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The spectacular collapse of the Tacoma Narrows Bridge has attracted the attention of engi-
neers, physicists, and mathematicians in the last 74 years. There have been many attempts
to explain this amazing event, but none is universally accepted. It is however well estab-
lished that the main culprit was the unexpected appearance of torsional oscillations. We
suggest a mathematical model for the study of the dynamical behavior of suspension
bridges which provides a new explanation for the appearance of torsional oscillations dur-
ing the Tacoma collapse. We show that internal resonances, which depend on the bridge
structure only, are the source of torsional oscillations.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The collapse of the Tacoma Narrows Bridge (TNB), which occurred on November 7, 1940, is certainly the most celebrated
structural failure of all times, both because of the impressive video [1] and because of the huge number of studies that it has
generated. In the Appendix (Section A.1) we quote some testimony of witnesses and questions raised by the collapse. Soon
after the TNB accident, three engineers were assigned to investigate the collapse and report to the Public Works Adminis-
tration. Their Report [2] considers . . .the crucial event in the collapse to be the sudden change from a vertical to a torsional mode
of oscillation, see [3, p. 63]. In 1978, Scanlan [4, p. 209] writes that The original Tacoma Narrows Bridge withstood random
buffeting for some hours with relatively little harm until some fortuitous condition ‘‘broke’’ the bridge action over into its low anti-
symmetrical torsion flutter mode. In 2001, Scott [3] writes that Opinion on the exact cause of the Tacoma Narrows Bridge collapse
is even today not unanimously shared. After more than seventy years, a full explanation of the reasons of the collapse is not
available: in particular, the main question which arises is
why did torsional oscillations appear suddenly? ðQ Þ
Some explanations attribute the failure to a structural problem, some others to a resonance between the frequency of the
wind and the oscillating modes of the bridge. Further explanations involve vortices, due both to the particular shape of
the bridge and to the angle of attack of the wind. Finally, we mention explanations based on flutter theory and self-excited
oscillations due to the flutter speed of the wind. These theories differ as to what caused the torsional oscillation of the bridge,
but they all agree that the extreme flexibility, slenderness, and lightness of the TNB allowed these oscillations to grow until
they destroyed it. In [5] we discuss in detail all these theories and explain why they fail to answer to (Q). A convincing
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answer to (Q) needs the background of a reliable mathematical model well describing the behavior of suspension bridges. In
Section A.2 we quickly revisit some models considered in literature.

It is our purpose to introduce a new mathematical model for suspension bridges and to give a satisfactory answer to (Q).
In order to view the torsional oscillations, it appears natural to consider the cross section of the roadway as a rod having two
degrees of freedom: as far as we are aware, this was first suggested by Rocard [6, p. 121]. The degrees of freedom are the
vertical displacement y of its barycenter with respect to equilibrium and the angle of deflection from the horizontal position
h. The rod is linked at its endpoints to two hangers C1 and C2, as in Fig. 1. A crucial issue is the choice of the restoring force
applied by the hangers: due to the elastic behavior of steel and to the action of the sustaining cable, the force should be taken
nonlinear.

Inspired by the celebrated Fermi–Pasta–Ulam model [7], and also by a model previously studied by us [8–10], we con-
sider the bridge as finitely many cross sections (seen as rods acting as oscillators) linked by linear forces. This discretization
views a suspension bridge as in Fig. 2, where the red cross sections are the oscillators linked to the hangers (which act as
nonlinear springs) while the gray part is a membrane connecting two adjacent oscillators.

As pointed out in [11], the torsional oscillations that preceded the collapse were never observed until the day of the collapse.
Our model explains why torsional oscillations may be seen, or may be hidden, or may even not appear, independently of the
force applied to the bridge.

It is unlikely for an irregular wind to generate regular torsional oscillations or resonances which would require the
matching of its frequency with an internal frequency of the bridge. Hence, the answer to (Q) should not be sought in the
behavior of the wind; one should instead study very carefully what happens inside the bridge. For this reason our model
represents an isolated system, without any damping or forcing, which therefore conserves energy. Nowadays, the dominant
explanation of the Tacoma collapse relies on the so-called aerodynamic forces generated by the wind-structure interaction,
see Billah–Scalan [12]. These forces act in several different ways according to how far is the structure from equilibrium, in
particular how large is the torsional angle (see Eq. (12) below), and may generate self-excitation and negative damping
effects. So the attention should now be focused on the cause of wide torsional oscillations. In this paper we emphasize a
structural instability, large vertical oscillations may instantaneously switch to the more destructive torsional ones even
in isolated systems. In order to achieve this task, we need to strip the model of any interaction with external effects such
as the action of the wind, damping and dissipation, and aerodynamic forces. This enables us to show that, in an ideally
isolated bridge in vacuum, a structural instability may occur provided enough energy is initially put inside the structure.
The wind and vortex shedding are usually responsible for introducing energy within the structure and our analysis starts
after the energy is inserted. The structural instability highlighted in the present paper should then be combined with the
well-known aerodynamic effect.

The model represented in Fig. 1 views the cross section of the bridge as two coupled oscillators (vertical and torsional). It
is well-known that nonlinearly coupled oscillators can transfer energy between each other if they are in resonance and this
may occur only at certain energy levels. We call this phenomenon internal resonance and we call critical energy threshold
the minimal energy level where this occurs. The critical threshold depends on all the parameters involved such as the explicit
form of the nonlinear force, the length of the cross section and the coupling constants. The transfer of energy may occur
suddenly and implies that the amplitude of the oscillations of the vertical oscillator decreases while that of the torsional
oscillator increases.
Fig. 1. Vertical (y) and torsional (h) displacements of a cross section of the bridge.

