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In two spatial dimensions, inverse heat conduction problems of temperature, heat flux and
heat source recovery are solved in homogeneous and heterogeneous media for steady and
transient cases by the Green element method (GEM). The formulation of GEM employed is
presented in Taigbenu (2012) [27] and it uses a second-order difference expression to
approximate the internal normal fluxes and, therefore, gives accuracy comparable to the
flux-based formulation. The Tikhonov regularization with the singular value decomposi-
tion (SVD) are used to solve in a least square sense the over-determined, ill-conditioned
discrete equations arising from the element-by-element implementation of the singular
integral equations. With seven numerical examples, the numerical characteristics of the
GEM are evaluated for inverse problems where it is required to recover the temperature,
heat flux and heat source from available data. In some of the examples, the performance
of the formulation is evaluated when random errors are introduced into the measured data.
Excellent results are obtained from the simulated numerical examples, and more especially
that these results are obtained with coarse grids.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The inverse heat conduction problem (IHCP) arises in many practical applications in the fields of science and engineering
where the transport of heat, mass and energy takes place in natural and man-made materials. There are various classes of
IHCPs which range from recovery of boundary temperature and heat flux [1–6], estimation of medium parameters [7–10],
recovery of the spatial and temporal distributions of heat sources/sinks [11–19], recovery of initial data distributions
[11,20–22], and recovery of the shape and location of boundary and medium features [23–26]. In most instances sensor mea-
surements of temperature and heat fluxes are available at some accessible parts of the domain to support the solution of the
IHCPs. In this work, the first and third classes of IHCPs, earlier alluded to, are addressed. Unlike the direct problem which
gives a unique solution and whose numerical solution gives rise to a coefficient matrix that is well conditioned, the inverse
problem might yield non-unique solutions and the coefficient matrix, arising from its numerical discretization, is usually
ill-conditioned. The degree of ill-conditioning depends to a large extent on the distribution of the available data in relation
to the solution being sought.

Many numerical methods – the finite difference method (FDM), the finite element method (FEM) and the boundary
element method (BEM), and their variants – have been applied to IHCPs, and this is evident from the numerous references
that are available in the literature. This is the first time GEM, a variant of BEM, is being applied to these classes of problems. It
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is based on the formulation of the GEM that was recently derived by Taigbenu [27] in which a second-order polynomial
expression is used to approximate the internal normal fluxes so that only the solution for the temperature or the flux is
calculated at external nodes and the temperature at internal nodes. This formulation was shown to exhibit comparable
accuracy as the flux-based formulation, and also readily lends itself to solving inverse problems. The resultant coefficient
matrix from applying this formulation to the IHCP is ill-conditioned, and it is handled by the SVD method with Tikhonov
regularization. The current GEM formulation is tested with four examples of the class of IHCP which deals with recovery
of temperature and heat fluxes, and three examples of recovery of the strength of the heat sources which are assumed to
be time dependent. All of the numerical examples are solved by GEM with coarse 2-D spatial discretization of the domain,
which is indicative of the accuracy of the formulation. The ability of GEM to address this wide range of IHCPs demonstrates
the robustness of the current formulation in addressing inverse problems.

2. Governing equation

The IHCP addressed in this paper is governed by the differential equation
r � ½KrT� ¼ qc
@T
@t
þ QðtÞ; ð1Þ
wherer ¼ i@=@xþ j@=@y is the 2-D gradient operator with the spatial variables x and y, t is the time dimension, T is the tem-
perature field, K is the thermal conductivity, q is the density, c is the specific heat capacity, and Q represents heat sources and
sinks that are assumed to have only temporal variation. Eq. (1) applies to a domain X over which the specified initial con-
dition is
Tðx; y; t ¼ 0Þ ¼ T0ðx; yÞ: ð2aÞ
The conditions specified on the boundary C are:
Tðx; y; tÞ ¼ T1 on C1; ð2bÞ

