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The buckling of an elastic thin film is studied in the light of an energy minimization
method. Specifically, a comprehensive treatment of the Rayleigh–Ritz method is presented.
Detailed mechanical modelling, analytical and numerical derivation of stability criteria,
physical interpretation of buckling shapes, numerical code implementation, and experi-
mental validations of selected simulations are addressed.

The thin film deflection is prescribed as a superposition of buckle functions to provide
displacement field parameterizations involving trigonometric functions. An energy mini-
mization procedure is applied to calculate the unknown coefficients to predict the buckling
shape and amplitude. Critical buckling values representing the thresholds for instability
transitions in the system are calculated from the eigenvalues of the Hessian of the potential
energy.

Comparison between simulation results and experimental measurements show the great
potential of this method to predict thin film buckling. The validated model is exploited by
derivation of a new design space for thin film fabrication where the post-buckling mechan-
ics is controlled.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The highly innovative field of microtechnology provides methods to incorporate mechanical, chemical, fluidic, thermal,
optical, or electronic functionality in micro-fabricated structures to allow for compact and efficient product designs.
Micro-fabricated devices are used in a wide range of industries, including applications in aerospace, the medical and
automotive as well as in robotics and electronics.

In microtechnology, the development of sophisticated membrane mechanics models arose from the need for safe
manufacturing and operation of thin film devices prone to different types of mechanical failures.

Although thin plate buckling is usually considered as a failure mode in many macro-scale product design [1], micro-
fabricated thin membranes often survive controlled post-buckling stresses as demonstrated, for example, in micro fuel cell
applications [2]. Moreover, in stretchable electronics technology, the required regular structures can be generated through
the mechanical buckling of thin films [3–5]. Specifically, the periodic wavy shaped membranes in many stretchable compo-
nents are obtained from controlled heating putting them under in-plane compressive stresses [6]. Therefore the study of thin
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film buckling is a topic of high practical importance. It provides the basis for the reliable design of thin membranes to fulfill
the functional requirements even in the buckled state.

When a thin film is deposited at high temperature on a rigid substrate, significant residual stresses usually arise in the
film upon cooling. These stresses can be attributed to the extrinsic effects like mismatch thermal expansion between the film
and the substrate. For example, compressive stresses arise in the film upon cooling when its thermal expansion coefficient is
smaller than that of the substrate. When the compressive stresses are high enough an instability transition takes place and
the thin film buckles.

However, buckling can also be driven by inter-granular attraction and repulsion associated with the specifics of thin film
deposition [7,8]. Other phenomena that impose intrinsic stresses are phase transformations inside the film, densification,
crystallization, and chemical association-dissociation [9].

As example, consider the pulsed laser deposition (PLD) where the deposited film exhibits different stresses depending on
the applied deposition conditions. The micro-fabricated fuel cell membranes shown in Fig. 1, for example, exhibits a com-
pressive stresses which cause the membranes to buckle, when deposited at 700 �C. On the other hand, the deposition at room
temperature initiates cracks which propagate in the brittle film causing rupture under tensile stresses.

The above example makes clear that the development of appropriate design rules for save manufacturing and operation
conditions is highly relevant in thin film technology. Within this context, a major concern in this context is to reduce the
number of required experimental data by the use of sophisticated numerical simulations allowing a high fidelity analysis
at low experimental costs. In this work, we present a validated model to predict membrane buckling and we show the
exploitation range of the implemented numerical method in the development of a design space for thin film
manufacturing.

We note from Fig. 1(b) that post-buckling stages of thin films exhibit symmetry breaking shapes of secondary bifurcation
and involve complex deformations. Specifically, a secondary buckling shape may exhibit multi-folds including branched sub-
folds with wrinkling deformations. Hence, the modelling of such complex buckling behavior and the numerical simulation of
the resulting post-buckling shapes are challenging and require advanced computational techniques.
1.1. State of research on thin film buckling

The numerical analysis of thin film buckling has been studied in several research groups by applying different approaches.
For example, in [11], Gioia et al. used a membrane energy formulation where the in-plane displacements are constrained to
zero and a set of sharp folds i.e. folds with slope discontinuities were obtained. A bending stiffness was added to reproduced
yielding smooth folds. The obtained numerical results, as shown by Ortiz in [14], exhibit a good agreement with experimen-
tal data with an over estimation of the curvature in the central part of the film. Ortiz also presents a numerical procedure
based on shell elements in [14]. Although this method provides a realistic representation of the buckled pattern, it requires
a high degree of mesh refinement for an accurate representation of fold wrinkling on the boundaries. Recently, simulation
results on thin film buckling were presented by Kerman et al. [12]. They are obtained by using an energy minimization
approach of the ridge formation in thin walled structure under compression [13].

Furthermore, important contributions toward a design in post buckling regime were derived by Yamamoto et al. in [2].
However, the application of the employed energy method in [2] is restricted to axis-symmetrical cases describing the first
buckling stage. Secondary buckling (i.e. second bifurcation) was not captured and therefore excluded from the design space.

To overcome this limitation, in our work, an energy method based on the Rayleigh–Ritz parameterization is used.
Compared to other approaches, it realistically predicts buckling shapes with a low degree of freedom.
(b)(a)
Fig. 1. Pulsed laser deposition (PLD) of yttria-stabilized zirconia (YSZ) membrane onto a free standing Si3N4 layer. Two examples of typical mechanical
responses are shown [10]: (a) membrane rupture under residual tensile stresses in YSZ deposited at room temperature, (b) membrane buckling under
residual compressive stresses after deposition at 700 �C.
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Furthermore, a full exploitation of the energy method is accomplished to provide the informations needed to derive a
complete design space for the save fabrication of a deposited thin film. This includes the analysis of mechanical stability,
the determination of buckling load and the prediction of primary and secondary modes of post-buckling states. Moreover,
we introduce an advanced numerical implementation of the Rayleigh–Ritz method with the aim to predict a realistic repre-
sentation of the buckling in different stages. The results are validated against experimental measurements and are used to
derive a design space for film fabrication. The design concept adopted in this work considers both rupture and buckling and
allows a safely use of large area stable films.

2. Modelling of thin film buckling

A stable equilibrium state of the considered mechanical system is ensured by a minimum value of the total potential
energy which is assumed to be a restoration energy. Here, the restoration term is attributed to restoring forces (i.e. inter-
molecular forces) which try to bring the system back to its initial configuration. Under some loading conditions the total
potential energy of the system may increase to reach a critical value which corresponds to an unstable state. At this critical
value the system may jump to a new configuration by performing a buckling transition to a new stable state.

