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Reliability analysis becomes increasingly complex when facing the complicated expensive-
to-evaluate engineering applications, especially problems involve the implicit finite ele-
ment models. In order to balance the accuracy and efficiency of implementing reliability
analysis, an advanced Kriging method is proposed for efficiently analyzing the structural
reliability. The method starts with an incipient Kriging model built from a very small num-
ber of samples generated by the simple random sampling method, then determines the
most probable region in the probabilistic viewpoint and chooses the subsequent samples
located in this region by employing the probabilistic classification function. Besides, the
leave-one-out technique is used to update the current model. By locating samples in the
probabilistic most probable region, only a small number of samples are used to build a pre-
cise surrogate model in the end, and only a few actual limit state function evaluations are
required correspondingly. After the high quality surrogate of the implicit limit state is
available by the advanced Kriging model, the Monte Carlo simulation method is employed
to implement reliability analysis. Some engineering examples are introduced to demon-
strate the accuracy and efficiency of the proposed method.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Reliability analysis aims at evaluating the safety level of systems or structures. In the past few decades, many reliability
analysis techniques have been developed. Difficulty in computing the failure probability has lead to the development of var-
ious approximation methods [1], among which the first-order reliability method (FORM) [2,3] and the second-order reliabil-
ity method (SORM) [4–6] focus on searching for a single most probable point (MPP) in the failure domain, and then quantify
the reliability by building a low-order approximation to the limit state function at MPP. These methods may wrongly assess
the safety level in case of multiple MPPs, besides, they rely on MPP convergence and the evaluated results are affected by the
precision of the limit state function approximation to a great extent.

As presented by many practitioners, engineering applications are always complex with highly nonlinear limit state mod-
els. Thus engineers resort to study the sampling methods, which do not rely on a lower-order approximation of the limit
state function. The Monte Carlo simulation (MCS) technique [7–9] is a basic reference approach and is widely used. However,
for the implicit limit state models where the finite element model (FEM) analysis is employed to obtain the output, the MCS
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method is infeasible due to the large computational cost. Based on MCS, the importance sampling (IS) method [10,11] is
developed. Melchers [10] employed a standard normal probability density function (PDF) centered on the MPP. Au [11] used
a kernel smoothing approximation of the optimal instrumental PDF built from some failed samples. IS method requires fewer
evaluations of the actual limit state function comparing with MCS, however it needs large number of evaluations all the same
with respect to the rare events.

In order to reduce the calls of limit state functions, especially for the FEM analysis, some approximation methods based
on the meta-models are proposed including quadratic response surfaces [12–14], neural networks [15], support vector
machines [16,17] and Kriging [18–21]. However, it is often difficult to decide how many samples should be selected to con-
struct the surrogates and it is difficult to quantify the error of the surrogate model. The traditional Kriging based methods
used a number of randomly selected samples to build the surrogate, and the accuracy of the approximate model depends on
the information provided by the given samples. If few samples are used, the prediction capability of the approximate model
would be insufficient. On the contrary, if large numbers of samples are used, the accuracy can be ensured, but the corre-
spondingly computational cost would be expensive, especially for the computational intensive models.

Obviously, an efficient meta-model based reliability analysis method is needed to balance the accuracy and cost. Bichon
[21,22] proposed an expected feasibility function based on the Kriging model and depended on it to locate the samples near
the limit state, which decreased the actual limit state function evaluations. Dubourg [23,24] employed a probabilistic clas-
sification function based on the Kriging model to approximate the failure indicator in order to refine the models and build a
quasi-optimal importance sampling density. This paper starts from the probabilistic viewpoint and proposes an advanced
Kriging-based method to efficiently estimate the reliability of the structural system. The method begins with an initial Kri-
ging model constructed from a very small number of samples obtained by the simple random sampling method, then
employs the probabilistic classification function to determine the most probable region, and selects the subsequent samples
with high level of uncertainty to enrich the experiment points for updating the model. Besides, the leave-one-out technique
is used as the stopping criterion to refine the model. By choosing the subsequent samples which locate in the most probable
region with the probabilistic viewpoint, only a small number of evaluations of the actual limit state function are needed to
build an accurate meta-model.