�KrT � n ¼ q2 on C2; ð2cÞ

Tðx; y; tÞ ¼ T3 and � KrT � n ¼ q3 on C3; ð2dÞ
where n is the unit outward pointing normal on the boundary. Two types of IHCP problems are addressed in this paper; the
first requires the calculation of the solution for the temperature T and heat flux q on a part of the boundary, denoted C4, and
the second seeks the recovery of the strength of the heat source over time. In both types of problems, measurements of the
temperature may be available at specified internal points in the domain. The measured temperature value at any internal
point (xm, ym) is denoted as Tm = T(xm, ym, t), with Ni available sensor measurements. Fig. 1 shows the domain X with bound-
ary C ¼ C1 [ C2 [ C3 [ C4. When the boundary C4 does not exist and Q(t) is known, the problem reduces to the direct one
which is solved without requiring information on the temperature at internal points. For the solution of inverse problems to
be possible, the number of discrete equations that are generated by GEM has to be equal to or greater than the number of
unknowns.

The heat sources can be uniformly distributed and/or point sources. For the latter, they are represented as
QðtÞ ¼
XP

n¼1

Q ndðr � rnÞ; ð3Þ
where Qn is the strength of the nth heat source located at rn = (xn, yn), P is the number of these point heat sources, and dðr � riÞ
is the Dirac delta function. Eq. (1) can be expressed as a Poisson equation that is given by
1Γ

2q (x,y,t)

Γ2

T(x ,y ,t)m m

T (x,y,t)1

4Γ

Ω
T (x,y)0

Γ3

q (x,y,t)
T (x,y,t)3

3

Fig. 1. Domain and problem statement representation.
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r2T ¼ �rW � rT þU
@T
@t
þuQ ; ð4Þ
where W = lnK is dimensionless, and this is achieved by normalizing K with a unit value of the thermal conductivity that has
the same dimensional units as K, U = qc/K is the reciprocal of the thermal diffusivity, and u = 1/K. Applying Green’s theorem
to Eq. (4) results in its integral equation that is given by
�kTi þ
Z

C
ðTrG � nþ GuqÞdSþ

ZZ
X

G½�rW � rhþU
@T
@t
þuQ �dA ¼ 0; ð5Þ
where G ¼ lnðr � riÞ is the fundamental solution of r2G ¼ dðr � riÞ in the infinite domain, q ¼ �KrT � n is the normal heat
flux, the subscript i denotes the source or collocation node ri = (xi, yi) and k is the nodal angle at ri obtained from the Cauchy
part of the integration of the Dirac delta function dðr � riÞ at the source node. The boundary and domain integrals in Eq. (5) are
implemented in the Green element sense over sub-domains or elements that are used to discretize the computational domain.
This, in essence, is a limiting case of the domain decomposition technique in which the element arrangement is similar to that
of finite elements [28,29]. On these elements, Lagrange-type interpolations are prescribed for T, uq and W, that is T � NjTj (Nj

are the interpolation functions which, in this paper, are chosen to be linear). Introducing the interpolation relationship into
Eq. (5) results in the discrete element equations applicable to each sub-domain or element denoted as Xe. That is
RijTj þ LijðuqÞj � UimjWmTj � VimjWmTj þWimjUm
dTj

dt
þ FijQ j ¼ 0; ð6Þ
where
Rij ¼
Z

Ce
NjrGi � nds� dijk; Lij ¼

Z
Ce

NjGids; Uimj ¼
ZZ

Xe
Gi
@Nm

@x
@Nj

@x
dA; Vimj ¼

ZZ
Xe

Gi
@Nm

@y
@Nj

@y
dA;

Wimj ¼
ZZ

Xe
GiNmNj dA: ð7Þ
In Eq. (7), Ce is the boundary of the elemental domain Xe and dij is the Kronecker delta. All these integrations are evaluated
analytically on linear rectangular and triangular elements. The expression for the matrix Fij, resulting from the contribution of
heat sources, depends on whether they are distributed or point sources. For distributed sources, it has the expression
Fij ¼ uðrjÞ
ZZ