Fig. 2. The discretized suspension bridge.
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In Section 3 we exhibit some numerical results which highlight a transfer of energy between vertical and torsional oscil-
lators within the system describing the model in Fig. 2. A substantial energy transfer occurs only at certain energy levels
which we call again critical energy thresholds. Our model reproduces fairly well what was observed the day of the TNB
collapse, see the experiments in Section 3 and the movies at [13]. These observations are purely numerical and lack both
an explanation and some procedure to compute the critical energy thresholds.

For this reason, in Section 4 we study in detail the simpler model described by the double oscillator represented in Fig. 1:
we show that the critical energy threshold can be computed by analyzing the eigenvalues of the linearization of the Poincaré
map obtained by taking a section of the energy hypersurface. This analysis confirms that, when raising the total internal
energy, there is a sudden switch between the regime where the two oscillators behave almost independently and the regime
where they are strongly coupled. The starting spark for torsional oscillations is an internal resonance which creates a bifur-
cation of the Poincaré map and occurs when a certain amount of energy is present in the rod.

In Section 5 we take advantage of this analysis. Although the full bridge model represented in Fig. 2 is described by a sys-
tem with many degrees of freedom, we are able to determine the critical energy thresholds by analyzing the eigenvalues of
the linearization of an evolution map. We show that, when these thresholds are reached, there is a sudden transfer of energy
within the different fundamental vibrations of the bridge, just as observed at the TNB, see Eq. (11) below. This enables us to
conclude that
the bridge behaves driven by its own internal features;
independently of the angle of attack and of the frequency of the wind:
And the above discussion yields the following answer to (Q):
the sudden appearance of torsional oscillations is due to internal resonances which arise when a
certain amount of energy is present into the structure:
Hopefully, this answer will give hints on how to plan future bridges in order to prevent destructive torsional oscillations
without excessive costs for stiffening trusses.

This paper is organized as follows. In Section 2 we describe the model and in Section 3 we give the results of some numer-
ical experiments. In Section 4 we consider the simpler model consisting of a single cross section and we provide an expla-
nation of the results of Section 3. In Section 5 we extend the results of Section 4 to the full model. In Section 6 we draw our
conclusions and explain in detail why our results give a satisfactory answer to (Q). Finally, the Appendix provides some
details on the collapse of the TNB and on prior mathematical models.

2. Description of the model

The rod represented in Fig. 1 has mass m and length 2‘, it is free to rotate about its center with angular velocity _h and
therefore has torsional kinetic energy m‘2 _h2=6. The center of the cross section behaves as an oscillator where the forces
are exerted by the two lateral hangers C1 and C2, and are denoted respectively by f ðyþ ‘ sin hÞ and f ðy� ‘ sin hÞ; these terms
take into account also the gravity force. Newton’s equation, describing the vertical-torsional oscillations of the rod, was first
derived by McKenna [14] and reads
m‘2

3
€h ¼ ‘ cos h f ðyþ ‘ sin hÞ � f ðy� ‘ sin hÞð Þ; m €y ¼ f ðy� ‘ sin hÞ þ f ðyþ ‘ sin hÞ: ð1Þ
If f is linear, then Eq. (1) decouples and describes two independent oscillators. Note also that, by rescaling the time t #
ffiffiffiffiffi
m
p

t,
we can set m ¼ 1.

In order to model the length of the bridge we consider n parallel rods labeled by i ¼ 1; . . . ; n and we assume that each rod
interacts with the two adjacent ones by means of attractive linear forces. For the ith cross section (i ¼ 1; . . . ;n), we denote by
yi the downwards displacement of its midpoint and by hi its angle of deflection from horizontal. We assume that the mass of
each beam modeling a cross section is m ¼ 1 and its half-length is ‘ ¼ 1. We set y0 ¼ ynþ1 ¼ h0 ¼ hnþ1 ¼ 0 to model the con-
nection between the bridge and the ground. We have the following system of 2n equations:
€hi þ 3 @U
@hi
ðH;YÞ ¼ 0

€yi þ @U
@yi
ðH;YÞ ¼ 0

(
ði ¼ 1; . . . ;nÞ; ð2Þ
where ðH;YÞ ¼ ðh1 . . . ; hn; y1; . . . ; ynÞ 2 R2n and
UðH;YÞ ¼
Xn

i¼1

Fðyi þ sin hiÞ þ Fðyi � sin hiÞ½ � þ 1
2

Xn

i¼0

Kyðyi � yiþ1Þ
2 þ Khðhi � hiþ1Þ2

h i
:

The constants Ky;Kh > 0 represent the vertical and torsional stiffness of the bridge while FðsÞ ¼ �
R s

0 f ðsÞds. The conserved
total energy of the system is given by



Fig. 3. Graph of the restoring force f in Eq. (4) close to the origin.
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Eð _H; _Y;H;YÞ ¼ j
_Hj2

6
þ j

_Yj2

2
þ UðH; YÞ: ð3Þ
The choice of the nonlinear restoring force f ¼ �F 0 is delicate. Here we take
f ðsÞ ¼ �ðsþ s2 þ s3Þ and then FðsÞ ¼ s2

