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1. Introduction

In this paper, we consider a two-level iteration penalty method for the incompressible flows which are governed by the
incompressible Navier-Stokes equations

—pAu+ (u-Viu—Vp=f, inQ,
divu =0, in Q, (1.1)
u=0, on 0Q,

where Q is a bounded domain in R?* assumed to have a Lipschitz continuous boundary 9Q. u > 0 represents the viscosity
coefficient. u = (u; (x), u»(x)) denotes the velocity vector, p = p(x) the pressure, f = (f; (x),f2(x)) the prescribed body force vec-
tor. The solenoidal condition divu = 0 means that the flows are incompressible.

The development of appropriate mixed finite element approximations is a key component in the search for efficient tech-
niques for solving the problem (1.1) quickly and efficiently. Roughly speaking, there exist two main difficulties. One is the
nonlinear term (u - V)u, which can be processed by the linearization methods such as the Newton iteration method [1], or
the two-level method [2-9]. The other is that the velocity and the pressure are coupled by the solenoidal condition. The pop-
ular technique to overcome this difficulty is to relax the solenoidal condition in an appropriate method, resulting in a
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pesudo-compressible system, such as the penalty method and the artificial compressible method [10]. Recently, using the
Taylor-Hood element (P, — P; triangular element), Li and An [11] studied two-level penalty finite element methods for
Navier-Stokes equations with nonlinear slip boundary conditions, where the main results can be extended to the problem
(1.1). Denote (u', p!") the two-level penalty finite element approximation solution to (u,p) € (H*(Q)?, H*(Q)). The error esti-
mate derived in [11] is

llu—ull; +[lp — plI| < c(e + 1 + H?), (1.2)

where ¢ > 0 is small, h and H are the fine mesh size and coarse mesh size, respectively, and satisfy h < H < 1. ¢ > 0 is inde-
pendent of ¢, h and H. Thus, it suggests that ¢ depends on h, i.e. ¢ = O(hz), to yield an accurate approximation. However, the
condition number of the numerical discretization of two-level penalty methods is O(s”h’z), which will result in a very ill-
conditioned problem when mesh size h — 0.

In this paper, we combine the iteration penalty method with the two-level method to solve the numerical solution to
(1.1). The iterative penalty method was first introduced by Cheng [12] for the Stokes equations and further used to solve
the pure Neumann problem [13] and the Navier-Stokes equations with nonlinear slip boundary conditions [14]. This itera-
tion penalty method allows us to use a “not very small” penalty parameter &. Our two-level iteration penalty methods can be
described as follows. The first step and the second step are required to solve a small Navier-Stokes equations on the coarse
mesh in terms of the iteration penalty method [12,14]. The third step is required to solve a large linearization problem on the
fine mesh in terms of Stokes iteration, Oseen iteration or Newton iteration, respectively. We prove that these two-level iter-
ation penalty finite element solutions (u.,p,,) are of the following error estimate

c(h®> + H® + eH? + gk+1)  Stokes/Oseen methods

5 . 5 (1.3)
c(h” + H* + ¢H* 4 ¢¥*2) Newton method

(|t = wenlly + [P = Penll < {

for any positive integer k. Thus, if we choose ¢ = O(H) = O(hz/ 3), then (1.3) is of the optimal convergence rate of same order
as the usual Galerkin finite element method. Therefore, compared to the two-level penalty method in [11], our iteration pen-
alty method allows that ¢ is not very small. Moreover, combining with two-level methods, our method we study in this paper
can save a large amount of computational time and is an efficient numerical method for solving the numerical solution to the
problem (1.1).

2. Preliminary

In what follows, we employ the standard notation H'(Q) (or H'(Q)*)and || - ||;,! > 0, for the Sobolev spaces of all functions
having square integrable derivatives up to order I in Q and the standard Sobolev norm. When I = 0, we shall write L?(Q) (or
[*(Q)*) and || - || instead of H°(Q) (or H°(Q)?) and || - ||,, respectively. Let X be a Banach space. Denote by X’ the dual space of X

and by < -, ->x the dual product between X and X'. The dual norm || - ||, is defined by ||7||y = Sup,,.x W
For the mathematical setting, we introduce the following spaces:

V=H\(Q?, M-=I1}Q)— {q e 2(Q); / qdx — 0}.
Q
The space V is equipped with the norm

, A\
2lly = (/ V) dx) ‘
Q

It is well known that ||2||,, is equivalent to ||||,. Introduce two bilinear forms
a(u,z/):,u/VwVvdx, Vu veV,
Q
d(v,q) = / qdivedx, YveV, qgeM,
Q

and a trilinear form

b(u,v,w) = 'L(U-V)v-wdxf% [)divuv-wdx:%/g(u . V)v-wdxf%[)(u-V)w- vdx.