Specifically, we consider a thin plate model with clamped boundaries where the loading may take the form of a residual
in-plane compressive strain. A critical value of this strain induces a sufficiently large potential energy storage to make the
compressed film able to perform a buckling transition from the initially flat configuration to an out-of plane deflection.

2.1. Continuum mechanics of the thin film

The strain field in a thin film deposited on a rigid substrate is the result of a combination of different types of deforma-
tions. We have the in-plane deformation or membrane strain, which describes the elongation and/or contraction deforma-
tion as well as the stretching by shearing deformation of the middle plane of the film. The bending and the twisting
deformation of the middle plane represent further contributions to the strain field. Moreover, non-negligible residual strains
usually can be found in such thin films due to thermal expansion mismatch, densification and crystallization upon
deposition.

When a free standing thin film is mainly exposed to in-plane forces, i.e. out-of-plane tractions are not applied, an in-plane
stress based formulation is sufficient. This situation is shown in Fig. 2. To represent the elastic behavior of the thin film with
high values of deformation we use the strain tensor �with a nonlinear formulation depending on both the displacement field
u and its gradientru. Not that in this paper the stress–strain tensors are written in 3D description and then restricted to the
2D case following the in-plane stress simplification:
Fig. 2.
middle
� ¼ 1
2
ruT þruþ ðruÞTðruÞ
h i

: ð1Þ
The above relation introduces the classical Green-Saint–Venant (or Green–Lagrange) strain which differs from Cauchy’s
linear (infinitesimal) strain tensor by the nonlinear quadratic term of the gradient ru. By neglecting the contribution of the
in-plane displacement to the quadratic terms, the components of the membrane strain are given by:
�m
ij ¼

1
2

@ui

@j
þ @uj

@i
þ @w
@j

@w
@i

� �
; ð2Þ
with i; j 2 x; yf g standing for the in-plane coordinates. Here, w denotes the out-of-plane deflection where u ¼ ðux;uy;wÞ. The
formulation used in Eq. (2) corresponds to the von Karman plate model.

Isotropic materials are assumed when the residual strain is written in the form of a hydrostatic strain tensor
�r ¼ �0I: ð3Þ
Here the scalar �0 represents the average value of the residual strain and I is the identity (3 � 3) matrix.
a/2
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y

a

(u v w)

z

Schematic representation of the buckling of a thin clamped film with side length a and thickness h. The vector ðu; v ;wÞ denotes the displacement of a
plane point.
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The in-plane components of the strain tensor are then given by
�ijðzÞ ¼ dij�0 þ �m
ij þ �b

ijðzÞ; ð4Þ
with dij ¼ ðIÞi;j denoting the Kronecker delta. Note that the bending strain �b
ijðzÞ of the film depends on both the curvature and

the twist of the middle plane and is given as a linear function of distance z away from the middle plane:
�b
ijðzÞ ¼ �z

@2w
@i@j

: ð5Þ
From Hooke’s law we have the following strain–stress relations:
rii ¼
E

ð1þ mÞð1� 2mÞ meþ ð1� 2mÞ�iið Þ;

rij ¼
E

1þ m
�ij:
Here, the term e denotes the dilatation e ¼ �xx þ �yy þ �zz whereas E and m denote Young’s modulus and Poisson’s ratio,
respectively.

When the out-of-plane stress components are zero, i.e. rxz ¼ ryz ¼ rzz ¼ 0, one easily obtains the zero-shear strain com-
ponents as �xz ¼ �yz ¼ 0. This leads to Hooke’s law for the plane stress situation:
rxx ¼
E

1� m2 �xx þ m�yy
� �

; ð6Þ

ryy ¼
E

1� m2 �yy þ m�xx
� �

; ð7Þ

rxy ¼
E

1� m2 �xy: ð8Þ
The plate model obtained here deviates from the Kirchhoff plate theory by the fact that the normal out-of-plane strain
�zz ¼ �m

1�m �xx þ �yy
� �

is not zero. This is because the normal material lines of the film (i.e. the lines perpendicular to the middle
plane) do not satisfy the first Kirchhoff assumption: ‘‘The normal material line is infinitely rigid along its own length’’ (see
chapter 16 in [16]).

2.2. The potential energy of the clamped film

We denote by X a subset of R3 representing a thin film of side length a and thickness h as shown in Fig. 2. The total poten-
tial energy storage in X is expressed as a superposition of various restoration contributions:
F ¼ �
Z
@X

r � n � u dC�
Z

X
f � u dXþ 1

2

Z
X
r : � dX:
Here, n is the outward unit normal vector defined on the boundary @X and f is the vector accounting for body forces. The first
integral vanishes by considering the clamped boundary conditions:
ux ¼ uy ¼ w ¼ @w
@n
¼ 0:
The second integral also vanishes by considering the zero body forces. Thus the total potential energy is reduced to the elas-
tic strain energy:
F ¼ 1
2

Z
X
r : � dX:
Using the in-plane Hooke’s relations, Eqs. (6)–(8) one gets:
F ¼ E
2ð1� m2Þ

Z a=2

�a=2

Z a=2

�a=2

Z h=2

�h=2
�2

xx þ �2
yy þ 2m�xx�yy þ 2ð1� mÞ�2

xy

� �
dxdydz:
The elastic energy F can be subdivided into the membrane energy Fm and the bending energy Fb:
F ¼ Fm þ Fb: ð9Þ
The membrane energy is associated to the shear as well as elongation or contraction of the middle plane when any bend-
ing resistance is excluded. The surface density of the membrane energy is obtained from the integral of the volumic density
in z-direction. The total membrane energy is obtained from double integral of the surface energy density:
Fm ¼
Eh

2ð1� m2Þ

Z a=2

�a=2

Z a=2

�a=2
�2

xx þ �2
yy þ 2m�xx�yy

� �
jz¼0

dxdyþ Eh
ð1þ mÞ

Z a=2

�a=2

Z a=2

�a=2
�2

xy jz¼0
dxdy: ð10Þ
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The first integral in Eq. (10) describes the membrane elongation or contraction energy whereas the second integral
describes the membrane shear energy.

