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In this paper we present two basic one-dimensional models for the temperature-induced
phase-changes in a ferromagnetic material. In the framework of the Ginzburg–Landau
theory, we construct suitable thermodynamic potentials from which thermodynami-
cally-consistent evolution equations for the magnetization are derived. For both soft and
hard materials these models account for saturation and provide an effective description
of the transition from paramagnetic to ferromagnetic regimes by displaying the onset of
hysteresis loops when the temperature decreases below the Curie critical value. The
temperature enters the model as a parameter by way of the magnetic susceptibility. Such
a dependence is discussed in order to comply with both Bloch’s law (below the critical
value) and Curie–Weiss law (far above the critical value). Focusing on uniform processes,
numerical simulations of the magnetic responses at different temperatures are performed.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

In metals like iron, cobalt, nickel and many alloys containing these elements, a small external magnetic field yields a large
magnetization inside the material, due to the alignment of the spin magnetic moments. This typical phenomenon is called
ferromagnetism. Atomic moments in ferromagnetic materials exhibit very strong interactions (due to exchange forces) that
result in their parallel alignment. Below the critical value hc , called Curie temperature, this parallel alignment produces a large
net magnetization, even if the applied external field is removed, so giving rise to a spontaneous magnetization [1,2]. On the
contrary, when the temperature overcomes the critical value hc , the residual alignment disappears and the material reverts
to the paramagnetic behavior. The passage from the paramagnetic to the ferromagnetic behavior and vice versa is usually
evaluated as a second-order phase transition (see, for instance, [3,4]): no latent heat is released or absorbed during the phase
change at zero external field, as in superconductivity. Unlike that, however, the ferromagnetic transition involves hysteresis.
Artfully, we succeed here in emphasizing their differences and similarities by comparing the diagram in Fig. 6 with the usual
representation (Fig. 7) of the critical magnetic field versus temperature in superconductivity [5].

Many mathematical models have been proposed to describe the occurrence of hysteresis loops in real-world materials. A
large part of them are devoted to the accurate modeling of ferromagnetic hysteresis and are widely used in the industry. In
particular, we mention the physics-based Jiles–Atherton model and a lot of phenomenological models of Duhem and Preis-
ach type (see, for instance, [6,3,7] for more details). However, these models lose the connection with thermodynamics and
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the energy consistency is not ensured. Although very effective in a great variety of isothermal applications, they are unable to
account for the ferromagnetic temperature-induced transition.

In order to model how temperature variations induce phase changes involving hysteresis, a different approach is needed.
Among all those which rely on a consistent thermodynamic formulation, the simplest strategy consists in applying the
phase-field machinery and the Ginzburg–Landau theory [3,8]. A first attempt to model the ferromagnetic transition in this
framework traces back to Ginzburg [9]. Recently, further efforts have been spent in this direction and some improvements
have been obtained [10–13].

The main advantage to apply the Ginzburg–Landau machinery to transition phenomena with hysteresis consists in its
simplicity. The modeling procedure starts from identifying the proper scalar- or vector-valued order parameter (the so called
phase-field). Then, the exploitation of thermodynamic restrictions leads to the consistent form of the phase variable evolu-
tion, which is governed by a single function, the Gibbs free energy [14]. In scalar models, after selecting (or constructing) the
suitable Gibbs free energy density w of the system, the evolution of the phase-field u is ruled by the so-called Ginzburg–
Landau equation
q _u ¼ �jððq@uŵÞ � r � ðq@ruŵÞÞ; ð1Þ
where q is the mass density, j a positive constant and ŵ ¼ w=h.
For the ferromagnetic case, we refer to [12], where a thermodynamically consistent derivation of a general vector-valued

phase-field equation of the Ginzburg–Landau type is devised. Unlike other kinds of magnetic hysteresis models (as Duhem
and Preisach, for instance), this phase-field evolution equation is naturally energy consistent. In addition, if coupled with
customary balance equations (mass, momentum, internal energy and, possibly, Maxwell equations), it gives rise to a system
which is quite easy to handle even in the three dimensional case (see, for instance, [11]). On the other hand, we mention that
not all typical features of hysteresis can be represented by means of phase-field models. For instance, they are unable to
account for minor hysteresis loops [15]. In addition, they establish a relation between the magnetization and the applied
external magnetic field that does not fulfill the rate-independence property.

The Ginzburg–Landau machinery is widely used in modeling hysteretic first-order transitions (in shape memory alloys,
for instance, see [16,8]), but few papers apply it when ferromagnetic hysteresis is involved (e.g. [3,11,13]). All of them give a
naive description of the onset of the hysteretic regime and no evidence of the effectiveness of this modeling approach. Just in
[13] some numerical simulations are performed. In our opinion, there are two difficulties that reduce the development of this
approach in modeling hysteretic phenomena. The former is a problem due to thermodynamic principles: in materials with
memory the free enthalpy is not unique (up to a constant), but there are infinitely many (sub) potentials (really, a convex set)
which obey the Second Law [17]. The latter consists in a mathematical problem: if thermodynamic potentials are replaced by
their polynomial expansion in the phase variable, as usual, it is impossible to account for saturation (that is, confinement of
the phase variable in [0,1]). In a different background, this obstacle may be overcome by proving a ‘‘maximum principle the-
orem’’ for the phase variable. Unfortunately, in the ferromagnetic context this strategy is out of reach.

The aim of this paper is to develop the approach carried out in [12] by improving previous models devised in [3,11,13].
The first novelty is physics-based: starting from the proper distinction between external and internal magnetic field, we take
advantage of introducing the Weiss molecular mean field. Then, we construct the explicit expression of the Gibbs free energy
potential on the basis of the shape of the ‘‘skeleton’’ curve. Two kinds of these curves are considered in the sequel and
referred to as ‘‘bilinear’’ and ‘‘Langevin’’. Accordingly, two new families of (non polynomial) energy potentials are generated
and inserted into the evolution Eq. (1), so yielding two simple Ginzburg–Landau-like models which account for saturation.
From a theoretical point of view, the stability of each phase is scrutinized by way of the temperature-dependent non-con-
vexity of these potentials. In order to achieve some evidence of the effectiveness of our modeling approach in capturing the
phase-change dynamics for practical purposes, some numerical simulations of the hysteresis loops are performed in both
‘‘bilinear’’ and ‘‘Langevin’’ cases under cyclic conditions.
1.1. Plan of the paper