It is easy to verify that this trilinear form satisfies the following important properties [7]:
b(u, v,w) = —b(u,w, v), (2.1)
b(u, v,w) < Nlfully[[2]ly|IWlly, (22)

N 1/2 1/2 1/2 1/2 1/2 1/2
b(u, v,w) < 5 [ull P11l ol W2 W + w22 21, (2.3)
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for all u, v,w € V and
Ib(u, v,w)| + |b(v,u,w)| + |b(w,u, v)| < Nl[ully||v],][w]|, (2.4)

for all u € V, v € H*(Q)*,w € [*(Q)?, where N > 0 depends only on Q.
Given f € V', under the above notations, the variational formulation of the problem (1.1) reads as: find (u, p) € (V, M) such
that for all (»,q) € (V,M):
{ a(”? U) + b(”v u, Z}) - d(Z)p) :<f7 V>y,
d(u,q) = 0.

If we define a generalized bilinear form on (V,M) x (V,M) by

(2.5)

B(u',p; vzq) = a(”a Z/) - d(U,p) + d(uaq)7
then the problem (2.5) also takes the following form:
B(u,p; v,q) +b(u,u, v) =< f, v>y. (2.6)
The following existence, uniqueness and regularity results concerning the solution (u, p) to the problem (2.6) are classical
[15,16,10]:
Theorem 2.1. Assume that p and f satisfy the following uniqueness condition:
2Nl < 1, (2.7)

then the problem (2.6) exists a unique solution (u,p) € (V,M) satisfying
1 I3
<— S <A .
lelly < 1l < 5y 28)

Furthermore, assume that 0Q is of class C™,m = 2,3. If f € H"2(Q)?, then the solution (u, p) to the problem (2.6) satisfies the fol-
lowing regularity:

ttll + 11Plm—1 < €Il

3. Iteration penalty finite element approximation

Suppose that f € H'(Q) and Q is a convex polygonal domain. Let 7, be a family of quasi-uniform triangular partition of Q.
The corresponding ordered triangles are denoted by K;,K>, ... ,K,. Let h; = diam(K;),i = 1,...,n,and h = max{hy, h,, ..., h;}.
For every K € T, let P,(K) denote the space of the polynomials on K of degree at most r. For simplicity, we consider the con-
forming finite element spaces V;, and M), defined by

—2
Vi ={on € CQ)", wnl € P2(K)P, ¥ K € T, vilg =0},

M, = {Qh e C(Q), Qulg € P1(K), VK € Ty, / qndx = 0}.
Q
It is well known that V}, and M,, satisfy the BabuSka-Brezzi condition [17,18]:

d(vy,
Kllq, | < sup 2 Zndn) (3.1)
VeV HthV

where x > 0 is a constant independent of h.
Denote R, and Q, the [* orthogonal projections onto V}, and M, respectively, which satisfy

o — Ryv|| + h||v = Ryt||y < ch||o|l;, YV veH(QP?NV, i=1,2,3, (3.2)
g — Qugll < cHligll;, ¥V qeH*QNM, j=1,2.

In [12], the authors propose the following iteration penalty finite element approximation for solving (2.5).

Step I: Find (u9,,p%,) € (Vi, My) such that for all (v4,q;) € (Vi, Mp)

{ a(u2h7 Ul’l) + b(ugha u2h7 yh) - d(y"hp;(;)h) = (.f7 T/h)v (34)

d(ud, qy) + &(p%,qn) = 0.
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Step II: For k =1,2,.., find (u¥,,p%,) € (Vn, My) such that for all (v4,qy) € (Vi, M)

a(ulg(h7 vn) + b(ulém Ulﬁh, vp) —d( Vmpgh = (f, vn), (3.5)
duk, q,) + &%, a,) = e, qp)-

Define a generalized bilinear form on (V,, My) x (Vn, My) by

Ben(Un, Pp; Un, qn) = B(Un, Pn; Uh, qn) + EPh, qn)s

then the problem (3.5) also takes the following form:

Bin(Usy: s Un. Qn) + b(ufy, ufy, vn) = (F, vn) + &P Gn)- (3.6)

Theorem 3.1. Suppose that (u"h,p’;h) € (Vy, Mp,) is the solution to the problem (3.6), then it satisfies
2k + 1

KISy -+ ellpfall® < 113 3.7)

Proof. Setting v, = u%,,q, = p%, in (3.4), using (2.1) and Young inequality, it yields

LG+ ellp%] [P = (F udy) < MHU Hv+ |lfH1
Thus, we obtain

il I+ 26181 < 4 17
For k=1,2,..., setting v, = uk,, q, = p¥, in (3.6), it yields

<Bu

il el = () + ety ) < 5 I+ 5 1+ 5 okl + 5 k"1

Thus, we obtain
2k + 1

k
w15 + ellpk| —WII1+8Hp \|2<~-<ﬁ|tfu%+s|\p2h|\2 ik

The proof is complete. O

Now, we recall a theorem concerning the error estimate between the exact solution and the penalty finite element
approximation solution. The proof can be found in [12,14].