The bending energy Fb is depending on the curvature and the twist of the film middle plane. The surface density of the
bending energy is also obtained from the integral over the vertical ‘‘z’’-coordinate. When clamped boundary conditions are
considered the total bending energy of the domain X is given by:
Fb ¼
Eh3

24ð1� m2Þ

Z a=2

�a=2

Z a=2

�a=2

@2w
@x2 þ

@2w
@y2

 !2

dxdy: ð11Þ
According to Eqs. (9)–(11) the membrane stiffness is of order OðhÞ whereas the bending stiffness is order Oðh3Þ. This implies
that for an extremely thin plate (h�!0) under a given compressive-bending loading, the bending energy storage results in a
high degree of twist-curvature deformation.

2.3. Reduced variables

The model as introduced in the above equations contains a rather large number of variables, parameters and coefficients.
However, the buckling solution, depends only on certain combinations of these terms and not necessarily on each one
separately. In order to simplify the formulation let us to introduce the following reduced quantities:

� coordinates: x ¼ x
a, y ¼ y

a, z ¼ z
h,

� displacements: u ¼ uxa
h2 , v ¼ uya

h2 , w ¼ w
h ,

� energy: F ¼ Fð1�m2Þa2

Eh5 .

The bending energy in reduced form is denoted by Fb and given as
Fb ¼
1

12

Z 1=2

�1=2

Z 1=2

�1=2

@2w
@x2

 !2

þ @
2w
@x2

@2w
@y2 dxdy: ð12Þ
The reduced membrane energy Fm is a summation of two energetic contributions: firstly, the shear energy i Fs, given as
Fs ¼
1
2

Z 1=2

�1=2

Z 1=2

�1=2
ð1� mÞ @u

@y
@v
@x
þ 2

@u
@y
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� �2
 !

dxdy; ð13Þ
and secondly, the elongation or contraction energy Fe, given as
Fe ¼
1
2

Z 1=2

�1=2

Z 1=2

�1=2
ð1þ mÞ�0

2 þ 2
@u
@x

� �2

þ ð1� mÞ @u
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� �2
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þ 2
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� �2
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� �2

þ 1=2
@w
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� �4

þ 1=2
@w
@x

@w
@y

� �2

dxdy: ð14Þ
Here the term �0 = a2

h2 �0 denotes the reduced value of the residual strain in the film, given in Eq. (3). Note that the above

expression has been simplified since terms like @u
@x

� �2
and @v

@y

� �2
yield the some values upon integration. Similarly, the integral

of the terms @u
@x

@w
@y

� �2
and @v

@y
@w
@x

� �2
yield the some values.

The quadratic terms in Eqs. (12)–(14) correspond to the elastic energy when Cauchy’s linear (infinitesimal) strain model is
applied. Note that it is a feature of the employed energy method, the higher order terms in Eqs. (13) and (14) introduce a
nonlinear energy correction that allows one to predict the post-buckling shape, amplitude and stability. On the contrary,
a linear eigenvalue analysis would only provide values for the buckling load and shape but no information about post-
buckling amplitude.

3. Energy method

Analysis of thin film buckling at the prediction of the various buckling stages and the corresponding buckling loads and
amplitudes.

The shape of the buckled film is indicative of the buckling stage: we distinguish between two modal states corresponding
to two ranges of in-plane loading values in the flat film, see Fig. 3(a). The first one is the primary buckling mode which is
characterized by an axis-symmetric shape, see Fig. 3(b). It takes place when the in-plane compression in the flat film reaches
the buckling load. The second state is the secondary buckling which is produced by a higher range of in-plane loading values.
We recall that secondary buckling is characterized by the axis-symmetry breaking though maintaining a rotationally sym-
metric shape Cz

4 (2P
4 around z-axis), see Fig. 3(c). To proceed further, a parameterization method is applied to represent the

displacement fields and then a numerical minimization procedure is used to determine the corresponding buckling
amplitude.



(a) (b) (c)
Fig. 3. Film schematic: (a): Unbuckled. (b): Primary buckling. (c): Secondary buckling.
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3.1. Rayleigh–Ritz parameterization

In the framework of the Rayleigh–Ritz method, see [17], the displacement fields are represented as a sum of double trig-
onometric trial functions. Those functions need to be differentiable to represent the strain term in the energy integral. They
should also satisfy ‘‘at least’’ the essential (Dirichlet) boundary conditions. To proceed further, the in-plane displacement
along x-direction is formulated as a double Fourier series expansion of order p:
uðx; yÞ ¼
Xp

i;j¼1

us
i j f i jðx; yÞ þ

Xp

i;j¼1

ua
i j f i jðy; xÞ: ð15Þ
Here fi j is the set of trial functions which satisfy the conditions of the fixed boundaries
fi jðx; yÞ ¼ sinð2ipxÞcos ð2j� 1Þpyð Þ: ð16Þ
The functions fi jðx; yÞ satisfy the mirror symmetric mode (reflection symmetry) with respect to the oyz-plane, with unknown
coefficients us

i j, see Fig. 3(b). Likewise, the trial functions fi jðy; xÞ satisfy the anti-mirror symmetric mode with unknown
coefficients ua

i j, see Fig. 3(c).
With this formalism the rotationally symmetric shape Cz

4 (2P
4 around z-axis) of the in-plane displacements is ensured by

formulating the displacement along y-direction as
vðx; yÞ ¼ uðy;�xÞ: ð17Þ
Furthermore, the out-of-plane deflection is parameterized as a sum of buckle functions
wðx; yÞ ¼
Xm

i¼1;j¼i

ws
i j gs

i jðx; yÞ þ
Xm

i¼1;j¼iþ1

wa
i j ga

i jðx; yÞ; ð18Þ
where the trial functions gs
i j satisfy the mirror symmetry with respect to the oxz- and oyz- planes:
gs
i jðx; yÞ ¼ cosð2ipxÞ � ð�1Þi

� �
cosð2jpyÞ � ð�1Þj
� �

þ cosð2jpxÞ � ð�1Þj
� �

cosð2ipyÞ � ð�1Þi
� �

: ð19Þ
The functions ga
i j satisfy the anti-mirror symmetry with respect to the oxz- and oyz- planes:
ga
i jðx; yÞ ¼ sinðð2iþ 1ÞpxÞ � ð�1ÞisinðpxÞ

� �
sinðð2jþ 1ÞpyÞ � ð�1ÞjsinðpyÞ
� �

� sinðð2jþ 1ÞpxÞ � ð�1ÞjsinðpxÞ
� �

sinðð2iþ 1ÞpyÞ � ð�1ÞisinðpyÞ
� �

: ð20Þ
Both gs
i j and ga

i j satisfy the rotational symmetry Cz
4. At the boundaries x ¼ �1=2 and y ¼ �1=2, the natural conditions of

clamped edges are satisfied through the derivatives
@gs

i j

@x ¼
@gs

i j

@y ¼
@ga

i j

@x ¼
@ga

i j

@y ¼ 0, where the essential boundary conditions are

ensured by fi j ¼ gs
i j ¼ ga

i j ¼ 0. Buckling shape and amplitude are determined from the values of the coefficients ws
ij and wa

ij

which are obtainable by applying a minimization procedure i.e. the conjugate gradient method. Note that the Rayleigh–Ritz
approach is a mesh free method. Therefore the degree of freedom of the problem depends only on the degree of Ritz expan-
sion in Eqs. (15) and (18) where the total number of unknowns is m2 þ 2p2.