2
þ s3

3
þ s4

4
; ð4Þ
see Fig. 3, and there are several reasons for this choice. First of all, the same kind of force was used in the famous
Fermi–Pasta–Ulam experiment [7] and more recently in engineering literature, see e.g. the work by Plaut–Davis [15,
Section 3.5], as a simple example of nonlinearity. It reproduces the linear Hooke law for small displacements, with elasticity
constant equal to 1 (the corresponding linear behavior is represented in Fig. 3 with a thin line tangent to the graph of f). Fur-
thermore, the function f is concave at the origin, that is f 00ð0Þ < 0, which means that the rate of increase of the restoring force
of the prestressed hangers grows with extension. Finally, the s3-term in f guarantees that the potential F is bounded from
below. The slackening of the hangers occurs for some s < 0 due to the fact that f also includes gravity. Brownjohn [16, p.
1364] explicitly writes that slackening does not have an instantaneous effect: The hangers are critical elements in a suspension
bridge and for large-amplitude motion their behavior is not well modeled by either simple on/off stiffness or invariant connections.
This justifies the choice of a smooth f. Summarizing, the choice Eq. (4) satisfies the minimal requirements for f to be an asym-
metric perturbation of a linear force with positive potential energy, even if it is not necessarily expected to yield accurate
quantitative information. We tested a fairly wide class of different nonlinearities and we saw that the qualitative behavior
of the system is not affected by the specific choice of the parameters in the nonlinearity.

We now define the nonlinear normal modes of the system Eq. (2). Let dst : Rn ! Rn be the discrete sine transform, that is,
the linear invertible map defined for all x 2 Rn by
xi ¼
2

nþ 1

Xn

j¼1

ðdstxÞj sin
pij

nþ 1

� �
and ðdstxÞj ¼

Xn

i¼1

xi sin
pij

nþ 1

� �
;

and note that, for any given k 2 f1; . . . ; ng and E0 > 0, there exists a unique a ¼ aðk; E0Þ > 0 such that
E 0;aðk; E0ÞdstðekÞ;0;0ð Þ ¼ E0, where ek is the kth element of the canonical basis of Rn. If f were linear, then the initial con-

dition ð _Hð0Þ; _Yð0Þ;Hð0Þ;Yð0ÞÞ ¼ 0;aðk; E0ÞdstðekÞ;0;0ð Þ would raise a periodic solution to ((2)) for all k; E0; such solution is
usually called a (linear) normal mode of the system. If f is nonlinear, e.g. as in Eq. (4), by a minimization algorithm we can
compute numerically Y0ðk; E0Þ;Y1ðk; E0Þ 2 Rn such that jY0ðk; E0Þj and jY1ðk; E0Þ � aðk; E0ÞdstðekÞj are small (and tends to 0 as

E0 ! 0) and 0;Y1ðk; E0Þ;0;Y0ðk; E0Þ
� �

lies on the orbit of a periodic solution to the nonlinear problem Eq. (2).

Definition 1 (Nonlinear normal modes). We call the periodic solution of Eq. (2) with initial data
ð _Hð0Þ; _Yð0Þ;Hð0Þ;Yð0ÞÞ ¼ ð0;Y1ðk; E0Þ;0;Y0ðk; E0ÞÞ the kth nonlinear normal mode of Eq. (2) at energy E0.

Our purpose is to study the stability of the nonlinear normal modes under small perturbations of the null torsional initial
data.

3. Numerical results

We consider Eq. (2) with n ¼ 16 and Ky ¼ Kh ¼ 320. Let Y0ðk; E0Þ;Y1ðk; E0Þ 2 Rn be as in Section 2: Fig. 4 represents the
solutions to the system Eq. (2) with initial conditions
_Hð0Þ; _Yð0Þ;Hð0Þ;Yð0Þ
� �

¼ ðH1;Y1ðk; E0Þ; 0;Y0ðk; E0ÞÞ ð5Þ
where H1 2 R16 is a random vector whose components lie in the interval ½�5 � 10�6;5 � 10�6�, and with
ðk; E0Þ ¼ ð1;516Þ; ð2;500Þ; ð3;6000Þ, each one on a line from the first to the third.

In all the pictures the black and gray plots represent hiðtÞ and yiðtÞ respectively for i ¼ 1 . . . ;8 going from left to right; the
first one is the closest to a tower whereas the eighth one is in the center of the span. We only display the first 8 plots of ðhi; yiÞ
because ðhi; yiÞ � ðh17�i; y17�iÞ if k is odd and ðhi; yiÞ � �ðh17�i; y17�iÞ if k is even. In order to better explain the phenomenon, we



Fig. 4. Unstable torsional oscillations (black) and vertical oscillations (gray) of the cross sections.