T}:leoremf:’p.z. Let (u,p) € H*(Q)> NV x H*(Q) "M and (uk,. %) € (Vn, My) be the solutions to the problems (2.5) and (3.6), then
they satisfy

[[u—ubylly + 1P — Pl < c(h® + 1), (3.8)
for any positive integer k.
We begin to give the error estimate ||u — u¥,|| for the penalty finite element approximation (3.5). This L? error analysis is
based on the regularity assumption that the following linearized problem (3.9) is (H*(Q)?,H'(Q)) regular.
Given z € [?(Q)?, find (w, 7t) € (V, M) such that for all (v,q) € (V,M)
{ a(w,v) +b(u, v,w) + b(v,u,w) —d(v,n) = (z,v),
d(w,q) =0.
According to (2.1) and (2.8), it is easy to verify that the problem (3.9) exists a unique solution (w, 7). The assumption that
(3.9) is (H*(Q)* H'(Q)) regular means that (w, 7r) also belongs to (H*(Q)?, H'(Q)) and the following inequality holds:

Wil + [l < cllzl]- (3.10)

(3.9)

Theorem 3.3. Let (u,p) € H>(Q)* NV x H*(Q) "M and (uk,. %) € (Vi My) be the solutions to the problems (2.5) and (3.6), then
they satisfy

Ju— || < (4 eh? 4 &), (3.11)

for any positive integer k.
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Proof. Setting z=u —u¥, and v = u — u¥, in the first equation of (3.9), we get
HU - ushH = a(W7 u— u’;h) + b(u7 u-— ushvw) + b(u - ushv U,W) - d(u - uah7 TC)' (312)

Subtracting (2.5) from (3.5) yields

{a(u_u’;h7yh)+b(u u, yh) b(u’éh7ulgh7vh)_d(ylhp_pf:h) :O7 (313)

d(u — gy, qn) +&(P5 " Gn) — (Pl @) = 0
Taking v, = Ryw and q, = Q;7 in (3.13) and combining with (3.12), we obtain
[u—uk|]* = a(w — Ryw,u — u¥,) + b(u,u — u¥,, w) + b(u — u¥,, u,w) + b(u¥,, u%,, Row) — b(u, u, Ryw)
+d(Ryw —w,p — pX) —d(u —uk,, m— Q1) + e(pX, !, Q) — &(PX, Qu) = + -+ + Iy (3.14)
Using (3.2), (3.8) and (3.10), I; is estimated by
I = a(w —Ryw,u —ufy) < gl —uyly[[w — Rowlly < ch(h® + &) wil, < ch(h® + )] ju — ufy|.
Similarly, using (3.2), (3.3), (3.8) and (3.10), I5 is estimated by
Is = d(Rew —w,p — pfjy) — d(u — ufy, T — Qu7) < [[Rew — Wlly[Ip — Piyl| + [[u — uylly|I7 — Qurel]
< ch(h® + &)([Wll + [[7]l,) < ch(h® + 1) fu — ufy |
Concerning I,, we rewrite it as
I, = b(u,u — u¥,, w) + b(u — u¥,, u,w) + b(u,, u%,, Ryw) — b(u, u, Ryw)
=b(u—uk,u—uk, w) +bu—uk, u,w—Ryw) + b(u,u — uk,, w— Ryw) + b(u — ub, u — uf Ryw — w).
Then, from (2.2), (2.8), (3.2), (3.7), (3.8) and (3.10), it holds that
o < Nl = uly [ (IWlly + [[w = Rawlly) + Nllullyl =y Iy [[w = Rwlly < e’ +he! +&2542) w,
< (P + he ! 4 22 ju — uy||.
Finally, we estimate I, by
ls = e(ply", Q) — &(ply, Qi) = e(ply" — P, QuT) + &(P — Py, Qu7) < &(lIpky" — Il + [P — P IDIIQuT|
<o(h® +&)||mll; < e(h® + &)lu — ufy |

Combining these estimates with (3.14), we conclude that (3.11) holds. O

4. Two-level iteration penalty methods

In this section, based on the iteration penalty method described in the above section, the two-level iteration penalty finite
element methods for (2.5) are proposed in terms of Stokes iteration, Oseen iteration or Newton iteration. From now on, H and
h with h < H are two real positive parameter. The coarse mesh triangulation 7 is made as like in Section 3. And a fine mesh
triangulation 7, is generated by a mesh refinement process to 7. The conforming finite element space pairs (V, M;) and
(Vu,My) C (Vi, My) corresponding to the triangulations 7, and 7y, respectively, are constructed as like in Section 3. With the
above notations, we propose the following two-level iteration finite element methods.