4. Derivation of criteria for the instability transition

The displacement amplitudes can be expressed as a tensor field. In this work a vector representation of amplitudes has
been chosen to perform the stability analysis. The set of in-plane amplitude terms fus

i jg
p
i;j¼1
[ fua

i jg
p
i;j¼1

is introduced by the

vector ~U 2 R2p2
. We ‘‘abuse’’ notation by writing ~U as a one-column matrix in M2p2 ;1ðRÞ:
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us
1 1 � � � us

1 p us
2 1 � � � � � � us

p p ua
1 1 � � � ua

1 p ua
2 1 � � � � � � ua

p p

� �T
; ð21Þ
where the superscript T denotes the transpose. The set of out-of-plane amplitudes fws
i jg

m
i¼1;j¼i

[ fwa
i jg

m
i¼1;j¼iþ1

is represented in
a similar way. Furthermore we introduce the vector ~W 2 Rm2

as
ws
1 1 � � � ws

1 m ws
2 2 � � � � � � ws

m m wa
1 2 � � � wa

1 m wa
2 3 � � � � � � wa

m�1 mð ÞT : ð22Þ
The analysis in the remaining parts deals with the amplitude vectors ~U; ~W , as well as the reduced residual strain �0.

4.1. The energy formulation for a stationary state

The total potential energy is reintroduced here in reduced form as a differentiable function
F : R2p2 � Rm2 � R �! R

ð~U; ~W; �0Þ �! Fð~U; ~W; �0Þ:
ð23Þ
Based on Eqs. (12)–(14), the function F is quadratic in ~U and quartic in ~W .
At an equilibrium state the minimum potential energy implies the in-plane stationary condition:
@~UF ¼ ~0: � �

Note that the in-plane partial derivative @~U is represented by @

@U1

@
@U2

. . . @
@Up2

. . . @
@U2p2

T

. This condition yields the nonlinear
system of equations given by
A:~U � ~Vð~WÞ ¼ ~0: ð24Þ
Here A is a definite positive symmetric real matrix (and thus invertible) of order 2p2 i.e. 2M2p2 ;2p2 ðRÞ and the vector ~V 2 R2p2

is a quadratic function of ~W . The in-plane displacement vector is obtained as a quadratic function of the vector ~W:
~U ¼ ~Gð~WÞ ¼ A�1~Vð~WÞ: ð25Þ
Now the energy is readily obtained as an explicit quartic function of the out-of-plane displacement
F ¼ F ~Gð~WÞ; ~W; �0

� �
: ð26Þ
For a given reduced residual strain �0 the energy in a stable equilibrium state is estimated through the vector ~Weq which
satisfies the condition:
Fmin ¼ F ~Gð~WeqÞ; ~Weq; �0

� �
¼ min

~W2Rm2
F ~Gð~WÞ; ~W ; �0

� �
: ð27Þ
In this reduced formulation, Fmin depends only on m and on �0. An out-of-plane stationary condition is necessarily satisfied at
the local minimum point (~W ¼ ~Weq; �0) of F:
D~W Fð~U; ~W; �0Þ~U¼~Gð~WÞ
~W¼~Weq

¼ 0; ð28Þ
where D~W is the first derivative with respect to ~W , defined as
D~W ¼ ð@ ~W
~UÞ � @~U þ @ ~W ;
with
ð@ ~W
~UÞ ¼ @ ~W

~UT and @ ~W ¼
@

@W1

@

@W2
. . .

@

@Wm2

� �T

:

Although the aforementioned stationarity is a necessary condition for the stable equilibrium state it may also correspond to
an unstable saddle point. In the following sections, we will see that the double derivatives of the energy function with
respect to the displacements result in a Hessian matrix with eigenvalues depending on the system’s stability.

4.1.1. The Hessian formulation
We start by introducing the double derivative operator
D~W ; ~W ¼ D~W D~W

� 	
:

Furthermore, the energy function in Eq. (23) is assumed to be smooth with second order derivative. In the stationary state
the first in-plane derivative satisfies @~UF ¼~0, hence one has ~U ¼ ~Gð~WÞ (see Eq. (25)) and the double derivative of the energy
function F becomes
D~W ; ~W F
h i

~U¼~Gð~WÞ
¼ @ ~W

~U @~U@~UF ð@ ~W
~UÞ

T
þ @ ~W

~U @~U@ ~W F þ @ ~W@~UF ð@ ~W
~UÞ

T
þ @ ~W@ ~W F

h i
~U¼~Gð~WÞ

:
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Note that @~U@ ~W F
� �T ¼ @ ~W@~UF ¼ �@ ~W

~V . Within an equilibrium state at the point ð�0; ~WeqÞ, the relation ~U ¼ A�1~V is satisfied
and the Hessian at this point is obtained as
Hð�0; ~WeqÞ ¼ D~W ; ~W F
h i

~U¼~Gð~WÞ
~W¼~Weq

¼ �@ ~W
~VA�1

@ ~W
~V

� �T
þ @ ~W@ ~W F


 �
~U¼~Gð~WÞ
~W¼~Weq

; ð29Þ
which is a symmetric real matrix (thus it is orthogonally diagonalizable) of order m2 i.e. 2Mm2 ;m2 ðRÞ.
In the pre-buckling equilibrium stage where the film has a flat shape, the out-of-plane deflection amplitudes are zeros i.e.

~W ¼~0. Hence the derivative @ ~W
~V vanishes since ~V is a quadratic function of ~W and hence the Hessian in the pre-buckling

equilibrium state is obtained by the simplified expression:
Hð�0;~0Þ ¼ @ ~W@ ~W F
� 	

~U¼~Gð~WÞ
~W¼~0

: ð30Þ
4.2. Prediction of primary buckling

In simple terms, the buckling load is the physical threshold at which the equilibrium state of the structure suddenly
changes from stable to unstable [18].

