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Miljana Jovanović ⇑, Marija Krstić
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This paper presents the analysis of behavior of stochastic time-dependent delay population
model with the Allee effect. We prove the existence-and-uniqueness of positive solution of
considered model. Then, we find the sufficient conditions under which the population will
become extinct. We also show that if the initial population size exceeds environmental car-
rying capacity and time delay is sufficiently long, considered population is non-persistent
in mean. The sufficient conditions for asymptotical mean square stability and stability in
probability of the positive equilibrium states of the model, in terms of Lyapunov functional
method, are obtained. Finally, as an illustration, we apply our mathematical results and
predict time which a population of the African wild dog Lycaon pictus needs to reach it is
equilibrium states, and also confirm that population of brown tree snake Boiga irregularis
is non-persistent in mean if the initial population size is greater than carrying capacity
and time delay is long enough.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction and motivation

One of the most interesting phenomena in the nature is that some species often collaborate among themselves in search
for food, or on an occasion when they have to defend themselves. Some of the species, as fish and birds, form hunting groups
(packs, prides, for instance) and in such way they become more difficult prey for their predators. Likewise, some parasitic
species associate themselves so that they can overcome the defence mechanism of the host. It is also well known that ants
and bees live in communities in which they have division of labor, altruism, etc. The principle reason of forming such com-
munities is that the individuals have greater chances to survive in the nature if they belong to some group.

The possibility of a positive relationship between capability to survive in the nature and population size was studied by
Allee [1]. Allee observed that many animal and plant species suffer a decrease of the per capita growth rate as their popu-
lations reach small sizes or low densities. Under such conditions, the growth rate can reach zero, or even negative values,
because of a decrease in reproduction and/or survival when prominent individuals are not numerous enough. One of Allee’s
collaborators, Odum, firstly referred to this process as Allee principle, but it is now generally known as the Allee effect. Allee
demonstrated that a negative density dependence occurs when population growth rate is reduced at low population size.
The Allee effect refers to a population that has a maximal per capita growth rate at low density. This occurs when the per
capita growth rate increases as density increases, and decreases after the density passes a certain value which is called Allee
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threshold. The Allee effect can be caused by difficulties in finding mate, social dysfunction at small population sizes, inbreed-
ing depression, food exploitation, predator avoidance, among the other reasons.

The Allee effect has been the subject of increased interest in the ecological literature, especially in the last two decades.
Indeed, prevention of population extinction is one of the priorities in conservation biology because of the fact that popula-
tions of small sizes are often subjected to greater risk of extinction. Allee effect also plays a significant role in ecosystem inva-
sions and, most importantly, in biological control (for more details see [2]).

At the same time, in mathematical literature, many population models with the Allee effect have been considered. Some
of them are devoted to biological invasions of the alien species into the new habitat (see [3,4], for instance). More precisely, it
is well-known that the Allee effect is relevant to many conservation programmes and studies of a range expansion during
biological invasions because of the fact that it can result in critical population threshold under which a population becomes
extinct. On the other hand, in recent years, the study of the Allee effect has attracted much attention in population dynamics.
Former studies demonstrate that the Allee effect may have important dynamical effects on the local stability analysis of
population models. It may have either a destabilizing or a stabilizing role in the system (see [5,6]).

All of previously mentioned models are deterministic models. However, population systems are often subjected to envi-
ronmental noise. Thus, it is useful to investigate how the noise affects them. One of the papers that studies the stochastic
population model with the Allee effect is [7]. Let us briefly present the results obtained there. The stochastic differential
equation of the form
dNðtÞ ¼ NðtÞ 1� NðtÞ
T

� �
NðtÞ

K
� 1

� �
ðr dt þ adwðtÞÞ; t P 0; ð1Þ

Nð0Þ ¼ n0
is used to model the stochastic population model with the Allee effect. In (1) NðtÞ represents the population size at time
t;w ¼ fwðtÞ; t P 0g is a one-dimensional standard Brownian motion defined on a complete probability space
fX;F ; fF tgtP0; Pg with a filtration fF tgtP0 satisfying the usual conditions (it is right continuous and increasing, while F 0

contains all P-null sets), n0 is a random variable independent of w such that 0 < n0 < K a.s. Moreover, the constant T is
the minimal population size which is needed for population survival and it represents the Allee threshold below which is
population extinction; K is the environmental carrying capacity which represents the maximal population size,
0 < T < K; r is the intrinsic growth rate and a2 represents the intensity of white noise.

In [7], the authors prove existence and uniqueness of a positive solution of model (1) and investigate stability properties
of equilibrium states, E0 ¼ 0, E� ¼ T and E� ¼ K. By the Lyapunov function method, they obtain sufficient conditions under
which the equilibrium states are asymptotically mean square stable and asymptotically stable in mean. Results of this paper
are improved in [8], where authors apply the Feller test to obtain the stability conditions for equilibrium states of model (1).
However, since the Feller test is just valid for one-dimensional, time-homogeneous stochastic differential equations, the
Lyapunov function and Lyapunov functional methods seem more efficient in high dimensional cases and in cases when
stochastic delay models are considered.

Many processes in population biology involve time delay, which represents time lag between causes and their conse-
quences. For example, in population dynamics time delay may represent time which individuals need to arrive into the
age of reproductive maturity (reproductive time lag), time which they need to react to environmental changes (reaction time
lag), resource regeneration time, feeding time, etc. Time delay is source of instability in dynamic systems and it may cause
population fluctuations. The destabilizing effect of time delay is often expressed by the fact that introduction of time delay
which exceeds the dominant time scale of a system makes equilibrium state, which is otherwise stable, to become unstable.
If the delay is too long, the population dies out.

