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The major difficulty in the analysis of unconfined flow in porous media is that the free sur-
face is unknown a priori, where the nonlinearity is even stronger than the unsaturated
seepage analysis. There is much space for both the adaptive mesh methods and the fixed
mesh methods to improve. In this study, firstly two variational principles fitted to the
numerical manifold method (NMM) are formulated, each of which enforces the boundary
conditions and the material interface continuity conditions. In the setting of the NMM
together with the moving least squares (MLS) interpolation, then the discretization models
corresponding to the variational formulations are built, which are utilized to locate the free
surface and scrutinize the computational results respectively. Meanwhile, a novel
approach is developed to update the free surface in iteration. With high accuracy and
numerical stability but no need to remesh, the proposed procedure is able to accommodate
complicated dam configuration and strong non-homogeneity, where internal seepage faces
may develop, a seldom touched problem in the literature.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Due to the importance in engineering and strong nonlinearity in mathematics, problems of seepage with free surfaces,
called unconfined seepage problems, are paid extensive attention from both engineers and mathematicians. The unconfined
seepage analysis belongs to geometrical nonlinearity, while the unsaturated seepage analysis belongs to material nonlinear-
ity and needs more soil parameters or curves, some of which are hard to obtain, such as soil–water characteristic curves. But
the former’s nonlinearity is stronger than the latter, because usually the analysis domain in the unsaturated seepage analysis
does not change in iteration.

The procedures developed for the unconfined seepage problems are diverse, including the adaptive mesh methods and
the fixed mesh methods. The adaptive mesh methods are easy to understand in concept, but they usually have to remesh
explicitly during iteration, leading to laborious mesh generation or adjustment. Unless a good initial guess of the free surface
is set, the adaptive mesh methods are hard to converge if inhomogeneous soils or complicated configurations are present.
Moreover, the seepage analysis is usually coupled with the stress analysis, where the different meshes for the seepage anal-
ysis and the stress analysis would incur great troubles. In the setting of the classical finite element method, as a result, the
adaptive mesh methods appear to have a tendency to give way to the fixed mesh methods.
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The fixed mesh methods, whether the residual flow procedure (RFP) [1] or the variational inequality methods [2,3], blur
the dry domain and the wet domain. The free surface is automatically identified once the problem is solved out. Although the
RFP formulation is heuristic, 2- and 3-dimensional numerical examples [4] have shown it is very effective. Besides,
Westbrook [5] showed that the Alt inequality method and the RFP have much in common when the numerical schemes
resulting from these views are examined. Recently, Zheng et al. [6] gave a variational inequality formulation to the
RFP [1,7].

Comprehensive reviews of variational inequality methods for free surface seepage problems are given by Oden and
Kikuchi [8] and Bruch [9]. By specifying the potential seepage surface as Signorini’s boundary condition, Zheng et al. [10]
proposed a new variational inequality formulation that eliminates singularity of the seepage point, mitigating the mesh
dependence. Later on, Chen et al. [11] generalized the formulation to the non-steady seepage flow.

Rigorous as they are, the variational inequality methods require more mathematical training than the average engineer
receives in his formal education. With maturity of the mesh-free methods, as a result, the idea in the adaptive mesh methods
is adopted again to solve free boundary value problems including the unconfined seepage problems. We mention that some
methods based on the finite element methods seemingly analyze the unconfined seepage problems on fixed meshes, such as
[12], but they actually utilize the strategies of the adaptive mesh methods in calculating the contribution of those elements
cut by the free surface to the flow matrix.

In addition to the finite element methods, some other numerical methods are also used in the unconfined seepage prob-
lems. These methods have their own strengths and weaknesses. For example, the finite volume method by Darbandi and
Torabi [13] assures mass conservation over cells but requires that the grid match the free surface. Starting also from the mass
conservation equation of integration form, the finite difference method by Bardet and Tobita [14] would encounter troubles
in enforcing the boundary conditions if the problem domain is complicated in shape. Highly accurate as it is, the residual
velocity method by Zhang and Jiang [15] is suited only for the situations where the free surface does not undergo drastic
singularity or changes during iteration. With no need to pay much attention to the location of the free surface in iteration,
the level-set method by Herreros et al. [16], has limited precision; and so on.

Now that the mesh fetters have been broken due to the development of the mesh-free methods, which are cut out for
the free boundary problems including the unconfined flow problems. As far as we know, Li et al. [17], firstly adopted the
Element-Free Galerkin Methods (EFGM) to solve unconfined seepage problems. In the procedure, they selected the moving
least squares (MLS) method with singular weight functions, yielding the shape functions with interpolation property.
Using the shape functions with interpolation property simply assures the satisfaction of the essential boundary condition
at the boundary nodes but not on the whole essential boundary. From the results given in their paper, as a result, the
solution precision is very limited and qualified only for homogeneous embankments. Besides, the nodes in the procedure
usually have to be added or deleted during iteration. In principle, adding or deleting nodes in the EFGM is feasible. Nev-
ertheless, it is not easy how to add nodes so that accuracy and numerical stability are guaranteed, because the configu-
ration of nodes in the MLS has quite a salient effect on the accuracy of the function to be approximated, see examples
given in [18].