This paper is organized as follows. Section 2 reviews the basic reliability analysis and the Kriging method. Section 3 pre-
sents methods to find the probabilistic most probable region and choose the subsequent experiment samples in this region
for refining the model. Section 4 gives the implementation progress of reliability analysis by the proposed advanced Kriging
method. Section 5 illustrates the accuracy and efficiency of the proposed method. Section 6 provides the conclusions.

2. Reliability analysis

2.1. Basic reliability methods

The goal of reliability analysis is to compute the failure probability Pf to evaluate the safety level of systems or structures.
For the response function Z ¼ gðxÞ relating with the n-dimensional independent random input vector x ¼ fx1; x2; . . . ; xng, the
failure probability Pf is defined by
Pf ¼
Z

F
fxðxÞdx ¼

Z
Rn

Ig60ðxÞfxðxÞdx; ð1Þ
where fxðxÞ ¼
Qn

i¼1fxi
ðxiÞ is the joint probability density function (PDF) of random variable vector x, fXi

ðxiÞ is the marginal PDF
of xi. The integration is performed over the failure region F, which is defined by the response function Z ¼ gðxÞ as
F ¼ fx : gðxÞ 6 0g. Ig60ðxÞ is the failure indictor, it equals to one if gðxÞ > 0 and zero otherwise.

The basic approximation to compute the failure probability is FORM, which linearizes the limit state surface and com-
putes the failure probability by
Pf � Uð�bÞ; ð2Þ
where b is the reliability index and represents the distance from the origin to the MPP in the standard normal space. SORM
computes the failure probability in the same way by using a quadratic surface fitted at the MPP. However, for a complex
engineering application, the limit state functions may be multimodal and possess multiple MPPs, thus the reliability esti-
mated by the methods only on the information of the single MPP may be inaccurate.

Generally, the MCS method is a basic simulation and the results are used as references. It is a simulation technique. The
MCS estimator is then derived as
bPf MC ¼ Ex½Ig60ðxÞ� ¼
1
N

XN

i¼1

Ig60ðxðkÞÞ; ð3Þ
where xðkÞðk ¼ 1; . . . ;NÞ are a set of random input samples and E½�� is the expectation operator. According to the central limit
theorem, this estimator is unbiased. For the events with very rare failure probability, in order to obtain a convergent result, N
should be large enough (generally, N ¼ ð102 � 104Þ=Pf ). Note that it is efficient to implement MCS estimation for the problem
with explicit limit state function. However, engineering problems are often characterized by an implicit input–output
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relationship, usually, we only know their numerical relation constructed by FEM. And using the MCS simulation method to
analyze the FEM directly is a very time-consuming progress when facing these real problems.

2.2. Meta-model based method

In order to cope with the expensive-to-evaluate problems expressed by FEM, the meta-model based method is a good
choice. Among the various meta-models, Kriging model is widely used [18,25].

Different from other models, the Kriging method is a semi-parametric interpolation technique. Sacks [26] characterized
the actual response function gðxÞ by two parts: the linear regression part and the nonparametric part,
gðxÞ ¼ f TðxÞbþ ZðxÞ; ð4Þ
where f ðxÞ ¼ ½ f1ðxÞ; . . . ; fmðxÞ�T is the basis function, b ¼ ½b1; . . . ; bm�
T is the vector of regression coefficient which needs to be

determined, and m denotes the number of the basis function. ZðxÞ is used to model the departure of regression model f TðxÞb
and it is assumed to be a Gaussian stochastic process with zero mean, the covariance can be defined as
Cov ½ZðxiÞ; ZðxjÞ� ¼ r2Rðxi; xjÞ; i; j ¼ 1; . . . ;N; ð5Þ
where N is the number of experimental points, r2 is the progress variance and Rð�; �Þ is the correlation function which is given as
Rðxi; xjÞ ¼ exp �
Xn

l¼1

hljxil � xjljpl

 !
; ð6Þ
where n represents the dimensionality number of the input vector x, pl determines the smoothness of the function in the lth
coordinate direction and pl ¼ 2 is widely used [26], hl is the correlation parameter, xil and xjl are the lth component of vector
xi and xj respectively.