Since all species exhibit time delay, at least due to maturation time, we can say that stochastic delay models closely
approach reality. Thus, we assume that the average growth rate of Eq. (1) is a function of some specified delayed argument.
In regard to the fact that time delay is not resistant to time fluctuations, in this paper we investigate the stochastic time-
dependent delay population model with Allee effect
dNðtÞ ¼ rNðtÞ 1� Nðt � sðtÞÞ
T

� �
Nðt � sðtÞÞ

K
� 1

� �
dt þ aNðtÞ 1� NðtÞ

T

� �
NðtÞ

K
� 1

� �
dwðtÞ; t P 0; ð2Þ
where sðtÞ is a nonnegative, bounded, continuously differentiable function on ½0;þ1Þ satisfying
�s ¼ sup
t�0

sðtÞ
for some constant �s � 0 and s0ðtÞ ¼ dsðtÞ
dt . Let C ¼ Cð½��s;0�; RþÞ be the family of continuous functions u from ½��s;0� to Rþ with

the norm kuk ¼ sup��s6h60 juðhÞj and D the space of F 0-adapted random variables u 2 C. The initial data for Eq. (2) is
N0 ¼ fnðhÞ; ��s 6 h � 0g 2 C: ð3Þ
In the papers [7,8] authors suppose that the biomass satisfies 0 < n0 < K a.s., where K is the environmental carrying
capacity. However, in some cases number of organisms may exceed the carrying capacity of the habitat as a result of an
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increase in birth rate, decline in mortality rate, increase in immigration, or depletion of resources. We use this fact to con-
sider model (2) also for initial data (3) satisfying the condition N0 > K.

In this paper we consider model (2) which describes the dynamics of a single species subjected to the strong Allee effect.
This model has the same equilibrium states as the model (1): E0 ¼ 0; E� ¼ T and E� ¼ K. In the next section we prove the
existence-and-uniqueness of the positive solution of Eq. (2). Section 3 is dedicated to study of the asymptotic mean square
stability and stability in probability of the equilibrium states of Eq. (2). We find the sufficient conditions under which the
considered population becomes extinct and non-persistent in mean as well as the conditions for stability in probability of
the positive equilibrium states. In Section 4 we provide numerical examples for population of African wild dog Lycaon pictus
and brown tree snake Boiga irregularis, to verify our mathematical findings.

2. Positive and global solution

As NðtÞ of Eq. (2) represents population size at time t, we are only interested in the positive solutions. Moreover, in order
for a stochastic differential equation to have a unique global solution (i.e. solution that does not explode in finite time) for
any given initial data, the coefficients of stochastic differential equation are generally required to satisfy the linear growth
condition and local Lipschitz condition [9]. However, the coefficients of Eq. (2) satisfy local Lipschitz condition, but they do
not satisfy the linear growth condition, so the solution of Eq. (2) may explode at a finite time. By the following theorem we
establish some conditions under which the solution of Eq. (2) is positive and global.

Theorem 2.1. If the delay function satisfies the condition
s0 ¼ sup
t�0

s0ðtÞ < 1; ð4Þ
then there exists a unique positive global solution NðtÞ to Eq. (2) on t P ��s, for any given initial data (3).
Proof. Since the coefficients of Eq. (2) are locally Lipschitz continuous, for any given initial data N0 2 C there is a unique
maximal local solution NðtÞ on t 2 ½��s; seÞ, where se represents explosion time. To show this solution is global, we need
to prove that se ¼ 1 a.s. Let k0 > 0 be sufficiently large for
1
k0
< min
��s6h�0

jnðhÞj 6 max
��s6h�0

jnðhÞj < k0:
For each integer k P k0, define the stopping time
sk ¼ inf t 2 ½0; seÞ : NðtÞ R
1
k
; k

� �� �
;

where throughout this paper we set inf ; ¼ 1 (as usual ; denotes the empty set). Clearly, sk is increasing as k!1. Set
s1 ¼ limk!1sk. If we can show that s1 ¼ 1 a.s., then se ¼ 1 a.s. and NðtÞ is a positive global solution of Eq. (2). Thus, we
only need to show that s1 ¼ 1 a.s or for all T > 0 we have Pfsk 6 Tg ! 1 when k!1.

Let us define a C2 function V1 : Rþ ! Rþ by
V1ðNÞ ¼
ffiffiffiffi
N
p
� 1� 1

2
ln N:
Let k P k0 and T > 0 be arbitrary. For 0 6 t 6 sk ^ T we apply the Itô formula to V1ðNðtÞÞ and obtain
dV1ðNðtÞÞ ¼ LV1ðNðtÞ;Nðt � sðtÞÞÞdt þ a
ffiffiffiffiffiffiffiffiffiffi
NðtÞ

p
� 1

2TK
ðK � NðtÞÞðNðtÞ � TÞdwðtÞ;
where
LV1ðN;N1Þ ¼ r

ffiffiffiffi
N
p
� 1

2TK
ðK � N1ÞðN1 � TÞ � a2

ffiffiffiffi
N
p
� 2

8T2K2 ðK � NÞ2ðN � TÞ2:
Using the elementary inequality �2uv 6 u2 þ v2, we obtain
LV1ðN;N1Þ 6
jrj

4TK

ffiffiffiffi
N
p
� 1

� �2
þ jrj

4TK
ðK � N1Þ2ðN1 � TÞ2 � a2

ffiffiffiffi
N
p

8T2K2 ðK � NÞ2ðN � TÞ2 þ a2

4T2K2 ðK � NÞ2ðN � TÞ2:
In order to eliminate the terms with delay, we introduce the non-negative functional
V2ðNðtÞÞ ¼
1

1� s0
jrj

4TK

Z t

t�sðtÞ
ðK � NðsÞÞ2ðNðsÞ � TÞ2ds:
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Note that, according to the condition s0 < 1, functional V2 is well defined. Thus,
V1ðNðsk ^ TÞÞ þ V2ðNðsk ^ TÞÞ 6 V1ðnð0ÞÞ þ V2ðnð0ÞÞ þ
Z sk^T

0
FðNðsÞÞdsþ a

Z sk^T

0

ffiffiffiffiffiffiffiffiffiffi
NðsÞ

p
� 1

2TK
ðK �NðsÞÞðNðsÞ � TÞdwðsÞ;
where
FðNÞ ¼ jrj
4TK

ffiffiffiffi
N
p
� 1

� �2
þ 1

4TK
jrj

1� s0
þ a2

TK

� �
ðK � NÞ2ðN � TÞ2 � a2

ffiffiffiffi
N
p

8T2K2 ðK � NÞ2ðN � TÞ2:
It is straightforward to see that FðNðtÞÞ is bounded, say by C in Rþ. Therefore,
V1ðNðsk ^ TÞÞ þ V2ðNðsk ^ TÞÞ 6 V1ðnð0ÞÞ þ V2ðnð0ÞÞ þ Cðsk ^ TÞ þ a
Z sk^T