To exploit the properties of the MLS, we formulate the variational forms of the unconfined seepage problem in the setting
of the numerical manifold method (NMM) [19], where the mathematical cover (MC) is composed of the regularly-deployed
nodes and the associated shape function supports. Considering the moving free surface in iteration might not match the reg-
ularly-deployed nodes, the proposed variational forms enforce both the essential boundary condition and the material inter-
face continuity condition. So, the mesh adjustment is unnecessary during iteration.

As we know, another crux in the analysis of unconfined seepage flow is the treatment of free surfaces with singularity. For
example, when a free surface penetrates a material interface that separates two media with quite different seepage proper-
ties, it will have an abrupt change, causing solution hard to converge. Even for a very neat problem as shown in Fig. 12(a)
below, the results given by those popular procedures differ considerably from each other, with almost all having very large
errors. In order to improve the convergence in treating singular free surfaces, a new strategy for updating the free surface in
iteration is put forward. From the typical examples, it will be seen that not only is the strategy able to achieve very high
accuracy, but the introduction of the NMM is necessary for treating those singular free surfaces as well. Besides, we also ana-
lyzed a practical seepage problem of an earth and rockfill dam, where an internal seepage face develops along the material
interface between a sloping core and the rest of the dam. Such problems are frequently encountered in the seepage analysis
of earth and rockfill dams, but seldom touched in the literature.

2. Numerical manifold space

We first recapitulate the numerical manifold method (NMM) invented by Shi [19]. Suppose X is the problem domain. To
be clear, we confine ourselves to two dimensional cases. X may keep invariant as in most applications, may deform in space
due to being loaded, or may have some internal or external free boundaries that are unknown a priori. Internal free bound-
aries arise in the elastic–plastic analysis, the unsaturated seepage analysis, and so on.

To fit itself to the uncertainty of X, the NMM introduces two cover systems, what are referred to as the mathematical
cover (MC) and the physical cover (PC), respectively. The MC is a collection of simply connected domains fMig,
i ¼ 1; . . . ;m, with each Mi called a mathematical patch, and m the number of all mathematical patches. fMig must be large
enough in size or sufficient in number to cover the whole X. Using the components of X, including the boundary, the material
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interface and the discontinuity, to cut Mi, and discarding those outside X, we obtain what are called physical patches,
denoted by Pi�j, j ¼ 1; . . . ;ni, with ni the number of patches cut off from the same Mi. All Pi�j constitute the PC.

Here is an example. Shown in Fig. 1 is the problem domain X, containing a material interface AB and a reentrant angle K.
Now let’s cover X with three mathematical patches, M1 – a big cycle, M2 – a small cycle, and M3 – a rectangle. Then, we use
X’s components to cut M1, and obtain two physical patches P1�1 and P1�2 illustrated in Fig. 2. Proceeding such as this, we
create other two groups of physical patches shown in Figs. 3 and 4, respectively.

According to the partition of unity theorem [20], we can always construct a collection of weight functions, fNiðrÞg,
satisfying
NiðrÞ ¼ 0; if r R Mi; ð1:1Þ

0 � NiðrÞ � 1; if r 2 Mi; ð1:2Þ

Xn

i¼1

NiðrÞ ¼ 1; if r 2 X: ð1:3Þ
fNiðrÞg is collectively called the partition of unity subordinate to the MC fMig, and each NiðrÞ can be made arbitrarily smooth.
By restricting fNiðrÞg subordinate to the MC fMig onto the PC fPi�jg, we obtain the partition of unity fNi�jðrÞg subordinate

to the PC fPi�jg. Therefore, all Pi�j generated from the same patch Mi may have the same expression as NiðrÞ if they are not
separated during solution. Because Ni�jðrÞ vanishes outside Pi�j, Pi�j is also said to be the support of Ni�jðrÞ.

To be convenient for statements and programming, we code all Pi�j and Ni�jðrÞwith single subscripts, and denote them by
Pk and NkðrÞ, respectively, k = 1, . . . ,n, with n being the number of all physical patches.
K

A

B

M1
M2

M3

Fig. 1. Problem domain and mathematical cover.

P1-1

P1-2
K

A

Fig. 2. Two patches P1–1 and P1–2 from M1.

P2-1
P2-2

A

Fig. 3. Two patches P2–1 and P2–2 from M2.