Fig. 5. Sudden appearance of torsional oscillations.
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enlarge the first picture of the second line, see Fig. 5. We observe that the (black) torsional oscillations are initially negligible
with respect to the (gray) vertical oscillations but, suddenly, they become visible, and then larger and larger, and their max-
imum amplitude would suffice for an actual bridge to collapse. Even if the amount of energy E is large enough to generate
instability, the energy transfer does not occur instantaneously, it takes some time T ¼ TðEÞ > 0. This delay in time may be
seen as a structural version of the Wagner effect [17] which was originally discovered in the aerodynamic action of the wind
on the airfoil of an aircraft: if the incidence of a wing changes suddenly, the new lifting force resulting from the change in
incidence is not set up instantaneously. However, as soon as the instability is apparent, the oscillations suddenly grow up. In
this respect, Billah–Scalan [12] remark that when instability (or flutter) occurs for suspension bridges without a streamlined
deck, it tends to be very precipitate. Note also that it appears clearly in Fig. 5 that the vertical (gray) oscillations decrease in
amplitude when the torsional (black) oscillations increase: this is what we call an energy transfer between oscillating modes.
Numerical experiments show that the sudden appearance of wide torsional oscillations as in Figs. 4 and 5 can be seen only if
the energy is sufficiently large, that is, above a critical energy threshold. Above this threshold a very small perturbation of the
kth mode in any hi-variable can lead to a significant torsional motion, while below the threshold small initial torsional oscil-
lations remain small for all time. In the latter case, the amplitudes of both the torsional and the vertical modes are constant,
therefore the pictures are trivial and we do not display them.
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We have also produced a dynamic representation of the solutions ðH;YÞ to Eqs. (2)–(5). The movies available at [13] dis-
play the dynamics of the discretized bridge, and in particular the similarity to the original movie of the Tacoma Narrows
Bridge collapse [1].

4. The single cross section model

In order to explain the results described in the previous section, we consider Eq. (2) with n ¼ 1 and Ky ¼ Kh ¼ 1. We omit
here the (redundant) index referring to the cross section. Since the energy Eq. (3) of the system is a constant of motion, for
any E0 > 0 the 3-dimensional submanifold Eð _h; _y; h; yÞ ¼ E0 of the phase space R4 is flow-invariant, that is, the motion is con-
fined to this 3-dimensional energy surface. We study a 2-dimensional section of this surface, the so-called Poincaré section
(see e.g. [18, Section 11.5] or [19, Section 1.4]), whose construction adapted to the problem at hand we now give in detail.
First observe that
Fig. 6.
and un
article.)
the plane _h ¼ h ¼ 0 is flow-invariant; ð6Þ
in particular, for all y1 2 R, the initial data ð _hð0Þ; _yð0Þ; hð0Þ; yð0ÞÞ ¼ ð0; y1;0;0Þ yields a periodic solution of system Eq. (2). We
wish to study the stability of this solution. Now fix E0 > 0 and consider the bounded set
UE0 :¼ fðh1; h0Þ 2 R2; Eðh1;0; h0;0Þ < E0g:
For all ðh1; h0Þ 2 UE0 define
y1 ¼ y1ðE0; h
1; h0Þ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E0 � Eðh1;0; h0;0Þ�

q
> 0;
namely the unique positive value of y1 that satisfies Eðh1; y1; h0;0Þ ¼ E0. It is easily shown that there exists a first
T ¼ Tðh1; h0Þ > 0 such that the solution of Eq. (2) with initial data
ð _hð0Þ; _yð0Þ; hð0Þ; yð0ÞÞ ¼ ðh1; y1ðE0; h
1; h0Þ; h0; 0Þ ð7Þ
The Poincaré map for Eq. (2) in the plane ð _h; hÞ: from left to right and top to bottom, the values of E0 are 3.4, 3.5, 3.6, 3.8. Stable fixed points are red
stable fixed points are green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
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satisfies yðTÞ ¼ 0 and _yðTÞ > 0. The Poincaré map PE0 : UE0 ! R2 is then defined by
PE0ðh
1; h0Þ :¼ ð _hðTÞ; hðTÞÞ ð8Þ
where ðhðtÞ; yðtÞÞ is the solution to the system Eq. (2) with initial data (7). Note that, for such solution, one has E ¼ E0. In view
of Eq. (6), the origin ð0; 0Þ 2 UE0 is a fixed point for the map PE0 for any E0 > 0. In Fig. 6 we represent some iterates of the map
PE0 for system Eq. (2) with different initial data ð _hð0Þ; hð0ÞÞ 2 UE0 . The energies considered are E0 ¼ 3:4;3:5;3:6;3:8 and we
observe a change of behavior between E0 ¼ 3:5 and E0 ¼ 3:6 so that the critical energy threshold of Eq. (2) (case n ¼ 1)
satisfies
3:5 < E < 3:6:
Finer experiments yield E � 3:56.
What we have just observed has a clear explanation in the theory of dynamical systems. The pictures in Fig. 6 show that if

E < E, then any initial condition with small ð _hð0Þ; hð0ÞÞ leads to solutions with small ð _hðtÞ; hðtÞÞ for all t, while if E > E, any
initial condition with small ð _hð0Þ; hð0ÞÞ leads to large values of ð _hðtÞ; hðtÞÞ for some t. Hence, if E0 < E then the origin is a stable
fixed point of PE0 , whereas if E0 > E the origin is unstable, that is, the system undergoes a bifurcation at E0 ¼ E. The stability of
the origin can be determined by the eigenvalues k1 and k2 of the Jacobian JPE0

ð0;0Þ of PE0 at ð0;0Þ. Since the system Eq. (2) is
conservative, JPE0

ð0;0Þ has determinant equal to 1, therefore one of the following cases applies:

(i) jk1j ¼ jk2j ¼ 1 and k2 ¼ k1, in which case ð0;0Þ is stable for PE0 ;
(ii) k1; k2 2 R and 0 < jk1j < 1 < jk2j, in which case ð0;0Þ is unstable for PE0 .