Thus the unknown parameters b and r2 can be estimated as
bb ¼ ðFT R�1FÞ�1
FT R�1g; ð7Þ

cr2 ¼ 1
N
ðg � FbbÞT R�1ðg � FbbÞ; ð8Þ
where F is a vector of f ðxÞ and g is the vector of response outputs evaluated at each of the experimental points, and R is the
correlation matrix, i.e.,
R ¼

Rðx1; x2Þ � � � Rðx1; xNÞ
..
. . .

. ..
.

RðxN ; x1Þ � � � RðxN; xNÞ

2664
3775: ð9Þ
However, before computing bb and cr2 , we have to estimate the unknown parameters of the correlation function by using
maximum likelihood:
min : 1=2ðN ln cr2 þ ln jRjÞ: ð10Þ
The reason why Kriging models are set apart from other meta-models is that they provide not only a predicted value at a
prediction point, but also an estimate of the prediction variance, which gives an uncertainty indication of the Kriging model.
The expected value lbG and variance r2bG of the Kriging model prediction at a point x are
lbGðxÞ ¼ f TðxÞbb þ rTðxÞR�1ðg � FbbÞ; ð11Þ

r2bGðxÞ ¼ r2 � ½ f TðxÞ rTðxÞ � 0 FT

F R

" #�1
f ðxÞ
rðxÞ

� �
; ð12Þ
where rTðxÞ ¼ ½Rðx; x1Þ; . . . ;Rðx; xNÞ�T is the correlation vector between an unknown point x and all known experimental
points ðx1; x2; . . . ; xNÞ.

3. Advanced Kriging method

Generally, to implement reliability analysis, the traditional Kriging based methods used a number of randomly selected
samples to construct a Kriging model, the accuracy of which depends on the information provided by the given samples. The
results lack of accuracy if few samples are used. Here we take a simple structure reliability problem as an example. The limit
state function reads:
gðxÞ ¼ 5þ 2x1 � x2 � x2
1; ð13Þ
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where x1 and x2 are both independent uniform distribution variables, x1 and x2 are characterized by an interval [�3,5] and
[1,6.5], respectively. For this explicit example, we generate few samples of x by the simple random sampling method and use
a Kriging model to substitute the limit state function gðxÞ ¼ 0. In Fig. 1, The blue line represents the limit state function
gðxÞ ¼ 0, the dashed red line represents the limit state byðxÞ ¼ 0 of the Kriging prediction. Fig. 1 clearly shows that for a sam-
ple x�, it is safe according to the actual limit state function gðxÞ ¼ 0 but fails by the model prediction byðxÞ ¼ 0.

On the contrary, if large numbers of samples are used to ensure the accuracy, then the limit state function evaluations will
increase to an expensive lever correspondingly. The proposed method of this paper will avoids these problems by introduc-
ing a sample choosing technique.

3.1. Probabilistic classification function

The Kriging prediction byðxÞ follows a Gaussian distribution:
byðxÞ � N½lbyðxÞ;rbyðxÞ�; ð14Þ
where the mean lbyðxÞ and the variance r2byðxÞ were defined in Eqs. (11) and (12), respectively.

Kriging method uses the mean lbGðxÞ as the response prediction. Because Kriging model can directly give the variance of

the prediction at any point, Picheny [27] and Dubourg [24] proposed the probabilistic classification function pðxÞ to substi-
tute the failure indictor function Ig60ðxÞ. In this paper, we employ the probabilistic classification function as a probabilistic
prediction to evaluate the uncertainty of input x. The probabilistic classification function is defined as
pðxÞ ¼ P½byðxÞ 6 0�: ð15Þ
The probabilistic classification function is similar to the original definition of the failure probability Pf , which reads:
Pf ¼ P½gðxÞ 6 0�: ð16Þ
Note that the probabilistic classification function pðxÞ is not Pf , and it shall not be confused with the solving of Pf . Here it is
simply the probability that the prediction byðxÞ at point x is negative.

