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Wave propagation of an artery is a fluid–structure interaction problem. It is very compli-
cate. Therefore, the conventional theories for circulation of arteries are emphasized on fluid
behavior, some simplified models for experimental utility or the thin-walled tube theory.
Based on the geometry of an artery, the thick-walled tube theory is reasonable. In this
study, a new mathematical model is proposed to describe the wave propagation through
the isotropic elastic thick tube filled with viscous and incompressible fluid. Moreover,
the tube is supported by the elastic muscle and simulated as the viscoelastic foundation.
The radial, axial and flexural vibrations of a tube wall are introduced simultaneously. These
wave modes are generally called as the flexural, Young and Lamb modes. In the literatures
according to different assumptions, the Young and Lamb modes were independently
derived and independent to the wave frequency. Because these conventional models are
over simplified, the corresponding investigations are incomplete and inaccurate. Moreover,
the present thick-walled tube theory is compared with the thin-walled tube theory and
these conventional limiting theories. The dispersion curves and the energy transmissions
of the three modes are investigated. It is illustrate that the energy transmitted through
the artery tube is consistent to the experiment. Moreover, it is found that the effects of
the viscoelastic foundation constants on the wave speed and the transmission is signifi-
cant. When the foundation constant is large enough, some corresponding mode will
disappear.

� 2014 Published by Elsevier Inc.
1. Introduction

No matter animals or human beings, the blood circulation plays an important role in maintaining body working well.
Many scientists investigated the heart vascular system, and proposed several theories and models to explain the perfor-
mances of the blood circulation system. In general, the ratio of tube thickness to the tube radius of the artery of man or
dog is from 0.06 to 0.13 [1]. The thick-walled tube theory should be considered for simulating the behavior of the artery.
However, since the calculations appeared to be very laborious, the thin-walled tube theory was often introduced [2,3].
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Nomenclature

A surface area of the fluid element
cij elastic constants
Cr, Cx damping coefficients in the r- and x-directions, respectively
Cw wave speed
D diameter of the tube
E Young’s modulus
f friction factor of the tube wall
G shear modulus
h thickness of the tube wall
k wave number
Kr, Kx elastic foundation constants in the r- and x-directions, respectively
L tube length
Mij twisting moment perpendicular to i-plane along j-direction or perpendicular to j-plane along i-direction per unit

length
Mx bending moment perpendicular to x-plane along h-direction per unit length
Mh bending moment perpendicular to h-plane along x-direction per unit length
Nij shearing force perpendicular to i-plane along j-direction or perpendicular to j-plane along i-direction per unit

length
Nx normal force perpendicular to x-plane along h-direction per unit length
Nh normal force perpendicular to h-plane along x-direction per unit length
n̂ normal direction of surface
p liquid pressure at the wall
R average radius of tube
Re Reynold’s number
Ri inner radius of tube
Ro outer radius of tube
ret percentage of energy propagations through the tube
t time variable
ur, uh, ux total displacements in r-direction, in h-direction and in x-direction
u displacement in x-direction
w displacement in r-direction
~v the flow velocity
V volume of the fluid element

Greek symbols
b angle due to bending
cij shearing strain on i–j plane
e normal strain
g flow velocity distribution
t Poisson’s ratio
q density
r normal stress
sij shearing stress perpendicular to i-plane along j-direction
x wave frequency

Superscript, subscripts
– amplitude
max maximum quantity
r radial coordinate
h transverse coordinate
x axial coordinate
f fluid
s solid
0 static quantity due to pre-stressed
1 disturbed quantity due to wave propagation
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Since Harvey [4] introduced the concept of the blood circulation, scientists have developed several vital theories. Hales [5]
introduced the Winkessel model. The Winkessel model regards the whole arteries system as an elastic cavity. If the heart
contracts, the cavity expands. In contrast, if the heart expends, the cavity recovers to original volume. It is expressed as
the compliance–resistance model (C–R model). But the Windkessel model is only suitable for predicting pressure and vol-
ume of each contraction, and fails to evaluate flow velocity [6]. Assuming a steady and laminar flow and a rigid tube, the
Poiseuille’s equation explains the physical characteristics of the blood capillary [2]. Fishman and Richards [7] applied the
Poiseuille’s equation in their experiment. However, the Poiseuille’s equation neglects that the pressure wave propagation
in fluid creates an oscillation motion of the wall in a radial direction. Moens and Korteweg [1] developed a simple equation
called as the Moens–Korteweg equation to predict the pressure wave velocity in long straight thin tube filled with an inviscid
fluid. Because the effects of viscosity of fluid, inertial and shear and bending deformations of a tube are neglected, the