The plan of the paper is the following. The sequel of this section is devoted to introduce Maxwell’s equations inside the
matter and distinguish the internal magnetic field, H, from the external (applied) one, Hex. In Section 2, we state the relation
between H and the magnetization M governing a paramagnetic material. Then, some trial one-dimensional models are
exhibited and their ‘‘skeleton curve’’ are pointed out. Taking advantage of the Weiss theory, in Section 3 we discuss the
mathematical modeling of a ferromagnetic material with a view to describe the temperature-induced transition process.
Such a representation is based on the temperature-dependent shape of the ‘‘skeleton curve’’ which allows us, in Section
4, to construct the Gibbs potential and then to apply the Ginzburg–Landau theory. In order to check the resulting model,
we present some numerical simulations that clarify the ease of applying this approach. Section 5 is devoted to represent hys-
teresis in the ðHex;MÞ-plane. Therein, we show that different shapes of the hysteresis major loop (for instance, in soft and
hard ferromagnetic substances) can be originated by the same Ginzburg–Landau model for different values of constitutive
parameters. At the end of this section we exhibit some numerical simulations. Finally, applying the Curie–Weiss and Bloch’s
law, in Section 6 we establish the general form (with respect to temperature) of the ferromagnetic susceptibility involved in
our bilinear model of soft materials.
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1.2. Constitutive and Maxwell’s equations inside the matter

Let us consider a rigid magnetic conductor at rest which occupies a domain X � R3. For simplicity, we suppose that its
mass density is constant. Inside the body, we denote by E; H; D; B the electric field, the magnetic field, the electric displace-
ment and the magnetic induction. At any point x 2 X the behavior of the material is ruled by Maxwell’s equations
r� E ¼ � _B; r � B ¼ 0;

r� H ¼ _Dþ J; r � D ¼ qe;
where J is the current density and qe is the free charge density. Since inside a magnetic material the displacement current _D
is negligible if compared with J, throughout the paper we assume for simplicity
_D ¼ 0; qe ¼ 0; J ¼ rE;
where r is the electric conductivity. These choices lead to
r� E þ _B ¼ 0; r � B ¼ 0; ð2Þ

r � H � rE ¼ 0: ð3Þ
In free space the magnetic induction B is proportional to the applied external magnetic field Hex, namely B ¼ l0Hex, where
l0 denotes the permeability constant of free space. On the other hand, inside the matter B admits the classical
decomposition:
B ¼ l0ðH þMÞ; ð4Þ
where H is the internal magnetic field and M is the matter magnetization. The field H consists of the applied external field
HexðxÞ acting in a point x, plus any self-field due to the surrounding matter (see, for instance, [1, Ch. 2]). Accordingly, inside
the matter we should define the internal magnetic field H as follows
H ¼ Hex �AM; ð5Þ
where A is a positive-definite tensor depending on the shape and anisotropy of the material. According to the Brown approx-
imation, A can be split into the sum of a demagnetizing and a purely anisotropic tensor (see [18, p. 48]).

Remark 1. If n represents some eigenvector of A, then along this direction (5) becomes
H ¼ Hex � aM; ð6Þ
where a > 0 is the eigenvalue related to n and
H ¼ H � n; Hex ¼ Hex � n; M ¼M � n:

In order to prove these relations, we represent M ¼ MnþM?m, where m � n ¼ 0 and jmj ¼ 1, and then we have
AM � n ¼ MAn � nþM?
Am � n:
By assumption An � n ¼ a and then
Am � n ¼ An �m ¼ an �m ¼ 0:
Accordingly, AM � n ¼ aM and (6) follows (cf. Eq. (6.14) in [12]).
A lot of magnetic materials exhibits a non-linear anisotropic relation between H and M. From the mathematical point of

view, anisotropy entails that the direction of M does not coincide with the direction of the internal field H. The most common
anisotropy effect is connected to the existence of one easy direction, and in literature this is referred to as uniaxial anisotropy.

2. Paramagnetic materials

In a paramagnetic material occupying a three-dimensional domain X, the values of HðxÞ and MðxÞ in a point x 2 X are
related by a homogeneous, nonlinear and (possibly) non-isotropic function f which depends also on the absolute tempera-
ture at the same point, hðxÞ. Thus,
MðxÞ ¼ f ðHðxÞ; hðxÞÞ; f ð0; �Þ ¼ 0: ð7Þ
Henceforth, we confine our analysis to the one-dimensional case by choosing n as in (6). Remark 1 allows us to simply
represent (7) in the scalar form
M ¼ f ðH; hÞ; f ðH; hÞ ¼ f ðHn; hÞ � n: ð8Þ
As customary, we assume
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(F.1) f is monotone increasing w.r.t. H and f ð0; �Þ ¼ 0,
(F.2) limH!�1 f ðH; �Þ ¼ �Ms,

where Ms > 0 represents the saturation magnetization in the n-direction. As a consequence, the internal magnetic susceptibility
(in the n-direction), which is defined as the partial derivative of f w.r.t. H, namely
vðH; hÞ ¼ @Hf ðH; hÞ ð9Þ
is positive and fulfills the asymptotic condition
lim
jHj!1

vðH; �Þ ¼ 0:
By virtue of (6)–(8) and F:1–F:2, we can infer the constitutive relation between M and Hex. Actually, letting fhðHÞ ¼ f ðH; hÞ
we have f�1

h ðMÞ ¼ Hex � aM, and this yields
Hex ¼ f�1
h ðMÞ þ aM;
where the r.h.s. is a monotone increasing function of M, as well as f�1
h . Then, we obtain
M ¼ ~f ðHex; hÞ ~f ¼ ðf�1
h þ aIÞ�1

: ð10Þ
According to this approach, we define the external magnetic susceptibility as
vexðHex; hÞ ¼ @Hex
~f ðHex; hÞ:
It is related to the internal susceptibility v by the following relations
vexðHex; �Þ ¼
vðH; �Þ

1þ avðH; �Þ ; vðH; �Þ ¼ vexðHex; �Þ
1� avexðHex; �Þ

: ð11Þ
In particular, letting v0ðhÞ ¼ vð0; hÞ,
vexð0; hÞ ¼
v0ðhÞ

1þ av0ðhÞ
> 0:
In addition, ðF:1Þ and ðF:2Þ are satisfied even by ~f .

2.1. Some basic models

First, we choose f in (8) as a simple bilinear function
fbðH; hÞ ¼
v0ðhÞH if jHj < H�;

Ms if H P H�;

�Ms if H 6 �H�;

8><
>: ð12Þ
where H�ðhÞ ¼ Ms=v0ðhÞ. This function is monotone non-decreasing and strictly increasing in ð�H�;H�Þ. A more realistic (and
physically sound) form of f is due to Langevin,
fLðH; hÞ ¼ Ms½cothðH=H�ðhÞÞ � H�ðhÞ=H�; ð13Þ
where H� ¼ H�=3. The graphs of fb and fL in the ðH;MÞ-plane are depicted in Fig. 1.
According to these choices of f, the magnetic susceptibility (9) takes respectively the following forms,
vbðH; hÞ ¼
v0ðhÞ if jHj < H�;

0 otherwise;

�

vLðH; hÞ ¼
Ms

H�ðhÞ
1� coth2ðH=H�ðhÞÞ þ ðH�ðhÞ=HÞ2
h i

:

Fig. 1. The graphs of fb and fL (Ms ¼ v0 ¼ 2).
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Because of the assumed relation H� ¼ 3H�, we have
lim
H!0

vLðH; hÞ ¼
Ms

3H�ðhÞ
¼ v0ðhÞ:
Both these approaches hold true in a thermodynamic framework, in that the shape of f modifies when the value of the
temperature changes. In particular, we expect the Curie’s law is recovered in the limit of high temperatures. To this end,
let H� linearly depend on the temperature,
H�ðhÞ ¼ ‘h; ‘ ¼ NkB=Ms;
where N is the number of atoms per unit volume and kB represents the Boltzmann constant (see, for instance, [2, Section
1.2.]). Then,
v0ðhÞ ¼
Ms

3‘h
¼ C

h
; C ¼ M2

s

3NkB
ð14Þ
and we recover the Curie’s law for the Langevin function (13) at H ¼ 0,
lim
H!0

vLðH; hÞ ¼
C
h
:

When the bilinear function fb is involved, by virtue of (14) the Curie’s law holds true in the whole interval ð�3‘h;3‘hÞ. The
graphs of vbð�; hÞ and vLð�; hÞ at different temperatures, say h and h=2, are depicted in Fig. 2.

Remark 2. The Curie’s law holds true even in the Hex �M representation, as usual. Indeed, if vðH; hÞ 	 C=h holds, then from
(11)1 we have
vexðHex; hÞ ¼
vðH; hÞ

1þ avðH; hÞ 	
C
h

provided that h
 aC. In particular,
vex;bðHex; hÞ ¼
C=ðhþ aCÞ if jHexj < 3‘hþ aMs;

0 otherwise:

�

3. Ferromagnetic transition

Henceforth, we confine our analysis to the one-dimensional case by choosing n as in (6). Unlike paramagnets, ferromag-
netic materials exhibit two distinct regimes which depend on the temperature. In the paramagnetic regime, which occurs
above a characteristic temperature hc called the (magnetic) Curie temperature, a relation like (8) holds. In the ferromagnetic
regime (below hc) the relation between H and M is no longer expressed in terms of a single-valued function, and the pair
ðH;MÞmoves along a continuous curve which changes according to the increasing or decreasing of H. This provides the stan-
dard hysteretic behavior (see, for instance, [18,19,2] and references therein). In particular, for large values of jHj, say jHj > Hc ,
the magnetization of the material reaches a saturation value.

With some approximation, possibly, we can identify two regions in the ðH;MÞ-strip: the rectangle containing the major
loop, where jHj 6 Hc , and two unbounded strips, H > Hc and H < �Hc , where lie the hysteresis tails (see, for instance, Figs. 3c
and 4c). This simplified picture allows us to introduce the notion of two distinct phases in ferromagnets.

Definition 1. At a given temperature, the ‘‘matched phase’’ corresponds to a biunivocal relation between H and M, whereas
the ‘‘unmatched phase’’ corresponds to a multivalued relation between these fields. When h P hc , the paramagnetic regime
involves the matched phase, only. As h < hc , the ferromagnetic regime involves both phases, depending on the values of H:
the matched phase when jHj > Hc and the unmatched phase when jHj 6 Hc .

This suggestion relies on a quite basic physical motivation. In the paramagnetic regime, for any applied field H the mag-
netic moment arrangements lead to a single value of the resultant moment M. In the ferromagnetic regime, at values of H
below some threshold Hc , different values of M are allowed, depending on different size and number of magnetic domains
Fig. 2. The graphs of vb and vL at different temperatures: h (solid) and h=2 (dashed).



Fig. 3. The graphs of fb;b when: (a) 0 < b < 1=v0, (b) b ¼ 1=v0 and (c) b > 1=v0.

Fig. 4. The graphs of fL;b when: (a) 0 < b < 1=v0, (b) b ¼ 1=v0 and (c) b > 1=v0.
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(the ‘‘unmatched phase’’). By increasing the value of H, magnetic domains are forced to align with it, but above the threshold
value Hc such an increase cannot cause further alignment of the domains and a saturation value of M is reached (the
‘‘matched phase’’).

In addition, this statement enables the distinction between temperature-induced (at fixed H) and magnetic-field-induced
(at fixed h) phase transitions, which can be depicted with the help of a ðh;HÞ-diagram (see Figs. 5 and 6). As a consequence, a
lot of different phase transitions can be compared with it. For instance, we can establish a connection between ferromagnetic
and superconductive transitions (see subSection 3.3). By letting the magnetic field M correspond to the stress r whereas the
magnetization M correspond to the elongation e, we can also establish a comparison between the ðh;HÞ-diagram in ferro-
magnets and the ðh;rÞ-diagram in shape memory alloys. To our knowledge, all these arguments are new.

In order to mathematically describe this approach, we exploit the Weiss theory which is based on the introduction of the
local magnetic field Hloc. It no longer coincides with the internal field acting inside the material, but it is given by the super-
position of H and a (fictitious) molecular mean field,
Hw ¼ bM;
where the Weiss’s factor b is a positive parameter depending on the molecular fields and related to the Curie temperature hc ,
as it will be specified in (22). Accordingly,
Hloc ¼ H þ bM ¼ Hex � ða� bÞM: ð15Þ
Fig. 5. The ðh;HÞ-diagram and the graph of fb;b when: (a) h ¼ h1 > hc , (b) h ¼ h2 < hc .



Fig. 6. The ðh;HÞ-diagram in the Langevin case and the graphs of fL;b when h ¼ h1 > hc (at the center) and h ¼ h2 < hc (on the right).
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Here, the parameter b is empirically defined. Its rigorous deduction would take into account ferromagnetic coupling and
requires a quantum mechanical calculation (see, for instance, [2]).

The Weiss approach is very useful in attacking many problems of ferromagnetism. Indeed, it allows a mathematical treat-
ment of a ferromagnetic material similar to that used for paramagnetic substances. Actually, this approach prescribes that
the value of M in a point x 2 X must be regarded as a function of Hloc, instead of H, at the same point (see [1] and also [12,
Section 8.1]). The Giles-Atherton model, for instance, takes advantage of this [20]. When applied to (8), this procedure leads
to
M ¼ f ðHloc; hÞ ¼ fhðHlocÞ; ð16Þ
where f is exactly the same function as in (8). Accordingly, we define the local magnetic susceptibility
vðHloc; hÞ ¼ @Hloc
f ðHloc; hÞ > 0; vð0; hÞ ¼ v0ðhÞ:
As a consequence, from (15) and (16) we have
H ¼ gbðM; hÞ ¼ f�1
h ðMÞ � bM: ð17Þ
Since the r.h.s. is an increasing function of M if b ¼ 0, then gb remains increasing when 0 < b < b�, for a sufficiently small
value of b� which depends on the shape of f. In this range, gb can be reverted,
M ¼ fbðH; hÞ: ð18Þ
Because of the positivity of b, when b P b� the monotone character of f could not be conserved by fb, as it will be discussed
henceforth. Nevertheless, for practical purposes, gb is assumed to be piecewise monotone for all b > 0, so that it can be (at
least piece-wisely) inverted. In both cases, we refer to the graph of fb as the skeleton curve of the model.

