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This paper presents a theoretical study on the influence of a discrete element in the non-
linear dynamics of a continuous mechanical system subject to randomness in the model
parameters. This system is composed by an elastic bar, attached to springs and a lumped
mass, with a random elastic modulus and subjected to a Gaussian white-noise distributed
external force. One can note that the dynamic behavior of the bar is significantly altered
when the lumped mass is varied, becoming, on the right extreme and for large values of
the concentrated mass, similar to a mass-spring system. It is also observed that the system
response is more influenced by the randomness for small values of the lumped mass. The
study conducted also show an irregular distribution of energy through the spectrum of fre-
quencies, asymmetries and multimodal behavior in the probability distributions of the
lumped mass velocity.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

A couple of engineering structure has small parts whose dimensions are negligible compared to the entire structure, but
its presence induces significant effects on its behavior. In this situation it is common to model the structure as a continuous
system with discrete elements coupled. The open literature reports studies that use such continuous/discrete models for the
analysis of drillstrings [1], carbon nanotubes [2,3], naval structure-motor coupling [4], beams coupled with springs [5,6], a
damper [7] and/or a discrete mass [8], etc.

Like any computational model, these continuous/discrete models are subjected to uncertainties. These uncertainties are
due to the variability of the model parameters (physical constants, geometry, etc), and mainly due to the possible inaccura-
cies committed in the model conception (wrong hypotheses about the physics) [9–11].

In this sense, this work intends to analyze the influence of discrete elements in a continuous mechanical system subjected
to randomness in the model parameters. For this, it is considered a one-dimensional elastic bar, with random elastic mod-
ulus, fixed on the left extreme and with a lumped mass and two springs (one linear and another nonlinear) on the right
extreme, with viscous damping, and subjected to an external force which is proportional to a Gaussian white-noise. The the-
oretical study developed aims to illustrate a consistent methodology to analyze the influence of coupled discrete elements
into the stochastic dynamics of nonlinear mechanical systems. The results of this study complement a series of preliminary
studies made on the same subject [12–15].
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Fig. 1. Sketch of a bar fixed at one end, and attached to two springs and a lumped mass on the other extreme.
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The work is organized as follows. The Section 2 presents the deterministic equation of the model, its variational form, and
the discretization procedure used to solve it. The stochastic modeling of the problem is shown in Section 3, as well as the
construction of a probability distribution for the elastic modulus, using the maximum entropy principle. In the Section 4,
some configurations of the model are analyzed in order to characterize the effect of lumped mass in the nonlinear dynamical
system. Finally, in the Section 5, the main conclusions are emphasized.

2. Deterministic modeling of the mechanical system

2.1. Strong form of the initial-boundary value problem

The mechanical system that will be studied in this work is presented Fig. 1. It consists of an elastic bar for which the left
side is fixed at a rigid wall, and the right side is attached to a lumped mass and two springs (one linear and one nonlinear).
For simplicity, from now on, this system will be called the fixed-mass-spring bar or simply the bar.

The bar displacement field1 u, which depends on the position x and the time t, evolves, for all ðx; tÞ 2 ð0; LÞ � ðt0; tf �, accord-
ing to
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where q is mass density, A is the cross section area, c is the damping coefficient, E is the elastic modulus, k is the stiffness of
the linear spring, kNL is the stiffness of the nonlinear spring, m is the lumped mass, and f is a distributed external force, which
depends on x and t. The symbol dðx� LÞ denotes the delta of Dirac distribution at x ¼ L, where L is the bar length.

The boundary conditions for this problem are given by
uð0; tÞ ¼ 0; and EA
@u
@x
ðL; tÞ ¼ 0 ð2Þ
and the initial position and the initial velocity of the bar are
uðx; t0Þ ¼ u0ðxÞ; and
@u
@t
ðx; t0Þ ¼ v0ðxÞ; ð3Þ
u0 and v0 being known functions of x, defined for 0 6 x 6 L. For instance,
u0ðxÞ ¼ a1/3ðxÞ þ a2x; and v0ðxÞ ¼ 0; ð4Þ
where a1 and a2 are constants, and /3 is the third mode2 of the bar. Note that u0 reaches the maximum value at x ¼ L, see Fig. 2
for instance. This function is used to ‘‘activate’’ the spring cubic nonlinearity, which depends on the displacement at x ¼ L.

2.2. Weak form of the initial-boundary value problem

Let U t be a class of (time dependent) basis functions and W be a class of weight functions. These sets are chosen as the
space of functions with square integrable spatial derivative, which satisfy the essential boundary condition defined by Eq.
(2).