Since the eigenvalues depend continuously on E0, the bifurcation, i.e. the loss of stability, may only occur when
k1 ¼ k2 ¼ 1 or k1 ¼ k2 ¼ �1. In the former case the Jacobian of PE0 � I at ð0;0Þ is not invertible, therefore the fixed point is
not guaranteed to be locally unique, and indeed two new stable fixed points are created: this kind of bifurcation is called
pitchfork. In the latter case the Jacobian of PE0 � I at ð0;0Þ is invertible, but the Jacobian of P2

E0
� I is not; then, by the implicit

function theorem the fixed point is locally unique, but periodic points of period 2 are not, and indeed two such points are
created at the bifurcation; this kind of bifurcation is called period doubling.

The experiments displayed in Fig. 6 show that the bifurcation generates two new stable fixed points, therefore we have a
pitchfork bifurcation. Since at the bifurcation point both eigenvalues of the Jacobian of PE0 at ð0;0Þ are equal to 1, then

PEðh
1; h0Þ ¼ ðh1; h0Þ þ oðh1; h0Þ, so that small initial data ðh1; h0Þ yield solutions hðtÞ to Eq. (2) being close to a periodic solution

having the same period of yðtÞ. This is what we call an internal resonance. In our experiments we observe that, as E0

increases from 0, the eigenvalues k1 and k2 move on the unit circle of the complex plane and meet at the point ð1;0Þ when
E0 ¼ E. When E0 > E the eigenvalues move along the real line in opposite directions and the two new stable (red) fixed points
represent periodic solutions hðtÞ having the same period of yðtÞ.

In the case of a period doubling bifurcation we would have PEðh
1; h0Þ ¼ �ðh1; h0Þ þ oðh1; h0Þ, so that small initial data

ðh1; h0Þ would yield solutions hðtÞ to Eq. (2) being close to a periodic solution having period equal to the double of the period
of yðtÞ. This is another kind of internal resonance, which does not happen in the experiment that we describe here, but can
be observed with other nonlinearities, e.g. with f ðsÞ ¼ �ðsþ s2Þ. If E0 > E, then PE0 has two periodic points of period 2, cor-
responding to periodic solutions hðtÞ having the double of the period of yðtÞ.

Summarizing, a necessary condition for a bifurcation to occur is a resonance between the oscillators; in absence of res-
onance the double oscillator is torsionally stable and small initial torsional data remain small for all time. What we have just
explained leads us to the following definition and criterion:

Definition 2 (Torsional stability). We say that the system Eq. (2) (for n ¼ 1) is torsionally stable at energy E0 > 0 if the origin
ð0;0Þ 2 R2 is stable for the Poincaré map PE0 . Otherwise, we say that the system is torsionally unstable.
Criterion 3. Let k1 ¼ k1ðE0Þ and k2 ¼ k2ðE0Þ be the complex eigenvalues of the Jacobian of the Poincaré map PE0 at the origin
ð0;0Þ 2 R2. Then k1k2 ¼ 1 and two cases may occur:

(S) if jk1j ¼ jk2j ¼ 1 and k2 ¼ k1, then the system Eq. (2) is torsionally stable;
(U) if k1; k2 2 R and 0 < jk1j < 1 < jk2j, then the system Eq. (2) is torsionally unstable.

We have observed above that equal eigenvalues yield a resonance between the oscillators, which may occur only at par-
ticular values of the energy. When the energy is larger than such value, the system is in the unstable regime, while when the
energy is smaller the system is in the stable regime. In principle it may happen that also at higher energy the system under-
goes another bifurcation and the origin becomes again stable. Then, we have shown that there exists E > 0 such that the sys-
tem Eq. (2) is stable (case (S)) whenever 0 < E < E whereas the system Eq. (2) is unstable (case (U)) whenever E < E < Eþ d
for some d > 0.
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Definition 4 (Critical energy threshold). When n ¼ 1 we call
E :¼ inf E0 > 0; maxfjk1ðE0Þj; jk2ðE0Þjg > 1f g
the critical energy threshold of Eq. (2).
What we have seen in this section enables us to conclude that

the bifurcation is caused by a resonance between the nonlinear oscillators
and generates torsional instability.

Moreover, the Poincaré maps show that

the onset of torsional instability is generated by internal resonances.

This simple description is possible because we are dealing with a model with two degrees of freedom only. In the next
section we provide a suitable generalization of these results for the full bridge model.

5. Stability of the multiple beam system

We extend here the results obtained in the previous section to the full bridge model where n > 1. For any mode
k 2 f1; . . . ;ng and any energy E0 > 0 let Y1ðk; E0Þ and Y0ðk; E0Þ be as in Section 2. Let Tðk; E0Þ > 0 be the period of the kth
nonlinear normal mode of Eq. (2) at energy E0 and let Wk

E0
: R2n ! R2n be the evolution map defined by
Wk
E0
ðH1;H0Þ ¼ _HðTðk; E0ÞÞ;HðTðk; E0ÞÞ

� �
; ð9Þ
where HðtÞ;YðtÞð Þ is the solution to Eq. (2) with initial conditions
_Hð0Þ; _Yð0Þ;Hð0Þ;Yð0Þ
� �

¼ ðH1;Y1ðk; E0Þ;H0; Y0ðk; E0ÞÞ:
We remark that the origin is a fixed point of Wk
E0

and that Wk
E0

is not a Poincaré map; in particular, the iteration time T does
not depend on ðH1;H0Þ. One could compute a Poincaré map even in the full model case, but its construction is theoretically
and computationally more complicated, and, due to the higher dimensionality of the problem, it would not provide any addi-
tional insights. The maps Wk

E0
enable us to generalize Definition 2 as follows:

Definition 5 (Torsional stability). We say that the kth nonlinear normal mode of Eq. (2) at energy E0 > 0 is torsionally stable
if the origin ð0;0Þ 2 R2n is stable for the evolution map Wk

E0
. Otherwise, we say that it is torsionally unstable.