Moens–Korteweg equation can only derive the wave speed cw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh=½2ðR� h=2Þqf �

q
. Bergal [8] modified the Moens–

Korteweg equation for a thick-walled tube. It was found that the inclusion of wall thickness in the calculations increases
the wave speed by about 10% over that given by conventional Moens–Korteweg expression. The Klip model considers the
longitudinal wave propagation through the wall only and the effect of the tube flexural deformation is neglected. The wave

speed is cw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=½qf ð1� m2Þ�

q
[9].

Womersley [10] considered a thin walled tube and the linearized Navier–Stokes equations that the nonlinear convective
acceleration terms were neglected. Meanwhile, the radial vibration of tube wall was neglected. According to these assump-
tions, only the Young and Lamb modes were found. Moreover, the Young and Lamb modes represent the pressure wave
modes propagating in the fluid and in the wall, respectively. Note that neglecting the radial vibration of tube does not match
the real wave performance of artery. Tsangaris and Drikakis [11] used the shell theory and the Navier–Stokes equation to
simulate the pressure wave traveling in anisotropic elastic tube. The model neglected the effects of the radial vibration
and the moving boundary between the tube and the fluid. Demiray [6] considered the dynamic relation between the inner
pressure and the radial oscillation of a tube. But the effect of flexural deformation of a tube and the viscosity of fluid were
neglected. Then only the Young mode which represent pressure wave propagating in the fluid could be derived. Wang, et al.
[12,13] considered an artery system as a transmission system of the blood pressure wave. When the wave frequency of the
artery was consistent to the natural frequency of a tissue, the transmission efficiency was the best. This model is called as the
resonant model. However, this model was derived too roughly to investigate the effects of the pre-pressure, the flow velocity
and the flexural and axial vibrations. Lin et al. [2] investigated the wave modes of an elastic thin tube conveying blood. A new
mathematical theory was proposed to describe the wave propagation through the elastic tube filled with viscous and incom-
pressible fluid. The radial, axial and flexural vibrations of a tube wall are introduced simultaneously. In fact, the blood tube is
tethered to surrounding tissue. The supporting effect of surrounding tissue on the wave propagation in the blood tube is not
considered in the literature. The effect is not considered by Lin et al. [2]. Hodis and Zamir [14,15] investigated the effect of
surrounding tissue on the shear stress in the tube wall. The cases of fully tethered and free walls and the complex Young’s
modulus were considered. But the radial displacement was neglected and all properties were independent to the longitudi-
nal axis. So far, no literature studies the wave propagation in the thick-walled blood tube tethering to surrounding tissue.

In this paper, the mathematical theory for a thick-walled tube with the supporting effect of surrounding tissue on the
wave propagation in the blood tube is investigated.
2. Governing equation of motion

2.1. Motion of an elastic tube

Consider an artery as uniform isotropic elastic thick tube [2]. The blood flows in the tube. In general, the critical threshold
between laminar and turbulent flow is usually in the neighborhood of 2300. The mean average Reynold number in ascending
aorta of an adult man is about 1500. Thus the flow field is laminar [16]. When any pulse wave generates from the heart, the
energy is propagated via the blood and the tube. Meanwhile, there is the coupled motion of the tube and the blood. In order
to investigate the coupled motion, the dynamic behavior of the tube is simulated by using the thick shell theory, as shown in
Fig. 1. The blood flow field is simulated later. The assumptions about the tube are as follows:

a. The angle due to bending and the rotary inertia are considered.
b. The shear deformation in the x–r plane is considered.
c. The effect of tube bending is considered.
d. The plane cross section of a tube wall remains plane during deformation.
e. The axial symmetry is considered. The displacement uh ¼ 0 and the parameters are independent of the h-axis.

