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An empirical method is developed for obtaining the stress concentration factor for a pair of
equally sized spherical cavities embedded in a large continuum in three-dimensional
space. For practical applications such as die-cast materials containing many pores, we con-
struct a simple and robust closed-form equation to evaluate the stress concentration factor
considering the interaction between two cavities. The stress concentration factor can be
used to evaluate the effect of pores on the material strength and the probable location of
pores that will initiate a fatigue crack. Three-dimensional finite element linear elastic anal-
ysis was carried out to evaluate the stress concentration factors for arbitrary locations of
the two cavities. The effects of the inter-cavity distance and the orientation of the inter-
cavity axis with respect to the loading direction on the stress concentration factor are
numerically obtained by systematically changing each of these parameters. Two empirical
equations are proposed to fit the stress concentration factor data calculated by finite ele-
ment analysis after considering various boundary conditions from a mechanical stand-
point, and the parameters of the empirical formula are obtained by non-linear curve
fitting with regression analysis.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The stress enhancement caused by inter-cavity interaction is very important from a fatigue strength point of view, since it
facilitates fatigue crack initiation [1,2] and degrades the long-term reliability of metal members under dynamic loading.
Cavities of irregular shape and size are usually formed during manufacturing, but evaluating the stress field around an
irregular boundary is difficult, and closed-form solutions are not available for such geometries. For simplicity, such voids
hiihara),
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are assumed to be regular spherical cavities. Therefore, it is important to study the interference between stress fields caused
by multiple spherical cavities. If these inter-cavity interactions can be modeled using simple mathematical functions, the
models may find practical application in structural materials such as pressure die cast aluminum alloys in which micro-
porosity is inherent to the casting process. Aluminum die cast materials are widely used in the automotive industry. The
fatigue performance of these components is greatly influenced by the presence of cavities [3–7]. Therefore, modeling the
three-dimensional stress field around a spherical cavity pair would help identify the stress concentrated regions in actual
die cast materials containing many cavities in the form of gas pores and shrinkage pores.

An aluminum die cast part contains a large number of gas pores of irregular shape and size. It would be extremely difficult
to consider the interactions among all of the pores at once. A good first step, however, would be to evaluate an empirical
function representing the stress concentration factor for a pair of ideal spherical cavities of the same size. Then, this function
can be modified to approximate stress concentrations around irregularly shaped cavities. Therefore, in this study, a system-
atic numerical evaluation of the stress concentration factor for a pair of spherical cavities in three dimensions is carried out.
Many researchers have dealt with the problem of a single spherical cavity in an infinite solid by using spheroidal harmonics
[8]. Several other numerical methods have been suggested to solve the problem of an infinite solid containing a pair of cav-
ities or inclusions [9–15]. Usually, such methods employ complex stress functions and series of bi-spherical harmonics or
multi-pore expansions to describe the stress field around a pair of cavities [9–12]. Stenberg and Sadowsky used Papco-
vich–Boussinesq displacement functions in spherical dipolar coordinates to solve for the stress distribution around a spher-
ical cavity pair in an infinite solid [9]. Miyamoto et al. [12,13] used spherical coordinates and Papkovich–Neuber stress
functions. Such mathematical functions often involve infinite series, which demands more computation time to evaluate
the various coefficients. Accuracy is often affected by the number of terms selected in the infinite series. Convergence is
not guaranteed when the inter-cavity distance is small [14,15]. Analytical solutions are also unavailable for differently sized
cavity pairs and asymmetrical geometries, such as when the inter-cavity axis is not perpendicular to the loading direction.
Therefore, in this paper, we attempted to develop an empirical formula for a pair of spherical cavities based on the numerical
results of finite element analyses. Parametric studies are then made for a spherical cavity pair by systematically changing
both the orientation of the inter-cavity axis with respect to the loading direction and the inter-cavity distance. A similar
work is also done to describe stress concentration factor as a function of pore parameters using a simple power function
[16]. In this paper we show two types of formula for the function expressing the effect of distance of two pores. One is a
simple power function [16], and the other is a comprehensive double exponential function. The difference between two for-
mulae and their accuracy is discussed. We have enhanced the accuracy by using a double exponential function for the effect
of distance. The parameters of the empirical formula are optimized through exclusive and coupled search. The practical sig-
nificance of both empirical formulae, i.e., double exponential function and power function, are discussed in order to provide a
qualitative guide line to industry personnel for setting an acceptance limit to die cast parts.
2. Methodology

