
Applied Mathematical Modelling 39 (2015) 654–666
Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm
A non-iterative mathematical description of three-dimensional
bifurcation geometry for biofluid simulations
http://dx.doi.org/10.1016/j.apm.2014.06.013
0307-904X/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author. Address: Bharti School of Engineering, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada. Tel
675 1151x2248; fax: +1 705 675 4862.

E-mail address: jzhang@laurentian.ca (J. Zhang).
Guigao Le a, Junfeng Zhang b,⇑
a School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
b Bharti School of Engineering, Laurentian University, Sudbury, ON P3E 2C6, Canada

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 October 2013
Received in revised form 4 May 2014
Accepted 20 June 2014
Available online 9 July 2014

Keywords:
Lung airways
Bifurcation
Aerosol deposition
Biofluid
Numerical modeling
Computational fluid dynamics
We propose a mathematical model to describe the three-dimensional bifurcation geometry
for airway flow simulations. The numerical scheme is explicit, non-iterative, and therefore
stable and efficient. In addition, our model successfully reproduces the characteristic cross-
sectional shape transition (from circular, to flattened elliptical, and then to 8-like shapes)
across a bifurcation as observed in anatomical examinations. Several examples with vari-
ous bifurcation parameters are presented, and these examples demonstrate the capacity
and usefulness of our work in airway flow and transport simulations. The model developed
here may also be useful for blood flow simulations and experimental model design.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Bifurcations are the fundamental structure of the human and animal respiratory system, where an airway splits into two
smaller daughter branches [1,2]. To investigate the complicated flow and transport processes in such bifurcation regions,
numerical simulations have been proven to be useful [3–10]. Thanks to the advanced computational facilities and technol-
ogies, patient-specific calculations are possible with system geometry reconstructed from CT (Computed tomography) or
MRI (magnetic resonance imaging) images [11,6,12,13]. However, information obtained from such simulations is limited
to that particular situation. For general and fundamental studies aiming at a better understanding of the mechanisms and
effects of various parameters on the flow and transport behaviors, an analytical description based on anatomical observa-
tions of these flow passages is more desirable [14]. While the straight segments between two consecutive bifurcations
can be approximately considered as circular tubes, it is not a trivial task to construct a mathematical formulation for the
three-dimensional (3D) bifurcation surface, which connects the parent and daughter branches smoothly.

Efforts in this direction can be traced back to the work by Gradon and Orlicki [15], where three types of rational functions
were employed to describe a sequence of inter-penetrating cylindroids to construct the bifurcation geometry. In addition to
the mathematical complexity, this model is limited to symmetric bifurcations, while asymmetric branching is very common
in pulmonary architecture [2]. The narrow and wide models were then developed by Balashazy and Hofmann [16] to incor-
porate the branching asymmetry, where the carina is modeled as a sharp wedge and the side surfaces of the transition zone
.: +1 705
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Nomenclature

DDL diameter of the straight part of the left branch
DDR diameter of the straight part of the right branch
DP diameter of the parent airway
LDL length of the straight part of the left branch
LDR length of the straight part of the right branch
LP length of the parent airway
RL local tube radius along the left branch
R�L curvature radius of the left branch
RLR local tube radius along the transition arc between two branches
R�LR curvature radius of the transition arc between two branches
RR local tube radius along the right branch
R�R curvature radius of the right branch
rc carinal curvature radius
sL curvilinear coordinate along the left branch axis
sLR curvilinear coordinate along the transition arc between two branches
sR curvilinear coordinate along the right branch axis
wL weight factor to the left branch axis
wLR weight factor to the transition arc between two branches
wR weight factor to the right branch axis
d cut-off value for the surface height calculation at central zone corners
� gradient transition function
�00 spatial gradient of local tube radius at the intersection point of the left branch axis and the transition arc
�01 spatial gradient of local tube radius at the intersection point of the right branch axis and the transition arc
r sigmoidal transition function
UL left branching angle
UR right branching angle
/L left sagittal angle
/c

L left sagittal angle where the branch diameter becomes constant
/�L left sagittal angle where the branch separates from the bifurcation
/LR sagittal angle along the transition arc between two branches
/R right sagittal angle
/c