Eq. (14) presents the Gaussian nature of the Kriging prediction, based on it, the probabilistic classification function by the
Kriging model can be expressed as follows [24]:
pðxÞ ¼ U
0� lbyðxÞ

rbyðxÞ
 !

; x R v; ð17Þ
where v ¼ fx1; . . . ; xmg is a set of experiment samples which were used to build the Kriging model, m denotes the number of
the experiment samples. As we know, the Kriging prediction has a zero variance at the point in the experimental samples v,
thus for the points in the experimental sample space, the probabilistic classification function is defined as
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Fig. 1. Comparison of the actual limit state function and the Kriging model.
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pðxÞ ¼
1 x 2 v; gðxÞ 6 0
0 x 2 v; gðxÞ > 0

�
: ð18Þ
Given the definition of the probabilistic classification function, we can classify the points in the design space in the prob-
abilistic point of view. Fig. 2 shows the three classification strategies on the limit state function given in Eq. (14). The green
line made by the circles represents the points which all satisfy pðxÞ ¼ 97:5%, and the cyan line made by the squares repre-
sents the points which all satisfy pðxÞ ¼ 2:5%. The three classification strategies are defined as: the region out of the green
line has pðxÞ > 97:5%, the region below the cyan line has pðxÞ < 2:5%, and the points located between the above two lines
have 2:5% < pðxÞ < 97:5%. In the next subsection, we will give the reason of the three classification strategies in details.
3.2. The most probable region

Combing the definition of the probabilistic classification function and the three classification strategies, we can see that
the points located in the region out of the green line which is indicated by ‘‘ f ’’ in Fig. 3 has P½byðxÞ 6 0� > 97:5%, and the
points located in the region below the cyan line which is indicated by ‘‘S’’ in Fig. 3 has P½byðxÞ > 0� > 97:5%, thus the current
Kriging model can make a certain prediction of the sign of the points in these two regions with a probability greater than
97.5%. Then we can approximately say the points located in both of the two region have a certain sign, which means the
points located in these regions absolutely fail or be safe, respectively.

What we concern is the region between the green and cyan lines. We are sure the sign of the points in ‘‘f ’’ and ‘‘S’’, they
fail or be safe with a confidence level greater than 97.5% as above presented, in other words, this means we are not really
exactly know the sign of the points located between the two regions. 2:5% < pðxÞ < 97:5% indicates a 95% confidence inter-
val of a uncertain region, so the green line and the cyan line are the 95% confidence margin. Similar to the meaning of the
MPP, here we define this region as the ‘‘probabilistic most probable region (P_MPR)’’, which means the uncertain region, and
we are not sure the sign of the points in it (see Fig. 3).

The most important part of the proposed method is to find the P_MPR. With the P_MPR available, we can make improve-
ment in building the Kriging model. So the next step is to choose some points in the P_MPR. From the large number of points
generated by the simple random sampling method, we choose some points that satisfy 2:5% < pðxÞ < 97:5% as the subse-
quent experiment points to update the model efficiently. Thus in this paper, from the viewpoint of probability, consequently,
more complex and nonlinear limit state surfaces can be modeled accurately by adding the experiment points in P_MPR, and
we can directly say that the more samples are located in the P_MPR, the more precise model we will get. Actually, by con-
centrating the experiment points in the important area for constructing a surrogate model, only a small number of actual
function evaluations are required to construct a high quality meta-model. It is both accurate for an arbitrarily shaped limit
state surface and computationally efficient for the expensive-to-evaluate response functions.

