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a b s t r a c t

The accuracy of the first-principle models describing the evolution of gas dynamics in pipe-
lines is sometimes limited by the lack of understanding of the gas transport phenomena. In
this paper, a stochastic filtering approach is proposed based on a sequential Monte Carlo
method to provide real-time estimates of the state in gas pipelines. After constructing a
state-space model of the compressible single-phase flow based on the laws of conservation
of mass and momentum, the optimal sequential importance resampling filter (SIR) is
implemented. The state variables are updated with simulated measurements. The two-step
Lax–Wendroff method is used for the discretization of the partial differential equations
describing the gas model in both space and time to obtain finite-dimensional discrete-time
state-space representations. The system states are then combined into an augmented state
vector. The resulting nonlinear state-space model is used for the design of the particle filter
that provides real-time estimations of the system states. Simulation results for a coupled
PDE system describing an unsteady isothermal gas flow demonstrate the effectiveness of
the proposed method. A sensitivity analysis is conducted to examine the performance of
the filter for different model and observation error covariances and observation intervals.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Mathematical modeling of compressible unsteady natural gas flows is important in the design of compressors and heat
exchangers, orifice plates and sonic nozzle metering, conversion of gas volumes to the reference state, estimation of the line-
pack [1], hydrate prevention [2,3] and leak detection [4,5]. Issa and Spalding [6], Deen and Reintsema [7] and Thorley and
Tiley [8] developed the basic equations for a one-dimensional, unsteady, compressible single-phase flow, including the
effects of wall friction and heat transfer. These models aim to predict accurately, the measurable quantities of pressure, tem-
perature and mass flow in the pipeline. The uncertainties related to the model parameters, initial and boundary conditions
cause model errors that can propagate in time. The model noise represents for example, diameter or roughness changes, fluc-
tuations in gas composition, unknown ambient temperature changes, changes in soil moisture properties for buried pipe-
lines, liquid dropout in a wet gas and so on. As a result, the final predictions can significantly differ from the reality. For
this reason, a suitable approach of simulating gas dynamics in pipelines is to consider them as realizations of a stochastic
process and find the most probable one or even the full probability distribution of the state. The availability of SCADA (Super-
visory Control and Data Acquisition) measurements provides important but noisy information of the true system state.
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Nomenclature

Roman symbols
A cross-sectional area
as wave speed
C vector with source terms
cp specific heat at constant pressure
d pipe diameter
e measurement noise vector
F flux vector
f(�) generic nonlinear function
Ff frictional force per unit length and time
g gravitational acceleration
h(�) generic nonlinear function
L pipeline length
_m mass flow rate

Ncell number of measurement nodes
Nk number of measurement time steps
Np ensemble size
N̂eff number of effective particles
p probability density (mass) function
P pressure
q rate of heat transfer per unit length and unit time
Q process noise covariance matrix
R measurement noise covariance matrix
Rs s constant
t time
T temperature
tf total simulation time
tobs observation time
u system input vector
v velocity
w process noise vector
W vector of independent variables
x spatial coordinate, state vector
x̂ filtered estimate
y measurement vector
z compressibility factor

Greek symbols
d Dirac delta function
h inclination angle of pipe
k friction factor
q density
X spatial–temporal domain
x importance weight
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Within in this framework, Bayesian filters [9,10] try to combine simulation and measurements to improve the accuracy and
quantify uncertainties.

In case the stochastic, dynamical system is linear with additive Gaussian noises, the optimal solution of the estimator is
found by minimizing the mean square error [11]. In this situation, the Kalman filter [12] provides the optimal solution of the
filtering problem. Vianna et al. [13] applied the Kalman filter for the estimation of the temperature field in a deep sea pipe-
line carrying a homogeneous, isotropic fluid with constant thermal properties. The authors used simulated measurement
data to estimate accurately the temperature of an oil–gas–water three-phase mixture in the pipeline with the aim to formu-
late preventive actions regarding hydrate formation. Ozawa and Sanada [14] and Sanada [15] used the Kalman filter to
estimate the incompressible unsteady flow in an oil-hydraulic circuit. The Kalman filter is an effective tool for estimation
but it is limited to linear models with additive Gaussian noises. Most real world systems are nonlinear, therefore several
modifications of the Kalman filter have been developed, e.g., extended Kalman filter (EKF) [16] and the unscented Kalman
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filter [11,17,18]. When the state functions are highly non-linear and the posterior density is non-Gaussian, the use of con-
ventional filters, such as the EKF, may not provide satisfactory results [19].

