 0:009967;

_xðtÞ ¼ 2xðtÞkðtÞ; k
p
2

� �
¼ 0:
Trivially, the optimal control law is given by
u�ðtÞ ¼ xðtÞkðtÞ2:
Since we assume that uðp2Þ– 0, then kðp2Þ– 0. Therefore, the above-mentioned Hamiltonian system should be modified in the
form
_kðtÞ ¼ �ð1þ kðtÞ2Þ; xð0:1Þ ¼ 0:009967;
_xðtÞ ¼ 2xðtÞkðtÞ; kð0:1Þ ¼ 0:99017;

ð11Þ
where kð0:1Þ ¼
ffiffiffiffiffiffiffiffiffi
uð0:1Þ
xð0:1Þ

q
¼ 0:99017. For solving this system of nonlinear differential equations, similar to the linear cases, we

suppose that the state and co-state variables be written in terms of linear combination of Bessel polynomials which are
defined in Section 3 with the unknown Bessel coefficients. These coefficients will be determined after imposing the above
system of differential equations at the uniform mesh in the interval (0,1). In other words, applying these collocation points
to the main system together with the considered boundary conditions on xðtÞ and kðtÞ transform the basic problem to a cor-
responding system of nonlinear algebraic equations. By assuming different values of N such as 2,3,4,5,6,7,8,9 and 10 we solve
the above-mentioned system. In Table 5 we provide the approximated performance index JN which is obtained by our pro-
posed method and also the maximum residual for the first and second equations of (11) for the considered values of N.
5. Conclusions

This paper contributes to present an indirect method for solving optimal control problems (OCPs) using truncated Bessel
series together with the collocation method on a uniform mesh. In this new idea, the role of operational matrices of differ-
entiation has been removed, since this matter has not any efficiency in computations. Needing to less computational time
and being easy to handle are two important properties that encourage us to apply such method for solving OCPs. Efficiency
of the proposed method is confirmed from the obtained results in the section of numerical examples. It should be recall that,
the structure of this research work is different from [26]. For instance, the problem of under investigation in this paper is a
fractional OCP, meanwhile in [26] a typical OCP with integer order derivatives has been considered. Our idea can be extended
for solving OCP governed by fractional partial differential equations, but some modifications are need.
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