Note that there are not many points in the 95% confidence interval of the uncertain region, for the large number of
samples, the corresponding realization of probabilistic classification functions are close to zero or one mostly. And the more
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subsequent points are added to enrich the experiment points, the more accurate the surrogate will be, besides, the fewer
points there will be in the P_MPR. Analogously, we also can set pðxÞP 98% and pðxÞ 6 2% to define the certain region
‘‘f ’’ and ‘‘S’’, respectively, or other margins, and the number of points in P_MPR will change related with the margins. Here
we use the ‘‘uncertain point (ucp)’’ to denote these points located in the P_MPR, see Fig. 3. These ucp in P_MPR are all very
important, here we choose some points having large values of product of marginal PDFs among them to enrich the exper-
iment points, because they have larger contribution to the evaluation of pf than others.

3.3. Leave-one-out technique

The accuracy and efficiency of the reliability analysis mostly rely on the quality of the Kriging model, and in the above
subsections, we have found method of selecting points to enrich the experiment points, which are important to the model
accuracy. However, it is difficult to arbitrarily determine how many subsequent points should be added and how accurate
model we need, thus it is proposed here to adaptively refine the Kriging model. Consequently, a metric is needed to refine the
model as a stopping criterion.

The direct way to measure the quality of the Kriging model is comparing the predicted values byðxÞ and the real values gðxÞ
on some new points. However, in the early steps of the refinement procedure, the Kriging model is with low quality and the
prediction is not accurate to implement reliability analysis, so this direct way will cause many extra evaluations of the actual
limit state function in every refinement loop with unnecessary cost. As a result the efficiency of the proposed method may
not be notable and it would even be ineffective to waste such costly evaluations. Allen [28] proposed to use a leave-one-out
estimate of the mean squared error as the predicted residual sum of squares in a regression context
PRESS ¼ 1
m

Xm

i¼1

byvnxi
ðxiÞ � gðxiÞ

� �2
: ð19Þ
As we know, the relative error is more meaningful than the absolute error, and it avoids the effect of the dimension and
can better indicate the accuracy of the prediction. Thus, here we employ the leave-one-out technique with respect to the
relative error as a stopping criterion to refine the Kriging model, namely
RPRESS ¼ 1
m

Xm

i¼1

byvnxi
ðxiÞ � gðxiÞ
gðxiÞ

� �2

; ð20Þ
where byvnxi
ðxiÞ is the ith leave-one-out Kriging prediction of the limit state function constructed from the experiment points

without the ith sample xi.
The leave-one-out error is an important estimator of the performance of a learning algorithm. And it is a method which

does not require any extra evaluations of the limit state function and only uses the available observations in the experiment
design obtained to build the Kriging model. For different problems and different requirement, we can give an upper limit of
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the leave-one-out error, denoted e_given, to stop the refine strategy. In the first few steps, the surrogate model has a high
level of error, and generally, we can obtain a surrogate with an acceptable level of accuracy when e_given is set to 0.1.
4. Implementation of reliability analysis

In this section, we will make a complete summary of the implementation of the reliability analysis. In the above sections,
we have finished building a high quality Kriging model, thus we can use it next for reliability analysis directly. For an implicit
problem, such as the complicated expensive-to-evaluate FEM, it is a time-consuming progress for the direct use of sampling
method, however, for a given limit state model, we can use the MCS method for reliability analysis, it is efficient all the same
and the results generally can be made as reference. Thus the accuracy of the results mainly relies on the accuracy of the
model. In this paper we make use of the MCS method for subsequent reliability analysis, and the failure probability is eval-
uated by Eq. (3). Besides, enough samples will be used to make sure a convergent result.

The flowchart of the proposed method is given in Fig. 4. It can be simply divided into five steps. The method proceeds as
follows:

1. Sample N0 samples using the simple random sampling method and evaluate the corresponding limit state function. In the
initial step, we do not need too many points, so less than ten points are sampled. Note that one can also use the Latin
hypercube sampling method to generate the initial points, which has low discrepancy property.