0

ffiffiffiffiffiffiffiffiffiffi
NðsÞ

p
� 1

2TK
ðK � NðsÞÞðNðsÞ � TÞdwðsÞ:
Taking expectation in the last inequality, we have
EV1ðNðsk ^ TÞÞ 6 EV1ðNðsk ^ TÞÞ þ EV2ðNðsk ^ TÞÞ 6 V1ðnð0ÞÞ þ V2ðnð0ÞÞ þ C T: ð5Þ
For every x 2 fsk 6 Tg, Nðsk;xÞ R ðk�1
; kÞ. Thus,
V1ðNðskÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
NðskÞ

p
� 1� 1

2
ln NðskÞ ¼

ffiffiffi
k
p
� 1� 1

2
ln k

� �
^

ffiffiffi
1
k

r
� 1þ 1

2
ln k

 !

and, regarding to (5), we find that
1 > V1ðNð0ÞÞ þ V2ðNð0ÞÞ þ C T P EV1ðNðsk ^ TÞÞ ¼ Pfsk 6 TgV1ðNðskÞÞ þ Pfsk > TgV1ðNðTÞÞP Pfsk 6 TgV1ðNðskÞÞ

¼ Pfsk 6 Tg
ffiffiffi
k
p
� 1� 1

2
ln k

� �
^

ffiffiffi
1
k

r
� 1þ 1

2
ln k

 !" #
:

Since
ffiffiffi
k
p
� 1� 1

2 ln k
� �

^
ffiffi
1
k

q
� 1þ 1

2 ln k
� �

tends to infinity when k!1, it follows that limk!1Pfsk 6 Tg ¼ 0. Because of the
fact that T > 0 is arbitrary, it follows that Pfs1 <1g ¼ 0 and Pfs1 ¼ 1g ¼ 1 which completes the proof. h
3. Stability analysis

Stability analysis is a very important research topic in many areas including population dynamics. Importance of stability
analysis lies in the fact that stochastic differential equations which are used to model population’s growth, in major of cases,
are not effectively solvable. Thus, it is important to investigate the long time behavior of considered population model near
to equilibrium states, and stability analysis enables us such investigation. In the literature, there are many papers about sta-
bility analysis of stochastic population models (see [7,8,10,11], for example).

In this section we discuss extinction and non-persistence in mean of model (2) proposed by Hallam and Ma [12,13] for
some deterministic models and Liu and Wang (see [14,15], for example) for some stochastic logistic models. We also find the
sufficient conditions for stability of equilibrium states E0, E� and E� of Eq. (2). For this purpose, we use well known method
based on construction of the appropriate Lyapunov functionals. The general method of Lyapunov functionals construction
was proposed and developed by Kolmanovskii and Shaikhet (see [16–23], for instance) for stochastic functional differential
equations, stochastic difference equations with discrete and continuous time and for neutral stochastic differential
equations.

3.1. Extinction and non-persistence in mean

A major problem in population biology is to understand what determines the risk of extinction of population. It is well
known that the risk of extinction is greater for populations consisting of a few individuals than for those having many. Spe-
cies subjected to a strong Allee effect might be more susceptible to catastrophic population collapses with only a slight
increase in mortality, resulting either from harvesting or natural causes. In fisheries, for example, the existence of multiple
equilibria has been recognized, and the existence of a critical threshold for harvested populations has been advanced as a
highly plausible explanation for the collapse of fisheries in several parts of the world [2]. The higher the critical threshold,
the greater is the Allee effect and the less effort might be needed to extinct population.

The dynamics of model (2) is unusual in a sense that the convergence to the equilibrium states depends on the size of a
delay. As it might be expected, if the delay is too long, the population may not become extinct, but the size of that population
can be close to zero so that the population can be endangered. This means that there exists a threshold between extinction
and survival of population denoted as non-persistence in mean.

Before presenting stability conditions of the equilibrium state E0 ¼ 0 of model (2), we need some definitions of stability
theory (see [24]).
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Consider the d-dimensional stochastic functional differential equation
dyðtÞ ¼ f ðt; ytÞdt þ gðt; ytÞdwðtÞ; P 0;
y0 ¼ u ¼ fuðhÞ : �s 6 h � 0g;

ð6Þ
where yt ¼ fyðt þ hÞ : �s 6 h � 0g is a C-valued stochastic process and y0 2 D, such that Ekuk2
<1, while f ðt;uÞ is a

d-dimensional vector and gðt;uÞ is a d�m-dimensional matrix, both defined for t P 0. We assume that Eq. (6) has a unique
global solution yðt;uÞ, as well as that f ðt;0Þ ¼ gðt;0Þ 	 0. So, Eq. (6) has the trivial solution yðtÞ 	 0 corresponding to the
initial condition y0 ¼ 0.

Definition 3.1. The trivial solution of Eq. (6) is said to be stochastically stable (stable in probability) if for every e 2 ð0;1Þ and
r > 0, there exists a d ¼ dðe; r;0Þ > 0 such that
Pfjyðt;uÞj > r; t P 0g 6 e
for any initial condition u 2 D satisfying Pfkuk 6 dg ¼ 1.
Definition 3.2. The trivial solution of Eq. (6) is said to be mean square stable if for every e > 0, there exists a d > 0 such that
Ejyðt;uÞj2 < e for any t P 0 provided that sup�s6h60EjuðhÞj2 < d.
Definition 3.3. The trivial solution of Eq. (6) is said to be asymptotically mean square stable if it is mean square stable and
limt!1Ejyðt;uÞj2 ¼ 0.

Let us consider stability of equilibrium state E0 ¼ 0. The linear part of Eq. (2) is given by
deNðtÞ ¼ �eNðtÞðr dt þ adwðtÞÞ: ð7Þ
It is well known that the condition r > a2

2 is the necessary and sufficient condition for asymptotic mean square stability of
the trivial solution of Eq. (7) (see Example 7.1 in [21]). Thus, we have just proved the following.

Lemma 3.1. Let the parameters of model (2) satisfy conditions (4) and r > a2

2 for any given initial data (3), such that N0 < T. Then,
the trivial solution of Eq. (7) is asymptotically mean square stable.