R right sagittal angle where the branch diameter becomes constant
/�R right sagittal angle where the branch separates from the bifurcation
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are not smooth either. In 1995, Heistracher and Hofmann proposed to describe the carinal region with rounding circles to
smoothly connect the two daughter branches [17]. As noticed later by Hegedus et al. [14], the mathematical descriptions
in Ref. [17] were rather sketchy and the two-parameter iteration is numerically sensitive and hard to reproduce. They there-
fore improved this rounding-circle approach with more rigorous formulations for the carinal region, and the problematic
two-parameter iteration was replaced by a one-parameter root-finding process. Even with this improvement, numerical
instability may still be encountered in the carina rounding process, depending on the control geometric parameters and
the transition functions utilized [14]. To avoid the numerical difficulty associated with the rounding-circle approach, which
works in planes parallel to the bifurcation plane (the plane where the axes of the parent and daughter branches lie), Lee et al.
[18] suggested to construct the bifurcation shape in the vertical cross-sections perpendicular to the bifurcation plane. In
place of the iteration or root-finding process in the rounding-circle methods [17,14], a six-order polynomial fitting is neces-
sary to smoothly connect the branch circular arcs across the bifurcation [18]. Such a high-order polynomial fitting is still
iterative and sensitive to initial guess of the coefficients, and could be computationally unstable. A nonlinear equation also
needs to be solved to determine the separating line (called the boundary curve there) location. Although this method might
be attractive for highly asymmetric bifurcations, the symmetric bifurcation from this model has a deep indentation groove
up to the very parental end (see Figs. 8a and 10a in Ref. [18]). This is different from the physiological observations, which
indicate that the transition section consists of two regions: an elliptical region where the circular parent tube gradually
changes to an elliptical shape with flattened top and bottom sides; and the carinal region where two indentations appear
and grow in the middle of the top and bottom surfaces, leading to an 8-like cross-sectional shape and eventually two sep-
arate circles [2,19,17]. A similar problem also exists with the rounding-circle methods due to the non-zero rounding radius
near the parental end.

In this paper, other than constructing the two-dimensional cross-sectional shapes in planes parallel [17,14] or perpendic-
ular [18] to the bifurcation plane, we look the transition region as a 3D surface, and propose an explicit, robust, and non-iter-
ative mathematical description for the bifurcation geometry. No iteration process of root-finding or nonlinear fitting is
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involved and therefore this numerical scheme is efficient and stable. Symmetric and asymmetric examples will be presented
and compared to those from previous models. At last, results of an example flow simulation will be provided to illustrate the
practical usefulness of this model.
2. Model development

2.1. General description of bifurcation geometry

Heistracher and Hofmann had developed a simplified geometric description for airway bifurcations based on anatomical
observations [17], and this geometric model has been adopted by later studies [14,18]. Here we follow this tradition and
Fig. 1 displays the boundary outline in the bifurcation plane. The model starts with the parent tube modeled as a straight
cylinder of length LP and diameter DP (the region between sections AA0 and BB0). It then gradually expends toward the left
and right sides over the transition zone (the region bounded by sections AA0, CC0, and FF0), and finally two separate daughter
branches are formed at sections CC0 and FF0, respectively. Further downstream from the transition region, each daughter
branch continues as curved (segments between sections CC0 and DD0 or between FF0 and GG0) and then straight (segments
Fig. 1. The geometric structure of a general asymmetric bifurcation in the bifurcation plane. See details in text.
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between sections DD0 and EE0 or between GG0 and HH0) segments. The daughter branch axes (dashed curves B00–C00–D00–E00 and
B00–F00–G00–H00) are assumed to originate from the parental end at B00 and curve aside with respective radii (R�L for the left and
R�R for the right branches) up to certain angles (UL for the left and UR for the right branches). These angles are equal to the
respective branching angles (the orientation angles of the final straight branch tubes), as illustrated in Fig. 1. It is also usually
assumed that the tube size reduces gradually along the curves part, and the straight segment has a constant diameter, DDL for
the left and DDR for the right branches [17,14]. In another words, the sagittal angles (/c

L and /c
R) where the branch radii

become constant are assumed to be the same as the respective branching angles (i.e., /c
L ¼ UL and /c

R ¼ UR), although the
model description below can be readily extended to more general situations with /c

L < UL and /c
R < UR. The lengths of the

straight segments of daughter branches are denoted by LDL and LDR, respectively.