3.1. Transition in the bilinear case

In this special case, we apply the relation (16) to the skeleton curve f ¼ fb, namely
fbðHloc; hÞ ¼
v0ðhÞHloc if jHlocj < H�;

Ms if Hloc P H�;

�Ms if Hloc 6 �H�:

8><
>: ð19Þ
By virtue of (15), relation (18) takes the form
M ¼ fb;bðH; hÞ ¼
vbðhÞH if jHj < jH�bðhÞj;
Ms if H P H�bðhÞ;
�Ms if H 6 �H�bðhÞ;

8><
>: ð20Þ
where
vbðhÞ ¼
v0ðhÞ

1� bv0ðhÞ
; H�bðhÞ ¼ ½1� bv0ðhÞ�H

� ¼ Ms

vbðhÞ
: ð21Þ
We stress that vb > v0 if 0 < b < 1=v0, and fb;b is a monotone increasing function as well as fb. Otherwise, vb < 0 and fb;b is
no longer a function, but a curve that looks like a reversed zed (see Fig. 3c).

A thermodynamic framework can be achieved by the following

Remark 3. Let hc denote the Curie’s transition temperature and let
b ¼ hc=C: ð22Þ
Then, from (21) we recover the Curie–Weiss law
vbðhÞ ¼
C

h� hc
;
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where C is given in (14). This law holds for all temperatures h > hc and is restricted to the range
�3‘ðh� hcÞ 6 H 6 3‘ðh� hcÞ:

A transition from paramagnetic to ferromagnetic regime occurs when b equals 1=v0, namely at the temperature h ¼ hc.

The material is in the paramagnetic phase when h > hc , so that 0 < b < 1=v0 and vb > v0 > 0 (see Fig. 3a). Otherwise, the
ferromagnetic phase occurs when 0 < h < hc , so that b > 1=v0 and �1=b < vb < 0 (see Fig. 3c). Then, the internal coercive field
is given by Hc ¼ �H�b.

It is worth noting that vb can be identified with the internal ferromagnetic susceptibility only when h > hc. Otherwise, it
merely represents the (negative) slope at H ¼ 0 of the skeleton curve. The proper form of the ferromagnetic susceptibility at
h < hc will be scrutinized in Section 6.

3.2. Transition in the Langevin case

In order to construct a more realistic model, the skeleton curve f may be chosen equal to the Langevin function fL, namely
M ¼ fLðHloc; hÞ � Ms½cothðHloc=H�ðhÞÞ � H�ðhÞ=Hloc�:
By letting LðuÞ ¼ coth u� 1=u, this relation may be rewritten as M=Ms ¼ LðH=H�Þ. Then, applying (17) with f ¼ fL, we have
H ¼ LbðM; hÞ � H�ðhÞL�1ðM=MsÞ � bM ð23Þ
and the skeleton curve fL;b follows by reverting the graph of Lb (see Fig. 4). Finally, if we assume that
@MLbð0; hÞ ¼
3H�ðhÞ

Ms
� b ¼ 3‘h

Ms
� b
vanishes at the Curie temperature h ¼ hc , then we recover the expression (22), namely
b ¼ 3‘hc=Ms ¼ hc=C:
When h > hc (0 < b < 1=v0), Lb is monotone increasing w.r.t. M, and fL;b can be defined by inverting Lb. In this case, the
Curie–Weiss law holds in the limit of high temperatures, h
 hc .

3.3. Phase transition diagram in the ðh;HÞ-plane

In this subsection, we give a picture of the ferromagnetic transition by relating the temperature and the magnetic field H
at which the transition occurs. As a byproduct, we are able to compare this phenomenon to other models of second order
transition.

If we restrict our attention to the bilinear model, the change of phase occurs when h < hc at H ¼ H�bðhÞ, and then jH�bðhÞj
can be identified with the coercive internal field (see Fig. 3c). By virtue of (14) and (22), we have
H�bðhÞ ¼ Ms=vbðhÞ ¼ Msðh� hcÞ=C:
Accordingly, the ðh;HÞ-plane is divided into four regions, P; Pþ; P�; M, by the lines H ¼ Msðh� hcÞ=C and
H ¼ �Msðh� hcÞ=C, as depicted in Fig. 5. Inside the regions Pþ and P� the magnetization keeps the saturation values Ms

and �Ms, respectively. At a fixed temperature h1 > hc , if H takes a value H1 such that ðh1;H1Þ 2 P, then the magnetization
M belongs to ð�Ms;MsÞ. In P; Pþ; P� the material is in a unmatched phase since the values of h and H determine uniquely
the value of M (see Fig. 5a). Otherwise, if ðh;HÞ 2 M, the gray region, then M 2 ð�Ms;MsÞ because of hysteresis. The material
is in a matched phase, in that the value of M cannot be uniquely determined by the values of H and h (see Fig. 5b). Here, Hc

stands for the coercive internal field.
When the Langevin function is involved, the magnetization M approaches but never reaches the saturation values. If this

is the case, Fig. 6 depicts the transition into the ðh;HÞ-plane and the gray region represents the matched phases, where the
value of M cannot be uniquely determined by H and h. This picture is very close to Fig. 7 which represents the ðh;HÞ-diagram
of a second order transition without hysteretic effects, as well as in superconductivity (see, for instance, [5]). Here N and S
stand for normal and superconducting phases, respectively.

4. A Ginzburg–Landau model for ferromagnetic transitions

In the classical Ginzburg–Landau theory for temperature-induced phase transitions, the evolution equation of the phase
parameter u involves the Gibbs free energy wG and reads
_u ¼ ��duwG; duwG ¼ @uwG �r � @ruwG; ð24Þ
where the superposed dot denotes the material time derivative and � > 0 is a parameter related to the rate of the transition.
This equation is often called kinetic, in that it states the drift of the system to recover its equilibrium, which is characterized
by the variational condition duwG ¼ 0 (see, for instance, [14]). A more general three-dimensional theory for ferromagnetic



Fig. 7. The ðh;HÞ-diagram in the superconducting transition and the graphs of f when h ¼ h1 > hc (at the center) and h ¼ h2 < hc (on the right).
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materials was proposed in [12] on the basis of continuum thermodynamics, and a specific evolution equation, which
includes the Gilbert–Landau–Lifschitz equation as a special case, is deduced therein.

In a one-dimensional model the phase parameter u is quite naturally identified with the relative magnetization along the
given direction,
m ¼ M=Ms; jmj 6 1: ð25Þ
Nevertheless, it is worth noting that the phase variable is not necessarily identified with an observable physical quantity,
as usual in the Ginzburg–Landau theory of stress-induced transitions in shape-memory alloys [21]. Therefore, a more general
relation can be considered here, for instance
M ¼ MsCðmÞ; ð26Þ
where C is a monotone non-decreasing function on ð�1;1Þ which reflects the phenomenological relation between the
domain-orientation fraction, m, and the total magnetization, M. From the symmetry of the hysteresis loops, it is expected
to be odd, Cð�mÞ ¼ �CðmÞ.