Note that Eq. (2) has the order of nonlinearity more than one. From [18,19] it follows that if the order of nonlinearity of
the equation under consideration is more than one then the conditions which are sufficient for asymptotic mean square sta-
bility of the trivial solution of the linear part of this equation, are sufficient for stability in probability of the trivial solution of
the original equation. Thus, by the following theorem we obtain stability in probability of trivial equilibrium state E0 under
the same conditions as in the previous lemma.

Corollary 3.1. If the conditions of Lemma 3.1 are satisfied, then, the trivial solution of Eq. (2) is stable in probability.
We need to introduce a condition when the population is bare, i.e. we define the critical number between extinction and

persistence of population.

Definition 3.4. The solution of Eq. (6) is said to be non-persistent in mean if
lim sup
t!1

1
t

Z t

0
yðsÞds ¼ 0 a:s:
If a delay in a population is too long and the initial data exceeds carrying capacity, then the considered population
declines because its environment can not support the excess number any longer. In many situations this can happen very
rapidly because of excessive demand degrades or even devastates the environment and there is a sudden catastrophic feed-
back effect. Such a feedback effect can only eradicate those numbers of population in excess of the carrying capacity of an
environment but under certain circumstances it can cause the near extinction of an entire species [25].

In the sequel of this section we will use the exponential martingale inequality.

Lemma 3.2 [9]. Let g : ½0;þ1Þ ! R1�m be F t-adapted process such that for any T > 0;
R T

0 jgðtÞj
2dt <1 a.s. Then for any

constants a; b > 0
P sup
t2½0;T�

Z t

0
gðsÞdwðsÞ � a

2

Z t

0
jgðsÞj2ds

	 

> b

( )
6 e�ab: ð8Þ
In the following theorem we use notation
M ¼ inf
��s6h60

nðhÞ:
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Theorem 3.1.

(a) Let any of the conditions below be satisfied:

(i) let the parameters of model (2) satisfy conditions (4), r > 0 and

�s > ð1� s0ÞTK

r ð1� s0ÞM2 � ðT þ KÞknk
h i ln

T þ K
TK

nð0Þ
1� s0

ð9Þ
for any given initial data (3), such that TþK
1�s0 < N0 < ð1� s0Þ M2

TþK;

(ii) let the parameters of model (2) satisfy conditions (4), T > 1

1�s0 ; r > 0 and

�s < ð1� s0ÞTK

r ðT þ KÞknk � ð1� s0Þ knk2 � ðT þ KÞðknk �MÞ
h ih i ln

TK
T þ K

1� s0

nð0Þ ð10Þ
for any given initial data (3), such that 0 < N0 < T and nð0Þ < ð1� s0Þ TK
TþK.

Then, the solution NðtÞ of Eq. (2) is non-persistent in mean.
(b) In particular, let sðtÞ 	 s, for all t P 0, and let any of the following conditions be satisfied:
(i) let the parameters of model (2) satisfy conditions r > 0 and

s > TK
rMðM � T � KÞ ln

T þ K
TK

nð0Þ ð11Þ
for any given initial data (3), such that N0 > T þ K;

(ii) let the parameters of model (2) satisfy conditions r > 0 and

s < TK
rknkðT þ K � knkÞ ln

TK
nð0ÞðT þ KÞ ð12Þ
for any given initial data (3), such that 0 < N0 < T and nð0Þ < TK
TþK.

Then, the solution NðtÞ of Eq. (2) is non-persistent in mean.
Proof.

(a) Applying the Itô formula to ln NðtÞ þ r
1�s0

TþK
TK

R t
t�sðtÞ NðsÞds, we have
d ln NðtÞ þ r
1� s0

T þ K
TK

Z t

t�sðtÞ
NðsÞds

 !
¼ r 1� Nðt � sðtÞÞ

T

� �
Nðt � sðtÞÞ

K
� 1

� �
� a2

2
1� NðtÞ

T

� �2 NðtÞ
K
� 1

� �2
"

þ r
1� s0

T þ K
TK

NðtÞ � r
1� s0ðtÞ

1� s0
T þ K

TK
Nðt � sðtÞÞ



dt

þ a 1� NðtÞ
T

� �
NðtÞ

K
� 1

� �
dwðtÞ:
Then
ln NðtÞ þ r
1� s0

T þ K
TK

Z t

t�sðtÞ
NðsÞds 6 ln nð0Þ þ r

1� s0
T þ K

TK

Z 0

��s
nðhÞdhþMðtÞ

þ
Z t

0
r 1� Nðs� sðsÞÞ

T

� �
Nðs� sðsÞÞ

K
� 1

� �
� a2

2
1� NðsÞ

T

� �2 NðsÞ
K
� 1

� �2
" #

ds

þ r
1� s0

T þ K
TK

Z t

0
NðsÞds� r

T þ K
TK

Z t

0
Nðs� sðsÞÞds;

ð13Þ
where MðtÞ ¼ a
R t

0 1� NðsÞ
T

� �
NðsÞ

K � 1
� �

dwðsÞ is a real-valued continuous local martingale vanishing at t ¼ 0. For every integer

n P 1, by exponential martingale inequality (8), we get
P sup
06t6n

MðtÞ � a2

2

Z t

0
1� NðsÞ

T

� �2 NðsÞ
K
� 1

� �2

ds

" #
> 2 ln n

( )
6

1
n2 :
Since
P1

n¼1
1

n2 <1, using Borel–Cantelli lemma yields that there exists an X0 
 X such that PðX0Þ ¼ 1 and for any x 2 X0

there exists an integer n0ðxÞ, when n P n0ðxÞ and t 2 ½n� 1;n�. Then
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MðtÞ 6 2 ln nþ a2

2

Z t

0
1� NðsÞ

T

� �2 NðsÞ
K
� 1

� �2

ds:
That is
ln NðtÞ 6 ln NðtÞ þ r
1� s0

T þ K
TK

Z t

t�sðtÞ
NðsÞds

6 ln nð0Þ þ r
1� s0

T þ K
TK

knk�sþ r
Z t

0
1� Nðs� sðsÞÞ

T

� �
Nðs� sðsÞÞ

K
� 1

� �
dsþ 2 ln nþ r

� T þ K
TK

1
1� s0

Z t

0
NðsÞds�

Z t

0
Nðs� sðsÞÞds

� �
:

Denote by wðtÞ ¼ t � sðtÞ, for every t P 0. From condition (4) we conclude that wðtÞ is monotonically increasing function.
Then there exists t1 > 0 such that t1 � sðt1Þ ¼ 0. It follows that
ln NðtÞ 6 ln nð0Þ þ r
1� s0

T þ K
TK

knk�sþ r
Z 0

��s
1� nðhÞ

T

� �
nðhÞ

K
� 1

� �
dhþ r

Z t

t1

1� Nðs� sðsÞÞ
T

� �
Nðs� sðsÞÞ

K
� 1

� �
dsþ 2

� ln nþ r
T þ K

TK
1

1� s0

Z t

0
NðsÞds�

Z 0

��s
nðhÞdh�

Z t

t1

Nðs� sðsÞÞds
� �
for t 2 ½n� 1;n� and n P n0ðxÞ. For sufficiently large t 2 ðn� 1;nÞ we have 2 ln n
n�1 6 �, which implies that 2 ln n 6 �t.

2

(i) For any given initial data (3), such that M ¼ inf�s6h60nðhÞ > TþK

1�s0 and knk < ð1� s0Þ M
TþK, we obtain that

1� nðhÞ
T

� �
nðhÞ

K � 1
� �

6 � ðM�TÞðM�KÞ
TK . Then

ln NðtÞ 6 ln nð0Þ þ r
1

1� s0
T þ K

TK
knk � ðM � TÞðM � KÞ

TK
� T þ K

TK
M

� �
�sþ r

T þ K
TK

Z t

t1

Nðs� sðsÞÞds� rðt � sðt1ÞÞ þ �t

þ r
1� s0

T þ K
TK

Z t

0
NðsÞds� r

T þ K
TK

Z t

t1

Nðs� sðsÞÞds

6 ln nð0Þ þ r
1

1� s0
T þ K

TK
knk �M2 þ TK

TK
þ 1

 !
�sþ r

1� s0
T þ K

TK

Z t

0
NðsÞds� ðr � �Þt:
Let f ðtÞ ¼
R t

0 NðsÞds. Then, the previous inequality becomes
ln
df ðtÞ

dt
� r

1� s0
T þ K

TK
f ðtÞ 6 ln nð0Þ þ r

1
1� s0

T þ K
TK

knk �M2

TK

 !
�s� ðr � �Þt:
Denote that A ¼ 1
1�s0

TþK
TK knk � M2

TK

� �
r�s. Thus, we have
e�
r

1�s0
TþK
TK f ðtÞdf ðtÞ 6 nð0ÞeA�ðr��Þtdt:
Integrating both sides of the last inequality from 0 to t, we obtain
Z t

0
e�

r
1�s0

TþK
TK f ðsÞdf ðsÞ 6 nð0ÞeA

Z t

0
e�ðr��Þsds:
Hence,
1� s0

r
TK

T þ K
1� e�

r
1�s0

TþK
TK f ðtÞ

� �
6 nð0ÞeA 1

r � � 1� e�ðr��Þt
� �

;

that is,
e�
r

1�s0
TþK
TK f ðtÞ P 1� r

r � �
T þ K

TK
nð0Þ

1� s0
eA 1� e�ðr��Þt
� �

:

Then, we deduce that
f ðtÞ 6 �1� s0

r
TK

T þ K
ln 1� r

r � �
T þ K

TK
nð0Þ

1� s0
eA 1� e�ðr��Þt
� �	 


6 �1� s0

r
TK

T þ K
ln 1� T þ K

TK
nð0Þ

1� s0
eA 1� e�ðr��Þt
� �	 


:

Let us note that ln function in the last inequality is well defined and it has negative value. Really, from condition (9), we have
that
A ¼ 1
1� s0

T þ K
TK

knk �M2

TK

 !
r�s < ln

TK
T þ K

1� s0

nð0Þ

� �
;
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so that nð0Þ
1�s0

TþK
TK eA < 1, and therefore TþK

TK
nð0Þ
1�s0 eA 1� e�ðr��Þt

� �
< 1. The proof of this part of theorem follows straightforwardly

because
lim sup
t!1

1
t

f ðtÞ ¼ lim sup
t!1

1
t

Z t

0
NðsÞds 6 lim sup

t!1

1
t
�1� s0

r
TK

T þ K
ln 1� nð0Þ

1� s0
T þ K

TK
eA 1� e�ðr��Þt
� �	 
� �

¼ 0:

(ii) For any given initial data (3), such that 0 < N0 < T and nð0Þ < ð1� s0Þ TK
TþK, we get 1� nðhÞ

T

� �
nðhÞ

K � 1
� �

6 � ðT�knkÞðK�knkÞTK .
Then we have

ln NðtÞ 6 ln nð0Þ þ r
1

1� s0
T þ K

TK
knk � knk

2 � ðT þ KÞðknk �MÞ
TK

 !
�sþ r

1� s0
T þ K

TK

Z t

0
NðsÞds� ðr � �Þt:
Denote that f ðtÞ ¼
R t

0 NðsÞds. By repeating completely the previous procedure, we find that
f ðtÞ 6 �1� s0

r
TK

T þ K
ln 1� T þ K

TK
nð0Þ

1� s0
eB 1� e�ðr��Þt
� �	 


;

where B ¼ 1
1�s0

TþK
TK knk �

knk2�ðTþKÞðknk�MÞ
TK

� �
r�s. By using condition (10), we obtain B < ln TK

TþK
1�s0
nð0Þ

� �
, so that

TK
TþK

1�s0
nð0Þ eB 1� e�ðr��Þt

� �
< 1. Similarly to the proof of part (i), we easily get lim supt!1

1
t

R t
0 NðsÞds ¼ 0, which proves part (ii)

of the assertion (a).
(b) Specially, if sðtÞ 	 s, for all t P 0, applying the Itô formula to ln NðtÞ and repeating the previous procedure, we prove

the theorem. h
Remark 3.1. From the conditions (9)–(12) of Theorem 3.1, we can conclude that the stochastic noise a has no impact on the
non-persistence in mean of the population.