2.2. Surface height calculation

In this work, we limit our discussions to a bifurcation symmetric about its axis plane, although the left and right branch-
ing angles and diameters could be different. Due to this plane symmetry, for a certain point in the bifurcation plane, there are
two corresponding surface points: one above and one below the bifurcation plane, and the distances to the plane are the
same. For this reason, here we only talk about the upper half of the bifurcation surface, and the lower half is just an image
of the upper one. We set our Cartesian coordinate system with the x–y plane in the bifurcation plane and the origin at A00

(Fig. 1). Axis y follows the parent tube axis, and axis x directs toward the right side. The z axis is then perpendicular to
and pointing outward of the bifurcation plane. For our convenience of discussion, we will separate the bifurcation structure
into nine parts, and equations will be provided for points in each part to calculate the surface height z from a given pair of x
and y.

(1) The parent tube (Region between sections AA0 and BB0).
This straight segment is circular and the diameter is constant, and therefore the z-coordinate can be readily calculated by
z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

P=4� x2
q

; ð1Þ
and the application of this equation is limited to the range of �DP=2 6 x 6 DP=2 and 0 6 y 6 LP .
(2) The left side surface of the transition zone (Region delimited by B0B00, B00F00, F00F0, and F0B0).
As in previous modes [17,14,18], this portion of the surface is considered as circular with variational radius RLð/LÞ along

the curved axis B00F00. Here /L is the left sagittal angle of the current location ðx; yÞ relative to the left branch curvature center
ML, and it can be obtained by
/L ¼ tan�1 y� Lp

R�L þ x

� �
: ð2Þ
To have a smooth transition in radius along the branch axis, a sigmoidal function r is typically employed [17,14,18]. In prin-
ciple, this function r should vary monotonously and smoothly from one value to another over a certain interval, and its first-
order derivative should disappear as approaching the interval ends. Several choices, such as a shifted-and-scaled sine or
cosine function or the smooth Heaviside function [20], are available; however, here we follow previous studies [17,14,18]
and adopt the following transition function:
rðtÞ ¼ �2t3 þ 3t2; 0 6 t 6 1: ð3Þ
The local tube radius RLð/LÞ can then be obtained via
RLð/LÞ ¼ DP=2þ ðDDL=2� DP=2Þrð/L=/
c
LÞ: ð4Þ
Here /c
L is the sagittal angle where the left branch has achieved its constant diameter DDL. As in previous studies [17,14], we

use /c
L ¼ UL in this work.

The surface height above a point ðx; yÞ in this region is then given be
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

L ð/LÞ � R�L �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR�L þ xÞ2 þ ðy� LpÞ2

q� �2
s

: ð5Þ
In this region, we have 0 6 /L 6 /�L (/�L is the sagittal angle at section FF0 where the left daughter branch separates from the

bifurcation. This angle is determined below in Eq. 15) and R�L � RLð/LÞ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR�L þ xÞ2 þ ðy� LPÞ2

q
6 R�L (the outside part of the ring).

(3) The curved segment of the left branch (Region between sections FF0 and GG0).
Eqs. (2)–(5) are still applicable in this region; and the only difference is that here we have the entire circular tube surface

R�L � RLð/LÞ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR�L þ xÞ2 þ ðy� LPÞ2

q
6R�L þ RLð/LÞ with the sagittal angle in the range of /�L 6 /L 6 UL (UL is the sagittal angle

at section GG0 where the left daughter branch becomes straight).
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(4) The straight segment of the left branch (Region between sections GG0 and HH0).
This part of the daughter branch is a straight cylinder with a constant diameter DDL and an inclination angle UL. The z-

coordinate on the surface for a given point ðx; yÞ can then be calculated from the distance from this point to the left branch
centerline G00H00 by
z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

DL=4� ðx cos UL þ y sin UL � xG00 cos UL � yG00 sin ULÞ2
q

; ð6Þ
where ðxG00 ; yG00 Þ is the location of point G00 in the bifurcation plane:
xG00 ¼ R�Lðcos UL � 1Þ; yG00 ¼ LP þ R�L sin UL: ð7Þ
(5) The right side surface of the transition zone (Region delimited by BB00, B00C00, C00C, and CB).
The treatment on this region is very similar to that for the left side surface described above, and hence here we just give

the corresponding equations as:
Right sagittal angle:
/R ¼ tan�1 y� Lp

R�R � x

� �
; ð8Þ
Local radius:
RRð/RÞ ¼ DP=2þ ðDDR=2� DP=2Þrð/R=/
c
RÞ; ð9Þ
Surface height:
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

Rð/RÞ � R�R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR�R � xÞ2 þ ðy� LpÞ2

q� �2
s

: ð10Þ
Also we use /c
R ¼ UR for simplicity.