The weak formulation of the initial-boundary value problem above consists in finding, for all w inW, a displacement field
u in Ut such that the following equations are satisfied
Mð€u;wÞ þ Cð _u;wÞ þ Kðu;wÞ ¼ FðwÞ þ FNLðu;wÞ; ð5Þ
field u is implicitly assumed to be as regular as needed for the initial-boundary value problem of Eqs. (2) and (3) to be well posed.
ther details in the Section 2.4.



Fig. 2. This figure illustrates the graph of u0, the initial displacement of the bar.
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fMðuð�; t0Þ;wÞ ¼ fMðu0;wÞ ð6Þ
and
 fMð _uð�; t0Þ;wÞ ¼ fMðv0;wÞ; ð7Þ
whereM is the mass operator, C is the damping operator, K is the stiffness operator, F is the distributed external force oper-
ator, FNL is the nonlinear force operator, and fM is the associated mass operator. These operators are, respectively, defined as
Mð€u;wÞ ¼
Z L

0
qA €uðx; tÞwðxÞdxþm €uðL; tÞwðLÞ; ð8Þ

Cð _u;wÞ ¼
Z L

0
c _uðx; tÞwðxÞdx; ð9Þ

Kðu;wÞ ¼
Z L

0
EAu0ðx; tÞw0ðxÞdxþ kuðL; tÞwðLÞ; ð10Þ

FðwÞ ¼
Z L

0
f ðx; tÞwðxÞdx; ð11Þ

FNLðu;wÞ ¼ �kNL uðL; tÞð Þ3wðLÞ; ð12Þ

fMðu;wÞ ¼ Z L

0
qAuðx; tÞwðxÞdx; ð13Þ
where � is an abbreviation for time derivative and ’ is an abbreviation for spatial derivative.

2.3. Linear conservative dynamics associated

Consider the linear homogeneous equation associated to Eq. (5)
Mðu;wÞ þ Kðu;wÞ ¼ 0; ð14Þ
obtained when disposing the dissipation and the external forces acting on the mechanical system.
Assume that Eq. (14) has a solution of the form uðx; tÞ ¼ eimt/ðxÞ, where m is the natural frequency, / is mode and

i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit. Replacing this expression of u in Eq. (14), and using the linearity of the operators M and
K, one gets
�m2Mð/;wÞ þ Kð/;wÞ
� �

eimt ¼ 0; ð15Þ
which, since eimt – 0 for all t, is equivalent to
�m2Mð/;wÞ þ Kð/;wÞ ¼ 0; ð16Þ
a generalized eigenvalue problem.
In order to solve the generalized eigenvalue problem defined by Eq. (16), the technique of separation of variables is

employed, which leads to a Sturm–Liouville problem [16], with denumerable number of solutions. Therefore, this problem
has a denumerable number of solutions, all of then such as the following eigenpair ðm2

n;/nÞ, where mn is the n natural
frequency and /n is the n mode of the system.

Note that, the eigenfunctions f/ng
þ1
n¼1 span the space of functions which contains the solution of Eq. (16) [17]. Also, as can

be seen in [18], these eigenfunctions satisfy, for all m – n, the orthogonality relations given by
Mð/n;/mÞ ¼ 0 ð17Þ
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and
Kð/n;/mÞ ¼ 0: ð18Þ
The characteristics listed above made the modes of the system good choices for the basis function, when one uses a
weighted residual procedure [19] to approximate the solution of the nonlinear variational problem defined by Eqs. (5)–(7).

2.4. Modes and natural frequencies

According to [20], a fixed-mass-spring bar has its natural frequencies and the corresponding orthogonal modes shape
given by
mn ¼ kn
�c
L

ð19Þ
and
/nðxÞ ¼ sin kn
x
L

� �
; ð20Þ
where �c ¼
ffiffiffiffiffiffiffiffiffi
E=q

p
is the wave speed, and the kn are the solutions of
cot knð Þ þ
kL
AE

� �
1
kn
� m

qAL

� �
kn ¼ 0: ð21Þ
The first six orthogonal modes shape of the fixed-mass-spring bar with m ¼ 1:5 kg, whose the other parameters are pre-
sented in the beginning of Section 4, are illustrated in Fig. 3. In this figure each sub-caption indicates the approximated nat-
ural frequency associated with the corresponding mode.