It is well known that due to rough simplification one can obtain only one mode of the system such as the Young mode [1]
and the Lame mode [9]. In the present model, three modes will be obtained simultaneously. These should be the lower and
fundamental modes dominating in the real system. So far, the relevant mechanism is not clearly investigated. It is expected
that if the nonlinear, anisotropic and non-axial symmetry effects are considered, the higher modes will be found. It is helpful



Fig. 1. Control volume of liquid flow in a circular cylinder.
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to more accurately understanding the performance of wave propagation of artery. However, the system becomes too com-
plicated to solve analytically so far. The relevant investigation will be made in future.

The equilibrium equations of motion in the thick-walled tube theory are [13]
1
R

c11Rh
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h3

12
@2b
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@w
@x

" #
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where the relevant derivation is presented in Appendix. The coefficients are
I0 ¼ qsh; I1 ¼
qsh

3

12R
; I2 ¼

qsh
3

12
: ð4Þ
Considering the tube wall is tethered, the viscoelastic foundation constants K and C are given.

2.2. Coupled motion of fluid and tube

2.2.1. Conservations of momentum and mass
When a wave propagates through a tube, the flow field in the tube is assumed to be well developed. In addition, no slip

condition at the wall should be considered. This condition is not considered by Lin et al. [2]. Therefore, the modified velocity
distribution is expressed as
g ¼ @

@t
uðx; tÞ � h

2
bðx; tÞ

� �
þ gmaxðx; tÞ 1� r

Ri þw

� �2
" #

: ð5Þ
The average shear stress at the wall is
sw ¼ l
@

@r
gþ 1

2
@g
@z

dz
� �

wall
: ð6aÞ
Considering w << R, one can obtain
swðx; tÞ � 2lgmax=Ri: ð6bÞ
It is well known that the conservation of linear momentum for liquid is, as shown in Fig. 1.
Fb þ Fs ¼
@

@t

Z
c:v :
~mqf dv þ

Z
c:s:

~mqf~m � n̂dA; ð7Þ
where the body force Fb is negligible here. The surface force is
Fs ¼ � pþ @p
@x

dx
� �

� p Ri þwþ @w
@x

dx
� �2

þ ppðRþwÞ2 � sw � 2pRi � dx: ð8Þ
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Substituting the shear stress (6b) at the wall into Eq. (7) and considering a small amplitude, i.e., w << R, the momentum
equation can be written as
�2pRi
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Meanwhile, if the amplitude of wave is small, the mass conservative equation can be expressed as
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A new mathematical model simulating the wave propagation through an elastic thick-walled tube conveying a liquid has
been derived here. These coupled equations of wave propagation model are composed of Eqs. (1)–(3) and (9) and (10).

3. Solution method

3.1. Relation between pressure and flow velocity

Consider that there exists a pre-stressed pressure and a flow rate in the tube. When a wave propagates through a tube
conveying a liquid, the pressure and the velocity can be assumed to be
pðx; tÞ ¼ p0ðxÞ þ p1ðz; tÞ; gmaxðx; tÞ ¼ g0ðxÞ þ g1ðx; tÞ; ð11Þ
where p0,z is the pre-stressed steady pressure at the position of z, p1 the disturbed wave pressure, gmax0
the average maxi-

mum flow velocity corresponding the given flow rate, and gmax1
the disturbed wave flow velocity.

In general, a steady pressure loss Dp through a tube is determined by using the Darcy–Weisbach equation as follows:
Dp ¼ f
L
D

qf g2
a

2
; ð12Þ
where ga is the average flow velocity which is determined via Eq. (5) and ga ¼ gmax0
=2. L is the tube length, D is the diam-

eter of the tube, and f is the friction factor. In this study, because the flow is laminar, the friction factor f ¼ 64=Re. Substi-
tuting it back into Eq. (12), the pressure gradient is
dp0

dx
¼ �4lg0

R2
i

: ð13Þ
3.2. Small propagation and linearization of general system

In general, because the elastic wave propagation is small, the disturbed wave pressure and velocity {p1,gmax1} are small.
Substituting Eqs. (11) and (13) back into the coupled non-linear governing equations (1)–(3), (9) and (10) and considering
the condition of small wave propagation, the coupled governing equations are linearized as follows:
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6
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þ 2g0
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þ Ri
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þ 2
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dx
w

� �
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It is found that if the axial elastic foundation constant Kx is infinite, i.e., cx1 ¼ 1, the axial displacement is zero i.e., u ¼ 0. If
the radial elastic foundation constant Kr is infinite, i.e., cr1 ¼ 1, the radial displacement is zero i.e., w ¼ 0. Moreover, if the
elastic foundation constants Kx and Kr are infinite, the wall is fully tethered. If the elastic foundation constants Kx and Kr

are zero, the wall is completely free from tethering. If the elastic foundation constants Kx and Kr are finite, the wall is par-
tially tethered. Therefore, the degree of tethering can be clearly described by using the elastic foundation constants. Further,
the effects of the elastic foundation constants on the wave speed and energy propagation are investigated later.