(6) The curved segment of the right branch (Region between sections CC0 and DD0).
Again here we can still use Eqs. (8)–(10), but for the entire circular surface between angles /�R and UR.
(7) The straight segment of the right branch (Range between sections DD0 and EE0).
For this segment, Eqs. (6) and (7) have been slightly modified as:
z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

DR=4� ðx cos UR � y sin UR � xD00 cos UR þ yD00 sin URÞ2
q

; ð11Þ

xD00 ¼ R�Rð1� cos URÞ; yD00 ¼ LP þ R�R sin UR: ð12Þ
(8) The carinal transition region between daughter branches (Region bounded by FF00, F00C00, C00C0, and C0F).
So far the modeling and treatments for the above mentioned parts are identical to those in previous methods [17,14,18].

The key differences in our present model from existing ones lie in the treatments for the last two regions, and we discuss the
carinal transition ring region here first. To smoothly connect the right half of the left branch end (section FF00) to the left half
of the right branch end (section C0C00), we propose to employ a similar approach as we do with the left and right side surfaces.
For this purpose, we introduce the transition radius R�LR (Fig. 1). With R�LR available, the transition curvature center K can be
determined as the third vertex of a triangleMKMLMR such that jKMLj ¼ R�L þ R�LR and jKMRj ¼ R�R þ R�LR (Fig. 1). Here the abso-
lute signs are adopted to represent the distances between pairs of points in the bifurcation plane. The coordinates of point K
can be calculated out explicitly as
xK ¼ �R�L þ ðR
�
L þ R�LRÞ cos /�L; yK ¼ LP þ ðR�L þ R�LRÞ sin /�L; ð13Þ
or
xK ¼ R�R � ðR
�
R þ R�LRÞ cos /�R; yK ¼ LP þ ðR�R þ R�LRÞ sin /�R; ð14Þ
with the branch end angles given by
cos /�L ¼
ðR�L þ R�RLÞ

2 þ ðR�L þ R�RÞ
2 � ðR�R þ R�RLÞ

2

2ðR�L þ R�RLÞðR
�
L þ R�RÞ

; ð15Þ

cos /�R ¼
ðR�R þ R�RLÞ

2 þ ðR�L þ R�RÞ
2 � ðR�L þ R�RLÞ

2

2ðR�R þ R�RLÞðR
�
L þ R�RÞ

; ð16Þ
according to the cosine law. With /�L and /�R calculated from Eqs. (15) and (16), Eqs. (13) and (14) actually yield the same
coordinates for point K.

At section FF0 the left branch has a radius RLð/�LÞ. Similarly, at section CC0 the radius of the right branch end is RRð/�RÞ. How-
ever, we cannot simply use the transition function r Eq. (3) to calculate the intermediate local radius along the transition arc
F00C00 as we do with side branches, since the r function has zero first-order derivatives at the interval ends, while there may
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be non-zero radius gradients at points F00 (if /�L – /c
L) and/or C00 (if /�R – /c

R). Otherwise sharp edges will be resulted in, and the
surface will not be smooth at cross-sections FF00 and C00C0. To avoid such defects, we introduce the following gradient tran-
sition function �:
�ð�00; �01; tÞ ¼ ð�00 þ �01Þt3 � ð2�00 þ �01Þt2 þ �00t; 0 6 t 6 1: ð17Þ
It can be shown that this function has zero function values at t ¼ 0 and t ¼ 1, and it has the desired first-order derivatives �00
at t ¼ 0 and �01 at t ¼ 1.