3.2. Stability of the positive equilibrium states

In the sequel we regard Eq. (2) as a neutral stochastic differential equation. Before presenting stability conditions of the
positive equilibrium states E� and E� of Eq. (2), let us formulate some assertions for Itô neutral stochastic differential equa-
tions (see [24], for instance).

Let us consider the following d-dimensional neutral type stochastic functional differential equation
dðxðtÞ � Gðt; xtÞÞ ¼ f ðt; xtÞdt þ gðt; xtÞdwðtÞ; t P 0;
x0 ¼ u ¼ fuðhÞ : �s 6 h � 0g;

ð14Þ
where xt ¼ fxðt þ hÞ : �s 6 h � 0g is regarded as a C-valued stochastic process, wðtÞ be the m-dimensional Brownian motion,
the d-dimensional vector f ðt;uÞ and d�m-dimensional matrix gðt;uÞ are defined for t P 0;u 2 D; f ðt;0Þ ¼ 0; gðt;0Þ ¼ 0, and
jGðt;uÞj 6
Z s

0
juð�sÞjdKðsÞ;

Z s

0
dKðsÞ < 1: ð15Þ
Let us note that the Definitions 3.1, 3.2, 3.3 can be extended to Eq. (14).
The differential operator associated to Eq. (14) is defined by the formula
LVðt;uÞ ¼ lim sup
D!0

Et;uVðt þ D; xtþDÞ � Vðt;uÞ
D

;

where xðsÞ; s P t is the solution of Eq. (14) satisfying the initial condition xt ¼ u, and Vðt;uÞ is a functional defined for t P 0
and for functions u 2 D.

Let us reduce a class of functionals Vðt;uÞ so that the operator L can be calculated. First, for t P 0 and function u 2 D, let
Vðt;uÞ ¼ Vðt;uð0Þ;uðhÞÞÞ, �s 6 h 6 0. Then, we define the function
Vuðt; xÞ ¼ Vðt;uÞ ¼ Vðt; xtÞ ¼ Vðt; x; xðt þ hÞÞ; �s 6 h 6 0;
where u ¼ xt ; x ¼ uð0Þ ¼ xðtÞ.
Let us denote that C1;2 is a class of functionals Vðt;uÞ so that, for almost all t P 0, the first and second derivatives with

respect to x of Vuðt; xÞ are continuous, and the first derivative with respect to t is continuous and bounded. Then, the
application of the generating operator L of Eq. (14) yields
LVðt; xtÞ ¼
@Vuðt; xÞ

@t
þ f Tðt; xtÞ

@Vuðt; xÞ
@x

þ 1
2

trace gTðt; xtÞ
@2Vuðt; xÞ

@x2 gðt; xtÞ
" #

:

In the sequel we state the theorem that contains sufficient conditions for asymptotic mean square stability of the trivial
solution of Eq. (14) in terms of Lyapunov functionals [24].
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Theorem 3.2. Let condition (15) hold and there exist the functional
Vðt;uÞ ¼Wðt;uÞ þ juð0Þ � Gðt;uÞj2;
such that Vðt;uÞ 2 C1;2,
0 6 EWðt; xtÞ 6 K1 sup
�s6h60

Ejxðt þ hÞj2;

ELVðt; xtÞ 6 �K2EjxðtÞj2
for Ki > 0; i ¼ 1;2. Then the trivial solution of Eq. (14) is asymptotically mean square stable.
In [26] the author considers stability of different types of stochastic differential equations with time dependent delay via

Lyapunov functional method, but not especially for linear stochastic differential equation with time-dependent delay of the
form
dxðtÞ ¼ �bxðt � sðtÞÞ þ rxðtÞdwt ð16Þ
for b > 0; r 2 R, and with initial data
x0 ¼ fnðhÞ;��s 6 h 6 0g: ð17Þ
In this section, our aim is to give sufficient conditions for stability in probability of positive equilibrium states E� ¼ T and
E� ¼ K to Eq. (2), by applying a sufficient conditions that provide asymptotic mean square stability of the linear part of this
nonlinear system, which is of the form (16).

Theorem 3.3. Let the parameters of Eq. (16) satisfy the conditions (4),
�1 < s0 ¼ inf
tP0

s0ðtÞ ð18Þ
and
b > max 0;
1� s0

2ð1� s0Þ � T 0ð2� s0Þ
r2

� �
ð19Þ

�s < 2bð1� s0Þ � bT 0ð2� s0Þ � r2ð1� s0Þ
b2ð2� s0 þ 2T 0Þ

ð20Þ
for any initial data (17), where maxfjs0j; s0g ¼ T 0. Then, the trivial solution of Eq. (16) is asymptotically mean square stable.
Proof. Let us consider the neutral form of Eq. (16), that is
d
dt

xðtÞ � b
Z t

t�sðtÞ
xðsÞds

" #
¼ �bxðtÞ � bs0ðtÞxðt � sðtÞÞ þ rxðtÞ _wðtÞ: ð21Þ
Define the Lyapunov functional V ¼ V1 þ V2, where
V1ðxðtÞÞ ¼ xðtÞ � b
Z t

t�sðtÞ
xðsÞds

 !2
and V2 will be chosen later. If we apply the generating operator L on V1, use the elementary inequality �2uv 6 u2 þ v2 and
js0ðtÞj 6 T 0, we find that
LV1ðxðtÞ;xðt� sðtÞÞÞ ¼ �2bx2ðtÞ �2bs0ðtÞxðtÞxðt� sðtÞÞ þ2b2
Z t

t�sðtÞ
xðtÞxðsÞdsþ2b2s0ðtÞ

Z t

t�sðtÞ
xðt� sðtÞÞxðsÞdsþr2x2ðtÞ

6�2bx2ðtÞ þ bjs0ðtÞjðx2ðtÞþ x2ðt� sðtÞÞÞ þ b2 sðtÞx2ðtÞ þ
Z t

t�sðtÞ
x2ðsÞds

 !