P3-1

P3-2

B

Fig. 4. Two patches P3–1 and P3–2 from M3.
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To this point, the most salient difference between the NMM and the partition of unity method (PUM) [21] is that the cover
in the NMM can be variable both in shape and in topology; while in the PUM the cover is variable only in shape. The initial
cover (the physical cover, actually) in the NMM is generated from a predefined mathematical cover. Then, the physical cover
may change as X evolves. The changes of the physical cover include deformation in shape, and separation due to the break-
age of X (leading to topological change of the physical cover). Since the predefined mathematical cover is deemed full of the
whole space, whenever necessary, the physical cover can be recreated from the mathematical cover so as to guarantee the
interpolation accuracy in solution. It is the introduction of the two separate cover systems that facilitates the solution of con-
tinuous and discontinues deformation in a unified context, and simplifies the treatment of drastic singularity in the free sur-
face. We will see this in example 7.2.

On each physical patch Pi we define a function space, called the patch space ViðPiÞ. Each function in Vi, called a patch func-
tion, should reflect as far as possible the local behavior of the solution on Pi. For example, the patch P1�1, see Fig. 2, contains
the reentrant angle K. Near the point K the solution has some singularity dependent on the magnitude of the reentrant angle.
Then, the patch functions on P1�1 should better include such singularity. In case that the asymptotic behavior of the solution
on patch Pi is not familiar to us, a natural choice for Vi is the polynomial space, while zero-degree polynomials, i.e., constants,
are the most frequently selected.

The test or trial space over the problem domain X in the Galerkin variational formulation, called the NMM space and
denoted by VðXÞ, is constructed by pasting together all patch spaces Vi through the partition of unity fNiðrÞg, as follows
VðXÞ ¼
Xn

i¼1

NiVi �
Xn

i¼1

Niv i

�����v i 2 Vi

( )
: ð2Þ
We mention that the NMM space in the form of Eq. (2) is actually the Lagrange form that is usually fit for the second-order
problems. For the fourth-order problems, we should take the NMM space of the Hermite form, see [22] for details.

In principle, the construction of mathematical covers is diverse. However, almost all applications and developments of the
NMM in the literature create their mathematical covers from the finite element meshes, see [23–25] for details. To get rid of
constraints from the finite element meshes, in this study the mathematical cover consists of all the supports of MLS-based
shape functions, which can be referred to [18] for the construction.

3. Description of the problem in PDE form

Without loss of generality, as an example, we take the seepage flow of a soil dam illustrated in Fig. 5, in which water is
considered to flow only in the saturated domain, not taking into account the capillarity effects as in [26]. Compared with the
unconfined seepage analysis, the unsaturated seepage analysis is weaker in nonlinearity because it has no issue of shifting
the free surface. But the unsaturated seepage analysis needs more soil parameters that are obtained by quite sophisticated
experiments. The results based on the saturated seepage assumption usually satisfy the requirements in the stability anal-
ysis of soil dams. Therefore, the saturated seepage analysis has been playing a major role in dam and embankment engineer-
ing. In addition, the free surface resulting from the saturated seepage analysis can be made more practical through a
correction proposed by Parlange and Brutsaert [27].

The total head at a point in the flow domain Xw is defined as
/ ¼ yþ p=cw; ðin XwÞ; ð3Þ
in which y is the ordinate, p the pore water pressure, and cw the unit weight of water.
Suppose that in the flow domain Xw Darcy’s law is satisfied
v ¼ Di: ð4Þ
Here, D is the permeability tensor of second order; and i is the hydraulic gradient defined by
i ¼ �r/; ð4:1Þ
y=h

A

B D

E

FG

Ωw

Ωd

C

y=H

Fig. 5. Schematic for unconfined seepage.
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with r the gradient operator.
The flow of water in Xw obeys the equation of continuity
r � v ¼ 0; ðin XwÞ; ð5Þ
and the boundary conditions as follows.
The water head boundary condition
/ ¼ �/; ðon C/ ¼ ABþ CDÞ; ð5:1Þ
where �/ equals H on the upstream surface AB and h on the downstream surface CD, with H and h being the ordinates of the
water levels, respectively, see Fig. 5.

The flux boundary condition
nTv ¼ 0; ðon Cq ¼ BCÞ; ð5:2Þ
in which n denotes the unit normal outward vector of the boundary.
The boundary condition on the free surface
/ ¼ y

ðon Cf ¼ AEÞ
nTv ¼ 0

8><
>: : ð5:3Þ
The boundary condition on the seepage surface
/ ¼ y ðon Cs ¼ DEÞ: ð5:4Þ
The continuity condition on the material interface
/þ ¼ /�

ðon CmÞ
nTvþ ¼ nTv�

8><
>: ; ð5:5Þ
where the subscripts ‘‘+’’ and ‘‘�’’ refer to the quantities on Cm but belonging to the two distinct domains adjoining along Cm,
respectively.