Xe
lnðr � riÞNj dA; ð8aÞ
and for each point source, the expression is
Fij ¼ uðrjÞ lnðrj � riÞ; ð8bÞ
where u(rj) is the reciprocal of the thermal conductivity that is evaluated at rj = (xj, yj). The discrete element Eq. (6) is aggre-
gated for all the elements that are employed in discretizing the computational domain. The outcome for doing this is the
matrix equation
EijTj þ Bijqj þ Cij
dTj

dt
þ FijQ j ¼ 0; ð9Þ
where Eij ¼ Rij � UimjWm � VimjWm, Bij ¼ Limudmj and Cij ¼WimjUm. The formulation presented in Taigbenu [27] is used to
approximate the normal flux q at inter-element boundaries. It approximates q in terms of T which is represented by a qua-
dratic polynomial of the spatial variables r = (x, y). As earlier demonstrated, this formulation greatly improves the accuracy of
the numerical solutions to a level that is comparable to the flux-based GEM [30,31]. With this approximation, calculations
are required for T and q on the boundary of the computational domain and T at nodes within the domain. The temporal deriv-
ative term is approximated by a finite difference expression: dT/dt � [T(2) � T(1)]/Dt evaluated at t = t1 + bDt, where 0 6 b 6 1,
is the difference weighting factor, and Dt is the time step between the current time t2 and the previous one t1. Introducing
the approximation for the temporal derivative in Eq. (9) and weighting the other terms by b yields
bEij þ
Cij

Dt

� �
Tð2Þj þ bBijq

ð2Þ
j þ bFijQ

ð2Þ
j ¼ xEij þ

Cij

Dt

� �
Tð1Þj þxBijq

ð1Þ
j þ bFijQ

ð1Þ
j ; ð10Þ
where x = b � 1 and the bracketed superscripts represent the times at which the quantities are evaluated. The initial and
boundary data and available internal temperature measurements are incorporated into Eq. (10) to give the matrix equation
Ap ¼ b; ð11Þ
where
A ¼
bEij þ

Cij

Dt

bBij

bFij

2
64

3
75 and p ¼

Tð2Þj

qð2Þj

Q ð2Þj

8>><
>>:

9>>=
>>;
; ð12Þ
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where p is an N � 1 vector of unknowns (T and/or q at external nodes, T at internal nodes and the heat sources, Q). The matrix
A is an M � N matrix, where M is the number of nodes in the computational domain (which equals the number of discrete
equations generated by the GEM formulation) and M P N, and b is an M � 1 vector of known quantities which consist of the
terms on the right hand side of Eq. (10) and as well as the contributions from the available temperature measurements.
Eq. (11) is over-determined and generally ill-conditioned system of equations that can be solved by the least square method
with regularization. The singular value decomposition (SVD) method is used to facilitate the decomposition of the M � N
matrix A by the relationship [32]
A ¼ UDVt ¼
XN

i¼1

wiuiv tr
i ; ð13Þ
where U is an M �M matrix and V is an N � N matrix; both are orthogonal square matrices, and D is an M � N
diagonal matrix with N non-negative diagonal elements ðD ¼ diagðw1;w2; . . . ;wNÞÞ which satisfy the condition:
w1 > w2 > � � � > wN > 0. N is the rank of the matrix A, and ui and vi are the ith column of the matrices U and V, respec-
tively. By the least square solution of Eq. (11), the Euclidian norm ||Ap � b||2 is minimized to give the solution for the
unknowns p
p ¼ B�1s; ð14Þ
where B = AtrA is an N � N matrix, and s = Atrb is an N � 1 vector. Introducing the expression for A from Eq. (13) into Eq. (14)
gives
p ¼
XN

i¼1

utr
i b
wi

v i: ð15Þ
The small singular values wi cause instability of the solution for p by Eq. (15), and for that reason, either regularization is
carried out or the singular values less than a prescribed threshold are truncated. The former approach is the regularized SVD
approach, while the latter is the truncated SVD. The former is followed in this work. The Tikhonov regularization method,
one of the earliest regularization methods, is used in this work. It is a smoothening technique that attempts to stabilize
the numerical results from solving the ill-conditioned system of equations of the IHCP problem [33]. The Tikhonov regular-
ization technique minimizes ||Ap � b||2 + a2||Ip||2, resulting in the solution for p that is given by (I is the identity matrix)
pðaÞ ¼
XN