2.5. Discretization of the model equations

The Galerkin method [21] is employed to approximates the solution of the variational problem given by Eqs. (5)–(7). In
this weighted residual procedure the displacement field u is approximated as
uðx; tÞ �
XN

n¼1

unðtÞ/nðxÞ; ð22Þ
where the basis functions /n are the orthogonal modes of the conservative and non-forced dynamical system associated to
the fixed-mass-spring bar, and the coefficients un are time-dependent functions. This results in the following system of non-
linear ordinary differential equations
M½ �€uðtÞ þ C½ � _uðtÞ þ K½ �uðtÞ ¼ f ðtÞ þ fNL _uðtÞð Þ; ð23Þ
supplemented by the following pair of initial conditions
uðt0Þ ¼ u0 and _uðt0Þ ¼ v0; ð24Þ
where uðtÞ is the vector of RN in which the n component is unðtÞ, M½ � is the mass matrix, C½ � is the damping matrix, K½ � is the
stiffness matrix. Also, f ðtÞ; fNL uðtÞð Þ;u0, and v0 are vectors of RN , which respectively represent the external force, the nonlin-
ear force, the initial position, and the initial velocity. The initial value problem of Eqs. (23) and (24) has its solution approx-
imated by Newmark method [21], in which a Newton–Raphson iteration is used to solve the nonlinear system of algebraic
equations that arises from the discretization.

3. Stochastic modeling of the mechanical system

3.1. Stochastic initial-boundary value problem

Consider a probability space ðH;APÞ, where H is sample space, A is a r-field over H and P is a probability measure. In
this probability space, the elastic modulus is assumed to be a random variable E : H! R, and the distributed external force a
random field F : ½0; L� � ½t0; tf � �H! R.

Due to the randomness of F and E, the bar displacement becomes a random field U : ½0; L� � ½t0; tf � �H! R, which evolves
according to
qA
@2U
@t2 þ c

@U
@t
¼ @

@x
EA

@u
@x

� �
� kU þ kNLU3 þm

@2U
@t2

 !
dðx� LÞ þ Fðx; t; hÞ: ð25Þ
This problem has boundary and initial conditions similar to those defined in Eqs. (2) and (3), by changing u for U only.
Furthermore, the partial derivatives now are not defined in the classical way, but in the mean square sense [22].



Fig. 3. The first six orthogonal modes and the corresponding (approximated) natural frequencies of a fixed-mass-spring bar with m ¼ 1:5 kg.
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3.2. Random external force modeling

The distributed external force acting on the bar is assumed as the form
3 The
4 Rem

instant
Fðx; t; hÞ ¼ r/1ðxÞNðt; hÞ; ð26Þ
where r is the force amplitude, /1 the bar first mode,3 and Nðt; hÞ is a Gaussian white-noise4 with zero mean and unit variance.
A typical realization of the random external force, given by Eq. (26), for fixed position, is shown in Fig. 4.

3.3. Random elastic modulus distribution

The elastic modulus cannot be negative, so it is reasonable to assume the support of E as the interval ð0;1Þ. Therefore, the
probability density function (PDF) of E is a nonnegative function pE : ð0;1Þ ! R, which respects the following normalization
condition
choice of the spatial shape of the excitation seek for a configuration that is physically plausible and simple. The first mode meets both requirements.
ember that a white-noise is a random process which all instants of time are uncorrelated. In other words, the behavior of the process at any given

of time has no influence on the other instants.



Fig. 4. This figure illustrates a realization of the random external force at x ¼ L.
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Z 1

0
pEðnÞdn ¼ 1: ð27Þ
Additionally, it is supposed that the expected value of E is a known (finite) real number, i.e.,
Z 1

0
EðnÞpEðnÞdn ¼ lE <1; ð28Þ
as well as the expected value of ln Eð Þ,
Z 1

0
ln Eð ÞpEðnÞdn ¼ lln Eð Þ <1; ð29Þ
being the latter requirement a sufficient condition to ensure that E�1 exists almost sure, and is a second order random var-
iable [9,10].