If all the above conditions are satisfied, we can prove that
nTv � 0; ðon Cs ¼ DEÞ; ð5:6Þ
see [10] for details.
Since the free surface Cf is unknown a priori, to locate Cf is a primary goal in the seepage analysis.

4. The primal mixed variational formulation

Given Xw, we can construct two variational formulations associated with the above PDE formulation, where the free sur-
face Cf is regarded as the flux boundary and the water head boundary, respectively. Regarding Cf as the flux boundary leads
to the functional
p1ð/; qnÞ ¼
X

k

Z
Xk

1
2

iTvdXþ
Z

C1
/

ð/� �/ÞqndSþ
Z

Cm

/þ � /�
� �

qndS; ð6Þ
where C1
/ ¼ C/ þ Cs, with �/ ¼ y on Cs.

Regarding Cf as the water head boundary gives the functional
p2ð/; qnÞ ¼
X

k

Z
Xk

1
2

iTvdXþ
Z

C2
/

ð/� �/ÞqndSþ
Z

Cm

/þ � /�
� �

qndS; ð7Þ
where C2
/ ¼ C/ þ Cs þ Cf , with �/ ¼ y on Cs þ Cf . We note that i and v in pi are related to / by Eqs. (5) and (4) respectively.

It can be proved that
dpið/; qnÞ ¼ 0; ð8Þ
for i = 1, 2, is equivalent to the PDE formulation in the preceding section. Since both the primal function / and the gradient-
based function qn are independent, the two formulations given by Eq. (8) are primal mixed formulations.

What differs from the conventional primal formulation is that all the essential conditions in the primal formulation,
including the water head boundary condition and the interface continuity condition, become the natural conditions in both
p1 and p2. Here are two reasons for us to propose the two primal mixed formulations. On the one hand, in general the MLS-
based shape functions do not have the delta property. On the other hand, even if the MLS-based shape functions have the
delta property, the nodes do not necessarily match the problem domain. To guarantee the interpolation precision and to
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consider the potential deformation of the problem domain, as stated subsequently, usually the NMM deploy regularly-
distributed nodes in space and do not pay too much attention to the details of the problem domain, causing the nodes might
not match the problem domain. The two reasons prohibit the essential boundary conditions from being enforced directly.

As an aside, in the NMM the solution precision is totally determined by the configuration of the mathematical cover.
Whether the nodes match the problem domain has little effect on the solution precision. This is considered another advan-
tage of NMM over other numerical methods; see [22] for details.

Both the two variational formulations will be used subsequently. p1ð/; qnÞ is used to solve for / and qn, while p2ð/; qnÞ to
check the accuracy of solutions.

Proof. Firstly, we calculate dpið/; qnÞ
dpi ¼
X

k

Z
Xk

diTvdXþ
Z

Ci
/

qnd/dSþ
Z

Cm

qn d/þ � d/�
� �

dSþ
Z

Ci
/

ð/� �/ÞdqndSþ
Z

Cm

/þ � /�
� �

dqndS: � ð9Þ
Using the identity for a typical material domain Xk,
Z
Xk

diTvdX ¼ �
Z

Xk

ðrðd/ÞÞTvdX ¼
Z

Xk

ðd/Þr � vdX�
Z
@Xk

ðnTvÞd/dX;
and considering
@Xk ¼ Cik
/ þ Cik

q þ Ck
m;

X
k

Cik
/ ¼ Ci

/;
X

k

Cik
q ¼ Ci

q; and
X

k

Xk ¼ Xw;
with
Cik
q ¼

Ck
q þ Ck

f ; i ¼ 1

Ck
q; i ¼ 2

(
;

and
Ci
q ¼

Cq þ Cf ; i ¼ 1
Cq; i ¼ 2

�
;

and
X
k

Z
Ck

m

nTv
� �

d/dS ¼
Z

Cm

nTvþ
� �

d/þ � nTv�
� �

d/�
� �

dS;
due to n ¼ nþ ¼ �n�, the first item of the right hand of Eq. (9) becomes
X
k

Z
Xk

ðdiÞTvdX ¼
Z

Xw

ðd/Þr � vdX�
Z

Ci
q

nTv
� �

d/dS�
Z

Ci
/

nTv
� �

d/dS�
Z

Cm

nTvþ
� �

d/þ � nTv�
� �

d/�
� �

dS: ð10Þ
Substituting Eq. (10) into Eq. (9), we have
dpi ¼
Z

Xw

ðd/Þr � vdX�
Z

Ci
q

nTv
� �

d/dSþ
Z

Ci
/

qn � nTv
� �

d/dSþ
Z

Cm

qn � nTvþ
� �

d/þ � qn � nTv�
� �

d/�
� �

dS

þ
Z

Ci
/

ð/� �/ÞdqndSþ
Z

Cm

/þ � /�
� �

dqndS: ð11Þ
Putting dpið/; qnÞ = 0, not only are equations from (5), (5.1)–(5.6) reproduced, but qn is recognized as the flux through a
boundary point with normal n, that is to say,
qn ¼ nTv ; on Ci
/ or Cm:
As a result, qn � 0 on Cs due to (5.6).