i¼1

wi

a2 þ w2
i

utr
i bv i; ð16Þ
where a is the regulation parameter. The factor wi/(a2 + wi
2) in Eq. (16) serves to dampen the contribution of the small sin-

gular values. The choice of a has to be carefully done so that it is not too small to retain the instability of the numerical solu-
tion or too large to have smooth solutions that do not reflect the physics of the problem being addressed. As suggested by
Hansen [34], we found, normalizing the singular values with the largest one w1 such that wN < � � � < w2 < w1 6 1, to be useful
in constraining the choice of the regularization parameter to that of the order of magnitude of the small singular values.

3. Numerical examples

Seven examples are used to assess the accuracy of the inverse formulation of the GEM earlier presented. The first two
examples are non-transient, and one of them addresses heat conduction in a non-homogeneous medium. These examples
had previously been addressed by the local integral equation (LIE) formulation of Sladek et al. [4]. The third and fourth exam-
ples are transient IHCPs. In these first four examples, the recovery of temperature and heat flux data is sought. The last three
examples examine the recovery of the strength of heat sources under transient conditions and were addressed by Yan et al.
[13] using the method of fundamental solutions (MFS). Using these seven examples provides a comprehensive assessment of
the performance and robustness of the current GEM formulation in solving inverse heat conduction problems.

3.1. Example 1

Inverse heat conduction under steady condition is examined in a square medium [1 � 1] with material properties that are
homogeneous but slightly different from those used by Sladek et al. [4] who solved a similar example. The thermal conduc-
tivity K = 1 and there is no heat source in the medium, Q = 0. The exact solution for this test example that satisfies the gov-
erning equation is T = y. Three cases of boundary conditions, presented in Fig. 2a–c, are evaluated. In case (i), zero heat flux
and a linear temperature variation with y are prescribed on the right boundary, while no data on T and q are available on the
other three boundaries which are, therefore, C4 boundaries. Temperature measurements are available at 19 internal points
(along x = 0.125, y = 0.125 and y = 0.875), and indicated by the empty circles in Fig. 2a. In case (ii), the left and right bound-
aries are insulated, while unit temperature and unit heat flux are specified on the top boundary. The bottom boundary is a C4

boundary where T and q are not known. No temperature measurements are available within the domain (Fig. 2b). Case (iii)
has unit temperature specified on the top boundary, a linear temperature distribution and zero heat flux along the right
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Fig. 2. Problem domain for three cases of Example 1.
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boundary, and no boundary data on the left and bottom boundaries. 14 internal temperature measurements are available
along y = 0.125 and y = 0.875 (Fig. 2c).

Using a grid of 8 � 8 linear rectangular elements with 32 boundary nodes and 49 internal nodes, numerical simulations
are carried out with the GEM using the regularized SVD method to evaluate the ill-conditioned and over-determined system
of equations. The relative error for the simulated temperature field is evaluated by the relationship
e ¼ kT
cal � Texactk
kTexactk

� 100; ð17Þ
where
kTk ¼
ZZ

X
T2dA

� �1=2

: ð18Þ
The relative errors for the predicted temperature field by the GEM are compared in Table 1 to those of the LIE formulation
of Sladek et al. [4] who used twice the number of boundary nodes of GEM. It is worth noting that while the accuracies of the
two numerical solutions are comparable, it is achieved by GEM with fewer boundary nodes. It is only along the C4 boundary
that GEM results are presented for the temperature and the heat flux. These results for case (i) are presented in Fig. 3a and b,
for case (ii) in Fig. 4a and b, and for case (iii) in Fig. 5a and b. In all the examples, there is better prediction of the temperature
than the heat flux.

The influence of measurement errors, which do arise in practical situations, is also examined with these three cases of
Example 1. To do so, the prescribed data for the temperature on the boundary and within the domain are perturbed in a
random manner by the relationship
~Tm ¼ Tm½1þ r� RNðmÞ�; ð19Þ



Table 1
Errors from the numerical simulations of Example 1.