2.1. Equal size dual cavity problem

Two spherical cavities of equal size are introduced into a large solid cylindrical continuum. The radius and height of the
cylindrical volume are forty times the cavity diameter, in order to avoid any free boundary effect. Fig. 1 shows a cross-sectional
Fig. 1. Layout of a pair of identical spherical cavities in an infinite continuum.
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view of a pair of such cavities. 2d denotes the distance between cavity centers, 2a is the cavity diameter, and h is the orientation
of the inter-cavity axis with respect to the plane normal to the loading direction. As the stress concentration is well described
by radial distance normalized by radius for a single spherical cavity case, the inter-cavity distance is normalized by introducing
a parameter d representing the ratio between the inter-cavity distance (2d) and the diameter (2a). d and h are varied system-
atically from 1.005 to 2 and 0� to 90�, respectively. A far field stress of ro is applied in the y-direction.

2.2. Expression for stress concentration factor

Three-dimensional finite element linear elastic analysis is carried out, and the maximum principal stress r1max is evalu-
ated in each case. The stress concentration factor Kt is defined as the ratio of the maximum principal stress to the applied
nominal stress, as Kt = r1max/ro. Kt is evaluated for different values of non-dimensional distance d and orientation angle h.
The value of Kt can be thought to be comprised of two parts: Kiso, which is the stress concentration due to a single isolated
cavity and Kint, which results from interaction between the cavities.
Kt ¼ K iso þ K int ð1Þ
In the above equation, Kt is taken as a linear combination of Kiso and Kint because it is believed that the overall stress dis-
tribution due to the dual cavity interaction can be obtained approximately by superimposing the stress distributions caused
by the individual cavities. It is also believed that under certain extreme conditions, the Kt value for a dual cavity system will
reduce to a constant value of Kiso.

2.3. Auto meshing procedure

Finite element analysis is carried out by ANSYS. One important aspect of the finite element method is mesh generation.
For this purpose, ANSYS ICEMCFD is used to generate an unstructured volume mesh for the entire continuum containing the
cavities. The cylindrical continuum is large enough to simulate the cavities in an infinite volume. 10-node tetrahedral ele-
ments are used. To guarantee convergence, the mesh is refined and optimized using geometrical refinement techniques
and the curvature-based refinement algorithm of the ANSYS ICEMCFD mesh module to obtain a very fine mesh near the cav-
ities and a relatively coarse mesh in regions more distant from the cavities. The minimum size of the element is tentatively
set to 0.5 lm. In the curvature-based refinement technique [17], forty elements are chosen around the curvature and five
elements are chosen in the gap between the cavities. This ensures that even at close proximity to the cavities there will
be at least five tetrahedral elements between their boundaries to obtain smooth stress variation in that region. Usually,
geometry containing discontinuity results in distorted elements with high aspect ratios in order to achieve the required ele-
ment size and quantity according to the parameters set in the curvature-based refinement. For example, when the distance
between the cavities is too small, the elements must be squeezed in order to fit five of them into the gap between the cav-
ities, resulting in a high aspect ratio. Therefore, a smoothing technique is also employed by setting the smoothing iteration
parameter to five and the aspect ratio parameter close to one. In each smoothing iteration, elements are reoriented and re-
meshed so that high aspect ratio elements are replaced with elements of the desired aspect ratio, as indicated by the aspect
ratio parameter. This operation is carried out five times, and as a result, the distorted elements with high aspect ratios are
replaced automatically by subsequent meshing iteration until the aspect ratio improves. Multiple nodes formed at the same
position are also merged. Fig. 2(a) shows a cross-sectional view of one such mesh pattern thus obtained around the cavities
and Fig. 2(b) highlights the fine mesh in the gap between the two cavities with five elements. A total of about one hundred
thousand tetrahedral elements are created. As the relative size of the mesh compared to the region between the cavities
affects the stress values, a consistent mesh refinement procedure is adopted for all cases involving various values of d
and h. As a result, more elements are formed when the region between the cavities are small, and tetrahedral elements
as small as 0.002a are formed.