4.1. Two-level stokes iteration penalty method
At Step I and Step II, we solve (3.4) and (3.5) on the coarse mesh. i.e.,
Step I: Find (u%,p%;) € (Vuy,My) such that for all (vy,qy) € (Vu,Mu)

a(”eH:”H)""b( vau}H vy) —d( VH7ng (f, vn), 4.1)
d(uly, qu) + &Py qu) = 0.

Step II: For k=1,2,. .., find (uk;, p%,) € (Vu,My) such that for all (vy,qy) € (Vu, My)
a(ugHv Z)H) + b(u’?va UIEH, UH) - d(”va!;H) = (.fv yH)v (4 2)
d(uy, qu) + &P ) = E(Px" n)-

At Step III, we solve a linearized problem on the fine mesh in terms of Stokes iteration. i.e.,
Step III: Find (ug, pgy) € (Vi, Mp) such that for all (vp,qy) € (Vi,, My)
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{ Q(ugn, v) + b(utyy, yy, V) — d(vn. Poy) = (F 0w), 43)
d(Ush, Gn) + E(Pen: Gn) = E(Plyy: n)-
It follows from (3.7), (3.8) and (3.11) that u¥, is uniformly bounded in V and (u¥,, p¥,) satisfies

llu =y lly + 1P — plyll < c(H* + &), (4.4)

l[u—uky|| < c(H? + eH* + &). (4.5)
According to the definition of the generalized bilinear form B, (2.6) and (4.3) also take the following forms:

Bn(u, p; v,q) + b(u,u, v) = (f, ) + &(p, q). (4.6)
and

B (Uzn: Peni Vs Gn) + bWy, iy, vn) = (f, o) + (Pl @n)- (4.7)
Then we get

Bon(U — Ush, P~ oy V. ) + bW, 01) — bty fyy, v1) = &P — Ply. G1)- (48)

Next, we prove the following error estimate of the finite element approximation solution (u, p,,) to the problem (4.3).

Theorem 4.1. Suppose that the uniqueness condition (2.7) holds. Let (u,p) € H*(Q)* NV x H*(Q) "M and (uy,, p,p) € (Vi, Mp)
be the solutions to the problems (2.5) and (4.3), then they satisfy

[t = wanlly + 1P — Panl| < c(h® + eH? + H? 1), (4.9)

Proof. Setting vy, = Ryu — u, and q, = Qup — p,, in (4.8), it yields

M1t = [+ ]| Qup — Popl > = B (Rutt = g, Qu — Doy Rt — U, Qo — Do)
= Ben(Rput — 1, Qup — P; Rptt — g, QP — Pep) + Ben (U — Ugh, P — Pop; Rntd — Ush, QuP — D)
= Bon(Rutt — 1, Qup — Ps Ryt — Usn, QuP — Pon) + b(ufyy, Uy, Rutt — tsn) — (1,1, Rutt — gy
+&(p— Py, Uub —Pon) =) +J2 - (4.10)
From Holder inequality and Young inequality, it is easy to show that
J1 = Ben (Rt — u, Qpp — p; Ratt — U, QP — Pn)
< IRntt = ulfy[IRntt = enlly + [[rntt — ul[y||QnP — Penl| + [[Rntt — en|ly [|QnP — PI| + &[|QnP — PIIIIQnP — Penl|
< B IR = wall} -+ (1 Ryt = ulfy +11Qup — 1) + 1l1Qup — Pl P + 2211Qup — pII”. (4.11)
and
Js = &b — Pl Qup — Pun) < lIP — Pilll|Qup = Panll < 111 Qup — Panl* + c&2llp — Pyl (4.12)
where 7 > 0 is some small constant. Note that
bk, uky, vn) — b(u,u, vp) = bk, — w,u, vy) + (W, ub; — u, vy) + bk, — u,ub; —u, o), (4.13)
then from (2.2) and (2.4) we can estimate J, by
Jo = b(uby —u,u, Ry — ) + (u, uby — u, Ryut — ugy) + b(ulyy — u,uly — u, Ry — ugy)
< Nlull,IRutt = Uanlly [ty — ul] + NIJetyy — ully|[Rntt — ]y < gI\Rhu — Usnly + C(HU’SH —ulf* + ||y — u\|3>~
Substituting these estimates into (4.10) and using triangular inequality, it yields
[[u— uenlly < [[u— Ruully + ||Ratt — Ugn|ly
< c(|[Rutt — ully + 11Qup = PII) + 111Qup = Panll + c(ellp — Pigll + 1y — ul] + [y — ulf7). (4.14)
Next, we estimate ||Q,p — p,,||- From the BabuSka-Brezzi condition (3.1), we have