In order to evaluate the stability of the kth nonlinear normal mode, we study the Jacobian JWk
E0
ð0;0Þ of Wk

E0
at

ðH1;H0Þ ¼ ð0; 0Þ. To compute the derivatives of this map, we linearize Eq. (2) at ðH;YÞ ¼ ð0;YkÞ, where YkðtÞ is the kth non-
linear normal mode of Eq. (2) at energy E0. We are led to solve the system
€ni þ 3
Xn

j¼1

@2U
@hi@hj

ð0;YkðtÞÞnj ¼ 0 ði ¼ 1; . . . ; nÞ; ð10Þ
where NðtÞ ¼ ðn1ðtÞ; . . . ; nnðtÞÞ is the variation of H � 0. The lth column of JWk
E0
ð0; 0Þ is the solution ð _NðTÞ;NðTÞÞ at time Tðk; E0Þ

of Eq. (10) with initial conditions ð _Nð0Þ;Nð0ÞÞ ¼ gl (l ¼ 1; . . . ;2n), where gl is the lth element of the canonical basis of R2n.
In principle, when n > 1 one cannot infer the full stability of the nonlinear normal mode Yk from its linear stability, that is,

when all the eigenvalues of JWk
E0
ð0;0Þ have modulus 1. On the other hand, we have numerical evidence that the model is

torsionally stable if and only if all the eigenvalues of JWk
E0
ð0;0Þ lie on the unit circle. This leads to the following:

Criterion 6. Let ki ¼ kiðk; E0Þ (i ¼ 1; . . . ;2n) be the eigenvalues of JWk
E0
ð0;0Þ. Then:

(S) if maxijkij ¼ 1, then the kth nonlinear normal mode of Eq. (2) at energy E0 is torsionally stable;
(U) if maxijkij > 1, then the kth nonlinear normal mode of Eq. (2) at energy E0 is torsionally unstable.
Fig. 7. Largest modulus of the eigenvalues of JWk
E0
ð0;0Þ versus the energy E0; k ¼ 1;2;3.
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We take again Eq. (4) while we fix n ¼ 16 and Ky ¼ Kh ¼ 320. In the graphs in Fig. 7 we display the largest modulus of the
eigenvalues of JWk

E0
ð0; 0Þ as a function of the energy E0, with k ¼ 1;2;3. It appears that for all such k there exists a largest

Ek > 0 such that the kth mode of Eq. (2) is torsionally stable whenever E < Ek. It turns out that, for higher levels of energy,
a mode may become stable again, but this has a purely theoretical (mathematical) relevance since, in order to ensure that the
bridge is safe, one should consider only the lower energy threshold Ek; here we computed E1 � 450; E2 � 200; E3 � 5100. All
our experiments have shown that a nonlinear normal mode is stable, that is small initial torsional data yield small torsional
oscillations for all time, whenever it is linearly stable.

Criterion 6 enables us to provide a rigorous definition of the critical energy threshold of each mode.

Definition 7 (Critical energy threshold). We call critical energy threshold Ek of the kth nonlinear normal mode of Eq. (2) the
positive number
Ek :¼ inf E0 > 0; max
i
jkiðk; E0Þj > 1

� �
:

Fig. 7 shows that Ek depends on k and the effective critical energy threshold E of the bridge satisfies
E 6 min
16k6n

Ek:
In order to show further that our model well explains the behavior of suspension bridges and is able to reproduce the
collapse of the TNB, we revisit our results trying to match the phenomenon described by Farquharson [20] concerning
the sudden appearance of torsional oscillations that contemporaneously changed the vertical oscillations

. . .which a moment before had involved nine or ten waves, had shifted to two. (11)

Let us first introduce a new definition.

Definition 8 (Fundamental vibrations). For all j ¼ 1; . . . ;n we call jth vertical (respectively, torsional) fundamental vibration
of a solution ðHðtÞ;YðtÞÞ of Eq. (2) the function t # ðdstYðtÞÞj (respectively, the function t # ðdstHðtÞÞj), that is, the jth
component of the discrete sine transform.

In Fig. 8 we plot a simple moving average of the first four (vertical and torsional) fundamental vibrations of a solution to
Eq. (2) in the case ðk; E0Þ ¼ ð2;500Þ. The graphs show that initially most of the dynamics is concentrated on the second ver-
tical fundamental vibration, but at time t � 50 part of the energy is transferred to the first torsional fundamental vibration;
then the second vertical and the first torsional fundamental vibrations begin a somehow periodic exchange of energy. All the
other fundamental vibrations, vertical and torsional, appear to be almost unaffected. The testimony Eq. (11) tells us that, at
the TNB, the appearance of torsional oscillations had changed the vertical oscillations form the ninth to the second funda-
mental vibration.