5. The numerical manifold formulation

We deploy the MLS nodes over the whole dam domain X. These nodes do not have to match the boundary or the material
interface, and they are even allowed to be outside X, as long as they can influence X. Hereafter, by ‘‘a node, say node-i, influ-
ences X’’ we mean ‘‘the support of node-i’s shape function intersects with X’’. Associated with node-i is the circle Mi of finite
diameter. Outside Mi the node-i’s shape function vanishes. Mi is accordingly called the support of the node-i’s shape function.
The collection of all Mi constitutes the mathematical cover of X.
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Now we cut all Mi with the components of Xw, including the assumed free surface, and obtain the physical cover, fPkg. We

denote by Nk
/ðrÞ

n o
the partition of unity subordinate to fPkg. Actually, Nk

/ðrÞ
n o

are the shape functions of all nodes.

Each patch Pk is also referred to as the influence domain of node-k.
It should be pointed out that such a cutting operation is only in a theoretical sense, but actually no cutting operation is

involved if the integrations in pið/; qnÞ are numerically calculated over a background net [28]. More specifically, whenever an
Mi is to be divided by a material interface Cm into, say 2 patches belonging to two distinct material domains respectively, see
Fig. 6(a), what we need to do is generate a new node index, say i0, and attach i0 to the newly generated patch Pi0 (the shad-
owed part in Fig. 6(b)). In this way, we have two nodal indices, i (original) and i0 (newly generated), associated with the two
distinct patches Pi and Pi0 respectively, see Fig. 6(b). Pi0 and Pi have the same center, but we never really form Pi0 but assign it a
new nodal index i0. We call all these nodes for interpolating variable / as /-nodes, including the original nodes and the newly
generated nodes, each of which is associated with a physical patch. Consequently, the proposed procedure is easy and
straightforward to implement.

By using Nk
/ðrÞ

n o
, we approximate the water head / in pið/; qnÞ by
/ ¼
X

k

/kNk
/ðrÞ; ð12Þ
with /k ¼ /ðrkÞ and rk = position vector of node-k. For simplicity, here we take the functions in all patch spaces Vk as con-
stants. However, we mention that it is feasible and salutary to exploit the local behavior derived by Aalto [29] if higher pre-
cision is sought.

As for another independent variable qn defined on the material interface Cm and the water boundary Ci
/ in pið/; qnÞ of Eqs.

(6) and (7), we also deploy nodes, called q-nodes, on Cm and Ci
/, with the same density as the /-nodes. With the q-nodes, we

approximate qn by
qn ¼
X

j

qj
nNj

qðrÞ; ð13Þ
with Nj
qðrÞ being piecewise linear interpolant of the q-node indexed by j.Substituting equations (12) and (13) into Eq. (9) and

putting dpið/; qnÞ = 0, we have its NMM formulation
K C
CT 0

� 	
u

q


 �
¼

f u

f q


 �
; ð14Þ
where / = vector formed by / of all relevant /-nodes; q = vector of qn of all q-nodes. The sub-matrices and vectors involved
are defined as
K ¼ ðKIJÞ; KIJ ¼
Z

X

X
i;j

Dij
@NI

/

@xi

@NJ
/

@xj
dX; ð14:1Þ

C ¼ ðCIKÞ; CIK ¼
R

Ci
/

NI
/NK

q dS; if node K 2 Ci
/

sgnðIÞ
R

Cm
NI

/NK
q dS; if node K 2 Cm

8<
: ; ð14:2Þ

f / ¼ 0; ð14:3Þ

f q ¼ f I
q

� 
; f I

q ¼
Z

Ci
/

NI
q
�/dS; ð14:4Þ
iM m

(a) Influence domain Mi to be cut by Γ

Γ Γ

m

iP

iP′

m

(b) Two patches cut by Γm

Fig. 6. Two patches generated from node-i’s influence domain.
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with
sgnðIÞ ¼ þ1; if I 2 Xþm
�1; if I 2 X�m

(
: ð14:5Þ
Here, Xþm and X�m represent the two material domains separated by Cm respectively.
Since all the boundary conditions and the continuity conditions on the material interface have turned into the natural

conditions of dpið/; qnÞ = 0, we can directly solve system (14) with no need to introduce the boundary conditions.
The systems similar in form to Eq. (14) arise from many applications, and are usually called the KKT systems. In general,

the flow matrix K in Eq. (14) has a rank deficiency of r, with r being the number of distinct material domains in Xw. Now
there have been numerous algorithms for such systems. For example, Zheng and Li [30] developed an efficient and stable
direct solver for the KKT system.