3.3. Characteristic equation

The wave solutions of Eqs. (14)–(18) can be expressed as
gmax ¼ g0 þ g1 ¼ g0ðxÞ þ �g1eiðkx�xtÞ; p ¼ p0 þ p1 ¼ p0ðxÞ þ �p1eiðkx�xtÞ; u ¼ u0 þ u1 ¼ u0ðxÞ þ �u1eiðkx�xtÞ;

w ¼ w0 þw1 ¼ w0ðxÞ þ �w1eiðkx�xtÞ; b ¼ b0 þ b1 ¼ b0ðxÞ þ �b1eiðkx�xtÞ: ð19Þ
Substituting Eq. (19) into Eqs. (14)–(18), the general system is divided into two subsystems as following:
(a) Dynamic subsystem is composed of five following equations:
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where
c1 ¼ �
c11h3k2

12R
þ I1x2; c2 ¼ �GhðikÞ; and c3 ¼ �
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12
� Ghþ I2x2: ð24bÞ
(b) Static subsystem is composed of three following equations:
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Note that Eqs. (25)–(29) are the relations among the static displacements, fu0;w0; b0g, the pre-pressure p0 and flow velocity
g0. Obviously, if the small deformation of tube is considered, Eq. (28) becomes to be the same as Eq. (13).

In the dynamic subsystem, Eqs. (22)-(24) can be expressed as
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As a result, the dispersion equation of this dynamic system is obtained
�a1 �a2 �a3

�b1
�b2

�b3

c1 c2 c3

�������
������� ¼ 0: ð31Þ
4. Energy propagation

It is well known that the wave energy is stored in both the tube and the liquid. Milnor [1] found by experiment that for an
in situ artery, over 90% of the energy is stored in the arterial wall and less than 10% is stored in the blood flow. However, the
mechanism about the wave energy propagation has not been completely and clearly investigated yet. In this study, the
energy transmission via different mode is investigated.

The energy propagation stored in the liquid is a product of the pressure p and the flow velocity g and expressed as
following:
El ¼
Z

A
hpðtÞ;gðtÞidA; ð32Þ
where the average energy rate is hpðtÞ;gðtÞi ¼
R T

0 ReðpÞReðgÞdt=T . The energy in the tube is composed of the normal strain
energy and the shear strain energy and is written as
Et ¼
Z

A
hrx; @ux=@tidAþ

Z
A
hsrx; @ur=@tidA; ð33Þ
where the average normal strain energy is hrx; @ux=@ti ¼
R T

0 ReðrxÞRe½@ux=@t�dt=T and the average shear strain energy is
hsrx; @ur=@ti ¼

R T
0 ReðsrxÞRe½@ur=@t�dt=T. Substituting the pressure and the flow velocity of a wave mode into Eq. (32) and

the stresses and the displacements of a wave mode into Eq. (33), the corresponding energy propagations stored in the blood
liquid and the tube can be obtained.

5. Numerical results

Given a wave frequency x, one can easily find four sets of conjugated complex wave numbers of Eq. (31),
knðxÞ ¼ kr;nðxÞ � iki;nðxÞ;n ¼ 1;2;3;4. Each set of conjugated roots represent both a forward wave and a backward wave,
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respectively. If ki,n is positive, the wave amplitude decays with a forward wave. But if ki,n is negative, the wave amplitude
increases with a forward wave. This solution is trivial. Based on these facts, one can obtain the dispersion curves of several
wave modes. In this study, the wave propagation through both the blood and the artery are considered. One finds that three
sets of conjugated roots are reasonable, but one is trivial. Each reasonable solution represents one wave mode. In summary,
the wave energy is propagated in terms of three kinds of wave modes shown in Fig. 2.