We proceed by a stability analysis of the system to derive the critical value for the instability transition. We consider the
system in equilibrium at the point ð�0; ~WeqÞ. The second order expansion around ~Weq is then given by
F ~Gð~Weq þ d~WÞ; ~Weq þ d~W; �0

� �
� F ~Gð~WeqÞ; ~Weq; �0

� �
þ d~WT � D~W F

� 	
~U¼~Gð~WÞ
~W¼~Weq

þ 1
2

d~WT � D~W; ~W F
h i

~U¼~Gð~WÞ
~W¼~Weq

d~W; ð31Þ
where d~W is a perturbation of ‘‘small’’ amplitude. At the equilibrium point (�0; ~Weq) we then get
D~W F
� 	

~U¼~Gð~WÞ
~W¼~Weq

¼~0 and D~W; ~W F
h i

~U¼~Gð~WÞ
~W¼~Weq

¼ Hð�0; ~WeqÞ:
Furthermore, the energy variant dF induced by the perturbation d~W at this point is written as
dF ¼ 1
2

d~WT � Hð�0; ~WeqÞd~W: ð32Þ
The equilibrium state ð�0; ~WeqÞ is a stable point of the mechanical system if, for any perturbation d~W , the energy variant is
strictly positive, i.e. dF > 0. In contrast, ð�0; ~WeqÞ is an instability point if, for the same value of �0 ¼ �c

0 < 0, there is a pertur-
bation d~W for which the system preserves the same energy. I.e. we have an energy invariant dF = 0 written as
1
2

d~WT � Hð�0; ~WeqÞd~W ¼ 0: ð33Þ
Eq. (33) holds with a non trivial solution (d~W –~0) if, and only if, for a critical value �0 ¼ �c
0 the matrix H is singular i.e.

DetH ¼ 0. Consequently, at this unstable equilibrium point ð�c
0;
~WeqÞ, the singular matrix H has a zero eigenvalue kc ¼ 0

and the energy variant induced by the perturbation d~Wev in the direction of the kc-eigenvector ~Wev is given by
dF ¼ 1
2

d~WT
ev � Hð�c

0;
~WeqÞd~Wev ¼

kc

2
kd~Wevk2 ¼ 0: ð34Þ
Within this unstable stationary state, an external traction in the direction of ~Wev drives the system to perform a transition
toward an equilibrium stable state. A mathematical interpretation of the aforementioned instability is the loss of the ‘‘strong
convex’’ property of the energy function F at the point ð�c

0;
~WeqÞ in the direction of ~Wev where the approximative curvature j

of F is estimated as
j ¼
~WT

ev � Hð�0; ~WeqÞ ~Wev

k~Wevk2 ¼ kc ¼ 0: ð35Þ
Now we restrict the analysis to the unbuckled film state by considering the equilibrium path (fundamental path of the trivial
solution ~Weq ¼ ~0, denoted as FP1 in Fig. 4). The onset of the first unstable equilibrium (primary buckling) is attributed to a
threshold value of reduced compressive strain �0 ¼ �c1

0 < 0 (buckling load) when the minimum eigenvalue of Hð�c1
0 ;
~0Þ

denoted by kc1 ¼ kmin ¼ min kif gm2

i¼1 vanishes. For �0 < �
c1
0 the equilibrium path of zero-deflection, noted as FP2 in Fig. 4, can-

not be a stable state for the system and therefore a stable equilibrium point ð�0; ~WeqÞ should belong to the primary buckling
path denoted as BP1.

4.3. Interpretation and prediction of secondary buckling

Within a range of high in-plane compressive values where �0 < �
c1
0 , there is a reduced residual strain value �c2

0 < 0 for
which the Hessian matrix H at the equilibrium point ð�c2

0 ;
~Weq ¼ 0Þ has a multiple eigenvalue kc2 ¼ 0. At this point there



Fig. 4. Schematic of the bifurcation of the equilibrium solution (�0; ~Weq). FP1: fundamental path of a stable unbuckled state (�0 > �
c1
0 ;

~Weq ¼ ~0). FP2:
fundamental path of an unstable unbuckled state (�0 < �

c1
0 ;

~Weq ¼~0). BP1: primary bifurcation path with axis symmetry shape (�0 < �
c1
0 ; j ws

i;j j> 0, wa
i;j ¼ 0).

BP2: secondary bifurcation path with symmetry breaking shape (�0 < �
c1
0 ; j ws

i;j j> 0; j wa
i;j j> 0).
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are two orthogonal kc2 -eigenvectors of H: a symmetric mode vector ~Ws
ev and an asymmetric mode vector ~Wa

ev . The response
of the system to the perturbations d~Ws

ev and d~Wa
ev of ‘‘small’’ amplitude in the direction of the kc2 -eigenvectors is expressed

by an energy invariant estimated similarly to Eq. (34):
dF ¼ kc2

2
kd~Ws

evk
2 ¼ kc2

2
kd~Wa

evk
2 ¼ 0: ð36Þ
Therefore the system has multiple directions of instability for �0 ¼ �c2
0 . Note that double buckling point has been reported in

several cases, see e.g. [19], and is associated with an eigenvalue multiplicity. Beyond this critical value, where �0 < �
c2
0 , the

film may buckle either into the path of primary buckling with symmetric mode or into the path of secondary buckling with
symmetry-breaking mode denoted as BP2 in Fig. 4.

We suggest the following numerical procedure to investigate the second bifurcation:

� Starting step ð�0; ~WÞ 2 BP2. (see Fig. 4)
� do while D > 0
� Set: �0 ¼ �0þ j D�0 j (decrement residual compression)

� Find ~Weq such that F ~Gð~WeqÞ; ~Weq; �0

� �
¼ min

~W2Rm2
F ~Gð~WÞ; ~W; �0

� �
(see Eq. (27)

� Set: D ¼ DetHð�0; ~WeqÞ (see Eq. (29)
� enddo
� Set: �c2

0 ¼ �0

Starting from a breaking symmetry mode, we apply the energy minimization in order to locate an equilibrium solution
ð�0; ~WeqÞ which belongs to the secondary path BP2 in Fig. 4. We proceed with an iterative incrementation of �0. At each step,
we perform an energy minimization initialized from the current solution and a new equilibrium point is then located on BP2.
The minimum eigenvalue (kmin P 0) of the Hessian matrix (see Eq. (29)) is evaluated at each step until the stop condition