To have a smooth transition in local radius at point F00, we need to set the spatial gradient of local radius in the direction
leaving F00 along the transition arc F00C00 to be the same as that in the direction approaching F00 from G00F00 along the left branch
axis; and a similar statement applies to the situation at point C00. For convenience, we define three one-dimensional curvi-
linear coordinates along these arcs: sL along the left branch axis from G00 to B00; sR along the right branch axis from B00 to D00;
and sLR along the transition arc from F00 to C00 (Fig. 2). The smooth transition requirement in radius gradient is then expressed
as:
dRLð/LÞ
dsL

����
/L¼/�L

¼ dRLRð/LRÞ
dsLR

����
/LR¼0

; ð18Þ

dRRð/RÞ
dsR

����
/R¼/�R

¼ dRLRð/LRÞ
dsLR

����
/LR¼p�/�L�/�R

: ð19Þ
The transition angle /LR measures from line KF00 up to KC00 and its value can be obtained from the x and y coordinates of a
point in this region as
/LR ¼
p
2
� /�L þ tan�1 x� xK

yK � y

� �
: ð20Þ
Recall that the local radii RLð/LÞ and RRð/RÞ are calculated from Eqs. (4) and (9) via the sigmoidal function Eq. (3), we then
have
dRLð/LÞ
dsL

����
/L¼/�L

¼ �DDL � DP

2R�L/
c
L

r
dt

����
t¼/�L=/

c
L

; ð21Þ

dRRð/RÞ
dsR

����
/R¼/�R

¼ DDR � DP

2R�R/
c
R

r
dt

����
t¼/�R=/

c
R

: ð22Þ
Fig. 2. The carinal transition region and the curvilinear coordinate systems.
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The negative sign in Eq. (21) comes from the fact that the sagittal angle /R increases in the opposite direction of sL. Putting
these equations together, we now can write the local radius along the transition arc F00C00 as
RLRð/LRÞ ¼ RLð/�LÞ þ ½RRð/�RÞ � RLð/�LÞ�r
/LR

p� /�L � /�L

� �
þ R�LR� �

0
0; �

0
1;

/LR

p� /�L � /�L

� �
; ð23Þ
where
�00 ¼ �
ðDDL � DPÞR�LRðp� /�L � /�RÞ

2R�L/
c
L

dr
dt

����
t¼/�L=/

c
L

; ð24Þ

�01 ¼
ðDDR � DPÞR�LRðp� /�L � /�RÞ

2R�R/
c
R

dr
dt

����
t¼/�R=/

c
R

; ð25Þ
and the derivative of r is readily available from Eq. (3)
dr
dt
¼ �6t2 þ 6t; 0 6 t 6 1: ð26Þ
Once the local radius RLRð/LRÞ is obtained, the surface height can be found in a similar fashion as in other regions:
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

LRð/LRÞ � R�LR �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xKÞ2 þ ðy� yKÞ

2
q� �2

s
: ð27Þ
For this current carinal region, we should have 0 6 /LR 6 p� /�L � /�R and R�LR � RLRð/LRÞ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xKÞ2 þ ðy� yKÞ

2
q

6 R�LR.
(9) The central region (Region enclosed by arcs B00C00, C00F00, and F00B00).
The last part that we have not discussed by now is the central region of the transition zone, and we would call it the cir-

cular triangle B00C00F00. The current situation is that we have the surface height (z-coordinate) values all defined on its three
circular edges, and we need to find a way to construct a 3D surface patch which meets each circular edge (including the ver-
tices B00, C00, and F00) smoothly.

Consider a point P ðx; yÞ in the central region as shown in Fig. 3. We connect this point to the three arc centers (ML;MR and
K), and the lines intersects with the edges at, respectively, PL; PR and PLR. From the corresponding arc angles /L;/R and /LR, we
can have the surface heights at these intersection points, which are RLð/LÞ;RRð/RÞ, and RLRð/LRÞ, respectively. In addition,
three weight factors are defined to measure how close this interesting point P is to each circular edge:
wL ¼
jMLPj � R�L
jMLC 00j � R�L

; wR ¼
jMRPj � R�R
jMRF 00j � R�R

; wLR ¼
jKPj � R�LR

jKB00j � R�LR

: ð28Þ
One can see that we will have wL ¼ 0 on the edge B00F00 and wL ¼ 1 at the vertex C00.
We then propose the following equation to calculate the surface height above point P as:
z ¼ ð1�wLÞwRwLRRLð/LÞ þwLð1�wRÞwLRRRð/RÞ þwLwRð1�wLRÞRLRð/LRÞ
ð1�wLÞwRwLR þwLð1�wRÞwLR þwLwRð1�wLRÞ