Numerical
method

Case (i) Case (ii) Case (iii)

Regulari-zation value,
a

Relative error,
e

Regulari-zation value,
a

Relative error,
e

Regulari-zation value,
a

Relative error,
e

GEM (SVD) 5 � 10�4 8.91 � 10�4 10�5 3.77 � 10�3 3 � 10�9 9.69 � 10�5

LIE (SVD) 7.60 � 10�4 2.50 � 10�3 Not available

(a) (b)

Fig. 3. Numerical solutions of the temperature and flux along the C4 boundaries for case (i) Example 1.
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Fig. 4. Numerical solutions of the temperature and flux along the C4 boundaries for case (ii) Example 1.
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where r denotes the magnitude of the error or noise level and RN 2 [�1, 1] are random numbers that are generated with the
IMSL program routine RNNOR. Fig. 6a shows the variation of the relative error, e, calculated by Eq. (17), with noise levels of
1%, 3% and 5% for the three cases of Example 1. Noting that the calculation of e takes into account only the temperature field,
we then examined how the noise in the data affects both the temperature field and heat flux. Using only case (i) of Example 1
(similar results were obtained for the other two cases), the influence of noise on the data was evaluated along the C4 bound-
aries. The numerical errors, based on the root mean square error (RMSE), are presented in Fig. 6b. We observe greater influ-
ence of data noise on the GEM solution for the heat flux than the temperature. This is a typical experience with inverse
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Fig. 5. Numerical solutions of the temperature and flux along the C4 boundaries for case (iii) Example 1.
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numerical simulations in which the influence of noise on the temperature T (primary field variable) is generally amplified on
the heat flux q (secondary variable) [5,6,35].

In these three cases of Example 1 we have the benefit of the exact solution to benchmark the GEM solution with respect to
choosing the value of the regularization parameter a. In most instances an exact solution is not available. Using case (i) of
Example 1, comparison is made between the values of a that are chosen by making use of the available exact solution for
which e, obtained from Eq. (17), is minimized, and that based on the L-curve [34,36–38]. The L-curve is a plot of ||Ip||2 versus
the residual ||Ap � b||2 for all values of the regularization parameter a, with the corner of the plot reflecting the best com-
promise between these two quantities. The L-curve for case (i) of Example 1 with noise levels of r = 0%, 1%, 3% and 5% is
presented in Fig. 7. Comparing the values a obtained making use of the exact solution and that by the L-curve, presented
in Table 2, indicates that the a values from the former are slightly higher than those of the latter. These discrepancies can
be attributed to the fact that the optimum values of a that are based on the exact solution make use of only the calculated
temperatures T, while those based on the L-curve use both the temperature and heat flux, p = {T, q}tr.

3.2. Example 2

In this example, the boundary conditions presented for case (iii) of Example 1 are considered. Following Sladek et al. [4],
the thermal conductivity K varies exponentially with respect to the spatial variable y. That is
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Fig. 6. Influence of data noise on the GEM solutions: (a) relative error versus noise, (b) RMSE versus noise along C4 boundary for Example 1 (i).
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Table 2
Optimum regularization parameter values using the exact solution and
the L-curve for case (i) of Example 1.

Noise level r
(%)

Optimum a using the exact
solution

a from L-
curve

0 5 � 10�4 10�4

1 2 � 10�3 1.2 � 10�3

3 4 � 10�3 4 � 10�3

5 7 � 10�3 5 � 10�3

Table 3
Errors f

Num

GEM
LIE
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K ¼ K0eky; ð20Þ
where K0 = 1, and two values of the parameter k are used in the numerical simulations: k = 0.2 and k = 0.5. The exact solution is
T ¼ e�ky � 1
e�k � 1

: ð21Þ
As with Example 1, the GEM simulations are carried out with 8 � 8 linear rectangular grid, comprising 32 boundary nodes
and 49 internal nodes. The relative error e of the GEM solution of this example is compared to that of the LIE formulation of
Sladek et al. [4] in Table 3 for two values of the exponents k = 0.2 and k = 0.5. With half the number of boundary nodes used
in the LIE formulation, the GEM solutions are superior to those of the LIE. The GEM solutions along the left and bottom C4

boundaries, where both T and q are unspecified, are presented in Fig. 8a and b for the case of k = 0.2 and Fig. 9a and b for the
case k = 0.5. The results show that GEM gives good prediction of the temperature, T and boundary normal heat flux, q.