Fig. 5. The degree of stability of secondary buckling at �0 ¼ �0:002 represented by the minimum eigenvalues of the Hessian on the secondary post-buckling
path.
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kminð�0Þ ¼ 0 is satisfied for �0 ¼ �c2
0 . This indicates that secondary buckling cannot be a stable post buckling state below a

threshold j�c2
0 j (i.e. for �0 > �

c2
0 ) where the stable equilibrium point ð�0; ~WeqÞ should belong to the primary buckling path

noted by BP1 in Fig. 4.
Fig. 5 shows the variation of the minimum eigenvalue of the Hessian in the secondary buckling path as function of the

side length of the square film. For a given compressive strain of �0 ¼ �0:002 and a film thickness of h = 300 nm the reduced
strain is a function of the side length a, i.e. �0 ¼ a2

h2 �0. The secondary buckling starts when the side length a is equal to 85 lm
which corresponds to �c2

0 = �161 � 42 �c1
0 where �c1

0 = �3.63. The accuracy of this estimation depends on the expansion
degree. Here we have used m ¼ 3 and p ¼ 6.

5. Numerical implementation and experimental validation

The above described energy method to predict the buckling behavior of thin films has been implemented in Mathematica.
The code includes the Rayleigh–Ritz parameterization, the first and the second derivatives of the displacement, and a numer-
ical integration over the square geometry of the film using the quadrature technique. The integral of the energy terms sat-
isfying the rotational Cz

4 property is estimated by the numerical integration over the corner square ½0;0:5�2 up to factor 4.
The implementation of the out-of-plane amplitudes as a nonlinear function of the in-plane amplitudes in Eq. (25) was

also simplified based on the symmetric and asymmetric properties of the trial functions. The minimization procedure is
applied by using the conjugate gradient method (already available in Mathematica) to determine the coefficients of the
out-of-plane amplitude (see Eq. (18)). Furthermore, a post-processing Mathematica routine was implemented to calculate
the in-plane displacements, stresses, strain, and yielding fields.

The stability conditions of pre-buckling as well as the first and second post-buckling stages are investigated according to
the eigenvalues of an implemented Mathematica Hessian matrix of the double derivatives of the energy (see Eq. (29)).

As already mentioned this method is mesh free with 2p2 þm2 unknowns. The use of in-plane equilibrium conditions
reduces the degree of freedom of the problem to m2. Regarding the shape of trigonometric formulation of the trial functions
in Eqs. (16), (19) and (20), an accurate numerical integration was ensured by using at least 100 maxfm2; p2g quadrature
points.

5.1. Implementation tests and validations

A symmetry test of the implemented code has been successfully passed by comparing the numerical values of the energy
in each corner representing a quarter of the film domain ½�0:5;0:5�2. The implementation of the stiffness matrix A in Eq. (25)
was examined by comparing the energy norm of the in-plane displacement jj~UjjA ¼ 1

2
~UT � A~U with the numerical integration

of the membrane energy related to a linear model and expressed by the quadratic terms in Eqs. (13) and (14).
A Mathematica routine based on the finite difference method has been implemented to calculate the double derivative of

the energy at the equilibrium point ð�0; ~WeqÞ where ~U ¼ ~Gð~WÞ is satisfied:
~ei � Hð�0; ~WeqÞ~ei �
F j~W¼~Weqþe~ei

þ F j~W¼~Weq�e~ei
� 2F j~W¼~Weq

e2 : ð37Þ
Here ~eif g
m2

i¼1 is a set of normalized vectors spanning the space Rm2
and the scalar e denotes the magnitude of a ‘‘small’’ step of

centered discretization applied around ð�0; ~WeqÞ in the direction of~ei.
The implementation of the Hessian matrix, Eq. (29), is validated by comparing its diagonal terms to the values obtained

by the finite difference in Eq. (37) by substituting for ~eif g
m2

i¼1 the canonical basis of Rm2
. The Hessian matrix is also validated

by comparing its eigenvalues to those obtained by Eq. (37) by substituting for ~eif g
m2

i¼1 a set of the corresponding normalized
eigenvectors.



Table 1
Prediction of the threshold value of the residual compressive strain �c2

0 for the
secondary buckling at the second bifurcation point.

Poisson ratio Finite elements: This work:
m �c2

0 �c2
0

0.00 �226.0 �225.2
0.15 �211.9 �213.4
0.25 �206.0 �207.6
Discretization/expansion degree 6000 Shell elements 66 Parameters
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Note that the first buckling load resulting from the zero eigenvalue of the pre-buckling Hessian has the value of
�0 ¼ � 4:364

1þm . This result is consistent with the value of �0 ¼ � 4:363
1þm estimated by Ziebart in [20]. In Table 1, the residual strain

for second bifurcation (�c2
0 ) is given for different values of the Poisson ratio. Our results are in good agreement with those

obtained by finite elements method, see [20], page 103. Note, however, the large difference in the degree of freedom.
5.2. Experimental validation

Here we show the applicability of the aforementioned buckling model to a practical situation, i.e. the manufacturing of
free-standing high-temperature fuel cell membranes. We also examine the correct implementation of the numerical method.

In the context of micro solid oxide fuel cell (lSOFC) development, an yttria-stabilized zirconia (YSZ) electrolyte film of
300 nm thickness and 390 lm side length was prepared by pulsed laser deposition (PLD) at a temperature of 700 �C [10]
on a free-standing silicon nitride layer fixed on a rigid etched silicon substrate, see Fig. 6. Clearly the stability of such SOFC
membrane must be guaranteed in all fabrication steps. After cooling down high compressive residual stresses arise in the
YSZ deposited film and buckling takes place. These residual stresses were estimated from wafer curvature analysis based
on the optical measurements and by application of the Stoney formula [23]. It turned out that the effective value of the com-
pressive residual stress in the free standing YSZ membrane is r0 ¼ �275 MPa. Furthermore, the Young modulus of the YSZ
film of E ¼ 200 GPa was obtained by using a nanoindentation test and the Poisson ratio was estimated as m = 0.25.
5.2.1. Simulation results compared to optical profilometry measurement
The deformation of the buckled YSZ pattern was measured at room temperature by applying an optical profilometry tech-

nique using a Wyko NT100 white light interferometer. The buckling shape and amplitude was detected with high accuracy
and is shown in Fig. 7(a). Note that the secondary buckling mode is clearly visible.
h1=300 nm

SiSi

Si3N4

YSZ

a= 390 µm

Fig. 6. A YSZ membrane is deposited on a silicon nitride layer fixed on a silicon substrate.