þ b2js0ðtÞj sðtÞx2ðt� sðtÞÞ þ
Z t

t�sðtÞ
x2ðsÞds

 !
þr2x2ðtÞ

¼ b �2þ js0ðtÞj þ bsðtÞ þr2

b

	 

x2ðtÞ þ bjs0ðtÞjð1þ bsðtÞÞx2ðt� sðtÞÞ þ b2ð1þ js0ðtÞjÞ

Z t

t�sðtÞ
x2ðsÞds

6 b �2þ T 0 þ b�sþr2

b

	 

x2ðtÞ þ bT 0ð1þ b�sÞx2ðt� sðtÞÞ þ b2ð1þ T 0Þ

Z t

t�sðtÞ
x2ðsÞds:
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We choose the functional V2 to eliminate the terms with delay
V2ðxðtÞÞ ¼
bT 0ð1þ b�sÞ

1� s0

Z t

t�sðtÞ
x2ðsÞdsþ b2ð1þ T 0Þ

1� s0

Z t

t�sðtÞ
ðs� t þ sðtÞÞx2ðsÞds
and for Lyapunov functional V we obtain
LVðxðtÞ; xðt � sðtÞÞÞ 6 �b 2� 2� s0

1� s0
T 0 � r2

b
� �s bð2� s0 þ 2T 0Þ

1� s0

	 

x2ðtÞ:
Providing that conditions (19) and (20) hold, the quantity in the bracket is positive. Hence, the trivial solution of Eq. (16) is
asymptotically mean square stable by virtue of Theorem 3.2. h

As it is shown in [18,19], if the order of nonlinearity of the system under consideration is more than one then a sufficient
condition for asymptotic mean square stability of the linear part of the initial nonlinear system is also a sufficient condition
for stability in probability of the initial system. Thus, we can prove the following corollaries.

Corollary 3.2. Let the parameters of model (2) satisfy the conditions (4), (18) and
r > max 0;
K � T

T
1� s0

2ð1� s0Þ � T 0ð2� s0Þ
a2

� �
ð22Þ

�s < 2rTð1� s0Þ � rTT 0ð2� s0Þ � a2ðK � TÞð1� s0Þ
r2ðK � TÞð2� s0 þ 2T 0Þ

; ð23Þ
for any initial data (3), such that T < N0 < K or N0 > K. Then, the positive equilibrium state E� ¼ K of Eq. (2) is stable in
probability.
Proof. In order to investigate stability properties of the equilibrium state E� ¼ K , let us make the change of variable
y ¼ K � N. Thus, Eq. (2) becomes
dyðtÞ ¼ �ryðt � sðtÞÞ ðK � yðtÞÞðK � T � yðt � sðtÞÞÞ
TK

dt � ayðtÞ ðK � yðtÞÞðK � T � yðtÞÞ
TK

dwðtÞ; ð24Þ
with initial data
y0 ¼ fK � nðhÞ;��s 6 h 6 0g: ð25Þ
Obviously, the stability of equilibrium state E� ¼ K of Eq. (2) is equivalent to the stability of trivial solution of Eq. (24).
The linear part of Eq. (24) is given by
d~yðtÞ ¼ �K � T
T

r~yðt � sðtÞÞdt � K � T
T

a~yðtÞdwðtÞ: ð26Þ
Eq. (26) has the form (16). Hence, from Theorem 3.3 we conclude that trivial solution of this equation is asymptotically
mean square stable under the conditions (4), (18), (22) and (23). Since the order of nonlinearity of Eq. (24) is more than one,
from the previous discussion we have that the trivial solution of Eq. (24) is stable in probability. h

The following corollary gives sufficient conditions under which the positive equilibrium state E� ¼ T of Eq. (2) is stable in
probability.

Corollary 3.3. Let the parameters of model (2) satisfy the conditions (4), (18) and
r < min 0;�K � T
K

1� s0

2ð1� s0Þ � T 0ð2� s0Þ
a2

� �
ð27Þ

�s < �2rKð1� s0Þ þ rKT 0ð2� s0Þ � a2ðK � TÞð1� s0Þ
r2ðK � TÞð2� s0 þ 2T 0Þ

ð28Þ
for any given initial data (3), such that N0 < T or T < N0 < K. Then, the positive equilibrium state E� ¼ T of Eq. (2) is stable in
probability.
Proof. Similarly to the proof of Theorem 3.2, we introduce the new variable x ¼ N � T and transform Eq. (2) into
dxðtÞ ¼ rxðt � sðtÞÞ ðT þ xðtÞÞðK � T � xðt � sðtÞÞÞ
TK

dt þ axðtÞ ðT þ xðtÞÞðK � T � xðtÞÞ
TK

dwðtÞ; ð29Þ
with initial data
x0 ¼ fnðhÞ � T;��s 6 h 6 0g: ð30Þ
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Since the stability of equilibrium state E� ¼ T of Eq. (2) is equivalent to the stability of trivial solution of Eq. (29), we con-
sider the linear part of Eq. (29), given by
1 All
d~xðtÞ ¼ K � T
K

r~xðt � sðtÞÞdt þ K � T
K

a~xðtÞdwðtÞ: ð31Þ
This equation is equation of type (16) for b ¼ � K�T
K r and r ¼ K�T

K a. Thus the proof of stability in probability of equilibrium
state E� ¼ T of Eq. (2) follows straightforwardly from Theorem 3.3 and the discussion after it. h
4. Real world examples and numerical simulation

In order to verify mathematical results obtained in previous sections, we try to put our theoretical research into the con-
text of real-world settings. With this aim, we consider the discretization of Eqs. (1), (2) their deterministic analogues, accord-
ing to the Euler–Maruyama approximate method (see [27]), in the form
xi ¼ nðiDÞ; i ¼ �m; . . . ;�1; 0;

xi ¼ xi�1 þ xi�1 r 1�
xi�1� sðði�1ÞDÞ

D½ �
T

 !
xi�1� sðði�1ÞDÞ

D½ �
K

� 1

 !
Dþ a 1� xi�1

T

� � xi�1

K
� 1

� � ffiffiffiffi
D
p

/i�1

 !
; i ¼ 1; . . . ;n;
where D ¼ 1=365 years; m ¼ �s=D; /i; i ¼ 1; . . . ;n are the Gaussian random variables Nð0;1Þ; ½x� gives the greatest integer less
than or equal to x.1