One of the most successful approximation techniques in the Bayesian filtering domain is the sequential Monte Carlo
(SMC) or particle filtering (PF). These techniques are a kind of recursive Bayesian filter based on particle representations
of probability densities and can be applied to any state-space model. They generalize the traditional Kalman filtering meth-
ods and are not restricted by the assumption of linearity or Gaussian noise. SMC techniques approximate the probability
density function (pdf) of the state variables by a set of random samples or particles with associated weights in order to
determine the estimates based on these samples and weights. The particle set is updated and propagated by a process called
sequential importance sampling (SIS). However, a common problem with the recursive algorithm such as the particle filter is
the particle degeneracy where after several iterations the whole probability mass is focused on a few particles, whereas all
the remaining particles have negligible weights. Gorden et al. [20] solved this problem by adding an extra step called
resampling. This frequently used particle-filtering algorithm is known as sampling importance resampling (SIR).

In this paper, the PF-SIR filter is applied to a coupled PDE system describing a one-dimensional, unsteady, compressible
gas flow. The objective is to estimate the gas pressure in a pipeline under transient conditions. The gas flow model is solved
by the two-step Lax–Wendroff method [21]. A sensitivity analysis is conducted to examine the performance of the PF-SIR
filter by using different observation and model error covariances and measurement intervals.

2. Materials and methods

2.1. Unsteady flow model in pipelines

A single-phase flow is described by coupled first-order hyperbolic partial differential equations derived from the conser-
vation laws of mass, energy and momentum. These equations can be written as follows [8]:
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The convective acceleration terms, v ½@v=@x�; v ½@P=@x� and the slope term are very small compared to the other terms and
therefore can be neglected [22]. Kiuchi [23] ignored the convective terms due to the assumption of low flow velocity com-
pared to the wave speed and states that this assumption is reasonable to most of the operation conditions in natural gas
pipelines, while referring to the work of Guy [24] and Osiadacz [25]. However, Abbaspour and Chapman [26] showed that
during rapid transients with increasing mass flow rate, the gas velocity increases and therefore, the convective inertia
becomes more significant.

When analyzing the thermodynamics of gas flows, two extreme cases can be considered, namely isothermal flow and adi-
abatic flow. Isothermal flow is associated with slow transients and assumes that the gas has sufficient time to reach thermal
equilibrium with its surroundings. It suggests an infinite heat capacity of the surroundings with constant temperature. Adi-
abatic flow is associated with fast dynamic changes without heat transfer between the gas and pipeline surroundings. Fast
dynamic changes in the gas are important in situations of large fluctuations in demand or sudden rapid transients due to
equipment failure or rapid closure of shut-off valves. In this situation, the slow effects of heat conduction between the
gas pipeline and surroundings can be ignored. When friction effects are negligible, the flow can be considered as isentropic.
In reality, heat transfer takes place and as a result there is no thermal equilibrium between the gas and its surroundings. In
this situation, the conservation of energy must be included in the analysis. This results in a non-isothermal pipeline model,
Eqs. (1)–(3) that includes the heat transfer term q accounting for the amount of heat exchange between the gas and its sur-
roundings. The temperature change of the gas is a result of convective and conductive heat transfer, heat accumulation and
Joule–Thomson effect. In case of buried pipelines, the difficulty is to define the soil temperature and properties such as heat
capacity, thermal conductivity and diffusivity because they change over time as it alternately wets and dries. These quanti-
ties, which also differ along the pipeline, are difficult to predict. The Joule–Thomson effect is the temperature variation in the
pipeline due to isenthalpic expansion or compression of the gas. Abbaspour and Chapman [26] showed that in case of rapid
transient processes such as opening and closing a valve at the outlet, the gas should be treated in a non-isothermal manner
because of the significant Joule–Thomson effect. Although, the non-isothermal model gives a more accurate description of
the phenomenon, the increasing complexity and computation time can make it less useful for the optimal real-time control
of gas pipelines. There should be a reasonable compromise between accuracy and computational complexity. Nevertheless,
the simplification of the gas pipeline model together with uncertainties in model parameters and measurement inaccuracies
of the boundary conditions induce errors and can propagate in time. Hence, to reduce the deviation in each time step
between the computed values of the gas flow model and the actual system state, measurements are assimilated into the
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model using the SIR particle filter. In this work, the gas model is simplified by assuming that the temperature changes within
in the gas and heat exchange with its surroundings of the pipeline is negligible. The above assumptions lead to the following
one-dimensional, isothermal formulation of the conservation equations:
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where the pressure P and mass flow rate _m are function of time t and distance x. The wave speed as is calculated from
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where Rs is the specific gas constant and z the compressibility factor. Eqs. (4) and (5) can be written in the conservative form:
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The vectors W, F, and C represent the independent variables, their fluxes and source terms, respectively. The set of equa-
tions is one-dimensional, first order, nonlinear and hyperbolic. The initial conditions for the partial differential equations are
obtained by setting the rates of change with time in Eqs. (4) and (5) equal to zero, i.e., @P=@t ¼ 0 and @ _m=@t ¼ 0. The resulting
equations for a horizontal pipe are
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2.2. Two-step differential method Lax–Wendroff