The next step should be an accurate analysis of the nonlinear modes of a suspension bridge and of the fundamental vibra-
tions of its oscillations, see [21] for the linear case. Combined with our analysis, this could give precise suggestions on how to
plan bridges in order to higher Ek, at least for small k.

6. Our explanation of the Tacoma collapse

In [5] we analyze the collapses of the Broughton Suspension Bridge and of the Angers Bridge, which were caused by a light
and periodic external forcing that gave rise to a resonance with the natural frequencies of the bridges. This should not be
confused with the violent and disordered behavior of the wind at the TNB. By no means, one may expect that a random
and variable wind might match the natural frequency of a bridge. The model we suggest here views the bridge as an elastic
structure formed by many coupled nonlinear oscillators whose frequencies may synchronize, creating internal resonances.
Since the model is nonlinear, the frequencies depend on the energy involved and resonances may occur only if a certain
amount of energy is present into the structure, that is,
Fig. 8. The first four torsional (black) and vertical (gray) FV’s of a solution to Eq. (2).
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if the total energy within the structure is small, then the oscillators weakly interact and only a negligible part of the
energy of the vertical oscillators can be transferred to a torsional fundamental vibration, whereas if the total energy is
sufficiently large then the oscillators are in resonance and tiny torsional oscillations may suddenly become wide.

An external action inserting energy inside the structure may exceed the critical thresholds of the bridge and give rise to
uncontrolled oscillations. The critical energy thresholds of the nonlinear normal modes of the bridge depend only on its
structural parameters such as width, length, rigidity, mass, elasticity, stiffness, and distance between hangers. Future bridges
should be planned with structural parameters yielding very large critical energy thresholds. We believe that the TNB has
collapsed because, on November 7, 1940, the wind inserted enough energy to overcome the critical energy threshold of
its 9th nonlinear normal mode. This gave rise to internal resonances that were the onset of the destructive torsional oscil-
lations. Then the aerodynamic forces self-excited these oscillations until the collapse of the bridge. Is this the final answer to
(Q)?
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Appendix A

A.1. The Tacoma Narrows Bridge collapse

The TNB was considered very light and flexible. Not only this was apparent to traffic after the opening, but also it was felt
during the construction. According to [3, pp. 46–47], . . .during the final stages of work, an unusual rhythmic vertical motion
began to grip the main span in only moderate winds . . .these gentle but perceptible undulations were sufficient to induce both
bridgeworker nausea and engineering concern. The undulatory motion of the span attracted the local interest and . . .motorists
ventured onto the TNB to observe vehicles ahead of them slowly disappearing in the trough of a wave. So, it was not surprising
that vertical oscillations were visible on the day of the collapse. The wind was blowing at approximately 80 km/h and, appar-
ently, the oscillations were considerably less than had occurred many times before, see [3, p. 49]. Hence, although the wind was
the strongest so far since the bridge had been built, the motions were in line with what had been observed earlier. However,
a sudden change in the motion was alarming. Without any intermediate stage, a violent destructive torsional movement
started: the oscillation changed from nine or ten smaller waves to the two dominant twisting waves. A witness to the col-
lapse was Farquharson, the man escaping in the video [1]. According to his detailed description [20] . . .a violent change in the
motion was noted. This change appeared to take place without any intermediate stages and with such extreme violence that the
span appeared to be about to roll completely over.

Leon Moisseiff (1873–1943), who was charged with the project, had an eye to economy and aesthetics, but he was not
considered guilty for the TNB failure. For instance, Steinman-Watson [22] wrote that . . .the span failure is not to be blamed
on him; the entire profession shares in the responsibility. It is simply that the profession had neglected to combine, and apply in
time, the knowledge of aerodynamics and of dynamic vibrations with its rapidly advancing knowledge of structural design. The
reason of this discharge probably relies on forgotten similar collapses previously occurred: one should compare the torsional
motion prior to the collapse of the Brighton Chain Pier in 1836, as painted by William Reid [23, p. 99], and torsional motions
prior to the TNB collapse, see Fig. 9.

Similar torsional behaviors were displayed in several other bridges before 1940, see [3, Section 4.3], [24, p. 75], and also
[25, Section 2]. So, it seems that torsional oscillations are to be expected in flexible suspension bridges. Still, the natural ques-
tions which arise from the TNB collapse and from similar failures are the following [3, p. 53]:

- how could a span designed to withstand 161 km/h winds and a static horizontal wind pressure of 146 kg/m2 succumb
under a wind of less than half that velocity imposing a static force one-sixth the design limit?

- how could horizontal wind forces be translated into dynamic vertical and torsional motion?
Fig. 9. Torsional motion in the Brighton Chain Pier and in the Tacoma Narrows Bridge.
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In fact, the answers to these questions are strictly linked. The bridge was ready to withstand 161 km/h wind provided that
the oscillation would have been vertical. But since unexpected torsional oscillations appeared, this considerably lowered the
critical speed of the wind. Therefore, the two above questions reduce to the main question (Q).
A.2. Previous mathematical models