(a) (b)
Fig. 7. (a): 3D view of an 8YSZ membrane at room temperature taken with white light interferometry of a free-standing 300 nm YSZ membrane deposited
by PLD at 700 �C. (b): Simulation results using an in-house Mathematica code.
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On the other hand, numerical simulations were performed choosing a high order degree of the Rayleigh–Ritz expansion
with m ¼ 10 and p ¼ 20. This corresponds to 2p2 þm2 ¼ 900 unknowns. The use of in-plane equilibrium conditions,
Eq. (25), reduces the degree of freedom of the problem to m2 ¼ 400. The simulation results shown in Fig. 7(b) are in agree-
ment with the experimental buckling pattern shown in Fig. 7(a). The obtained amplitudes are comparable to the measured
values with 5% of difference relatively to the maximum amplitude. This slight deviation is associated with inelastic energy
dissipations [24]. Furthermore, the diagonal folds in the buckled film exhibit more slight deviation from the rotational sym-
metry compared to some other samples (see, e.g., the sample shown in Fig. 1 where the image is obtained using light micros-
copy). This is associated to some uncontrollable imperfection conditions that emerged during the fabrication. The buckling
model of a compressed film exposed to load and geometry imperfections is currently our ongoing study using an energy
perturbation approach (to appear in a new publication).

5.3. Energy-interpretation of buckling shape

We performed numerical simulation tests on thin films with selected values of side lengths. The obtained results are
shown in Fig. 8. They exhibit typical shapes of membrane configuration corresponding to different states of mechanical
equilibria.

In the pre-buckling stage, Fig. 8(a), the assumed magnitude of the residual stress of r0 ¼ �4:50 MPa is smaller than that
of the buckling load of rc1

0 ¼ �6:17 MPa; the film therefore is flat. In this state, the pre-buckling potential energy is stored
exclusively as membrane contraction energy. This is because the film is clamped at the boundaries and under compression
with respect to the reference configuration of the stress-free shape. The potential energy in the pre-buckling stage is
‘‘strongly increasing’’ as the in-plane residual compression is augmented.

Furthermore, the post-buckling stage under a high residual stress r0 = �275 MPa is shown in Fig. 8(b). The buckling per-
mits for a ‘‘lower increase’’ of the total potential energy by a transfer from membrane to bending energy. Note that the mem-
brane-shear energy storage is minor in the first buckling stage and this in fact justifies the axis-symmetry shape of the
buckled film.

The transition to the secondary buckling is shown in Fig. 8(c) for a film thickness of h ¼ 157 nm. This stage is character-
ized by the symmetry breaking associated with a new mode of energy storage: a certain amount of membrane energy is
released by elongation deformation, another amount is transferred to bending energy and a considerable amount of the
membrane energy is stored as membrane shear energy. This can only be ensured by breaking the mirror symmetry of the
deformation. Finally, the remaining membrane energy is still stored as membrane contraction.

The deformations in Fig. 8(d)–(f) represent an advanced stage of secondary buckling under r0 = �275 MPa and for side
lengths of a = 390, 600 and 700 nm, respectively. To go from the flat shape towards this buckling shape the thin film needs
to release a higher amount of the membrane energy by more elongation and needs to transfer a higher amount of the mem-
brane energy to bending energy. The film of thickness h has a bending stiffness of order h3 which is very low compared to the
elastic membrane stiffness of order h, see Eqs. (9)–(11). Hence, to absorb the transferred energy as bending potential energy,
the thin film should deform more, i.e. it should have more local curvature. This explains the observed branched and wrin-
kling folds at the boundaries.

Note also that the folds in Fig. 8(f) are more twisted compared to those shown in Fig. 8(c). and this is explained by a higher
amount of membrane contraction energy transferred to membrane shear energy.

5.3.1. Side note on the Fig. 8(a) and (b):
In principle, the unbuckled state of the elastic material is reproducible. Indeed, when the object is relaxed without vis-

cous, friction or damage dissipations, the potential energy is transformed into kinetic energy and the system restores its ori-
ginal pre-buckling configuration, see Fig. 8(a) and (b). Note however that this ‘‘reproducibility’’ does not necessarily imply a
thermodynamic reversible process unless one assumes the buckling transition to be a sequence of equilibrium states
between the pre-buckling and post-buckling stages. This assumption is realistic when buckling is not regarded as a jump
transition like for example when geometrical imperfections (i.e. initial deviations from perfect plate configuration) are con-
sidered. Indeed, if the thin film undergoes an initial bending related to the manufacturing conditions the deformation will
start far below the theoretical buckling load [25,26] and buckling amplitude increases gradually (as a sequence of stable
configurations) when applied load increases.

5.4. Load-geometry conditions for stress relaxation in post-buckling regime

Fig. 9 shows three different buckling test cases under the same value of residual compressive stress of r0 ¼ �275 MPa. It
is observed that a thin film of short side length of 115 lm exhibits a primary buckling mode whereas the films of wider side
lengths of 157 lm and 700 lm are in their secondary buckling mode. The film in the primary buckling mode experiences a
high tensile stress in the lower surface near the boundaries, see Fig. 9, (b1).

To identify the yielding (or failure) parts of the film, we applied Rankine criterion for safety which is based on the extre-
mum value of the principal stresses rI and rII:
rc < minfrI;rIIg; maxfrI;rIIg < rt :



)b()a(

)d()c(

)f()e(
Fig. 8. Numerical results for the thin film of thickness h = 300 nm. (a): pre-buckling for r0 = �4.25 MPa and side length a = 115 lm. (b): primary buckling
with axis symmetry for residual stress r0 = �275 MPa and side length a = 115 lm. (c), (d), (e) and (f): secondary buckling stages with Cz

4 symmetry for
r0 = �275 MPa and side lengths a = 157, 390, 600 and 700 lm, respectively.
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When the film side length is increased to 157 lm the yielding is detected in the high tension zones in the lower surface of
secondary buckling film, see Fig. 9(b2) and (c2). Moreover with a film of 700 lm side length we observe even more stress
relaxation within an advanced stage of secondary buckling and hence the film in this example becomes almost safe.