Fig. 2 shows the influence of the wave frequency on the three mode shapes. Firstly, it is observed that the first mode is
dominated by a radial displacement of a tube wall. The deformation of tube does not depend on the wave frequency. How-
ever, the influence of the wave frequency on the fluid velocity is significant. When the wave frequency is small, the fluid
velocity is very small. It implies that when the wave frequency is small, the majority of the wave energy must be propagated
through the tube in the bending motion. However, increasing the wave frequency significantly increases the fluid velocity. It
means that when the wave frequency is large, the majority of the wave energy is propagated through both the tube in the
bending motion and the fluid.

Secondly, the second mode is usually called as the Young mode. It is an axial motion of a tube accompanying small radial
and bending motions of a tube and relatively very large amplitude of fluid velocity. Therefore, the majority of the wave
energy must be propagated through fluid in the pressure wave motion. Finally, the third mode is usually called as the Lamb
mode. It is a large axial motion of a tube accompanying the negligible radial and bending motions of a tube. The influence of
the wave frequency on the fluid velocity is significant. When the wave frequency is small, the ratio of the fluid velocity and
the axial motion is very small. Therefore, the majority of the wave energy must be propagated through the tube in the axial
motion. It is consistent to the traditional phenomenon of the Lamb mode. When the wave frequency is large enough, the
ratio of the fluid velocity and the axial motion becomes significant. In other words, the majority of the wave energy is prop-
agated through both the tube in the axial motion and the fluid. The physical and material properties in Fig. 2 are considered
later.

Moreover, several methods are used to investigate the dispersion curves of the Young mode. Fig. 3a shows that the
numerical results by using the present thick-walled tube theory and the thin-walled tube theory [2] are compared with
those by Womersley [10], Wang et al. [12], Cox [17] and Mirsky [18]. It is found that the wave speed determined by Wang
et al. [12] is overestimated and that by Cox [17] is underestimated. In this case the ratio of the tube thickness to the tube
radius h/R is 0.13. The numerical results by using the present thick-walled tube theory and the thin-walled tube theory
[2] are almost consistent. Further, Fig. 3b shows the relation between the transmission per wavelength and the wave fre-
quency of the second or Young mode without the elastic foundation. It is observed that the transmission per wavelength
increases with the wave frequency. If the wave frequency is large enough, the transmission per wavelength approaches con-
stant. Moreover, it is found that the transmission determined by Wang et al. [12] is over estimated. The numerical results by
using the present thick-walled tube theory and the thin-walled tube theory [2] are almost consistent.

Fig. 4 show the comparison of the thin-walled tube theory [2] and the present thick-walled tube theory with different
ratio h/R. It is found that the effect of the ratio h/R on the relation between the wave speed and the wave frequency is great.
Moreover, the larger the ratio h/R is, the more the difference between the wave speed in the present thick-walled tube theory
Fig. 2. Influence of wave frequency x on the three kinds of mode shapes. [cr1 ¼ cx1 ¼ 0, m = 0.5, E = 1.6 MPa, Ro = 0.13 cm, h = 0.039 cm, qs = 1100 kg/m3,
qf = 1056 kg/m3, l = 3.5 � 10�3 N � s/m2, p0 = 7466 Pa].



Fig. 3. Comparison of wave speeds and dispersion curves of the second mode in different models. [cr1 ¼ cx1 ¼ 0, m = 0.5, E = 3 MPa, Ro = 0.23 cm, h = 0.03 cm,
qt = 1100 kg/m3, qf = 1056 kg/m3, l = 3.5 � 10�3 N � s/m2, p0 = 10 kPa].

474 S.-M. Lin et al. / Applied Mathematical Modelling 39 (2015) 466–482
and that in the thin-walled tube theory for the first and second modes but not for the third mode. The reason can be found
from the mode shapes shown in Fig. 2 that the first and second modes include both the flexural and shear deformations. But
for the third mode the axial motion dominates.