6. The update strategy for free surfaces

By regarding a potential free surface Cf as the flux boundary, one solves numerically a boundary value problem for /. If
/ � y on Cf , the iteration is terminated. Otherwise, one shifts Cf in the vertical direction and repeats the process till / � y on
Cf . This is the update strategy proposed in most of the existing works; see [8] for example. By this procedure, one frequently
has to discard some points on the moving free surface that go outside the problem domain, causing troubles in programming.
Moreover, when the free surface has a nearly vertical segment, the solution is hard to converge unless extremely dense
meshes are adopted.

For simplicity of the statements, hereafter solving dp1ð/; qnÞ ¼ 0 refers actually to solving its discretized version, i.e., sys-
tem (14).

To improve the robustness of updating the free surface, we propose the update strategy as follows.

(1) Determine a line segment representing the potential seepage face, say DF shown in Fig. 7, on which the exit point of
the free surface will be. Then, find out the intersection H of the downstream line DF and the upstream line BG. Note
that the entrance point A of the free surface is on the upstream surface BG.

(2) Select a point on the seepage face DF, say point E, as an initial guess of the exit point of the free surface, and then link
points A and E, obtaining a line segment AE that will be viewed as an initial guess of the free surface.

(3) Divide the initial free surface AE into some intervals with distinct points Q 1, Q 2, . . . ,Q s.
(4) Link point H with points Q 1, Q 2, . . . ,Q s, obtaining a group of rays HQ 1, HQ 2, . . . ,HQs. From now on, points Q 1,

Q 2, . . . ,Q s, will move along these rays as the iteration proceeds.

Once the above preparation is finished, we solve dp1ð/; qnÞ = 0 for / and qn with the assumed free surface AE. Then, we
check if
d ¼max
i
jdij < e; ð15Þ
holds. Here, e is the user-specified tolerance, and
di ¼ /ðQ iÞ � yðQ iÞ; ð15:1Þ
i ¼ 1; . . . ; s. /ðQ iÞ is the value of water head at point Q i calculated by Eq. (12), and yðQ iÞ is the ordinate of point Q i. If Eq.
(15) is satisfied, we terminate the solution. Otherwise, we move point Q i along the ray HQ i to point Q 0i, as illustrated in Fig. 8.
Here, Q 0i is the intersection of the ray HQ i and the line Q 0iNi that passes point Ni and is parallel to the free surface’s tangent at
point Q i. Point Ni is on the same vertical line as Q i but has a distinct ordinate as
Q2

C

B

A
G F

E
D

H

Q1

Qs

Fig. 7. Updating paths for the free surface.
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Fig. 8. Update to a point on the free surface.
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yðNiÞ ¼ yðQ iÞ þxdi: ð16Þ
Here, x is a scaling factor that will be explained subsequently.
Fig. 8 schematically illustrates the update to a typical point Q i on the current free surface (the solid line), where the dot

line represents the new location of the free surface after the update. Clearly, the update process defined in the above guar-
antees that all initially deployed points on the free surface, Q 1, Q 2, . . . ,Q s, are kept inside the dam domain during iteration,
avoiding troubles in treating Q i going outside the dam domain.

The idea in the update strategy is that the variation of the free surface between two consecutive iterations is so small that
the current point Q i and its update in the vertical direction, point Ni, see Fig. 8, have nearly parallel tangents. In order to
guarantee the small variation of the free surface in two consecutive iterations, we stipulate the maximum vertical variation
of the current free surface in the next iteration is not greater than a user-specified length q. Clearly, this can be readily imple-
mented in this way. If d � q, see Eq. (15) for the definition of d, let the scaling factor x = 1 in Eq. (16). Otherwise, let x ¼ q=d.
In general, q can be given quite a large initial length, say 20 percent of the dam height, so that the update step is large
enough. If the solution fails to converge, q is halved till the convergence reaches.

However, the strategy is for updating the inner points of the free surface, Q 1, Q 2, . . . ,Q s, but cannot be used to shift the
exit point E of the free surface. This is because point E has been given a water head equal to its ordinate prior to solving sys-
tem (14). In the literature on the adaptive mesh methods, the exit point E is determined by extrapolating the last two points,
Q s�1 and Q s, on the current free surface, causing the deterioration in precision.

In Section 4 we have pointed out that the real solution has the property that qn > 0 on the whole seepage face except the
exit point E. At point E, qn ¼ 0. Using this fact, we can readily locate the exit point E by interpolation or extrapolation to qn.
We are justified for doing so because qn is not calculated by differentiating water head / but rather it is another variable
independent of /. As a result, qn is accurate enough to assure the location of the exit point E is accurate as well.