To incorporate the particle filter, the state-space form is used to represent a mathematical model that simulates the
dynamic process of gas transport in pipelines. Thorley and Tiley [8] gave an overview of different numerical techniques such
as the method of characteristics, Lax–Wendroff method, implicit finite difference method and finite element method that
solve the conservation equations for mass, momentum, and energy. In general a first order-order approximation is not suf-
ficient accurate for modeling unsteady gas flow in pipelines. Therefore, the attention is focused on second-order methods.
Kiuchi [23], Poloni et al. [27] and Greyvenstein [28] used the two-step Lax–Wendroff method together with the method
of characteristics and implicit methods for the simulation of transient flows in pipelines. In this work, the two-step Lax–
Wendroff method is applied. The advantage of this explicit finite-difference method is that the discretized equations can
be easily formulated as a state-space model. The two-step Lax–Wendroff scheme for Eq. (6) is as follows:
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and in the second step:
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However, an obvious disadvantage of this scheme is that the time-steps are restricted by the Courant–Friederich–Lewy (CFL)
condition [29]. This scheme is stable if the CFL condition holds
max
k
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				 � 1; ð12Þ
where the parameter as,k represents the largest wave speed in the entire solution domain at time level k.
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2.3. Bayesian estimation of the state-space model

To study and make an inference about the gas dynamics in pipelines at least two models are needed. The first one
describes the evolution of the state in time and the second one relates the noisy measurements to the state. As a result
of uncertainties in modeling, as well as inaccuracies in measurements, noise terms in Eq. (13) are added to obtain a stochas-
tic equation. Therefore, the dynamic system is represented by a stochastic process xk 2 Rn, whose temporal is given by the
state equation:
xkþ1 ¼ f ðxk;ukÞ þwk; ð13Þ
where uk 2 Rp stands for the input. In order to estimate the state vector xk at discrete times, system observations are used,
which are realization of the stochastic process yk 2 Rm governed by the measurement equation:
ykþ1 ¼ hðxkþ1Þ þ ekþ1: ð14Þ
Note that the functions f : Rp � Rn ! Rm and h : Rn ! Rm are assumed nonlinear. The subscript k = 1, 2,3 . . ., denotes a
time instant tk. The process noise wk 2 Rn and measurement noise ek 2 Rm are assumed to be white zero-mean Gaussian ran-
dom sequences, i.e., wk � Nð0;QkÞ and ek � Nð0;RkÞ, which fulfil the following properties:
E½wk1 � ek2� ¼ 0 8k1; k2; ð15Þ

E½ek1 � ek2� ¼ 0 E½wk1 �wk2� ¼ 0 8k1 – k2; ð16Þ

E½wk �wk� ¼ Q k E½ek � ek� ¼ Rk; ð17Þ
where Qk and Rk are covariance matrices.
In the Bayesian framework, the idea is to calculate recursively the pdf pðxkjy1:kÞ, where xk is the state vector at time k and

y1:k is the set of measurements up to time step k. It is assumed that the initial pdf pðx0jy0Þ � pðx0Þ is given and the pdf
pðxkjy1:kÞ is obtained recursively by a prediction step and update step. In the prediction step, the estimate of the pdf of
the most recent state of the system pðxk�1jy1:k�1Þ is propagated by the state-space model one-step ahead. It calculates
pðxkjy1:k�1Þ from pðxk�1jy1:k�1Þ using the Chapman–Kolmogorov equation [30]
pðxk y1:k�1j Þ ¼
Z

pðxkjxk�1Þpðxk�1jy1:k�1Þdxk�1: ð18Þ
In the update step, the predicted density is compared with the measurement yk and consequently transformed in line
with Bayes’ rule [20]
pðxk y1:kj Þ ¼ pðykjxkÞpðxkjy1:k�1Þ
pðykjy1:k�1Þ

; ð19Þ
where pðyk y1:k�1j Þ is the normalizing factor of the state xk, i.e.,
pðyk y1:k�1j Þ ¼
Z

pðykjxkÞpðxkjy1:k�1Þdxk: ð20Þ
The two latter equations represent the optimal Bayesian solution of the nonlinear state estimation problem. In practice,
the posterior probability pðxk y1:kj Þ cannot be solved analytically. Hence, approximate filters are used to find suboptimal
solutions.