d(vp, - d(vp, —p)+d(vp,p— d(vn,p —
K11QuP = Purll < sup (Un, QuP — Pen) _ sup (U, Qup = p) +d(Un, D — Den) <11Qwp - pll + supw- (4.15)

vpeVy [lonlly UheV) llonlly UReVy [[onlly
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On the other hand, it follows from (2.2), (2.4) and (4.13) that
d(Vn,p — Pan) = (U — U, V1) + b(u, u, vh) — b(ufy, ufy, vh)
= a(U — Ugp, vn) + b, u — uby, vy) + b(u — uby u, vp) — b(u — uby, u —uby, o)
< (Wl = tenlly + Nijull][u — byl + Nlju = by [15)] 2l
Thus, we obtain
11Q4p = Panll < (11 = Qupll + llu = wanly + Il = byl + [l — uyy). (4.16)
Substituting (4.16) into (4.14), for sufficiently small # > 0, we get from (3.2), (3.3), (4.4) and (4.5)
1t = tnlly < ClIRwtt = ully + 11Qap = I + ¢ (&llp = Pyl + ey — ull + Il — ully)
<c(h® + eH? + 2 4 HP 4 H? + 61 4 H* 4 62042) < c(h2 +eH? + H + 8"“).
From (4.16), again, we conclude
1P~ Pusll < c(h” +eH? + H + &41).

The proof is complete. O

4.2. Two-level Oseen iteration penalty method
At Step I and Step II, we solve (4.1) and (4.2) on the coarse mesh. i.e.,

Step I: Find (u%,,p%) € (Vu,My) by (4.1).

Step II: For k= 1,2,. .., find (uX,;,p%,;) € (Vu,My) by (4.2).

At Step III, we solve a linearized problem on the fine mesh in terms of Oseen iteration, i.e.,
Step III: Find (ug, pg) € (Vi, Mp) such that for all (vp,qy) € (Vi,, My)

{ a(Ueh, Un) + b(uly, ten, v4) — d(vn, Pyp) = (f, vn), (4.17)

d(ush’ qh) + 8(p8h7 qh) - 8(pé:Ha qh)

Next, we prove the following error estimate of the finite element approximation solution (u, p,,) to the problem (4.17).

Theorem 4.2. Suppose that the uniqueness condition (2.7) holds. Let (u,p) € (H*(Q)? NV, H*(Q) " M) and (uy,, p,p) € (Vi Mp)
be the solutions to the problems (2.5) and (4.17), then they satisfy

= tnlly + 11p = Pugll < c(* + eH” + H* + &1, (4.18)

Proof. Proceeding as the proof in Theorem 4.1, we have

14l[Rut — gn| [ + &]|Qup — Ponll” = Ben(Rutt — 1, Qup — P Rutt — ttgn, Qub — Pn) + b(tlyy, Ugn, Ryt — )
— b(u, t, Rutt — sn) + &(p — Py, Qub — Pap)- (4.19)
Here, we only estimate b(u¥,, i, Ryut — ) — b(u, u, Ry — ug) by
b (U, tgn, Ratt — Ugp) — b(u, u, Ryt — ) = b(uy, tlen — Rytt, Ryt — ) + b(uby, Rnut — u, Ryt — Uy )
+b(uby — u,u, Ryu — ug)
= b(u¥,, Ryt — u, Ryt — ) + b (uy — u, u, Ryu — ug)
< N[ty | [Rntt = ully | [Rutt — tenlyy + N[l [Rntt — en [y |1y — ]

< B IR =l } + (I, — ull? + | Roat — w}), (4.20)

where we use (2.1), (2.2) and (2.4). Substituting (4.11), (4.12) and (4.20) into (4.19), it yields
[[u— tenlly < [Ju—Rpully +[|Rntt — Uenly

< c(|IRutt — ully + [1Qup — pII) +111QuP — Panll + C(ellp — Pyl + Ity — ull), (4.21)
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where # > 0 is some small constant. Note that

d(Vh,p — Do) = AU — Ugn, Vh) + (U, U, vy) — b(UYy, U, ) = AU — Ugn, v4) + b (U — by, u, vy) + b(Uly, u — e, v1)

< (Bl = ugnlly -+ NJully [ = ||+ N[y | = tenlly ) [ 28]l

Then, from (3.7) and (4.15) we obtain

1Qup = Panll < c(|1p — Q| + Il — wanlly + [Ju — uy])- (4.22)
Substituting (4.22) into (4.21), for sufficiently small # > 0, we get from (3.2), (3.3), (4.4) and (4.5)

lJu = tenlly < c(|[Rntt = ully + 1Qup — pI| + &l|p — Pl || + |y — ul]) < c(h® + eH? + &2 + H? + eH? + 1)

<c(h® + eH? + H? + 641,

From (4.22), again, we conclude

1P~ panll < c(h” + eH? + H 457,

The proof is complete. O

4.3. Two-level newton iteration penalty method
At Step I and Step II, we solve (4.1) and (4.2) on the coarse mesh. i.e.,

Step I: Find (u%,,p%) € (Vu,My) by (4.1).