We mention that Kazemzadeh and Daneshmand [12] also preset some shifting paths so that the distinct points, Q 1,
Q 2, . . . ,Q s, on the potential free surface, are kept inside Xw. On the one hand, however, their adjustment to Q 1, Q 2, . . . ,Q s

is not as sophisticated as in this study. On the other hand, their adjustment to the exit point of the free surface is different
from what are described in the above, because in [12] qn on the potential seepage surface is not an independent variable.

7. Illustrative examples

In generating the MLS-based shape functions fNk
/ðrÞg, the linear basis, {1,x,y}, is adopted in this study. We also tried the

quadratic basis but yielded little differences. The weight function of the kth /-node is defined as
wkðrÞ ¼
1� 6r2 þ 8r3 � 3r4; if r < 1
0; if r � 1

(
; ð17Þ
with
r ¼ 1
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xkÞ2 þ ðy� ykÞ

2
q

:

Here, R is radius of the influence domain of the kth /-node and ðxk; ykÞ the coordinate of node. Because the linear basis has a
dimension of three, R should be large enough such that any point (usually a Gaussian point) in X is contained in the influence
domains of at least three /-nodes that are not in the same line, see [18] for details.

For all the following examples, /-nodes are evenly deployed in both x- and y-directions. Denoting by S the span of
/-nodes, we take R = 2S. Improvements in precision are limited when R varies between 2S and 5S, but the band width of
matrix K increases considerably.

7.1. A homogeneous rectangular dam

Shown in Fig. 9 is the cross-section of a homogeneous rectangular dam resting on an impervious layer. This is one of very
few examples that have analytical solutions in the unconfined seepage analysis. The analytical solution was given by
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Fig. 9. A homogeneous dam (S = 0.05).
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Polubarinova-Kochina [31] in the elliptic integral form of the first kind, but so complicated in calculation that it was seldom
used as a reference to test numerical methods until Hornung and Krueger [32] gave accurate numerical results in a series of
tables and graphs.

Fig. 9 also displays the flow net with a /-nodes span given in the blanket, (S = 0.05). Table 1 lists the distinct points on the
final free surface, suggesting the proposed solution is in good agreement with the analytical solution.

7.2. An inhomogeneous rectangular dam

Shown in Fig. 10 is the configuration of a rectangular dam with two vertical layers resting on an impervious foundation.
Since Oden and Kikuch [8], this example has been used as a benchmark by many researchers to test the ability of their
numerical methods to treat drastic singularity in the free surface.

This example is also an excellent paradigm to show the necessity to formulate the EFGM in the setting of the NMM, where
the free surface takes on drastic singularity. Now we explain this as follows. It can be expected that the free surface will turn
Table 1
Coordinates of some points on the free boundary (Ex-1).

x y x y

Analytic Proposed Analytic Proposed

0.00 1.000000 1.000000 0.30 0.859969 0.859755
0.05 0.986242 0.986092 0.35 0.823876 0.823290
0.10 0.967625 0.967407 0.40 0.782493 0.782228
0.15 0.945590 0.945669 0.45 0.733142 0.732739
0.20 0.920382 0.920391 0.50 0.662382 0.659618
0.25 0.891939 0.891769 n n n

10

2.5

2

2.5

k=1

k=10

Fig. 10. Rectangular dam with two vertical layers.



(a) Comparison of free surfaces (b) Flow net of the proposed (S=5/12) 

Fig. 12. Comparison between the proposed and others.

Fig. 11. Node configurations in EFG and NMM.
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abruptly downward after penetrating through the material interface. If the EFGM is adopted alone, where all relevant nodes
match Xw, the preset nodes in the narrow region between the material interface and the free surface, see Fig. 11(a), become
insufficient to influence the Gaussian points in the narrow region, causing an interrupt in calculating the MLS-based shape
functions. In calculating the shape functions at a Gaussian point, as is well known, the MLS requires that the Gaussian point
be contained in the influence domains of at least three nodes if the linear basis is adopted. During the solution, in principle
we can provisionally add some new nodes into the narrow domain in Fig. 11(a). In practice, however it is by no means an
easy errand. On the one hand, these newly added nodes must be in the narrow region but not on the same line, causing the
programming laborious. On the other hand, it is absolutely arduous to deploy new nodes within a narrow region so as to
assure accuracy and stability. Instead, the NMM presets the nodes throughout X at the best points for the best interpolation
precision. During the update of the free surface, some nodes are outside Xw, but still those nodes near the free surface can
influence the narrow domain, see Fig. 11(b), and occupy the best locations for interpolation. Therefore, the introduction of
the NMM to the EFGM simplifies the programming significantly and assures accuracy and numerical stability of solution.