Based on the relations (32) and (33), one can determine the quantities of energy transmission through the tube and the
liquid or blood. As shown in Fig. 5, the effect of the ratio h/R on the relation between the energy transmission through the
tube and the wave frequency is significant. Increasing the ratio h/R increases the energy transmission through the tube for
the second mode. It is because the flexural motion dominates for the second mode. In other hand, increasing the ratio h/R
decreases the energy transmission through the tube for the third mode. It is because the axial motion dominates for the third
mode. Moreover, the larger the ratio h/R is, the more the difference between the energy transmission through the tube in the
present thick-walled tube theory and that in the thin-walled tube theory for all the modes. It is also observed that about
Fig. 4. Relation among the ratios h/R0, the wave frequency x and the wave speed cw. [cr1 ¼ cx1 ¼ 0, m = 0.5, E = 1.6 MPa, Ro = 0.13 cm, qs = 1100 kg/m3,
qf = 1056 kg/m3, l = 3.5 � 10�3 N � s/m2, p0 = 7466 Pa].
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99.8% and 95% of the energies of the first and third modes are transmitted through the tube. As to the second mode, if the
wave frequency is large enough, only about 50% of the energy is transmitted through the tube. The detailed reasons are
expressed as follows:

It has been found in Fig. 2 that the first mode is a wall flexural motion accompanying with a large fluid velocity. Because
both the bending rigidity and the flexural deformation of a tube wall are large, almost all the wave energy is transmitted
through the tube. The third mode is with a axial motion of a tube accompanying with a negligible radial motion and a large
flow velocity. Therefore, majority of the wave energy is also transmitted through the tube. However, the second mode is a
large axial motion of a tube accompanying with small radial motion and very large flow velocity. It is well known that the
flexural and axial motions of tube are neglected in the conventional Moens–Korteweg model for determining the Young
Fig. 5. Relation among the ratio h/R0, the percentage of the energy transmission through the tube ret and the wave frequency x. [m = 0.5, E = 1.6 MPa,
Ro = 0.13 cm, qs = 1100 kg/m3, qf = 1056 kg/m3, l = 3.5 � 10�3 N � s/m2, p0 = 7466 Pa, cr1 = cx1 = 0].

Fig. 6. Influence of the axial elastic foundation constant cx1 on the transmission per wave length e�kik for different modes [cr1 = 0, m = 0.5, E = 3 MPa,
Ro = 0.23 cm, h = 0.03 cm, qz = 1100 kg/m3, qf = 1056 kg/m3, l = 3.5 � 10�3 N � s/m2, p0 = 10 kPa].
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mode. According to this simplification, it is usually concluded that the Young mode represents the pressure wave propaga-
tion in the fluid and all the energy is transmitted through the liquid. It is not reasonable. In this study, Fig. 5 shows that about
50% of the wave energy is transmitted through the tube.

Further, the effects of the elastic foundations on the mode shapes, the wave speed and the energy propagation are inves-
tigated here.

Fig. 6 shows that if there is no the axial elastic foundation, i.e., cx1 ¼ 0, the transmissions per wave length of the first and
second mode are smallest and largest, respectively. The effect of the axial elastic foundation constant cx1 on the transmis-
sions of the first mode is negligible. However, if cx1 P 0:51, increasing the constant cx1 decreases significantly the transmis-
sion for the third mode. Moreover, the third transmission approaches to zero. In other word, the third mode disappears due
to the increasing of the elastic foundation constant cx1. Further, Fig. 7 demonstrates that if there is no the axial elastic foun-
dation, i.e., cx1 ¼ 0, the energy transmission through the tube for the first, second and third modes are about 100%, 24% and
Fig. 7. Influence of the axial elastic foundation constant cx1 on the percentage of energy propagations through the tube ret for different modes with the same
parameters as those given in Fig. 5.

Fig. 8. Influence of the axial elastic foundation constant cx1 on wave speeds cw for different modes with the same parameters as those given in Fig. 5.
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96%, respectively. The effect of the elastic foundation constant on the energy transmission ratio of the first mode is negligible.
However, if 0:15 < cx1 < 0:4, the effect of the elastic foundation constant on the energy transmission ratio of the second and
third modes is significant. Moreover, Fig. 8 shows that increasing the constant cx1 increases obviously the wave speed for the
third mode. It is because the axial rigidity is increased.

Fig. 9 shows that if the radial elastic foundation constant cr1 < 0:5, the effect of the constant on the transmission per wave
length of the three modes is negligible. When 0:5 < cr1 < 0:63, the effect of the constant cr1 on the three transmissions
becomes significant. Increasing the constant cr1, the first transmission is abruptly decreased. if cr1 P 0:63, the first
transmission approaches to zero. In other word, the first mode disappears. It is because for the first mode the radial displace-
ment dominates. The radial displacement decreases with the radial foundation constant cr1. When 0:5 < cr1 < 0:63, the
Fig. 9. Influence of the radial elastic foundation constant cr1 on the transmission per wave length e�kik for different modes [cx1 = 0, m = 0.5, E = 3 MPa,
Ro = 0.23 cm, h = 0.03 cm, qs = 1100 kg/m3, qf = 1056 kg/m3, l = 3.5 � 10�3 N � s/m2, p0 = 10 kPa].