Step II: For k =1,2,..., find (uX,;,p%,;) € (Vu,My) by (4.2).

At Step III, we solve a linearized problem on the fine mesh in terms of Newton iteration. i.e.,
Step III: Find (ue, per) € (Vi, Mp) such that for all (vp,qy) € (Vi,, My)

{ a(Ugn, V) + b(Uky, Ugh, ) + D(Ugn, Uy, ) — d(Wh, D) = (F, On) + b(uy, uky, i), (423)

d(Ueh, Gy) + &(Den» Gn) = (0%, n)-

Next, we prove the following error estimate of the finite element approximation solution (u, p,,) to the problem (4.23).

Theorem 4.3. Suppose that the uniqueness condition (2.7) holds. Let (u,p) € (H*(Q)* n V,H*(Q) N M) and (ug, p,y) € (Vir, My)
be the solutions to the problems (2.5) and (4.23), then for sufficiently small h,H, ¢ they satisfy

[[u = tanlly + 1P = Parl| < c(h” + eH” + H* + 652, (4.24)

Proof. Proceeding as the proof in Theorem 4.1, we have

HIIRnt = Uznl [y + €l|QuP — Ponll® = Ban(Rutt — 11, Qb — P: Rutt — Uz, QuP — Do)
+ b(uk;, s, Ratt — ) + b (Usp, Uy, Ratt — Uzn) — b(u, 1, Ryt — Ug)
— b(ugyy, Wiy, Rutt = Uan) + &(P — Pl QuP — Pen) =J1 +J5 +Jas (4.25)
where J; and J; have been estimated by (4.11) and (4.12), respectively. We rewrite J, as
Ja = b(uby, tn, Ryt — tgn) + b(Upn, uy, Rntt — ) — b(u, u, Rytt — ) — b(uly, uby, Ryt — )
= b(Ugh — U, U, Ryl — Ugn) + D(Uph, Uph — U, Ryt — Usp) — b (g — Uy, U — 1y, Ryt — Uy
= b(uzy — Rpu, u, Ry — Ugy) + b(Ryu — u, u, Ryt — Ugp) + b(Ugn, Ryt — U, Ryt — )
+ b(Rytt — tn, Ryt — uby, Rt — ugn) + b(u¥y — Ryu, Ryt — uly, Ryu — )
=Js+---+Jo. (4.26)
From (2.2) and (2.8), J5 and J4 are estimated by

J5 = b(ug — Ryu, u, Ryt — 1) < NJJul[y[|Rytt — s [} < gﬂRhu — Ugp|y-



638 R. An, F. Shi/Applied Mathematical Modelling 39 (2015) 630-641
and
J = b(Ruu — u, u, Ryt — ugp) < NI[ully||Rntt — ||y [[Rntt — ully, < gHRhU = Uenlly|[Rntt — ully
< g IRuut = w5 |[Ryut — w3

Using (2.2) and (3.2), we estimate J; by
J7 = b(uen, Rntt — t, Ryt — p) = b(Uen — Rtt, Ryt — u, Rytt — tep) + D(Rytt, Rult — 4, Rl — Uz
< N|IRytt — uly [[Rntt = tgn [} + NI [Rut [y [|Rutt — ]|y [Rntt = e[|y < ch®|[Rutt = tn [ +gHRhu — Ugn| [y + C[Rntt — ulj.
It follows from (2.2), (3.2) and (4.4) that J; is estimated by
Js = D(Rutt — Ugn, Rutt — ufyy, Rutt — ttgn) < NJ[Rytt — ufy Iy [[Rntt — gnlfy < N(|[Rnte — lly + [[u =ty l|y ) [[Ratt — tsn [y
< c(h2 +H 4 gk“) IIRntt — g2
Finally, J4 is estimated by
Jo = b(uy — Rt Rt =ty Ratt — ) < NIIRnt — 17 1Rs = hally < IRt = i} ¢ (I1Ra =l + [l — 1),