2.4. Optimal sequential importance resampling filter

The particle filter is a sequential Monte Carlo method, which approximates the above equations for a general nonlinear
system with arbitrarily process and measurement noises. The posterior pdf pðx0:kjy1:kÞ is characterized by the set of N pairs
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where d is the Dirac delta function. The weights are normalized such that
PN

i¼1xk
i ¼ 1 and selected according to the principle

of importance sampling [31]. A common problem with the recursive algorithm is the particle degeneracy. This means that
after a few iterations the probability mass is focused on a few particles while the remaining particles have a negligible
weight. Degeneracy is typically measured by an estimate of the effective sample size [30]:
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XN

i¼1

ðxi
kÞ

2

 !�1

: ð22Þ



Fig. 1. Simulated mass flow measurements at the boundary, _mðL; tÞ.
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A smaller N̂eff means a larger variance for the weights, hence more degeneracy. To resolve this problem a resampling
procedure is used. There are many variations of particle filters, which employ various importance densities and resampling
algorithms [30]. The pseudo-code description of the particle filter and resampling are provided in the appendix.
3. Results and discussion

A series of numerical simulations were conducted for a high-pressure pipeline transporting natural gas. The computations
were done in the programming and calculation environment MATLAB™. The pipeline has a length of 177 km and a diameter
of 1.4 m. The friction factor k is 0.015 and assumed constant throughout the pipeline. The density of the natural gas at
standard conditions qn is 0.784 kg/m3, the specific gas constant Rs is 474.5 J kg�1 K�1 and the compressibility factor z is
0.9. The isothermal temperature is 300 K. The true state was identified by the numerical solution of Eqs. (4) and (5) using
the two-step Lax–Wendroff scheme. The simulation is started with the initial conditions defined by Eqs. (8) and (9). The
spatial–temporal domain is given by X = {(x, t): 0 6 x 6 L, 0 6 t 6 tf}, whereas the total simulation time tf is 3600 with a time
step Dt = 5 s and spatial step Dx = 4425 m. The CPU efficiency of the explicit method is constrained by the CFL condition,
which restricts large time steps. For the observation model, simulated pressure measurements were used by adding a
random Gaussian error, which reflects the randomized nature of the real field data. An observation error with a distribution
Nð0;10�4Þ in MPa2 is added to the true state. The observation interval Dtobs is 5 s and the measurements are obtained in 10
evenly distributed nodes along the 177 km pipeline. Figs. 1 and 2 illustrate the observations at the boundary conditions
Pð0; tÞ and _mðL; tÞ, which were computed by adding to the reference situation a random noise with a Gaussian distribution
Nð0;10�4Þ and Nð0;4Þ in MPa2 and (kg/s)2, respectively.1 The model error variance is set 10% smaller than the observation
error variance, i.e., 9 � 10�5 MPa2 and 3.6 (kg/s)2. It represents the randomness and uncertainly in the simulation of transient
flow in gas pipelines. Figs. 1 and 2, depict the simulated mass flow rate and pressure measurements at the boundaries, respec-
tively. Fig. 3 shows, the spatial–temporal evolution obtained from the numerical simulation. The evolutionary trajectories
corresponding to the values at the finite-difference node points used for the PF-SIR filter are marked with dark solid lines on
the 3-D surface. Simulations showed that the gas velocity in the spatial–temporal domain remained between 2.1 and
4.3 m/s, while the calculated wave speed is 357.9 m/s. This supports the earlier assumption, that the convective acceleration
terms in the gas flow model can be neglected.

The state tracking values at the end and midpoint of the pipeline are presented in Figs. 4 and 5. The ensemble size was set
to 100 and to reduce the influence of the random error, 100 independent simulations with different random generator seeds
were conducted.