: ð29Þ
This particular equation is constructed such that the calculated z value approaches the edge value as point P moves toward
an edge. At the vertices, a 0/0 singularity exists. Although the mathematical limit of this singularity is the correct corner
height value, computer calculations may break down in the very close vicinities of the vertices. To avoid such possible inter-
ruptions, in computer program we can include the following treatments:
z ¼ DP=2; if wL 6 d and wR 6 d; ð30Þ

z ¼ RLð/�LÞ; if wL 6 d and wLR 6 d; ð31Þ

z ¼ RRð/�RÞ; if wR 6 d and wLR 6 d; ð32Þ
where d is a very small quantity as a resolution control parameter. In our calculations, we use d ¼ 10�6 mm.

2.3. Input control parameters

For convenience to potential users of this model, here we summarize the input parameters required to define the bifur-
cation structure:

– diameters of the straight segments of the parent and daughter tubes (DP;DDL;DDR);
– branching angles of the daughter tubes (UL;UR);
– curvature radii of the daughter tubes (R�L , R�R); and
– curvature radius of the carinal connection (R�RL).



Fig. 3. The central circular triangular region and the intersection points.
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Unlike previous models [17,14,18], the carinal rounding radius rc is not involved in our present model, although it has
been adopted in physiological airway characterization [2]. Actually, for general asymmetric bifurcations with unequal
branch diameters, branching angles, and/or branching curvature radii, the carinal rounding radius might not be the best
choice for the local geometry description. A rounding radius always implies a local left–right symmetry about the line pass-
ing the rounding center along the y-direction; and such a local symmetry should not be always expected for highly
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asymmetric bifurcations. Nevertheless, for symmetric or slightly asymmetric bifurcations, if we neglect the further decrease
in diameter after the branch ends [RLð/�LÞ � DDL=2 and RRð/�RÞ � DDR=2] and the radius gradients there, the transition arc
radius R�LR can then be approximately related to the rounding radius rc by
Fig. 4.
(DP ¼ 1
R�LR � ðDDL þ DDRÞ=2þ rc: ð33Þ
In addition to these geometric parameters, as mentioned in Ref. [14], different transition functions r and � (even different r
functions for the left/right or upper/lower sides of the bifurcation surface) can also be experimented to introduce more
degrees of freedom for best descriptions of particular bifurcation structures. The lengths of the straight segments of the par-
ent and daughter tubes (LP ; LDL, and LDR) are not considered as control parameters here, since they are not directly relevant to
the bifurcation geometry. For some parameter combinations (e.g., a small branching angle with a short curvature radius on
one same side), the calculated branch end angle (/�L or /�R) may be larger than the branching angle. In such situations, the
mathematical relations in this paper need to be re-formulated by following the key ideas here, and this is a straightforward
task.
3. Results and discussion

We have tested our method with different parameters and found that the method is stable and robust as long as the geo-
metric relationships illustrated in Fig. 1 valid. Fig. 4 shows two bifurcations (one symmetric and one asymmetric) generated
from our model. The control parameters (see figure caption) are taken from a previous study [14] for comparison. For a more
careful examination, we then plot cross-sectional cuts in several constant-x and constant-y planes (Fig. 5). Again we see all
these shape profiles are smoothly continuous. For the symmetric bifurcation along the y-direction (Fig. 5(a)), the cross-sec-
tional shapes gradually change from a circle (y ¼ 3 mm and y ¼ 4 mm), an apparent ellipse (y ¼ 5 mm), to a blunt shape with
flattened top and bottom (y ¼ 6 mm). After this location, the cross-sectional shape becomes indented inward on top and bot-
tom, resembling the digit 8, and the indentation becomes more and more significant over a short distance (y ¼ 6:3 mm to
y ¼ 6:65 mm). Finally, the top and bottom indentation points merge together (y ¼ 6:68 mm), and two separate daughter
branches are formed (y ¼ 7 mm and y ¼ 8 mm). This transition in cross-sectional shape is very similar to experimental
observations [2,19]. Compared to those from a previous model [18], our model has successfully captured the elliptical/flat
section in the transition zone, while the previous model produced an unrealistic indentation groove immediately after
the parent tube end. Similar problems may also exist with the rounding-circle methods [17,14], due to the non-zero round-
ing-off radius [rcðzÞ there] along the entire carinal ridge (except the vey parental end point B00).