Substituting these estimates into (4.26) and combining with (4.11), (4.12), for sufficiently small h,H, ¢ we get
l[u = tenlly < [fu—Rpully + [[Rntt — Uen|ly < c(||Rntt — ully + [[Qup — pII) + Nl|QuP — Penll

o+ ¢(ellp = bl + I1Rwtt = ulf} + | =yl 1), (427)
where 7 > 0 is some small constant. Note that
d(Un, P — Pop) = Q(U — Ugp, vy) + b(u,u, vy) — b(uy, g, Un) — b(Upn, Uy, vn) + b(uly, uby, v1). (4.28)
Since

b(u,u, vy) — bty usn, vn) — b (Uen, Uy, vn) +b (U, uby, vn) = b(u — ugp,u, ) +b(u,u— Rult, v4) — b(U — Uy, u — Ry, vy)
+ b (ugy — u¥y, Ryu —ubyy, wp) — b (U, ugn — Ryu, vy)
< (Nlfully|[u—uglly +Nlully|lu— Ryully
+|u = Ruully |[u = ugn|[y)||nlly + ([t — enlly
= k1) (1l = Rl [y + [ = gy 1y ) [ 23]y
-+ N[ty (|1t = ten |y + [0 = Rl [y) ]| 2] |y

<c(14R +H 46 ) = wally N2l
(1= Raualy + llu = Roat -+ 1u =y 17 )l 21y
then combining (4.28) and (4.15), we obtain
1Qp = Punll < €1+ h* - H? ) lu = ttally + (1l = Rutlly + [|p = Qupll + 1 = Rely + [l — w7 ). (429)
Substituting (4.29) into (4.27), we obtain

2 2
llu — tenlly < c(|[Ruu = ully +[1Qup — PII) + c(€llp — Piyll + [IReu — ully + [Ju — uylly)

<c(h® + eH? + 2 4 h* + H* + £2%) < c(h* + eH? + H* + £+2) (4.30)

which proves (4.24). O

5. Numerical results

In this section, we take some numerical tests to illustrate the performance of the present iteration penalty methods. The
testing example is quoted from [12], namely the exact solution is chosen as

u=(@x-17°yy -2y - 1), -xx-1)2x - 1)y’(y - 1)?),
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Table 1

Effect of penalty parameter ¢ = &H in the full error % for the three methods with H = 1/36 and h = 1/216.
€ 107" 102 1073 10
Stokes 6.86784e—06 6.84687e—06 6.84666e—06 6.84665e—06
Oseen 6.86749e—06 6.84652e—06 6.84631e—-06 6.84631e—-06
Newton 6.86738e—06 6.84641e—06 6.84620e—06 6.84620e—06

Table 2

Convergence of the one-level penalty method.
h lu—up]] lu=uply lIp=pal Iteration Time (s)

[[ull I[ufly [Ipll

1/2° 4.90246e-3 4.46192e-2 3.90625e-3 3 0.51
1/3% 1.25834e—4 4.03434e-3 3.42936e—4 2 4.15
1/4° 9.40634e—-6 7.20093e—4 6.10352e-5 2 26.19
1/5° 1.26250e—6 1.88860e—4 1.60000e—5 2 131.37
1/6° 2.44682e-7 6.32562e-5 5.35837e—6 2 475.93
Order 3.00370 1.99288 2

Table 3

Convergence of the two-level Stokes iteration penalty method with penalty parameter ¢ = &H (g = 0.01).
H h Jlu—u]| [u~uly lp—pall Iteration Time (s)

[[u] Tully Ipll
1/22 1/2° 4.90877e—3 4.46272e-2 3.90625e-3 3 0.25
1/32 1/3° 1.25834e—4 4.03542e-3 3.42936e—4 3 1.33
1/4 1/4% 9.47324e—6 7.20277e—-4 6.10352e-5 3 4.86
1/52 1/5° 1.27665e—6 1.88907e—4 1.60000e—5 3 19
1/62 1/6° 2.48640e—7 6.32720e-5 5.35837e—6 3 83.21
Order 2.99848 1.99286 2
and
p=x -y

in the unit square Q = [0, 1]%, and the force f is determined by the original system (1.1).
In all the experiments, we choose p = 0.01 and implement all algorithms by the finite element software FreeFem++ [19].

Firstly, we check the effect of the penalty parameter on the approximation error ”“’m% for the three methods. With the

fixed two uniform meshes with H = 1/36 and h = 1/216, the computational results are shown in Table 1. Here, the symbols
“Stokes”, “Oseen” and “Newton” mean using two-level Stokes/Oseen/Newton iteration penalty method, respectively. We can
see that, for our present testing case, it suffices to set ¢ = 0.01H if it is hoped to be as large as possible.