Following the suggestion of [9–11], the maximum entropy principle is employed in order to consistently specify pE. This
methodology chooses for E the PDF which maximizes the entropy function defined by
S pE½ � ¼ �
Z 1

0
InðpEðnÞÞdn; ð30Þ
subjected to the constraints given by (27)–(29). These restrictions effectively define the known information about E.
The gamma distribution is the one which solves the optimization problem above, and its PDF is given by
pEðnÞ ¼ 1ð0;1Þ
1
lE

1
d2

E

 ! 1
d2

E

 !
1

Cð1=d2
EÞ

n
lE

� � 1
d2

E

� 1

 !
exp � n

d2
ElE

 !
; ð31Þ
where 1ð0;1Þ denotes the indicator function of the interval ð0;1Þ;C indicates the gamma function, and dE is a type of disper-
sion parameter, such that 1 6 dE 6 1=

ffiffiffi
2
p

, defined as the ratio between the standard deviation and the mean of E.

3.4. Stochastic solver: Monte Carlo method

Uncertainty propagation in the nonlinear stochastic dynamics of the bar is computed by Monte Carlo (MC) method
[23,24]. This stochastic solver uses a pseudorandom number generator to obtain many realizations of E and F. Each one
of these realizations defines a new Eq. (5), so that a new weak problem is obtained. After that, these new weak problems
are solved deterministically, such as in Section 2.5. All the MC simulations reported in this work use 4096 samples to access
the random system.

4. Numerical experimentation

The numerical experiments presented in this section adopt for the system parameters the deterministic values shown in
Table 1. Also, the random variable E, is characterized by the mean lE ¼ 203 GPa and the dispersion dE ¼ 0:1.

The approximation to the solution of the weak initial-boundary value problem of Section 2.2, constructed as described in
the Section 2.5, uses 10 modes. As the 10th natural frequency of the system is � 23:08 kHz, a representative frequency band
of this dynamical system is B ¼ ½0;25� kHz. Thus, to analyze the dynamics of the system in this frequency band, it is adopted
a ‘‘temporal window’’ given by the interval ½t0; tf � ¼ ½0;20�ms.

For sake of reference, a deterministic (nominal) model, with E ¼ lE, and f ðx; tÞ ¼ r/1ðxÞ, is considered. Furthermore, a
parametric study, with m� ¼ f0:1;1;10;50g, is performed to investigate the effect of the end mass on the bar dynamics,
where the discrete-continuous mass ratio is defined as



Table 1
This table presents the deterministic (nominal) parameters used in the numerical simulations reported in this
work.

Parameter Value Unit

q 7900 kg/m3

A 625p mm2

L 1 m
c 5 kN/s
k 650 N/m
kNL 650 � 1013 N/m3

r 5 kN
a1 0:1 mm
a2 0:5� 10�3 –

Fig. 5.
several
version
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m� ¼ m
qAL

: ð32Þ
4.1. Evolution of the lumped mass velocity

The mean value of the lumped mass velocity, i.e, _UðL; �; �Þ, its nominal value, and an envelope of reliability, wherein a real-
ization of the stochastic system has 98% of probability of being contained, are shown, for different values of m�, in Fig. 5. By
observing this figure one can note that, as the value of lumped mass increases, the mean value tends to the nominal value.
That is, the system is ‘‘more random’’ for small values of m�.

Also, the analysis of Fig. 5 shows that, for large values of m�, the decay in the system displacement amplitude decreases
significantly, i.e., the system is not much influenced by damping as m� ! 1.

Explanations for the observations made in the preceding paragraphs of this section are provided by the analysis of the
system orbit in phase space, which is done in the Section 4.2.
This figure illustrates the mean value (blue line) and a 98% of probability interval of confidence (grey shadow) for the random process _UðL; �; �Þ, for
values of the discrete-continuous mass ratio. (For interpretation of the references to colour in this figure caption, the reader is referred to the web
of this article.)
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Furthermore, the amplitude of the confidence interval increases with time for all values of m�, i.e., the system uncertainty
at x ¼ L is greater in the stationary regime. This is evident in the first three graphs, but remains true in the fourth graph, and
is due to the accumulation of uncertainties with the increasing time.
4.2. Orbit of the lumped mass in the mechanical system phase space

The mean orbit, in the phase space, of the fixed-mass-spring bar at x ¼ L is shown, for different values of m�, in Fig. 6.
Distinct behaviors, for the different values of m� shown, can be observed.

For m� ¼ 0:1, the mean orbit is quite different from the ‘‘disturbed’’ nominal orbit observed. This is because the response
of the nominal system depends on the initial conditions for a long period, fact which is not observed for the other values of
m�. This explains why the mean velocity tends to the nominal velocity when m� increases.