Fig. 5(b) displays the constant-x cuts from the symmetric line x ¼ 0 to x ¼ 3, where the right branch has completely devel-
oped. Again all the profiles are smooth and continuous in a reasonable fashion. The cord depth of the flow divider (see
Fig. 14D in Ref. [2]) at x ¼ 0 plane is found to be 5.4 mm, which is 0.77 times of the daughter branch diameter (7 mm). This
agrees qualitatively with the physiological observations by Horsfield et al. [2], where they reported that the cord depth is
approximately equal to or less than the branch diameter.

Such cross-sectional shapes of the asymmetric bifurcation are also plotted Fig. 5(c) and (d). The structure asymmetry is
clear, and again all shapes are reasonable and smooth. Lee et al. [18] had pointed out that a distortion might be generated on
the thinner-branch side for asymmetric bifurcations when the carinal ridge is forced to start at the parent tube center B00. No
such distortion is observed in the bifurcation outline and the cross-sectional cuts in Fig. 5(d).

Different from previous models trying to connect the two branch surfaces in planes parallel or perpendicular to the bifur-
cation plane, here we use a transition arc F00C00. To verify the local radius change along the transition arc, in Fig. 6 we plot the
variations of local radii RL;RR, and RLR along their individual curvilinear coordinates sL; sR, and sLR. For clarity, key positions
along these paths, including points B00, C00, D00, F00, and G00, are also indicated as circles with labels. Curve RLR � sLR separates
from curve RL � sL at the splitting point F00, and later merges to curve RR � sR at the converging point C00. The change in
RLR at these two end points, as well as over the whole sLR-region, is continuous and smooth for both symmetric and asym-
metric cases, indicating that the gradient transition function � and the relevant mathematical treatments work well for our
purpose.
The 3D shapes of a symmetric (a) (DP ¼ 16 mm, DDL ¼ DDR ¼ 14 mm, UL ¼ UR ¼ 35
�
, R�L ¼ R�R ¼ 64 mm, R�LR ¼ 8 mm) and an asymmetric (b)

6 mm, DDL ¼ 14 mm, DDR ¼ 8 mm, UL ¼ 35
�
;UR ¼ 45

�
, R�L ¼ 64 mm, R�R ¼ 48 mm, R�LR ¼ 8 mm) bifurcations.



(a)

(c) (d)

(b)

Fig. 5. The cross-section shapes of the symmetric (a and b) and asymmetric (c and d) bifurcations shown in Fig. 4 at different constant-y (top) and constant-
x (bottom) locations.
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To further explore the capacity of this model, four more asymmetric bifurcations are shown in Fig. 7, and the control
parameters are listed in Table 1. These parameter combinations, although artificial, cover wide ranges of parent/daughter
diameter ratio, branching angle, and curvature radius based on anatomical results [2,19]. As can be seen there, the surfaces
in the transition zones are smooth and the parent and daughter branches are connected to the transition zones naturally. We
also find that our method is stable and robust in all these systems, and therefore it is capable to model bifurcations with large
differences in tube diameters, branching angles, and branching curvatures.

At last, we present an example flow simulation with the asymmetric bifurcation in Fig. 4(b) to illustrate the practical
application of this model. A finite-volume computational fluid dynamics (CFD) program is utilized, with a parabolic velocity
distribution with a maximum velocity Um at the center applied at the parental end and a constant pressure at the two distal
branch ends. In addition, linear variations for pressure at the inlet and velocity at the exits are assumed. These boundary
conditions may not describe the actual airflows in airway trees well, and multiple-level bifurcations would be desirable



Fig. 6. The variations of local radii along the branch axes and transition arc for the symmetric (a) and asymmetric (b) bifurcations in Fig. 4.