3.3. Example 3

This example is a transient IHCP that had previously been used as a test case by other authors [2,6]. Although it is one-
dimensional in space, the GEM simulations are done in a rectangular 2-D domain with insulated boundaries at the top and
bottom. The medium is homogeneous with K = 1 and no heat sources, Q = 0. With a test function T(x, t) = 2t + x2 that satisfies
the governing equation (1) in a domain x 2 ½0;1�, the temperature distribution T(x, 0) = x2 is prescribed at the initial time t = 0
and an C3 boundary along x = 1 where the temperature and flux are specified, that is
rom the numerical simulations of Example 2.

erical method k = 0.2 k = 0.5

Regularization value, a Relative error, e Regularization value, a Relative error, e

2 � 10�4 7.90 � 10�4 3 � 10�4 9.26 � 10�4

6.40 � 10�3 1.30 � 10�2
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Tð1; tÞ þ qð1; tÞ ¼ 2t þ 3: ð22Þ
The boundary along x = 0 is a C4 boundary where neither T nor q is specified, and three cases of locations with available
temperature measurements are examined: case (i) xm = 1, case (ii) xm = 0.5 and case (iii) xm = 0.25. The GEM simulations of
this example used only four rectangular elements, a time step, Dt = 0.025 and the fully implicit time differencing scheme,
b = 1. To minimize the influence of the imposed insulated top and bottom boundaries on the solution for this 1-D problem,
the boundaries are kept as far apart from each other in the y direction. Arbitrarily the y dimension is set at 103. The values of
the regularization parameter, obtained by employing the available analytical solution, for the three cases are: a = 2.2 � 10�4

for xm = 1, a = 3 � 10�3 for xm = 0.5 and a = 7.1 � 10�4 for xm = 0.25. The results for T(x = 0, t) and q(x = 0, t) along the C4

boundary are presented for the three cases in Fig. 10a and b. The GEM solutions are quite impressive, considering the coarse
grid of 4 elements or 10 boundary nodes compared to 40 boundary nodes used by Lesnic et al. [6].

3.4. Example 4

This is another transient IHCP with a more stringent test function than Example 3. We use the test function employed by
Lesnic et al. [6] that is given by [39]
Tðx; tÞ ¼

uðx; tÞ; t 2 ½0;0:5Þ;
uðx; tÞ � 2uðx; t � 0:5Þ; t 2 ½0:5;1Þ;
uðx; tÞ � 2uðx; t � 0:5Þ þ 2uðx; t � 1Þ; t 2 ½1;1:5Þ;
uðx; tÞ � 2uðx; t � 0:5Þ þ 2uðx; t � 1Þ � 2uðx; t � 1:5Þ; t 2 ½1:5;2�;

8>>><
>>>:

ð23Þ
where
uðx; tÞ ¼ 3ð1� xÞ2 � 1
6

þ t � 2
X1
n¼1

ð�1Þn

n2p2 cos½npð1� xÞ�e�n2p2t ; ð24Þ
Using only 4 rectangular elements as in the previous example, the GEM simulations are carried in a 2-D domain with
Dt = 0.025, b = 1 and a = 3.2 � 10�4. The boundary at x = 1 is a C3 where T and q are specified (T(x = 1, t) is obtained from
Eq. (23) and q(x = 1, t) = 0), and temperature measurements are available at xm = 0.25. The GEM and exact solutions along
x = 0 where neither T nor q is specified are presented in Fig. 11a and b. As in the previous example, the GEM, with this coarse
spatial grid, correctly predicts the temperature and heat flux at the boundary where they are not specified.