2. Construct the Kriging model, compute the leave-one-out estimate of the mean squared error RPRESS and judge whether it
is smaller than the given e_given. If so, turn to step 5 directly.

3. Generate NR points (NR ¼ 3� 104 in this paper) by the simple random sampling method and compute the probabilistic
classification function correspondingly so as to determine the P_MPR and select the ucp.

4. Add Nucp ucp with large values of product of marginal PDFs to the experiment points and loop back to step 2. In this paper,
we aim at using the least points to accurately construct the surrogate, so we only choose 2 points to enrich the experi-
ment points in every loop.

5. Use the MCS method with N random points to implement reliability analysis.

5. Application examples

The proposed method in this paper mainly focuses on the engineering problems, including the implicit input–output
models. In this section, three engineering examples including two explicit problems and one implicit problem are used to
Fig. 4. Flowchart of the proposed method based on the Kriging model.
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demonstrate the efficiency and accuracy of the proposed method. Ncall denotes the number of the actual limit state function
evaluations. In the first two explicit examples, Ori-Kriging represents the traditional use of the Kriging method with exper-
imental samples generated by the simple random sampling method, and then combines MCS method to estimate the failure
probability. While in the last implicit example, Ori-Kriging represents the traditional use of the Kriging model constructed by
Latin hypercube sampling method. Adv-Kriging denotes the proposed method of this paper.

5.1. Automobile front axle

In the automobile engineering, the front axle beam is used to carry the weight of the front part of the vehicle [19]. As the
complete front part of the body rests on the body front axle beam, it must be robust in construction. Note that the I-beam
structures are widely used in the design of front axle due to its high bend strength and light weight. As shown in Fig. 5, the
dangerous cross-section happens in the I-beam part. The maximum normal stress and shear stress are r ¼ M=Wx and
s ¼ T=Wq respectively, where M and T are the bending moment and torque, Wx and Wq are section factor and polar section
factor which can be written as:
Table 1
Distribu

Rand

Mea
Stan
Wx ¼
aðh� 2tÞ3

6h
þ b

6h
½h3 � ðh� 2tÞ3�; ð21Þ

Wq ¼ 0:8bt2 þ 0:4
a3ðh� 2tÞ

t
: ð22Þ
To check the static strength of front axle, the performance function can be given as:
g ¼ rs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 3s2

p
; ð23Þ
where rs is the limit stress of yielding. According to the material property of the front axle, the limit stress of yielding rs is
460 Mpa. The geometry variables of I-beam a, b, t, h and the loads M and T are independent normal variables with distribu-
tion parameters listed in Table 1. Results of the failure probability are given in Table 2.

It can be seen from Table 2 that according to different number of the actual limit state function evaluations, the results of
all the other methods agree with the result of MCS very well. The Subsim method, which was proposed by Au [29], is an
efficient simulation method for the high dimensional rare events. Taking 106 evaluations of the actual limit state function,
a

b

t

h

Fig. 5. The schematic diagram of automobile front axle.

Table 2
Results of the reliability analysis for front axle.

Method Pf Ncall Error

MCS 0.0196 106 /
Subsim [29] 0.0202 6 � 104 3.1%
Ori-Kriging 0.0195 65 0.5%
Adv-Kriging 0.0199 13 1.5%

tion parameters of the input variables of front axle.

om variables a=mm b=mm t=mm h=mm M=ðN �mmÞ T=ðN mmÞ

n 12 65 14 85 3.5 � 106 3.1 � 106

dard deviation 0.060 0.325 0.070 0.425 1.75 � 105 1.55 � 105
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the coefficient of variation for the result obtained by MCS method is 0.0051 and it is convergent, thus the result can be made
as a reference. In order to get a convergent result, the traditional Kriging method and the proposed advanced method of this
paper both sample enough points to compute the failure probability after the Kriging model is built. We can see that Subsim
method takes 6 � 104 times evaluations and it is also expensive, the traditional Kriging method require 65 calls to get a close
result, and it has decreased the computational burden to a great extent. However our proposed method only needs 13 eval-
uations of the actual limit state function and it is efficient enough.