Fig. 10. Influence of the radial elastic foundation constant cr1 on the percentage of energy propagations through the tube ret for different modes with the
same parameters as those given in Fig. 8.
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transmission of the second modes decreases significantly with the constant cr1. Further, when cr1 P 0:63, the transmission
for the second mode is almost constant. The reverse phenomenon happens for the third mode. Further, Fig. 10 demonstrates
that if there is no the radial elastic foundation, i.e., cr1 ¼ 0, the energy transmission through the tube for the first, second and
third modes are about 100%, 24% and 96%, respectively. If 0:5 < cr1 < 0:63, the effect of the elastic foundation constant on the
energy transmission ratio of the second and third modes is significant. The energy transmission ratio through the tube for the
third mode will greatly decrease to zero at cr1 ¼ 0:63. However, if cr1 > 0:63 the energy transmission ratio of the second
mode becomes from about 24% to 100%. Moreover, Fig. 11 shows that the constant cr1 is increased over the critical value
of 0.63, the wave speed for the third mode is increased significantly. It is because the radial rigidity is increased.

It is found in Fig. 6 that if the axial elastic foundation is infinite, i.e., cx1 ¼ 1, the axial displacement u is zero and the third
mode disappears. There is no radial elastic foundation i.e., cr1 ¼ 0 in Figs. 6–8. Further, one investigates the effect of the
Fig. 11. Influence of the radial elastic foundation constant cr1 on wave speeds cw for different modes with the same parameters as those given in Fig. 8.

Fig. 12. Influence of the radial elastic foundation constant cr1 on the transmission per wave length e�kik for different modes [cx1 = 1, m = 0.5, E = 3 MPa,
Ro = 0.23 cm, h = 0.03 cm, qs = 1100 kg/m3, qf = 1056 kg/m3, l = 3.5 � 10�3 N � s/m2, p0 = 10 kPa].
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radial elastic foundation constant on the wave propagation under cx1 ¼ 1. Fig. 12 shows that the effect of the constant on the
transmission per wave length of the second mode is negligible. It is different to that in Fig. 9 without the axial elastic foun-
dation, i.e., cx1 ¼ 0. Moreover, if the radial elastic foundation constant cr1 < 0:5, the effect of the constant on the transmission
per wave length of the two modes is negligible. But when 0:5 < cr1 < 0:63, increasing the constant cr1 the first transmission
is abruptly decreased and approaches to zero at cr1 P 0:63. In other word, the first mode disappears. Further, Fig. 13 dem-
onstrates that if cx1 ¼ 1, the effect of the radial elastic foundation constant cr1 on the energy transmission ratio of the first
two modes is negligible. Moreover, Fig. 14 shows that the constant cr1 is increased over the critical value of 0.6, the wave
speed for the second mode is increased significantly. It is because the radial rigidity is increased.

Fig. 15 demonstrates the effect of the longitudinal and radial damping constants {Cx, Cr} on the waves speed. It is found
that the larger the longitudinal damping constant Cx is, the lower the waves speed of mode 3 is. However, its effect on those
of modes 1 and 2 is negligible. It is because the longitudinal displacement of tube dominates in mode 3. Moreover, the effect
Fig. 13. Influence of the radial elastic foundation constant cr1 on the percentage of energy propagations through the tube ret for different modes with the
same parameters as those given in Fig. 11.

Fig. 14. Influence of the radial elastic foundation constant cr1 on the wave speeds cw for different modes with the same parameters as those given in Fig. 11.



Fig. 15. Influence of the longitudinal and radial damping constants {Cx,Cr} on the wave speeds cw for different modes with the same parameters as those
given in Fig. 11.