3.5. Example 5

This is a transient IHCP in which the recovery of the strength of the heat source is sought. It is an example that had
previously been addressed by Yan et al. [13] using the method of fundamental solutions (MFS). The exact solution to
Eq. (1) in 1-D spatial domain x 2 ½0;1� is
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Fig. 8. Numerical solutions for temperature and flux along the C4 boundaries for Example 2, k = 0.2.
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Fig. 9. Numerical solutions for temperature and flux along the C4 boundaries for Example 2, k = 0.5.
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Fig. 10. GEM solutions along x = 0 for Example 3; (a) T(x = 0, t) and (b) q(x = 0, t).
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Tðx; tÞ ¼ x4

4
þ 3tx2 þ sinðxÞe�t : ð25Þ
With the expression for the heat source being
QðtÞ ¼ �6t: ð26Þ
Dirichlet boundary conditions, obtained from Eq. (25), are specified along x = 0 and x = 1, while temperature measure-
ments are available at xm = 0.5 for all times. The GEM simulations are carried using 10 linear rectangular elements with
no-heat flux boundaries along y = 0 and y = 103. A uniform time step of 0.025 and the fully implicit time differencing scheme
b = 1 are incorporated in the GEM simulations. The temperature data at x = 0, 0.5 and 1 are perturbed randomly with noise
levels of r = 1%, 3% and 5%. The GEM solutions for the heat source are presented in Fig. 12 for various noise levels. The values
of the regularization parameter a used in the GEM simulations are 2.2 � 10�4 for r = 0% and 3.2 � 10�4 for the other noise
levels r = 1%, 3% and 5%. The GEM solutions give a good prediction of the heat source strength at noise levels of 1% and 3% but
oscillate about the exact solution at noise level of 5%.

Comparisons between the GEM and exact solutions were done for the temperature along x = 0.3 and the heat flux along
x = 0 by presenting these solutions in Fig. 13a and b. The oscillations of the GEM solution about the exact were significantly
pronounced at the noise level of 5%.
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Fig. 11. GEM solutions along x = 0 for Example 4; (a) T(x = 0, t) and (b) q(x = 0, t).
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3.6. Example 6

This is another transient IHCP previously addressed by Yan et al. [13] using the MFS. The distribution of the heat source is
more complicated than the previous example. The expression for the temperature distribution which satisfies Eq. (1) in 1-D
spatial domain x 2 ½0;1� is
Tðx; tÞ ¼ x2 þ 2t þ sinð2ptÞ: ð27Þ
The functional relationship for the heat source is
QðtÞ ¼ 2p cosð2ptÞ: ð28Þ
Along x = 0 and x = 1 the temperature, obtained from Eq. (27), is specified, and temperature measurements are available at
xm = 0.5 for all times. The GEM simulations use 10 linear rectangular elements with no-heat flux boundaries along y = 0 and
y = 103, a uniform time step Dt = 0.025 and a difference weighting b = 1. The temperature data at x = 0, 0.5 and 1 are per-
turbed randomly with noise levels of r = 1%, 3% and 5%. The GEM and exact solutions for the heat source are presented in
Fig. 14 for various noise levels. In the GEM simulations, the values of the regularization parameter are a = 2.2 � 10�4 for
r = 0% and a = 3.2 � 10�4 for the other three noise levels of 1%, 3% and 5%. The GEM results correctly reproduce the exact
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Fig. 12. Recovery of the heat source at various noise levels for Example 5.
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Fig. 13. GEM and exact solutions for Example 5; (a) T(x = 0.3, t), (b) q(x = 0, t).

678 A.E. Taigbenu / Applied Mathematical Modelling 39 (2015) 667–681
solution, with subdued oscillations compared to those of Example 5. The GEM and exact solutions for the temperature at
x = 0.3 and the flux at x = 0 are plotted in Fig. 15. The GEM solution for the temperature is virtually oscillation free, but
not for the flux when the noise levels are 3% and 5%.
3.7. Example 7

In this example, also previously simulated by Yan et al. [13] using the MFS, the IHCP is governed by Eq. (1) in a 1-D homo-
geneous domain x 2 ½0;1� and solved with zero temperature specified at both ends of the domain. Initially the temperature is
zero everywhere in the domain, and the IHCP is to recover the step-wise heat source distribution expressed as:
QðtÞ ¼

�1; t 2 ½0; 0:25Þ;
1; t 2 ½0:25;0:5Þ
�1; t 2 ½0:5;0:75Þ;