To demonstrate the efficiency of our proposed method, for different e_givens, different Ncall are required to obtain a right
result. Then for each of the Ncall, using the Ori-Kriging method to compute the failure probability, all the results are shown in
Fig. 6. The dashed green line is the convergent result of MCS method with 106 calls of the actual limit state function and is a
reference. We can see that our proposed method converges in a fast rate with a few actual function evaluations.

5.2. Roof truss

A roof truss is shown in Fig. 7, the top boom and the compression bars are reinforced by concrete, and the bottom boom
and the tension bars are steel. Assume the uniformly distributed load q is applied on the roof truss, and the uniformly dis-
tributed load can be transformed into the nodal load P ¼ ql=4. Taking the safety and applicability into account, the perpen-
dicular deflection DC of the peak of structure node C not exceeding 3.2 cm is taken as the constraint condition, the
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Fig. 6. The results of different Ncall for different e_givens of front axle.
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performance response function can be constructed by gðxÞ ¼ 0:032� DC , where DC is the function of the basic random vari-

ables, and DC ¼ ql2

2 ð3:81
AC EC
þ 1:13

ASES
Þ, AC , AS, EC , ES, l respectively are sectional area, elastic modulus, length of the concrete and steel

bars, the distribution parameters of these independent normal basic random variables are listed in Table 3. Results of the
failure probability are given in Table 4.

The coefficient of variation for the result obtained by MCS method is 0.0042 and the result can be a reference. We can see
from Table 4 that the results of Subsim method, Ori-Kriging method and our proposed Adv-Kriging method are all close to
the result of MCS. The Subsim method also takes 2 � 104 times of evaluations, and Ori-Kriging need 102 calls of the actual
function to get a close result, note that our proposed method is really an efficient method and only needs 26 evaluations of
the actual function to get an accurate result.

Given different e_givens, our proposed method can get different Ncall and the corresponding failure probability, for com-
parison, results of the Ori-Kriging method using the different Ncall are obtained and presented in Fig. 8. It can be seen from
Fig. 8 that the proposed method only needs a few samples to approximate the actual limit state surface very well and to get
an accuracy result efficiently.

5.3. A planar ten-bar structure

For better illustrating the engineering application of our proposed method, we introduce this planar ten-bar structure
[30] with an implicit input–output relationship, the schematic diagram of the structure is shown in Fig. 9. The length and
elastic modulus of all the horizontal and vertical bars are L and E respectively. The section area of each bar is
Aiði ¼ 1;2; . . . ;10Þ and Piði ¼ 1;2;3Þ are the point loads. The fifteen input variables, i.e., L, E, Aiði ¼ 1;2; . . . ;10Þ and
Piði ¼ 1;2;3Þ are all normally distributed, and the distribution parameters are shown in Table 5. Fig. 10 is the finite element
model of the structure constructed in Ansys 11.0. According to the analysis of the finite model, we assume the limit state
function to be g ¼ 0:0035� Dy, where Dy is the displacement of node 3 in vertical direction. Results of the failure probability
are given in Table 6.

It can be seen from Table 6 that the efficiency of our proposed method is more noticeable for an engineering problem with
an expensive-to-evaluate FEM. MCS method takes 3 � 105 evaluations of the FEM and the coefficient of variation of the result
Table 3
Distribution parameters of the input variables of roof truss.

Random variables qðN=mÞ lðmÞ ASðm2Þ ACðm2Þ ESðN=m2Þ ECðN=m2Þ

Mean 20000 12 9.82 � 10�4 0.04 1 � 1011 2 � 1010

Coefficient of variation 0.07 0.01 0.06 0.12 0.06 0.06

Table 4
Results of the reliability analysis for roof truss.