2.4. Validation for a single spherical cavity

To validate the auto-meshing procedure, the accuracy of the stress obtained from the finite element analysis with an
automatically generated mesh is examined by comparing it with the analytical solution of the single spherical cavity prob-
lem. Analytical solutions are available for evaluating the stress distribution around a spherical cavity in an infinite solid [1].
Following the work of Goodier [18], Timeshenko [19] found an analytical solution for a single spherical cavity under uniaxial
tension at infinity by using a complex stress function and superposition theory. A spherical cavity of radius a is considered. A
far field tensile stress of ro is applied in the y-direction, as shown in Fig. 3. The stress distribution in an equatorial plane in
the radial direction is given by Eq. (2),
ry

ro
¼ 1þ 4� 5m

2ð7� 5mÞ
a
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r
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; ð2Þ



Fig. 2. (a) Cross-sectional plane showing an optimized mesh around the spherical cavities. (b) Zoomed section of mesh pattern between the spherical
cavities.

Fig. 3. Single spherical cavity loaded by a far field tensile stress.
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where r is the radial distance from the center of the sphere in the equatorial plane. m is Poisson’s ratio, which is taken to be
0.3 in the present case. Li et al. [20] also developed an analytical solution by considering more realistic material properties
and using spherical harmonic functions.

Three-dimensional finite element analysis is carried out for the single spherical cavity embedded in a large continuum
with a uniform tensile stress applied to the large continuum in the y-direction while the lower portion of the continuum
is fixed. The mechanical properties of aluminum die cast alloy are used in the finite element linear elastic stress analysis.
The finite element model is automatically generated by the auto meshing technique described above. A Young’s modulus
of 76 GPa and a Poisson’s ratio of 0.3 are used. The distribution of normalized stress ry/ro in the equatorial plane is plotted
in the normalized radial distance from the cavity surface, in order to account for variation in cavity size. This is plotted in
Fig. 4 along with the analytical solution of Eq. (2). The ratio r/a on the x-axis is the distance from the edge of the cavity
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Fig. 4. Comparison of finite element analysis and analytical solution for a single spherical cavity.
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on the equatorial plane normalized over the radius of the cavity. As can be seen from Fig. 4, there is good agreement between
the three-dimensional stress distribution calculated by finite element analysis and the analytical solution.
3. Finite element results for a dual cavity system

A tensile stress of ro = 10 MPa is applied in the y-direction to the top surface of the large cylinder far from the cavities, and
the bottom surface of the cylinder is fixed. Assuming an aluminum alloy, a Young’s modulus of 76 GPa and a Poisson’s ratio of
0.3 are used as material properties. The non-dimensional distance d is varied from 1.005 to 2 for various values of h ranging
from 0� to 90�, and selected results are listed in Table 1. It can be seen that for the value of d = 2, Kt converges to a constant
value of 2.104, irrespective of orientation angle h. This means that the presence of another cavity at that distance has no
effect on the stress concentration Kt. Therefore, Kt can be treated as a constant and denoted as Kiso. The slight discrepancies
between theoretical and calculated Kiso values can be attributed to errors arising from the numerical computation. The finite
element result in Fig. 4 for Kiso is found to be 2.062, which is slightly higher than the theoretical value of 2.046 [21,22]. This is
due to the fact that the finite element values are computed on the gauss points of the elements, which are slightly offset from
the actual cavity boundary. So, for our empirical formulation, the theoretical value of Kiso = 2.046 is taken for accuracy. For h
values greater than 50�, there is less interaction between the cavities. As can be seen from data in Table 1 and Fig. 5, for small
distances of separation between the cavities and a d of less than 1.1, Kt is very sensitive to the orientation angle h. Kt