The stress relaxation in post-buckling stage is shown in Fig. 10(a) and (b), where the extrema of the stresses are plotted
against different values of the side length and the load. Rankine criterion for safety was used to determine safe lengths and
safe loads. The post-buckling tensile stresses are found to be relaxed beyond the safety threshold values i.e. a > 310 lm for
r0 ¼ �300 MPa and r0 > �220 MPa for a = 200 lm. The computations have been reproduced with different values of



(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

σmax = 314.8 MPa > σt σmax = 426.3 MPa > σt σmax = 259.8 MPa ≈ σt

Fig. 9. Numerical results for a film of 300 nm thickness under residual compressive stress of r0 ¼ �275 MPa. The simulations were performed with high
degree of Ritz expansion of m = 10 and p = 20. The subscripts i 2 1;2;3f g stand for the three test cases with side lengths 115, 157, and 700 lm. (ai): film
shapes in primary and secondary buckling modes. (bi) and (ci): principal stresses rI and rII on the lower surface. Yielding regions are detected where the
maximum stress rmax ¼maxfrI ;rIIg is above the tensile strength of rt = 250 MPa (Rankine criterion).
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residual stresses and the least square method has been applied to represent the safety length as nonlinear function of the
residual stress.

By performing the simulations for the different buckling stages a design space distinguishing between mechanically safe
and unsafe conditions was obtained. This is shown in Fig. 11. Note first that the yielding regions above the tensile strength
and below the compressive strength are excluded from the area of safe design. This is shown as the two horizontal lines. In
between those two horizontal lines three different safe regions are found: the first is the unbuckled region which is located
above the primary buckling curve. It is a region of low stress and represents the classical conservative area of buckling based
failure design. The other regions are located above the limiting curves of stress relaxation in the post-buckling regime. In fact,
for the micro SOFC example discussed in Section 5.2, it turns out that the safe post-buckling region is preferred over the safe
pre-buckling region.



(a): σ0= -300 MPa

(b): a= 200 μm
Fig. 10. Extrema of principal stresses of the first and second buckling stages: (a) for residual stresses of r0 = �300 MPa and (b) for a side length a = 200 lm
(b). Films of thickness of h = 300 nm thickness are considered with a tensile strength of rt ¼ 250 MPa. The simulations are performed with a degree of Ritz
expansion of m ¼ 3 and p ¼ 6.
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Although the shown stress analysis is performed with Rayleigh–Ritz degrees of m = 3 and p = 6, the analysis of high order
buckling modes, is expected to yield similar assessment of the post-buckling safety for the given residual compressive stress
with restricted value of side length to thickness ratio.

Indeed, the post-buckling failure of the film is associated with the uncontrolled tensile stresses arising in the folds of the
buckled pattern due to the bending effects. We consider the case of side length to thickness ratio a=h < 1300 restricted in the
range of our experimental validation tests on safe and cracked films as shown in Fig. 11. We discuss the effects of bending
stress related to the onset of the ‘‘small’’ buckles near the boundary of the film. This takes place with a smallest buckling
wavelength k that can be related to the film thickness through k ¼ OðhaÞ0 < a < 1, see [27], Chapter 4, [28,29]. For a given
residual compressive stress, the post-buckling bending stress is given by rb ¼ � E

1�m
h

2R where R denotes the curvature radius
directly proportional to k, hence it is depending on the thickness with the same order i.e. R ¼ OðhaÞ. Therefore, the related
tensile bending stress depends on the thickness through rb ¼ OðhbÞ where 0 < b ¼ 1� a < 1, implying that, for a given



Fig. 11. An example of design space for the fabrication of a thin YSZ film with E ¼ 240 GPa, m ¼ 0:2, a tensile strength of rt ¼ 250 MPa and compressive
strength of rc ¼ �1500 MPa. Under residual compression, the pre-buckling state occupies only a narrow region of negative residual strain above the curve
of the first buckling. The first and the second post-buckling regions (below the first and the second buckling curves) include high tensile stress zones to be
avoided. They are located below the dashed curves c1 and c2. The post-buckling regions include also large safe zones located above curves c1 and c2.
Therefore, post-buckling design allows a wide range of options for a safe selection of deposition conditions (residual stresses) and membrane dimensions.
The simulations were performed with the expansion degree of m ¼ 3 and p ¼ 6. Experimentally, all the 8YSZ samples produced by pulsed laser deposition
(PLD) at different temperature under 20 mTorr pressure have survived the deposition and were found in the predicted safe region marked as 	. The 8YSZ
samples deposited at 400 �C under 2 mTorr pressure were all cracked and found in the predicted unsafe region marked as 
.
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residual compressive stress, the post-buckling bending stress decreases with a decreased film thickness. On the other hand,
for a given compressive stress, increasing the side length (a) allows to reduce the curvature radius with the order of
R ¼ OðabÞ, where 0 < b ¼ 1� a < 1, implying that post-buckling bending stress rb is decreased with the order of
rb ¼ Oða�bÞ. To conclude, within the aforementioned geometrical range, increasing the side length to the thickness ratio a

h,
is beneficial in reducing the post-buckling tensile stress and in sustaining the residual compressive stress by buckling.

It should be pointed out that our experimental tests have shown a high survival rate of square 8YSZ films in postbuckling
regime especially when PLD deposition was performed at different temperature under 20 mTorr. All the samples that have
survived the deposition were found in the predicted safe region of the derived design space shown in Fig. 11 where the cor-
responding points (a

h ;r0) are marked as 	. Moreover, the 8YSZ samples deposited at 400 �C under 2 mTorr pressure were all
cracked and actually found in the predicted unsafe region and marked as 
.
6. Conclusions

The presented buckling model is solved using the Rayleigh–Ritz parameterization. As demonstrated, the energy method is
an efficient numerical tool for the study of the buckling phenomena. In particular, it provides boundaries for the safe man-
ufacturing of free-standing thin films under both pre- and post-buckling conditions. The model-based analysis of the under-
lying physics allows one to significantly reduce the experimental effort necessary to explore safe manufacturing and
operation conditions, see e.g. [30,31] (p. 40). Furthermore, the incorporation of inelastic effects into the model allowed
for a high-fidelity nonlinear analysis with a more consistent representation of the energy storage. A possible extension would
be the inclusion of loading and geometrical imperfections by the feature of energy perturbation approach.

Another improvement would be a new formulation of Rayleigh–Ritz approach that allows one to apply the analysis with
different plate geometries and different boundary conditions. This is can be done by applying a mapping from the square
domain to the reference domain and then transform the integration to the square geometry where energy minimization
problem should be solved. Another way to apply the model on different geometries is to multiply the trial functions by a
suitable second order smooth cut-off function with a support equal to the film domain. This would also be a topic of a
following paper.
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