Method Pf Ncall Error

MCS 0.0546 106 /
Subsim [29] 0.0541 2 � 104 0.92%
Ori-Kriging 0.0545 102 0.18%
Adv-Kriging 0.0549 26 0.55%

0 20 40 60 80 1000

0.01

0.02

0.03

0.04

0.05

0.06

Adv-Kriging
Ori-Kriging
MCS

callN

fP

Fig. 8. The results of different Ncall for different e_givens of roof truss.
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Fig. 9. The schematic diagram of planar ten-bar structure.

Table 5
Distribution parameters of the input variables of ten-bar structure.

Random variables Aiðm2Þ LðmÞ EðGPaÞ P1ðkNÞ P2ðkNÞ P3ðkNÞ

Mean 0.001 1 100 80 10 10
Coefficient of variation 0.15 0.05 0.05 0.05 0.05 0.05

Fig. 10. The finite element model of the ten-bar structure.
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is 0.0069, thus it is a very time-consuming progress. The computational cost is also unaffordable for the Subsim method. The
RVM-C method, which was proposed by Zhou [17], is an advanced meta-model based method using the relevance vector
machine to approximate the actual limit state function to perform reliability analysis. We can see that our proposed method
and the RVM-C method are efficient equivalently, which demonstrates that our proposed method is an available efficient
method for implement reliability analysis on the complicated structures.

Since the Latin hypercube sampling method is also a commonly used sampling method and is used to sample the exper-
imental points to construct the meta-model [22]. In this example, the Ori-Kriging method uses the Latin hypercube sampling
method to generate the experimental points and then constructs the Kriging model. We can see from Table 6 that the Ori-
Kriging method obtains close result with 329 calls of the FEM, however our proposed method only needs 83 times of actual
function evaluations to get a reasonable result.



Table 6
Results of the reliability analysis for roof truss.

Method Pf Ncall Error

MCS 0.0678 3 � 105 /
Subsim [29] 0.0671 105 1.01%
Ori-Kriging 0.0683 329 0.74%
RVM-C [17] 0.0680 98 0.29%
Adv-Kriging 0.0672 83 0.88%
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Fig. 11. The results of different Ncall for different e_givens of ten bar.

792 L. Zhang et al. / Applied Mathematical Modelling 39 (2015) 781–793
Similarly, for different Ncall obtained on the condition of different e_givens, we compute the failure probability using the
Ori-Kriging method with the experimental points generated by Latin hypercube sampling method for comparison. We can
see from Fig. 11 that when the obtained Ncall is 83, the result of our proposed method gets a close result with MCS, and the
result has already converged to the MCS result from this Ncall. However, for these obtained Ncall, the result of the Ori-Kriging
method is not convergent until Ncall ¼ 329. Thus, our proposed advanced Kriging method is an available method for problems
with implicit input–output relationship.

6. Conclusions

Reliability analysis of the engineering problems is becoming increasingly complex, because the problems are often
involved in complex expensive-to-evaluate FEM. The approximate methods, such as FORM, rely on the accuracy of MPP,
and the computational cost of sampling methods to analyze the FEM is unacceptable. Note that the meta-model based meth-
ods, such as Kriging model, which can balance the contradictions occurred in the above methods. However, the traditional
use of Kriging cannot be efficient enough when facing the complex engineering problems, especially for those with implicit
limit state functions.

Thus this paper proposes an efficient reliability analysis method based on an advanced Kriging model. Starting from the
probabilistic point of view, we employ the probabilistic classification function to determine the highly uncertain region
P_MPR and points, namely ucp, among these ucp we select a few ones with large values of product of marginal PDFs to enrich
the experiment points. Besides, the leave-one-out technique is used to refine the Kriging model. Finally, MCS method is
employed to implement reliability analysis when the high quality Kriging model is available.

Both explicit and implicit engineering applications are introduced to demonstrate the accuracy and efficiency of our pro-
posed method. MCS and Subsim method have high accuracy but needs too many evaluations of the actual function, and the
traditional method using Kriging also requires many evaluations and it is not efficient enough. Thus the proposed method is
a good method to balance efficiency and accuracy and provides an available efficient method for reliability analysis.
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