The effectiveness of the SIR particle filter was demonstrated by calculating the space- and time averaged root-
mean-square error (RMSE) between the results from the finite-difference scheme and the SIR particle model. The
space- and time averaged RMSE for one Monte Carlo run is defined by:
1 MA
RMSE ¼ 1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where xi
k and x̂i

k are the true and filtered estimated pressure values at cell i and time step k, Ncell is the number of measure-
ment nodes and Nk is the number of measurement time steps. Fig. 6 shows the RMSE performance for different ensemble
TLAB™ randn-function is used to generate quasi-random numbers.



Fig. 2. Simulated pressure measurements at the boundary, Pð0; tÞ.

Fig. 3. Spatial–temporal evolution of the PDE system (4) and (5).

Fig. 4. True, measured and estimates of the PF-SIR at the end of the pipeline.
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sizes Np e {10, 50, 100, 150} and simulation runs. The difference in RMSE between a particle size of 100 and 150 is relatively
small.

In this section, the filter stability and error sensitivities are evaluated for different model and observation error covari-
ances. First, the model error variance is set 10% and 50% less and greater than the observation noise variance of



Fig. 5. True, measured and estimates of the PF-SIR at the mid-point of the pipeline.

Fig. 6. RMSE as function of simulation runs.

F.E. Uilhoorn / Applied Mathematical Modelling 39 (2015) 682–692 689
10�4 MPa2 and 4 (kg/s)2. The results are presented in Fig. 7 and it can be inferred that a lower model error variance improves
the RMSE. When the model noise is significant smaller than the measurements noise, the particle filter has difficulties to
track the changes in the boundary conditions fast enough. The small lag between the true and estimated value is illustrated
in Fig. 8. In this situation, the model error variance is set 90% below the observation error. In case, the model error is greater
than the observation error, the RMSE values becomes worse.
Fig. 7. RMSE for different model error variances and particle numbers, 100 independent runs and Dtobs = 5.



Fig. 8. True, measured and estimates of the PF-SIR at the end of the pipeline with model noise variance 90% less than the measurement noise variance for
both pressure and mass flow rate.

Fig. 9. RMSE for different observation error variances and particle numbers, 100 independent runs and Dtobs = 5.

Fig. 10. RMSE for different model error variances and particle numbers, 100 independent runs and Dtobs = 10.
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In the next step, the observation error variances are set 10% and 50% less and greater than the model error variance values of
10�4 MPa2 and 4 (kg/s)2. The results are presented in Fig. 9 and show that the RMSE becomes worse when the distance in var-
iance between model and observation error increases. The opposite is true when the model error variance is greater than the
observation error variance. In the last part, the filter performance with respect to the measurement rate is examined. When the
observation interval is changed to 1 observation every 10 s, the results improve. This is illustrated in Figs. 10 and 11.



Fig. 11. RMSE for different observation error variances and particle numbers, 100 independent runs and Dtobs = 10.
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4. Conclusion

Within the Bayesian framework, the system model containing weak knowledge about the initial state, can achieve more
accurate information about the state via assimilation of measurement data. In the unsteady gas flow model, the particle filter
reduces the deviation in each time step by combining the observation data with the model values. The degeneracy problem
of the SIS particle filter has been overcome by using sequential importance resampling. The performance of the filter was
investigated by computing the space- and time averaged RMSE for different covariances of the model and observation ran-
dom error. An ensemble size of 100 showed a good compromise between accuracy and computation time. When the model
noise is significant smaller than the measurement noise, the filter has difficulties to track the changes. In case the observa-
tion variance is fixed, a lower model error variance improves the results and increasing the variance the RMSE becomes
worse. The opposite is observed when the model error is fixed and the observation error variance is varied. By extending
the observation interval, the RMSE is decreasing.
Appendix A. Pseudo-code description of the particle filter and resampling

Algorithm 1: SIR particle filter
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i
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 �N
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Algorithm 2: Resampling

x j


k ;x
j
k; i

j
n oN

j¼1

� �
¼ Resample½fxi

k;x
i
kg

N
i¼1�

Initialize the cumulative sum of weightsðCSWÞ : c1 ¼ x1
k

FOR i ¼ 2 : N

Compute CSW : ci ¼ ci�1 þx j
k

END FOR
Start at the bottom of the CSW : i ¼ 1

Draw starting point : u1 � Uð0;N�1Þ
FOR j ¼ 1 : N

Move along the CSW : uj ¼ u1 � N�1ð j� 1Þ
WHILE uj > ci

i ¼ iþ 1
END WHILE

Assign sample : x j


k ¼ x j
k

Assign weight : x j
k ¼ N�1

Assign parent : i j ¼ i
END FOR
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