Assuming the linear relation (25), we can establish a link to previous approaches. For instance, according to [12, Section
8], the total free energy density is then assumed in the form
wðH;M;rM; hÞ ¼ 1
2
l0H2 þWðM;rM; hÞ ð27Þ
and from [12, Eqn. (6.15)] the evolution of m is ruled by
_m ¼ �� hdmŵ� l0H
h i

; ŵ ¼ w=h; H ¼ MsH;
where dm has the same meaning as du and ŵ is referred to as the rescaled free energy density. After introducing the Gibbs free
energy
wG ¼ w� HB ¼ W� 1
2
l0H2 � l0HM; ð28Þ
the evolution equation for m takes the form (24) provided that � and wG are replaced by �h and wG=h, respectively. Taking into
account that dmw ¼ dmW ¼ Msð@MW�r � @rMWÞ and splitting W as usual,
WðM;rM; hÞ ¼ VðM; hÞ þ 1
2
jjrMj2;
the evolution equation for m transforms into the form [12, Section 8]
_m ¼ ��Ms @MV � l0H � hr � ðĵrMÞ
� �

; ĵ ¼ j=h:
When we restrict our attention to uniform fields (rM ¼ 0) it reduces to
_m ¼ ��Ms @MV � l0H
� �

¼ ��Ms@MU; ð29Þ
where the function U ¼ V � l0HM can be identified with the Lagrangian density of the system [22]. By means of (25), this
phase evolution equation can be rewritten as
_M ¼ ��M2
s @MUðH;M; hÞ: ð30Þ
In the more general case (26), by means of (28) and restricting our attention to uniform fields, the evolution Eq. (24) takes
the form
_m ¼ ��@m VðMsCðmÞ; hÞ �
1
2
l0H2 � l0HMsCðmÞ

� �
¼ ��MsC

0ðmÞ½@MVðMsCðmÞ; hÞ � l0H�
and then
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_M ¼ ��ðMsC
0Þ2@MUðH;M; hÞ: ð31Þ
For definiteness, we choose C as either a trigonometric or a polynomial function,
C1ðmÞ ¼ sin
pm
2

if m 2 ½�1;1�; C2 ¼
1
2

mð3�m2Þ if m 2 ½�1;1�:
Although their graphs are very close, it is more convenient to apply the former choice. Indeed, it leads to the useful rela-
tion ðC01Þ

2 ¼ p2ð1� C2
1Þ=4, by means of which Eq. (31) takes the closed form
_M ¼ �p2�
4
ðM2

s �M2Þ@MUðH;M; hÞ: ð32Þ
Given a suitable initial condition for M, its solution is expected to recover the relation (18) in the paramagnetic regime,
when h > hc and V is convex, and to replace it in the ferromagnetic regime, when h < hc; V is no longer convex and hysteresis
occurs.

In order to model the evolution of the ferromagnetic body, Eq. (32) has to be coupled with Maxwell’s Eqs. (2) and (3). In
addition, possibly, we could append some heat equation in order to rule the evolution of the temperature. The resulting sys-
tem of differential equations jointly with suitable initial and boundary conditions yields the so-called thermo-electromagnetic
IBVP (see, for instance, [11]).

4.1. Magnetic potentials from the skeleton curve

A first attempt to give an explicit form to the magnetic potential V in (29) traces back to Ginzburg [9]. He proposed the
polynomial expression
VðM; hÞ ¼ M2½aðh� hcÞ þ bi2�; a; b > 0;
which turns out to be non-convex with respect to M when h < hc . This choice of V leads to gratifying well-posedness results
of the thermo-electromagnetic IBVP [11]. Unfortunately, the domain of V spans the whole real axis and the evolution of the
magnetization field cannot be confined into ð�Ms;MsÞ. On the contrary, the constraint jMj < Ms is fulfilled a priori by the log-
arithmic potential proposed in [12],
VðM; hÞ ¼ �c
h
hc

ln 1�M2

M2
s

 !
þM2

M2
s

" #
; c > 0;
but no result is available for the corresponding thermo-electromagnetic IBVP.
In the framework of our approach, we prefer to derive rather than assume the expression of the magnetic potential V. In

the general case, we start from the thermodynamic relation dw ¼ HdB, which leads to
dw ¼ l0ðHdH þ HdMÞ ¼ d
1
2
l0H2

� �
þ l0HdM
and then from (27) it follows dW ¼ l0HdM. When all fields are uniform, we have dW ¼ dV , so that
dV ¼ l0HdM: ð33Þ
This formula can be used to compute V provided that some relation between H and M is given. For instance, we can exploit
the shape of the skeleton-curve.

It is worth noting that, accounting for the skeleton-curve representation, in general H can be expressed as a function of M
in both paramagnetic and ferromagnetic regimes (see, for instance, Fig. 6). In the former case, namely when h > hc , from (17)
we have H ¼ gbðM; hÞ, which is a monotone increasing function w.r.t. M, and this yields the convexity of V. Indeed, from (33)
we have
@MVðM; hÞ ¼ l0gbðM; hÞ:
In the latter case, h < hc and gb is no longer monotone, so leading to a non-convex potential which has the customary
shape of a double well. For instance, this procedure can be applied in the Langevin case by noting that gL;b ¼ Lb, which is
given by (23). Then,
VLðM; hÞ ¼ l0

Z M

0
Lbðf; hÞdf ¼ l0H�ðhÞ

Z M

0
L�1ðf=MsÞ � l0b

M2

2
; ð34Þ
where M 2 ð�Ms;MsÞ. This potential is represented by a dotted curve in Fig. 8b when h > hc and in Fig. 8d when h < hc.
The same holds true even in the bilinear case provided that we consider gb;b as a maximal monotone graph (see, for

instance, Fig. 5a and b). In particular, since H� ¼ Ms=v0, from (20) we obtain



Fig. 8. The graphs of UbðH; �; hÞ and ULðH; �; hÞ when H ¼ 2H� (solid), H ¼ H�=2 (dashed), H ¼ 0 (dotted): (a) and (b) at h > hc; (c) and (d) at 0 < h < hc .
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gb;bðM; hÞ 2

M=vbðhÞ
n o

if �Ms < M < Ms;

Ms=vbðhÞ;þ1
h 	

if M ¼ Ms;

�1;�Ms=vbðhÞ

 i

if M ¼ �Ms;

8>>>><
>>>>:

ð35Þ
which is the subdifferential of
VbðM; hÞ ¼ l0Ið�Ms ;MsÞðMÞ þ
l0

2vbðhÞ
M2; ð36Þ
where Iða;bÞ stands for the indicator function of the interval ða; bÞ. This potential is represented by a dotted curve in Fig. 8a
when h > hc and in Fig. 8c when h < hc .