While this example has been solved by so many numerical methods, see Fig. 12 for the positions of the free surface eval-
uated by different methods, no comparisons have been made between these methods. Now that no analytical solution is
available for this example, we here utilize such a fact that the rate of flow quantity through distinct vertical sections in
the dam should be equal in theory, as follows
QðxÞ ¼
Z yF

0
vxdy ¼ constant;
along the axis x. Here, yF = ordinate of the free surface with the abscissa x.
Fig. 13 displays the distributions of flow quantity rate along the axis-x, which are obtained by regarding the final free sur-

face as the impervious boundary. Fig. 14 shows the same distributions as Fig. 13 but they are obtained by regarding the final
free surface as the water head boundary and solving dp2 ¼ 0. From the two graphs, we can see that the results from
Kazemzadeh and Daneshmand [12] and the proposed procedure perform better. Having smoothed the gradient of water
head, in order to reach higher precision, Kazemzadeh and Daneshmand [12] accurately calculate the flow matrices of those
elements cut by the free surface. This causes the programming to get involved. In this study the calculation of the flow
matrices is carried out on the background net. Using the background grid would marginally sacrifice precision in calculating



Fig. 13. Flow quantity distribution by regarding free surface impervious.

Fig. 14. Flow quantity distribution by regarding free surface as water head boundary.
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the flow matrices but greatly simplify the programming. Therefore, the combination of the NMM and the EFGM achieves an
excellent effect in treating the drastic singularity of the free surface. The flow net is displayed in Fig. 12(b).
7.3. A trapezoidal ditch underlain by a drain at a finite depth

Shown in Fig. 15 is a trapezoidal ditch underlain by a drain at a finite depth, marked by shifting paths of some distinct
points on the potential free surface. The example was also analyzed by some researchers, among which is Kazemzadeh
and Daneshmand [12].
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Fig. 15. Seepage under a symmetric trapezoidal ditch (unit: ft).
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By the classical FEM alone, it is hard to reach a convergent solution to this example. This might be caused by the fact that
the free surface is, as a whole, nearly vertical.

Adopting the smoothed finite element method, Kazemzadeh and Daneshmand [12] made great efforts to solve this exam-
ple, where sophisticated techniques are proposed for suppressing the zigzag of the free surface in iterations.

By the proposed procedure, no particular treatment is taken during iteration. Fig. 16 shows the flow net.
7.4. An earth and rockfill dam with sloping core

Finally, let’s consider seepage flow through an earth and rockfill dam with complicated structures of seepage control,
including a sloping core and a horizontal drain, see Fig. 17 for details, where the dam rests on a slightly permeable founda-
tion whose bedding plane is inclined to the horizontal.

Seepage control is of utmost importance in the design of earth and rockfill dams. When a sloping central core is built
inside the earth and rockfill dam, the seepage analysis is so complicated that all calculations, such as plotting of flow nets
and evaluation of flow quantity rate, are based on rough approximations and empirical formulae, see [33] for example.

The difficulties in the seepage analysis of such a dam type are caused by the discontinuity of the free surface. Due to the
permeability contrast within the dam, an internal seepage face develops along the interface between the sloping core and the
rest behind the core. Because of this, we can anticipate the development of a partially saturated region beneath the over-
hanging slope. Since the proposed procedure is not designed to treat unsaturated flow, the problem arises as to how much
of this flow moves vertically downward to the free surface and how much moves laterally above the saturated zone to the
horizontal drain. Neuman and Witherspoon [34] can be consulted for more detailed explanation.
Fig. 16. Results of seepage under the trapezoidal ditch (S = 1).
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k=50

k=0.01
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Fig. 17. A dam with sloping core and horizontal drain on a slightly permeable foundation.

Fig. 18. Flow net of the earth and rockfill dam (S = 2).
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Now we solve this problem by considering all water that flows across the overhanging seepage face is totally lost. The
resulting free surface is the lower limit of the actual free surface. Such a treatment is on the safe side in the stress analysis,
because the hydraulic gradient in the core is overestimated, causing the seepage force to be overestimated.

It should be noted that in iterations the directions of shifting vary from nearly horizontal along the drain to a direction
that is parallel to the interface between the two parts of the dam. Shifting the free surface is done independently in each part
of the dam.

Shown in Fig. 18 is the flow net, from which we can see the streamlines are very well perpendicular to the equipotential
lines.

8. Conclusions

The element-free methods, like the EFGM, are powerful in solving the free boundary problems. However, high accuracy
cannot be achieved by simply using the shape functions with the interpolation property; instead, the essential boundary
conditions and the interface continuity conditions must be enforced in the sense of the Lagrangian multiplier. The free
surface, as well as the seepage point, can be shifted smoothly in iteration by the update strategy proposed in this study.
Meanwhile, the EFGM in the framework of the NMM becomes more efficient and more stable in solution, but easier in pro-
gramming. It is expected that the combination of the EFGM and the NMM is beneficial to solving more complicated free
boundary problems.
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