The celebrated report by Navier [26] has been for about one century the only mathematical treatise of suspension bridges.
The second milestone contribution is certainly the monograph by Melan [27]. After the TNB collapse, the scientific
community felt the necessity to find accurate equations in order to attempt explanations of what had occurred. In this
respect, historical sources are [28,29] which consider the function representing the amplitude of the vertical oscillation as
unknown but do not consider torsional oscillations. In a model suggested by Scanlan–Tomko [30], the angle of twist a of
the torsional oscillator (bridge deck section) is assumed to satisfy the equation
I ½€aþ 2faxa _aþx2
aa� ¼ A _aþ Ba; ð12Þ
where I; fa;xa are, respectively, associated inertia, damping ratio, and natural frequency. The aerodynamic force (the r.h.s. of
Eq. (12)) is assumed to depend linearly on both _a and a with the positive constants A and B depending on several parameters
of the bridge. Constant coefficient second order linear equations such as Eq. (12) have elementary solutions. Roughly speak-
ing, one can say that chaos manifests itself as an unpredictable behavior of the solutions in a dynamical system. With this
characterization, there is no doubt that chaos was somehow present in the dynamic of the TNB. From [18, Section 11.7] we
recall that neither linear differential equations nor systems of less than three first-order equations can exhibit chaos. Since Eq. (12)
may be reduced to a two-variables first order linear system, it cannot be suitable to fully describe the disordered behavior of
the bridge. In order to have a description of the bridge obeying the two rules for chaos, the fourth order nonlinear ODE
w0000 þ kw00 þ f ðwÞ ¼ 0 (k 2 R) was studied in [31] and it was proved that solutions to this equation blow up in finite time with
self-excited oscillations appearing suddenly, without any intermediate stage. Following these general rules, we propose the
explanation that the structural instability generated the sudden excitation of the torsional mode and, once the torsional
mode was activated, Eq. (12) explains how aerodynamic forces led to the Tacoma collapse.

In [16,25,19] one may find further evidence that some nonlinearity should appear in any model aiming to describe
suspension bridges. Furthermore, it was recently confirmed by Luco–Turmo [32] that the flexibility of the hangers is
generally negligible so that their nonlinear behavior is mainly due to the cable; see also [33] for more details on the behavior
of hangers. For large displacements one cannot apply the linear Hooke law of elasticity. This is also the opinion of McKenna
[14, p. 16]: We doubt that a bridge oscillating up and down by about 10 m every 4 s obeys Hooke’s law. Moreover, McKenna [14,
p. 4] comments Eq. (12) by writing This is the point at which the discussion of torsional oscillation starts in the engineering lit-
erature. He then claims that a key error in previous models was the linearization of Eq. (1) with respect to h, the term sin h
was usually replaced by h whereas cos h was replaced by 1: this is reasonable for small h, but appears inaccurate for large
deflections. McKenna concludes by noticing that Even in recent engineering literature . . .this same mistake is reproduced.
And indeed, [14,34] show that numerical solutions to Eq. (1) starting with large initial data die down in the linear model
while they do not for the nonlinear model where large oscillations continue for all time until the eventual collapse of the
bridge: by linear model we mean here that the approximation sin h � h is made, whereas nonlinear means that sin h is main-
tained. In these experiments the restoring force is assumed to be piecewise linear. Supported by numerical experiments, our
opinion is that, although the approximation sin h � h is inaccurate, it does not hide the main phenomenon, while we believe
that the nonlinearity in the restoring force f plays the major role. Indeed, the nonlinearity of f plays a significant role even
when h is small, that is when sin h � h is acceptable.

The interaction between different components of the bridge is the most delicate part of any model. Lazer–McKenna [35,
Section 3.4] introduce a system describing the coupled motion of the roadway and the sustaining cable, see also [36] for the
same system with different external sources. This model views the roadway as a one-dimensional beam and, therefore, it
cannot display torsional oscillations.

A model suggested by Moore [37] extends Eq. (1) to the entire length L of the roadway. Assuming that the restoring forces
are piecewise linear, the following generalization of problem Eq. (1) is obtained
htt � e1hxx ¼ 3K
m‘ cos h½ðy� ‘ sin hÞþ � ðyþ ‘ sin hÞþ� � dht þ h1ðx; tÞ

ytt þ e2yxxxx ¼ � K
m ½ðy� ‘ sin hÞþ þ ðyþ ‘ sin hÞþ� � dyt þ g þ h2ðx; tÞ

hð0; tÞ ¼ hðL; tÞ ¼ yð0; tÞ ¼ yðL; tÞ ¼ yxxð0; tÞ ¼ yxxðL; tÞ ¼ 0;

8><
>: ð13Þ
where e1; e2 are physical constants related to the flexibility of the beam, d > 0 is the damping constant, h1 and h2 are external
forces, and g is the gravity acceleration. Multiple periodic solutions to Eq. (13) are determined in [37]. The system Eq. (13)
was complemented by Matas–Očenášek [38] with two further equations governing the displacements of the lateral cables;
then the displacements of the cables also appear in the equations in Eq. (13). We believe that Eq. (13) is a nice reliable model
which, however, may be improved in several aspects. First, the restoring force needs not to be piecewise linear; second, it
does not act on the whole length of the roadway but only in those points where the hangers are present. As we have seen,
the answer to (Q) is hidden in a generalized version of system (1) independently of external forces.
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Any model aiming to describe the complex behavior of a bridge has to face the difficult choice between accurate but com-
plicated equations on one hand and simplified but less reliable equations on the other hand. Excessive linearizations lead to
inaccurate models (such as Eq. (12)) and to unreliable responses. The model suggested in the present paper seems to be a
good compromise between these two choices. In particular, it gives a satisfactory answer to (Q). We refer to [39] and to
[25, Section 3.2] for a detailed story of further mathematical models which, however, could not lead even to partial answers
to (Q).
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