decreases rapidly as the orientation angle increases, up to 60�. For orientation angles above 60�, Kt approaches the value cor-
responding to that of a single isolated spherical cavity. Thus, the distance of separation between the cavities has a minimal
effect on Kt for higher orientation angles. The threshold orientation angle seems to be somewhere between 50� and 60�,
beyond which the normalized distance has a negligible effect. In other words, for orientation angles less than 50�, there is
a sharp increase in Kt (more interaction) within certain threshold values of normalized distance d less than 1.2. As can be
seen in Fig. 5, for low orientation angles below 45�, the high-stress zone completely lies within the region along the line join-
ing the centers of the two cavities. Beyond an orientation angle of 45�, the maximum principal stress as well as the maximum
stressed region shifted away from the inter-cavity region to the individual equatorial planes. For a 90� orientation, the max-
imum stressed region appears near the equatorial planes of the individual cavities, and not between the regions connecting
their centers, similar to the stress distribution of a single isolated cavity. Fig. 5 shows this gradual variation of stress distri-
bution with orientation angle when d is fixed at 1.04. For a 90� orientation, the value of Kt decreases below that of an indi-
vidual cavity at small separation distances. This may be because the stress concentration around individual cavities is
relaxed by a small amount when the two cavities come very close to each other, so that the overall geometry of the dual
cavity system takes an ellipsoidal shape with loading along the major axis. Fig. 5(f) shows the distribution of stress on a line
between the cavities on the equatorial plane joining the cavities boundaries, for different values of d and for inter-cavity axis
normal to loading direction (h = 0�). A path is defined in ANSYS by choosing two points close to the edges of the two cavities
on the equatorial plane. The principal stress is plotted along this path. A number of such paths were drawn for cavities at
different distances ranging from 2.5 lm to 100 lm. The abscissa is normalized by the distance of separation. In the graphs
in Fig. 5(f), the position ‘‘0’’ refers to the midpoint of the region of separation along the inter-cavity axis. The position ‘‘�1’’
corresponds to the edge of the cavity on left, while the position ‘‘+1’’ refers to the edge of cavity on right. The distribution of
stress is symmetric, decreasing away from one cavity, reaching its minimum at the middle of the path, and reaching its max-
imum as it approaches the next cavity.



Table 1
Finite element computed results of stress concentration factors Kt for various d and h.

d Orientation angle, h

0� 20� 30� 40� 45� 50� 60� 90�

1.0050 9.1372 7.8650 6.5419 5.0536 4.2170 3.3519 2.1802 1.9882
1.0100 6.9827 6.0289 5.2504 4.0170 3.3793 2.7346 2.1582 1.9261
1.0200 5.3557 4.7115 4.1727 3.2804 2.8561 2.3143 2.1069 1.9386
1.0400 4.1166 3.7903 3.3866 2.7145 2.3672 2.1450 2.0688 1.9051
1.0600 3.5608 3.3912 2.9996 2.4793 2.2161 2.1423 2.0872 1.9288
1.1000 3.0223 2.9421 2.7129 2.3183 2.1165 2.1395 2.0775 1.9163
1.2000 2.4312 2.4553 2.4599 2.1815 2.1110 2.1083 2.0937 1.9421
1.3000 2.4025 2.3023 2.4918 2.1382 2.1067 2.1089 2.0866 1.9414
1.4000 2.1445 2.3721 2.3736 2.1394 2.1458 2.0945 2.0821 1.9627
2.0000 2.1584 2.1580 2.1580 2.1580 2.1580 2.1580 2.1580 2.1580
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4. Empirical formulation of the stress concentration factor