Fig. 16. Influence of the longitudinal and radial damping constants {Cx,Cr} on the transmission per wave length e�kik for different modes with the same
parameters as those given in Fig. 11.
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of the radial damping constant Cr on the wave speeds of the three modes is negligible. Further, Fig. 16 demonstrates the
effect of the longitudinal and radial damping constants {Cx, Cr} on transmission. It is found that the larger the longitudinal
damping constant Cx is, the lower the transmission of mode 3 is. However, its effect on those of modes 1 and 2 is negligible.
Moreover, the effect of the radial damping constant Cr on the transmissions of the three modes is negligible.
6. Conclusion

This paper presents a new model for simulation of wave propagation in an elastic thick tube conveying blood. The ana-
lytical solution for the system is derived. By using this new theory, the flexural, Young and Lamb modes can be obtained
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simultaneously. If the wave frequency is large enough, about {99.8%, 50%, 95%} of the energies of the first, second and third
modes are transmitted through the tube. Moreover, the transmissions per wavelength of the three modes are about {0.1%,
20%, 85%}, respectively. Based the fact of transmission, the first wave mode will firstly disappear in short time. Secondly the
second mode will disappear. Finally the third mode dominates. About 95% of the energy of the third mode through the artery
tube is easily discovered. This conclusion is consistent to the experiment given by Milnor [1]. The larger the ratio h/R is, the
more the difference between the wave speed in the present thick-walled tube theory and that in the thin-walled tube theory
for the first and second modes but not for the third mode. Moreover, the effect of the viscoelastic foundation constants
fcx1; cr1;Cxg on the wave speed, the energy transmission through the tube ret and the transmission per wavelength e�kik is
significant. The main phenomena are revealed:

(1) When 0:5 < cr1 < 0:63, increasing the constant cr1 the first transmission per unit wave length is abruptly decreased
greatly. When the constant cr1 is increased to the critical value of 0.63, the flexural motion of artery tube (1st mode)
disappears.

(2) When 0:3 < cx1 < 0:51, increasing the constant cx1 the third transmission per unit wave length is abruptly decreased
greatly. When the constant cx1 is increased to the critical value of 0.51, the longitudinal motion of artery tube (3rd
mode) disappears.

(3) If the elastic foundation constants are infinite, i.e., cr1 ¼ cx1 ¼ 1, the tube wall is fully tethered. Moreover, the first and
third modes disappear.

(4) The lower the waves speed and transmission of mode 3 are, the larger the longitudinal damping constant Cx.

Because the flexural and longitudinal motions of artery tube are actually allowed, the dimensionless foundation constants
fcr1; cx1g should be less than f0:5;0:3g, respectively. However, it is helpful for understanding the overall effect of foundation
on the wave propagation of the piping system supported by any foundation.
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Appendix A. Relations among forces, moments, strain and curvatures of the thick-walled model

The displacement fields are as following:
ux ¼ uðx; tÞ þ ðr � RÞbðx; tÞ; uh ¼ 0; ur ¼ wðx; tÞ: ðA1Þ
It should be noted that the angle due to bending b is an independent variable. However, for the thin-walled model
b ¼ @w=@x. Moreover, the rotary inertia and the shear deformation are not considered. The corresponding strains are
[19]
ex ¼
@u
@x
þ ðr � RÞ @b

@x
; er ¼ 0; eh ¼

w
r
; cxh ¼ 0; crh ¼ 0; cxr ¼

@w
@x

: ðA2Þ
The first subscript indicates the face. The second one indicates the direction. The corresponding stresses can be determined
via the Hook’s law as following:
rx
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sxh

srh

sxr

2
666666664

3
777777775
¼

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 ðc11 � c12Þ=2 0 0
0 0 0 0 ðc11 � c12Þ=2 0
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777777775

ex

eh

er

cxh
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cxr

2
666666664

3
777777775
; ðA3Þ
where c11 ¼ Eð1�mÞ
ð1�2mÞð1þmÞ, c12 ¼ Em

ð1�2mÞð1þmÞ and ðc11 � c12Þ=2 ¼ E
2ð1þmÞ ¼ G. Moreover, the relations among the forces, the

moments, the strain and the curvatures are [16]
ðNx;Q x;NxhÞ ¼
Z Ro

Ri

ðrx; sxr; shxÞ
r
R

dr; ðNh;Nhx;Q hÞ ¼
Z Ro

Ri

ðrh; shx; shrÞdr; ðMx;Mxr;MxhÞ

¼
Z Ro

Ri

ðrx; sxr; sxhÞ
r
R
ðr � RÞdr; Mh ¼

Z Ro

Ri

rhzdz: ðA4Þ
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