The assertive made in the second paragraph of Section 4.1, about how the influence of the damping in the system
decreases, can be confirmed by analyzing the Fig. 6, since the mean orbit of the system tends from a stable focus to an ellipse
as m� increases. So, the limit behavior of the bar right extreme with m� ! 1 is a mass-spring system. This limit behavior,
which tends to a conservative system, occurs because, with the increasing of m�, most of the mass of the system becomes
concentrated at the right extreme of the bar. Thus, the bar behaves like a massless spring. Also, as the damping is distributed
along the bar and the mass of it became negligible, the viscous dissipation becomes ineffective.
4.3. Power spectral density of the lumped mass velocity

The energy distribution of the bar through the frequency spectrum can be seen in Fig. 7, which shows the mean power
spectral density (PSD) of the lumped mass (steady state) velocity and its nominal value.

The presence of the white-noise forcing excites the mechanical system in all frequencies of the band B. This is made evi-
dent by the various peaks in the mean PSD function, each one occurring in a frequency that is very close to a natural fre-
quency of the system. It is important to note that the peaks of the nominal and of the mean PSD occur practically at the
same frequencies. Once the forcing does not influence the natural frequencies, the only random parameter to promote
changes in natural frequencies is E, whose the randomness is reasonably low.
Fig. 6. This figure illustrates the mean orbit, in the phase space, of the fixed-mass-spring bar at x ¼ L, for several values of the discrete-continuous mass
ratio.



Fig. 7. This figure illustrates estimations to the PSD of the random process _UðL; �; �Þ, for several values of the discrete-continuous mass ratio.

Fig. 8. This figure illustrates estimations to the PDF of the (normalized) random variable _UðL; tf ; �Þ, for several values of the discrete-continuous mass ratio.
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Table 2
This table presents the probability of the normalized random variable
_UðL; tf ; �Þ be less than or equal to the mean,for several values of the
discrete-continuous mass ratio.

m� Probability

0.1 �0.52
1 �0.50
10 �0.28
50 �0.53
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A larger number of peaks can be seen in the high frequencies, but the peak with greater height, and thus, the more energy,
is always the first frequency of the spectrum. As the spatial dependence of the forcing is given by the first mode, as can be
seen in Eq. (26), the low frequency of the spectrum receives an ‘‘extra contribution’’ of energy beyond the white-noise.

However, as m� increases, the natural frequencies of the associated conservative system decrease, which is not observed
in the case of the bar. This difference in the system behavior, as well as irregular redistribution of energy along the spectrum,
when m� changes, may be due to cubic nonlinearity.

4.4. Probability density function of the lumped mass velocity

The difference between the system dynamical behavior is even clearer if one looks at the PDF estimations5 of the normal-
ized random variable _UðL; tf ; �Þ, which are presented in Fig. 8. Note that in this context normalized means a random variable with
zero mean and unit standard deviation.

In all cases the PDF presents an asymmetry around the (zero) mean as can be seen in the Table 2, which shows the
probability of the normalized random variable _UðL; tf ; �Þ be less than or equal to the mean, for several values of the
discrete-continuous mass ratio.

These asymmetries indicate if it is more probable the velocity be higher or lower than the mean, according to the area
under the PDF curve to the right or to the left of the mean, respectively. The observed values are in agreement with what
is seen in the envelopes of reliability of Fig. 5.

Furthermore, it is possible to observe a multimodal behavior in some of the PDFs shown in the Fig. 5. This multimodal
behavior indicates a high number of realizations close to the values that correspond to the peaks. Therefore, it can be con-
cluded that the regions near the peaks are areas of greater probability for the system response. Note that these areas change
irregularly when m� is varied.

5. Concluding remarks

This work presents a model to describe the nonlinear dynamics of a elastic bar, attached to discrete elements, with vis-
cous damping, random elastic modulus, and subjected to a Gaussian white-noise distributed external force. The elastic mod-
ulus is modeled as a random variable with gamma distribution, being the probability distribution of this parameter obtained
by the use of the maximum entropy principle.

An analysis of the model is performed, indexed by a dimensionless parameter which describes the ratio between the dis-
crete/continuous mass of the system. This analysis shows that the dynamics of the random system is significantly altered
when the values of the lumped mass are varied. It is observed that this system right extreme behaves, in the limiting case
where the lumped mass is very large, such as a mass-spring system. Also, one can note an irregular distribution of energy
through the spectrum of frequencies, maybe induced by the cubic nonlinearity. Furthermore, the probability distributions
of the lumped mass velocity present asymmetries and multimodal behavior, being this multimodality associated with the
existence of areas of greater probability for the dynamic system response.
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