Kiso in Eq. (1) is taken as the linear elastic theoretical value of 2.046 corresponding to the stress concentration factor of a
single isolated spherical cavity in an infinite continuum. Kiso is found to be 2.046 for a Poisson’s ratio of 0.3 [21,22]. Table 1
lists the finite element results for Kt for various values of d and h. As can be seen from these data, since Kiso is set to a constant
value, the Kint term is affected simultaneously by the non-dimensional parameter d and the orientation angle h. Therefore, a
mathematical function for Kint should contain both d and h. At constant values of d, Kint varies with orientation angle h, and
vice versa. Therefore, we can write the function as a combination of two functions, each containing one of these individual
parameters. Thus, we assume Kint in variable separation form as follows,
K int ¼ aðhÞFðdÞ: ð3Þ
The fitting curves are expected to be of highly non-linear in nature. Finding suitable initial values for the parameters for
such curves is crucial. So in the first step, an exclusive curve fitting is performed for the functions a(h) and F(d) to obtain the
initial values of the parameters which are then optimized using a coupled curve fitting method.

4.1. Curve fitting through exclusive search

Appropriate mathematical functions for a(h) and F(d) are chosen and their parameters are found by fitting against the
numerical results of Table 1.

4.1.1. Kint variation with orientation angle h
For constant values of d, the data seem to follow a cosine function with orientation angle h. Considering the periodicity of

Kint with respect to h, a general cosine function for a(h) is chosen in Eq. (3) as,
K int ¼ ðcos2hÞnFðdÞ: ð4Þ
In the above equation, F(d) is treated as a parameter independent of h. The initial guess of Eq. (4) as power function of cosh is
made by plotting the finite element data over the entire range of h from 0� to 90� for each d and observing the trend. Intro-
ducing a cosine function satisfies the boundary condition at h = 90�; that is, the stress concentration factor should approach
that of a single cavity when the orientation angle h = 90� for large d. From the geometry of the dual cavity system, the stress
concentration factors for 90� 6 h 6 180� should be a mirror image of that for 0� 6 h 6 90�. Mathematically, this is achieved by
taking the square of cosh. Since cos2h has a periodicity of 180�, it also satisfies the symmetry of the geometry; that is, the stress
concentration factor should remain the same if the cavities are exchanged along the line joining their centers. The computed
data does not exactly follow cos2h, but rather die out quickly after 50�. To take this into account, the index n is introduced in Eq.
(4) and fitted against the finite element results listed in Table 1. Fig. 6 shows the goodness of this fitted function in Eq. (4) in
terms of Kt i.e. Kt = Kint + 2.046, since only Kt is available from FEM. The values of the parameters in Eq. (4), F(d) and n, are found
by regression analysis for each d, and are listed in Table 2. The values of coefficient of determination, R2 [23,24] listed in Table 2
quantify how well the chosen function fits to computed data. R2 values closer to 1 suggest a better fit.

4.1.2. Kint variation with normalized distance d
To find a suitable fitting function for F(d), two candidate functions are chosen. One is a single power function [16], and the

other is a double exponential function.

4.1.2.1. Single power function for F(d). For constant orientation angle h, the data is fitted to follow a power law function in d as
given below,
K int ¼ aðhÞðd� 1Þ�g
: ð5Þ



Fig. 5. Dependence of the maximum principal stress location on the angle between the inter-cavity axis and the loading direction at d = 1.04. (a) h = 0�, (b)
h = 30�, (c) h = 45�, (d) h = 50�, (e) h = 90�, (f) stress distribution along the equatorial plane between the spherical cavities.
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g is always a positive number. The validity of the above equation is tested for various boundary conditions. As the dis-
tance of separation between the cavities approaches zero, d approaches one, and the elastic stress concentration factor
should approach infinity. Mathematically, this is achieved by the presence of a negative exponent of F(d), which would make
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Fig. 6. Curve fitting by Eq. (4) showing variation of Kt with changing inter-cavity axis orientation – exclusive function fitting.