4.2. Stability of magnetic equilibria

Now, in order to state the Ginzburg–Landau theory for the paramagnetic–ferromagnetic transition, we only need the
complete expression of U which enters the evolution Eq. (29), namely
UðH;M; hÞ ¼ VðM; hÞ � l0HM: ð37Þ
It refers to a general state ðH;MÞ of the ferromagnetic material at a point x, so that H is independent of M. Then U, unlike V,
is defined on the whole strip S ¼ R� ½�Ms;Ms� of the ðH;MÞ-plane. A different approach is devised in [10], where U is iden-
tified with the minimum Gibbs free energy and the expression of Ub is explicitly obtained by computing the maximum
recoverable work. By virtue of (36), it turns out to have exactly the same expression as VbðM; hÞ � l0HM.

Since in the ferromagnetic phase H and M are independent, the shape of Ub and UL can be easily depicted by taking their
sections at given values of H. Taking in mind that V ¼ UjH¼0, we infer that Vb and VL are represented by the dotted lines of the
graphs of Ub and UL at H ¼ 0, respectively when h > hc and 0 < h < hc (see Fig. 8).

Magnetic potential allow us to scrutinize the equilibria of the system and in particular to identify their stability proper-
ties. At a given temperature h and for any given value of H, the state ðH;MÞ is called stable if M is a global minimizer of
UðH; �; hÞ on ð�Ms;MsÞ. Depending on the form of the potential at a given temperature, (30) generates the magnetic response
as a quasi-static process by connecting stable states. At h > hc the potential has a unique minimizer for any value of H (Fig. 8a
and b) and the graph of the solution is a single valued curve in the ðH;MÞ-plane. When h < hc , two absolute minima occurs
(Fig. 8c and d): the related Ginzburg–Landau dynamics drives the magnetization M to ‘‘jump’’ from one minimum to the
other, so generating the major hysteresis loop. This will be clearly shown in the sequel.

4.3. Numerical simulation in the Langevin case

By means of (30), (34) and (37), in the Langevin case we obtain the evolution equation
_M ¼ ��l0½LbðM; hÞ � H�:
Assuming that H is a time periodic function, for instance HðtÞ ¼ A sin xt, by virtue of (23) we obtain the following evo-
lution system,
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_M ¼ ��l0 H�ðhÞL�1ðM=MsÞ � ðH þ bMÞ
� �

_H ¼ Ax cos xt:

(
ð38Þ
In Fig. 9 we present the graphs of solutions to this system. All of them start from the origin and are obtained by assuming
A ¼ 2:8; Ms ¼ 2; x ¼ p=50 and p2�l0 ¼ 1:2. The numerical solver is based on a fifth-order Romberg’s method. The first
graph describes the magnetization curve when H�ðh1Þ ¼ 3. The second and the third graphs represent the initial magnetiza-
tion curves and the major hysteresis loops when H�ðh2Þ ¼ �3 and H�ðh3Þ ¼ �1, respectively. Of course, h1 > hc > h2 > h3.
These pictures fit very well the theoretical curves of the Langevin model (cfr. Fig. 4).

4.4. Smoothing and numerical simulation in the bilinear case

At a first sight, the Ginzburg–Landau machinery appears to be unsuitable for modeling the hysteresis loops in the bilinear
case, but it is not so. Indeed, the assumption of a suitable nonlinear relation between M and m yields a smoothing in the
shape of V and U even in the bilinear case.

By applying (26) to replace M into (36) we achieve
Ub;Cðm; hÞ ¼ l0Ið�1;1ÞðmÞ þ
l0

2vbðhÞ
M2

s C
2ðmÞ � l0MsHCðmÞ:
It is easy to check that the resulting graphs of Ub;C with respect to m (see Fig. 10) are smoother than the corresponding
graphs of Ub (Fig. 8a and c).

What is more, if we replace Ub;C with the following potential which is regular on the whole real line
Ubs;C ¼
l0

2vbðhÞ
M2

s C
2ðmÞ � l0MsHCðmÞ; ð39Þ
then the end points, m ¼ 1 and m ¼ �1, provide local maxima or minima and this yields relevant advantages. First of all, this
smoothing extension removes the indicator function and then the penalty condition that bounds m in ½�1;1�. If this is the
case, when finding a solution to thermo-electromagnetic IBVP, we only need to prove a posteriori this constraint by virtue
of some ‘‘maximum theorem’’ (this was the strategy successfully applied in [11]). In addition, by exploiting this mini-
mum–maximum property of Ubs;C, a smart simulation of (32) can be performed.

Assuming that H is a given periodic function of time, for instance HðtÞ ¼ A sin xt, from (32) and (39) (with C ¼ C1), we
obtain the following evolution system,
_M ¼ � p2�l0
4 ðM2

s �M2Þ M
vb
� H


 	
_H ¼ Ax cos xt:

8<
: ð40Þ
Fig. 9. Numerical simulation of the magnetic responses at different temperatures, h1 > h2 > h3, under a cyclic process in H.

Fig. 10. The graphs of Ub;C when H ¼ 2H� (solid), H ¼ H�=2 (dashed), H ¼ 0 (dotted): (a) at h > hc; (b) at 0 < h < hc .



Fig. 11. Magnetic responses at different temperatures, h1 > h2 > h3, under a cyclic process in H: numerical simulations (solid), theoretical curves (short
dashed), skeleton curves (dashed).
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It is worth noting that vb depends on h according to (21). By Remark 3, it follows
vbðhÞ ¼
C

h� hc
; C ¼ M2

s

3NkB
and then vb is negative when h < hc . In spite of the simplicity and regularity of the resulting model, we show that it is able to
capture the main features of the temperature-induced transition.

In Fig. 11 some graphs of solutions to (40) in the ðH;MÞ-plane are presented. All of them start from the origin and are
obtained by assuming Ms ¼ 2; x ¼ p=50 and p2�l0 ¼ 1:2. The first graph describes the magnetization curve when
A ¼ 2:5 and vbðh1Þ ¼ 3. The second and the third graphs represent the initial magnetization curves and the major hysteresis
loops when A ¼ 2; vbðh2Þ ¼ �3 and A ¼ 4; vbðh3Þ ¼ �1, respectively. Of course, h1 > hc > h2 > h3. These simulations fit very
well the theoretical curves of the bilinear model (cfr. Fig. 3).

5. The hysteresis loops in the ðHex;MÞ-plane

Exploiting the results of the previous sections, the transition between paramagnetic and ferromagnetic regimes is char-
acterized by the occurrence of the hysteresis phenomenon and in particular by the onset of a major loop. This procedure
gives rise to ‘‘squared’’ hysteresis loops, as in Figs. 3c and 4c, which do not fit well the so called soft ferromagnetic materials.
The real shape of the loops emerges in the ðHex;MÞ-plane description, where Hex ¼ H þ aM. By means of (6) and (18), the
skeleton curves in the ðHex;MÞ-plane are derived. In general, their shape depends on the sign of the parameter
c ¼ a� b: ð41Þ
Since a and b are positive constants, c is independent of h. When a P b, then c P 0 and the skeleton curve is monotone
increasing w.r.t. Hex for whatever value of the temperature h. Otherwise, if a < b, then c < 0 and the skeleton curve is mono-
tone increasing only if h > hc.