1; t 2 ½0:75;1�:

8>>><
>>>:

ð29Þ
In the absence of an analytic solution, the temperature distribution is generated by solving the direct problem with GEM
using fine spatial and temporal discretizations of 40 linear rectangular elements and time step Dt = 2.5 � 10�3 in order to
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Fig. 14. Recovery of the heat source at various noise levels for Example 6.
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Fig. 15. GEM and exact solutions for Example 6; (a) T(x = 0.3, t), (b) q(x = 0, t).
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enhance the accuracy of the solution. The generated direct GEM solution is presented in Fig. 16a, with the temperature at
xm = 0.5, used in the inverse modeling, shown in Fig. 16b.

The inverse modeling with GEM is carried out using the specified boundary conditions (T(x = 0, t) = T(x = 1, t) = 0), the
initial condition (T(x, 0) = 0), the temperature data at xm = 0.5 that were generated by the direct GEM (Fig. 16b). Ten linear
rectangular elements are used in the inverse GEM simulations with no-heat flux boundaries imposed along y = 0 and
y = 103. A uniform time step Dt = 2.5 � 10�2 and the fully implicit time differencing scheme b = 1 are used in the GEM sim-
ulations. Because of the homogeneous boundary conditions, only the temperature data at x = 0.5 are affected when they
are randomly perturbed with noise levels r = 1%, 3% and 5%. The GEM solutions for the heat source are presented in Fig. 17
for various noise levels. The values of the regularization parameter employed in the GEM simulations are 2.2 � 10�4 for
r = 0% and 3.2 � 10�4 for r = 1%, 3% and 5%. The numerical results are excellent for all noise levels, considering the coarse
discretization that is used to recover this discontinuous heat source. These results are superior to those obtained by Yan
et al. [13] who used the method of fundamental solutions, and the inverse GEM solutions are oscillation-free for all noise
levels.

Fig. 18 shows the numerical solutions for the temperature at x = 0.3 and the flux at x = 0 (the same as the flux at x = 1
because of the symmetry of the problem about x = 0.5) obtained by the direct and inverse GEM simulations. There is excel-
lent agreement between both numerical solutions.
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Fig. 16. Direct GEM solutions for Example 7; (a) T(x, t), (b) T(xm = 0.5, t).



0 0.2 0.4 0.6 0.8 1
Time, t

-1.5

-1

-0.5

0

0.5

1

1.5

Q(
t) Exact

GEM; σ=0%
GEM; σ=1%
GEM; σ=3%
GEM; σ=5%

Fig. 17. Recovery of the heat source at various noise levels for Example 7.

0 0.2 0.4 0.6 0.8 1
t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

q(
x=

0,
t)

Direct GEM
GEM, σ=0%
GEM, σ=1%
GEM, σ=3%
GEM, σ=5%

0 0.2 0.4 0.6 0.8 1
t

-0.2

0

0.2

T(
x=

0.
3,
t)

Direct GEM
GEM, σ=0%
GEM, σ=1%
GEM, σ=3%
GEM, σ=5%

(a) (b)

Fig. 18. Direct and inverse GEM solutions for Example 7; (a) T(x = 0.3, t), (b) q(x = 0, t).
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4. Conclusions

Using seven numerical examples, we have demonstrated the robustness and accuracy of the recent formulation of the
GEM for the solution of steady and transient inverse heat conduction problems in 2-D homogeneous and heterogeneous
domains. The two classes of inverse heat conduction addressed are the recovery of the boundary temperature and heat flux,
and that of the time-dependent heat source strength that is spatially uniform. The Tikhonov regularization and the SVD tech-
nique are used to support the least square solution of the over-determined, ill-condition system of discrete equations that
arise from implementing the singular integrals over the elements. It is also demonstrated that the L-curve can facilitate the
choice of the regularization parameter. High accuracy of the GEM solutions is observed with relatively coarse spatial discret-
ization of the domain. The prediction of the temperature field is better handled by GEM than the flux. Furthermore, the
results show that the current GEM formulation is capable of accommodating IHCPs in which there is noise in the input data.
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