Fig. 7. The 3D shapes of more general asymmetric bifurcations. The control parameters to generate these structures are listed in Table 1.
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[9,10]. Nevertheless, the simulation here is just an example and we are not aiming to examine any particular phenomena.
The Reynolds number Re ¼ qUDP=l (q is the fluid density, l is the fluid viscosity, and U ¼ Um=2 is the mean flow velocity
in the parent tube) is 1633, which is in the typical range for flows in the primary bronchi with similar diameters [19].
Fig. 8(a) displays the flow field in the bifurcation plane, with background colors for the velocity strength (normalized by
the maximum inlet velocity Um ¼ 2U) and arrows for the flow direction. In the parent segment, the velocity profile is approx-
imately parabolic, consistent to the fluid mechanics theory for laminar tube flows. The flow separates in the bifurcation
region, and the higher flow rate into the left branch is due to its larger diameter and then the less flow resistance under
a same pressure difference. Immediately after the bifurcation region, the flow velocity increases in both branches because
of the no-slip boundary condition and mass conservation constraint. A low-flow region is also noticed near the right
bifurcation wall, and this can be attributed to the lower flow rate into the narrower right branch and the relatively large
branching angle there (/R ¼ 45o). We have also examined the secondary flow patterns in several transverse cross-sectional



Table 1
Control parameters for the bifurcations shown in Fig. 7. The letters in the first column indicate the corresponding subfigure labels in Fig. 7.

DP (mm) DDL (mm) DDR (mm) UL (deg.) UR (deg.) R�L (mm) R�R (mm) R�LR (mm)

(a) 20 18 12 30 35 150 80 11
(b) 20 14 19 80 6 30 350 12
(c) 20 11 15 80 80 45 80 10
(d) 20 12 19 10 10 400 30 12

Fig. 8. The flow patterns in the bifurcation plane (a) and several transverse cross-sections (b-i). The background colors indicate the velocity magnitudes
(normalized by the maximum inlet velocity Um) and the arrows show the flow directions.
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planes along the flow direction (Fig. 8(b)–(i)). Before y ¼ 3 cm (Fig. 8(b)–(d)), we see no significant secondary flows, meaning
that the flow here is mainly a tube flow in the axial direction. The maximum velocity magnitudes for the secondary flows
there are 9:75� 10�5Um at y ¼ 1 cm, 6:40� 10�4Um at y ¼ 2 cm, and 4:50� 10�3Um at y ¼ 3 cm. This secondary flow is flow-
ing from the right to left, indicating that the mainstream flow is bending toward right to provide a high-flow-rate supply to
the right branch, as can be seen in Fig. 8(a). The secondary flow strength increases as approaching the bifurcation region, and
the maximum velocity grows up to 0:116Um at y ¼ 5 cm (Fig. 8(f)). Meanwhile, a weaker and smaller left-to-right secondary
flow pattern also gradually develops for the low-flow-rate right branch (Fig. 8(e)–(g)). The secondary flow patterns are all
symmetric about the bifurcation plane at z ¼ 0, and two high-flow regions (one above and one below the bifurcation plane)
are observed for, respectively, the right-to-left and the left-to-right secondary flow patterns (Fig. 8(g)). After the flow has
completely separated into two branches, the high-flow regions merge together, and the flow in each branch gradually adjusts
toward the tube-flow situation (Fig. 8(h) and (i)). The flow in the narrower right branch has almost developed at the right
exit, while the flow in the left branch is still highly asymmetric at the left exit (Fig. 8(a) and (i)), because a stronger flow in a
wider tube requires a longer entrance length. Since this simulation is carried out with our new bifurcation model, a direct
comparison with previous simulation results is not possible. Nevertheless, the above observations quantitatively agree with
fluid mechanics theory and previous simulations [9,10,5].

4. Summary

We have developed an explicit and non-iterative mathematical model for the 3D geometry of airway bifurcations. The
transition zone is separated into three half-ring segments at the edges and a central circular triangular region, and the sur-
face height in the central zone is determined by a distance-to-edge weighted scheme. Compared to other existing methods,
there is no iteration processes involved in our model, and therefore the numerical calculation is explicit and stable. Examples
with various geometric control parameters are presented. More important, the typical cross-sectional shape change (from
circular, to flattened elliptical, and to 8-like shapes) observed in anatomical studies has been successfully reproduced.
Simulation results of a flow through an asymmetric bifurcation have also been presented to illustrate the potential model
applications. This work may also be useful for blood flow simulations [21,22] and experimental model design [23].
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