5.1. The bilinear case

First, by substituting (6) into relation (20), we obtain the following expression, which represents the bilinear skeleton
curve in the ðHex;MÞ-plane:
~f b;cðHex; hÞ ¼
vcðhÞHex if jHexj < j1þ cv0jH

�;

Ms if Hex P ½1þ cv0�H
�;

�Ms if Hex 6 �½1þ cv0�H
�;

8><
>: ð42Þ
where ½1þ cv0�H
� ¼ 3‘hþ cMs, since v0ðhÞ ¼ Ms=3‘h and H�ðhÞ ¼ 3‘h, and
vcðhÞ ¼
vbðhÞ

1þ avbðhÞ
¼ v0ðhÞ

1þ cv0ðhÞ
:

We stress that vc represents the external susceptibility of the material only when h P hc . On the other hand, when the
temperature takes values just below the Curie temperature hc , hysteresis loops appear after applying, removing and then
reversing a large external magnetic field. The loops are characterized by two slopes, 0 and 1=a, where the latter is the slope
which corresponds to the process of the phase change in the ðHex;MÞ-plane (see the small circles in Figs. 12 and 13). The
dependence of the loop shape on a is described in the following remark.



Fig. 12. Soft ferromagnetic materials: c P 0. The graphs of ~f b;c in the ðHex ;MÞ-plane.

Fig. 13. Hard ferromagnetic materials: c < 0. The graphs of ~f b;c in the ðHex;MÞ-plane.
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Remark 4. The transition occurs when h ¼ hc and we have v0ðhcÞ ¼ 1=b; vcðhcÞ ¼ 1=a. Recalling (14) and (22), when h > hc

the skeleton slope vc equals the ferromagnetic susceptibility. Its dependence on h is given by
vcðhÞ ¼
C

hþ cC
¼ C

h� hc þ aC
; C ¼ Ms

3‘
and the Curie–Weiss law still holds in the limit of high temperatures, h
 hc . On the other hand, two cases may occur when
0 < h < hc:

– if c P 0 (soft ferromagnetic materials), the skeleton slope differs from the susceptibility and fulfills 1=a < vcðhÞ < 1=c (see
Fig. 12);

– if c < 0 (hard ferromagnetic materials), letting h� ¼ Cjcj the skeleton slope still differs from the susceptibility, but fulfills
either vcðhÞ > 1=a > 0, when h� < h < hc , or vcðhÞ < 1=c < 0, when 0 < h < h� (see Fig. 13).
A numerical simulation in the ðHex;MÞ-plane can be easily performed by mimicking the procedure of subSection 4.4.

Assuming once again that H is a given periodic function of time, HðtÞ ¼ A sin xt, we recast (40) into the following form
ð43Þ
Here, vc depends on h according to Remark 4.
Hereafter, we show the resulting simulation for both soft and hard ferromagnetic samples, respectively. All solutions to

(43) start from the origin and are obtained by assuming Ms ¼ 2; x ¼ p=50; p2�l0 ¼ 1:2; A ¼ 1:8 and a ¼ 2=3. For a soft
Fig. 14. Soft and hard ferromagnetic responses at different temperatures: numerical (solid), theoretic (short dashed), skeleton (dashed).
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material (c ¼ 1=4), Fig. 14 describes the magnetization curve in the paramagnetic regime when vcðh1Þ ¼ 1 (on the left) and
the major hysteresis loop when vcðh2Þ ¼ 3 (at the center), and h1 > hc > h2.

On the other hand, for a hard material (c ¼ �1=4), Fig. 14 describes the magnetization curve in the paramagnetic regime
when vcðh1Þ ¼ 1 (on the left) and the major hysteresis loops when vcðh2Þ ¼ 3 (at the center) and vcðh3Þ ¼ �6 (on the right). Of
course, h1 > hc > h2 > h� > h3.

5.2. The Langevin case

Finally, by substituting (6) into relation (23), we obtain
Fig. 15.
process
Hex ¼ LcðM; hÞ � H�ðhÞL�1ðM=MsÞ þ cM:
By inverting this function (piece-wisely, possibly) we construct ~f L;c, which represents the Langevin skeleton curve in the
ðHex;MÞ-plane. In particular,
@MLcð0; hÞ ¼
3‘h
Ms
þ c
and the slope of the skeleton curve ~f L;c in Hex ¼ 0 is
@Hex
~f L;cð0; hÞ ¼

C
h� hc þ aC

;

as well as in the bilinear case. Then, at h ¼ hc the slope of the skeleton curve ~f L;c in Hex ¼ 0 is 1=a.
A numerical simulation in the ðHex;MÞ-plane can be easily performed by mimicking the procedure of subSection 4.3.

Assuming once again HðtÞ ¼ A sin xt, we recast (38) into the following form
_M ¼ ��l0 H�ðhÞL�1ðM=MsÞ þ cM � Hex
� �

_Hex ¼ Ax cos xt � �l0a H�ðhÞL�1ðM=MsÞ þ cM � Hex
� �

:

(
ð44Þ
All solutions to (44) in Fig. 15 start from the origin and are obtained by assuming Ms ¼ 2; x ¼
p=50; p2�l0 ¼ 1:2; A ¼ 1:8; a ¼ 2=3 and c ¼ �1=4. They describe the magnetization curves when the slope of the skeleton
curve in Hex ¼ 0 is equal to 1 < 1=a (paramagnetic regime) and when it is equal to 10 > 1=a and equal to �6 (ferromagnetic
regime), respectively at temperatures h1ð> hcÞ > h2ð> h�Þ > h3.

6. Dependence of the ferromagnetic susceptibility on the temperature

In this section we restrict our attention to the bilinear model for soft ferromagnetic materials, hence we assume c > 0,
namely a > b. Our aim is to determine the general form of the external ferromagnetic susceptibility, vfm

ex , that is the slope
of the phase-change process in the ðHex;MÞ-plane.

In the previous section, a was assumed to be independent of the temperature, as well as b. Accordingly, we established
that vfm

ex is constant and equal to 1=a for every h 2 ð0; hc�. Really, the constancy of a in ð0; hc� was implicitly introduced in
Remark 1 just in order to simplify the description of the model, but it can be easily removed.

Thereafter, we scrutinize a more general case, where vfm
ex is an unknown function which may depend on the temperature

in ð0; hc�. By exploiting the Bloch’s law, we obtain the general shape of this function. Then we ask for the choice of a on ð0; hc�
which allows the Ginzburg–Landau model to be consistent with it.