Example 1. The African wild dog (Lycaon pictus) is one of the most endangered large carnivores in Africa. At the beginning of
the 20th century, this species was observed in large numbers and was distributed over most of the African continent. Despite
current legal protection, its survival is not guaranteed. In the literature many causes have been proposed to explain wild dogs
current decline, such as human persecution, diseases, habitat fragmentation, competition with other predators, etc.
However, this does not explain why sympatric species that suffer from similar anthropogenic pressures are not as
endangered as wild dogs. There is another factor which would render this species more sensitive to other mortality factor,
the existence of an Allee effect. More preciously, the hunting strategy of the group usually requires a threshold group size to
be successful because of kleptoparasitism by hyenas, which can be very costly to small groups of wild dogs. In addition,
helpers are required by the breeding female: litters are very large (up to 20 pups), and the breeding female, then the pups,
need to be feed by other members of the group. Group members also help by chasing predators from the den area, and by
staying at the den to protect the pups while the pack is hunting. Consequently, a critical number of helpers might be needed
for wild dog groups to survive. Results suggest that habitat fragmentation and destruction, as well as increased human
pressure, increase the effects of the Allee effect. The Allee effect at the pack level (with a critical number of individuals),
generates on Allee effect at the population level (with a critical number of packs) ([2,28]).

African wild dog are always found at lower population densities, compared to sympatric large carnivores. Consequently,
most populations of wild dogs are small and only a handful exceed 500 individuals. They live in packs which have from three
to 20 adults. If we take into account their yearlings and pups, pack size may fluctuate from three to 44. Three of the largest
remaining wild dog populations are found in Kruger National Park (South Africa), the Selous Game Reserve (Tansania) and
Northern Botswana. In Kruger and Botswana growth rates were surprisingly similar, both very close to zero. The Selous
population showed slightly positive growth r ¼ 0:038 [29]. We use those growth rates to preform the simulations of number
of African wild dogs in Kruger, Botswana and Selous. Since African wild dogs attain sexual maturity between 12 and
18 months ([30]), we choose that sðtÞ ¼ 1

4 ð5þ sin t
3Þ; t P 0, for example. Then �s ¼ 1:5; s0 ¼ 1

12, s0 ¼ � 1
12 and T 0 ¼ 1

12.
Using these results, we get the following parameters of the studied model (2) for determining the number of African wild

dogs in Selous
T ¼ 3; K ¼ 20; ð32Þ
r ¼ 0:038; a ¼ 0:07; ð33Þ
nðhÞ ¼ 8e�0:2h; �1:5 6 h 6 0: ð34Þ
The conditions of the Corollary 3.2 are satisfied and the equilibrium E� ¼ 20 of model (2) is stable in probability (Fig. 1).
The simulation in Fig. 1 shows that the population size in Selous will reach the carrying capacity in 22 years,

approximately.
When we change parameters
r ¼ 0:3; a ¼ 0:07; ð35Þ
the condition (23) of Corollary 3.2 is not satisfied and the equilibrium E� ¼ 20 of model (2) is unstable (Fig. 2, left).
If initial data drop below Allee threshold T ¼ 3, and
nðhÞ ¼ 2e�0:2h; �1:5 6 h 6 0; ð36Þ
calculations are made by using MATHEMATICA programme.
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then parameters (32) and (33) satisfy the conditions of the Corollary 3.1 and population will be extinct in 150 years, approx-
imately (see Fig. 2, right).

Since growth rates in Kruger and Botswana are very close to zero, we consider the case where they drop bellow zero and
get negative values
r ¼ �0:001; a ¼ 0:05: ð37Þ
Then the parameters (32), (37) and (34) or (36) of model (2) satisfy conditions of Corollary 3.3 and equilibrium T ¼ 3 is stable
(Fig. 3).

When initial data satisfy (36), the number of wild dogs in Kruger or Botswana will rich the Allee threshold E� ¼ 3 in about
2600 years (Fig. 3, right), and in the case when initial data is (34), in 1600 years (Fig. 3, left).

Moreover, the introduction of time delay in model (1) makes model (2) to reach all equilibrium states faster than model
(1) and their deterministic analogs.
Example 2. The population of invasive specie Brown Tree Snake, (Boiga irregularis) of Australia and New Guinea was intro-
duced to the previously snake-free island Guam in the 1950s, but may not have become conspicuous away from the port area
until the early 1960s. By the mid 1960s, the snake had colonized over half of the island. Since trade between Guam and
Hawaii is extensive, the snakes also spread on the island of Oahu in Hawaii. There are approximately 150,000 ha of potential
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Fig. 4. The left figure shows four trajectories of model (2) with parameters (38)–(40); the right one shows the corresponding mean of the solutions to
models (1) and (2) and the trajectories of corresponding deterministic models (time increment Dt ¼ 0:003).
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snake habitat on Oahu. This species is responsible for the extinction of 11 of 18 bird species in Hawaii and for power outages
which last 1.5 h up from one every three to four days in 1997. Assuming a maximum population density of 50 snakes/ha,
carrying capacity for the island of Oahu is 7,500,000. In the paper [31] authors simulated number of brown tree snakes in
local area. They incorporated an strong Allee effect in model and assumed that minimum population level under which
growth of the snake is not possible is two. However, the minimum reproducible population size could be much higher than
two, given the size of the island and possible gender distributions. The intrinsic growth rate is 0:6, based on estimated pop-
ulation densities at different time periods on Guam. Sexual maturity is estimated to occur during a snake’s third or fourth
year (for details see [32]) and we choose s ¼ 3:3 years. Since the brown tree snake is invasive species, in some cases the num-
ber of snakes may exceed the carrying capacity. We consider model (2), for determining the number of brown tree snake,
with parameters
T ¼ 2; K ¼ 50; ð38Þ
r ¼ 0:6; a ¼ 0:08; ð39Þ
nðhÞ ¼ 60e0:02t ; �3:3 6 h 6 0: ð40Þ
Since M ¼ inf�3:36h60nðhÞ ¼ 56:17 > 52 and s > 2:446, conditions of Theorem 3.1(b(i)) are satisfied and solution of model (2)
is non-persistent in mean (Fig. 4). In Fig. 4 we can also observe that population of Brown Tree Snake exceed the carrying
capacity of its environment for a short while by using up the stored resources or natural capital of its environment. Once
the capital is exhausted, snake number inevitably fall because there are no longer enough resources available to support
the number of individuals.
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