Then, to verify the theoretical analysis for two-level Stokes/Oseen/Newton iteration penalty methods given in Theorems
4.1,4.2,4.3, we use several mesh pairs H = 1/2%,1/3%,...,1/6% and h = H*?. Also, for one-level iteration method (3.4) and
(3.5), we only use the corresponding fine meshes. The numerical results are displayed in Tables 3-5, and Table 2. In all these
tables, the symbol “Iteration” denotes the number of Newton iteration in Step II of corresponding method. the From these
tables, the observations and conclusions are presented as follows:

e From Table 2, the numerical convergence orders of one-level iteration penalty method (3.4) and (3.5) coincide with the
ones predicted by theoretical analysis in Theorems 3.2 and 3.3 very well, namely, O(h*) for velocity in H'-norm and pres-
sure in L2-norm, and O(h®) for velocity in L2-norm.

e Based on Tables 3-5, all three two-level Stokes/Oseen/Newton iteration penalty methods can reach the optimal conver-
gence orders of O(hz) for both velocity and pressure, in H'- and L?-norms, respectively, as proven in Theorems 4.1,4.2,4.3.
Besides, we find that these three iteration methods can achieve the numerical convergence orders of O(h*) for velocity in
the sense of L?-norm as expected.

o As for the comparisons between these three iteration penalty methods, we can find from Tables 3-5 that, the two-level
Newton iteration penalty method obtains a little better approximations results than the Oseen one, and both methods
exceed the Stokes one.

e From the view of computational cost, we can obviously observe by comparing Tables 3-5 and Table 2 that these three
two-level iteration penalty methods significantly save CPU time than the one-level iteration penalty method, meanwhile,
obtain nearly the same approximation results.
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Table 4

Convergence of the two-level Oseen iteration penalty method with penalty parameter & = &H (g, = 0.01).
H h Jlu—up|] [u=uply lp—pall Iteration Time (s)

[ Tully Ipll
1/22 1/2° 4.90789e-3 4.46209e-2 3.90625e-3 3 0.29
1/3? 1/3° 1.25772e—-4 4.03484e-3 3.42936e—4 3 1.79
1/4° 1/4° 9.46497e—6 7.20181e-4 6.10352e-5 3 6.66
1/5% 1/5° 1.27493e-6 1.88883e—4 1.60000e—5 3 27.65
1/62 1/6° 2.48162e-7 6.32638e—-5 5.35837e—6 3 93.42
Order 2.99910 1.99286 2

Table 5

Convergence of the two-level Newton iteration penalty method with penalty parameter ¢ = gH (g = 0.01).
H h lu—u|] [u=tply lp—pall Iteration Time (s)

[Tul [[ufly [l
1/2? 1/23 4.90459e-3 4.46188e-2 3.90625e-3 3 0.3
1/3? 1/3° 1.25511e-4 4.03467e-3 3.42936e-4 3 1.71
1/4° 1/4° 9.42821e-6 7.20151e—-4 6.10352e-5 3 6.95
1/5° 1/5° 1.26706e—6 1.88875e—4 1.60000e—5 3 32
1/6° 1/6° 2.45952e—7 6.32613e-5 5.35837e-6 3 110.86
Order 3.00203 1.99286 2

IsoValue IsoValue IsoValue

0,001
m0.00090211

Fig. 1. Contour plots of exact solution. From left to right: two components of velocity and pressure.

IsoValue IsoValue IsoValue

EEEEEEE s
=5288882

00511152
00571287

Fig. 2. Contour plots of numerical solution by one-level iteration penalty method. From left to right: two components of velocity and pressure.

Moreover, we show the contour plots of exact and numerical velocity and pressure to exhibit the approximation profiles in
details. Figs. 1 and 2 present the exact solution and the numerical one by one-level iteration penalty method. Besides, as to
the two-level method, here only the numerical solution by Newton iteration penalty one is displayed in Fig. 3. From these
three groups of contour plots, we can observe the good coincidence with each other to illustrate the stability of the present
methods.
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IsoValue IsoValue IsoValue

Fig. 3. Contour plots of numerical solution by two-level Newton iteration penalty method. From left to right: two components of velocity and pressure.

6. Conclusion

In this paper, we present a one-level iteration penalty method for solving Navier-Stokes equations and derived its stabil-
ity and error estimates. Then we propose three two-level iteration penalty methods based on the linearization techniques of
Stokes, Oseen and Netwon types on fine mesh. Also we obtain the related error estimates of these three methods. Some
numerical experiments are made to show the stability and efficiency of the present methods. Combining the present meth-
ods with some stabilization techniques like the Streamline-Upwind/Petrov-Galerkin (SUPG) method or variational multi-
scale (VMS) method, by using lowest equal order element for example, and solving Navier-Stokes equations with large
Reynolds number will be our further work.
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