In the paramagnetic regime, vfm
ex equals the slope of the skeleton curve,
vfm
ex ðh; hcÞ ¼ vcðhÞ; h > hc;
Hard ferromagnetic responses at different temperatures (at h1 > hc on the left, at h� < h2 < hc in the center, at h3 < h� on the right) under a cyclic
in Hex: numerical simulations (solid) and skeleton curves (dashed).
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whose dependence on the temperature has been previously discussed and proved to match the Curie–Weiss law for large
values of h. In the ferromagnetic regime, vfm

ex is a positive function of the temperature which matches the value of vc at
h ¼ hc , namely
vfm
ex ðhc; hcÞ ¼ vcðhcÞ ¼ 1=a:
In order to explicitly compute the expression of vfm
ex ðh; hcÞ even when h < hc , we introduce a constant m 2 ð0;1� and a con-

tinuous function s such that
vfm
ex ðh; hcÞ ¼

vcðhÞ if h > hc

1=a if h ¼ hc

vcðhÞ½1� msðhÞ� if 0 < h < hc;

8><
>:
where s satisfies the following conditions:
0 < sðhÞ < 1; 0 < h < hc; sð0Þ ¼ 1:
According to these assumptions, we notice that
vfm
ex ðh; hcÞ < vcðhÞ; 0 < h < hc;
which is consistent with the hysteretic phenomena. In addition,
vfm
ex ð0; hcÞ ¼ vcð0Þ½1� msð0Þ� ¼ 1� m=c > 0:
On the other hand, when h increases and overcomes the critical value hc , then vfm
ex ðh; hcÞ ¼ vcðhÞ, hysteresis loops disappear

and the major loop reduces to the skeleton curve.
Since we know the expression of vc for any h > 0, we have to establish the dependence of s on h. To this end, we introduce

the remnant (or spontaneous) magnetization Mr , which can be evaluated as the intersection of the major hysteresis loop
with the vertical magnetization axis, namely
MrðhÞ ¼ Ms 1� vfm
ex ðh; hcÞ
vcðhÞ

" #
¼ MsmsðhÞ: ð45Þ
For a large class of materials, the spontaneous magnetization Mr complies with the generalized Bloch’s law (see, for
instance, [2, p. 246])
MrðhÞ ¼ M�
r 1� h=hcð Þk
h i

; 0 < h < hc; ð46Þ
where M�
r ¼ Mrð0Þ 6 Ms and k > 1. Hereafter we assume k ¼ 3=2, according to quantum mechanics (see [4,2]). Although the

dependence of the spontaneous magnetization on temperature differs from Bloch’s law in a variety of ferromagnetic and fer-
rimagnetic garnets (see, for instance, [2, p. 517]), our procedure is able to exactly evaluate the expression for s even in these
cases, by merely inserting the experimental form of MrðhÞ into (45).

From comparing (45) and (46), evaluated at h ¼ 0, it follows
m ¼ M�
r=Ms ð47Þ
and then we easily obtain
sðhÞ ¼ 1� h=hcð Þk:
Accordingly, when 0 < h < hc we have
vfm
ex ðh; hcÞ ¼ vcðhÞ 1� m 1� h=hcð Þk

h in o
:

Recalling the dependence of vc on h, we obtain
vfm
ex ðh; hcÞ ¼

C
h�hcþaC 1� m 1� h=hcð Þk

h in o
0 < h < hc;

C
h�hcþaC h P hc:

8<
: ð48Þ
Its graph is depicted in Fig. 16 (a close result was achieved in [10]).
Finally, we have to justify the assumption made in Section 5,
vfm
ex ðh; hcÞ ¼ 1=a 8h 2 ð0; hc�:
If a is assumed to be constant, then we need to choose its value in such a way that ð1� mÞ=c ¼ 1=a and then a ¼ b=m. In
view of (47), (14)2 and (22), we finally obtain the restrictions



Fig. 16. The graphs of vfm
ex (solid) and vc (dashed) when m ¼ c ¼ 1=2; a ¼ 1

k ¼ 2=3.
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a ¼ Mshc

M�
r C
¼ 3NkBhc

M�
r Ms

; c ¼ að1� mÞ ¼ 3NkBhc
Ms �M�

r

M�
r M2

s

;

which do not seem to be justified from the physical point of view.
Alternately, we may allow the material factor a to depend on h. In view of (48), we replace a with the function
âðh; hcÞ ¼
h� hc þ aC

C 1� m 1� h=hcð Þk
h in o 0 < h < hc;
where a ¼ âðhc; hcÞ > b. Finally, it is easy to check that âðh; hcÞ > b for all h 2 ð0; hc�, since â is a decreasing function.
7. Conclusions

The analysis devised here relies on the paper by Fabrizio et al. [12] where the Ginzburg–Landau theory for a ferromag-
netic material is derived in a suitable thermodynamic framework. When considered along a fixed alignment (see [12] sub-
Section 6.1), the vector-valued phase evolution equation reduces to the scalar Ginzburg–Landau-like Eq. (24). The resulting
models differ by (and take advantage of) the expression of the Gibbs free energy (28). On this basis, we develop and discuss
here two new basic one-dimensional models of the ferromagnetic behavior, which account for magnetic saturation. The for-
mer is called bilinear from the shape of the skeleton curve which is used to compute its potential (39). The latter is developed
from a physics-based shape of the skeleton curve, which is referred to as Langevin function, and then it is accordingly named:
this choice leads to the energy potential (34).

The main features to emerge from this paper are summarized as follows. Due to its thermodynamic framework, the phase
evolution equation is naturally energy consistent. The phase variable is related to the magnetization, but does not coincide
with it: this enable us to manage the bilinear case by means of a regular potential (subSection 4.4). The temperature-induced
transition from paramagnetic to ferromagnetic regimes is characterized by the onset of a major loop, that is a region where
stable states are not uniquely determined by H (see Figs. 3 and 4). By properly introducing the notion of matched and
unmatched phases (see Definition 1), transitions turn out to be driven by varying either the temperature or the magnetic
field, as expected. As a consequence, the ferromagnetic ðh;HÞ-diagram can be compared with the corresponding diagram
in superconductivity (see Figs. 6 and 7). Both bilinear and Langevin models properly describe soft and hard ferromagnetic
materials: the former leads to ‘‘box-shaped’’ hysteresis loops, whereas the latter reproduces more regular loops (see Figs.
11 and 9). This approach reveals to be effective by comparing theoretical results to numerical simulations when cyclic pro-
cesses are involved, and this clearly emerges from the ðHex;MÞ-plane description, where Hex is the external applied field (see
Figs. 14 and 15). Finally, by exploiting the Bloch’s law, in (48) we establish the general shape of the external ferromagnetic
susceptibility, vfm

ex ðh; hcÞ, which is consistent with the bilinear model for soft ferromagnetic materials.
Extending the analysis to more convincing models might be the object of future projects. In particular, further research

might be devoted to extend the Langevin model devised here to the three dimensional case, so including the rotating prop-
erty of the magnetization [12], and then compare the resulting evolution system with the recently proposed VINCH model
[23].
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