Table 2
Parameters of Eq. (4) obtained by regression analysis –exclusive search.

d F(d) n R2

1.005 6.869 1.784 0.978
1.01 5.007 1.887 0.993
1.02 3.375 2.032 0.989
1.04 2.174 2.285 0.981
1.06 1.621 2.397 0.978
1.10 1.054 2.344 0.960
1.15 0.701 2.068 0.919
1.20 0.464 1.798 0.891
1.30 0.417 1.813 0.807
1.40 0.236 1.064 0.625
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F(d) approach infinity as d approaches one, thus causing Kt to approach infinity. Eq. (5) satisfies this boundary condition. The
other condition is that for large separation distances between the cavities, there should be no interaction of stress pertur-
bations created by individual cavities, since these perturbations die out quickly after reaching a finite distance from the cav-
ity. Therefore, the stress concentration factor for such a pair of cavities should approach that of a single cavity. For large
inter-cavity distances, d approaches infinity, causing F(d) to approach zero and reducing Kt to Kiso. The chosen function sat-
isfies both of these boundary conditions.

Considering a(h) as a parameter independent of d for a particular orientation angle h, Eq. (5) is fitted against the computed
finite element results. Fig. 7 shows the goodness of the resulting power function to the computed data of Kt evaluated by
finite element method over normalized distance d for various orientation angles h. By regression analysis, the values of index
g and a(h) are found in each case, and are listed in Table 3.
4.1.2.2. Double exponential function for F(d). For fixed values of h in Table 1, Kt is fitted over d by choosing a double exponential
function for F(d) in Eq. (3) as follows,
K int ¼ aðhÞ B1 exp �ðd� 1Þ
t1

� �
þ B2 exp �ðd� 1Þ

t2

� �� �
: ð6Þ
The above equation satisfies the condition for a large separation of cavities, for which Kt approaches Kiso as d approaches
infinity. The negative exponent ensures that F(d) vanishes as d approaches infinity. Unlike the single power function, how-
ever, the double exponential function does not yield an infinite stress concentration for a very close proximity of cavities.
Instead, it converges to a finite value that is too high to actually occur in practical situations, because the material will yield
at some lower stress value.

Considering a(h) as a parameter independent of d, for a particular orientation angle h, Eq. (6) is fitted against the finite
element results. Fig. 8 shows the goodness of this fitted double exponential function against the finite element analysis
results for Kt over normalized distance d for various orientation angles h. By regression analysis, the values of a(h) and other
parameters are found for each case, and are listed in Table 4.
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Fig. 7. Power function fitting of stress concentration variation with normalized inter-cavity distance – exclusive function fitting.

Table 3
Parameters of Eq. (5) obtained by regression analysis –exclusive search.

h a(h) g R2

0� 0.220 0.663 0.987
10� 0.241 0.634 0.993
20� 0.222 0.620 0.995
30� 0.190 0.602 0.995
40� 0.064 0.731 0.994
45� 0.026 0.842 0.986
50� 0.006 1.013 0.981
60� 0.030 0.249 0.261
80� �0.112 0.241 0.082
90� �0.058 0.145 0.136

Inter-cavity normalized distance, 
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Fig. 8. Double exponential function fitting of stress concentration variation with normalized inter-cavity distance – exclusive function fitting.
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4.2. Curve fitting through coupled search

From the R2 values listed in Table 3, it can be seen that, although Eq. (5) fits the finite element data excellently, the index g
in Eq. (5) is dependent on the orientation angle h. A similar observation can be made in Table 2 for Eq. (4) and the
dependence of index n on normalized inter-cavity distance d. As a result, the functions described in Eqs. (4) and (5) are
not mutually exclusive. Therefore, it is required to find the parameters of these equations as mutually independent of each
other i.e., the value of g and n should be constant for all d and h. In order to achieve the optimum values for the parameters, it
is required to simultaneously solve the coupled function of a(h) and F(d).



Table 4
Parameters of Eq. (6) obtained by regression analysis- exclusive search.

h a(h) B1 B2 t1 t2 R2

0� 1.5440 4.8600 1.7600 0.0095 0.1095 0.9948
10� 1.1677 6.3039 2.2526 0.0088 0.1111 0.9936
20� 1.1073 5.8129 2.0837 0.0085 0.1177 0.9939
30� 0.9328 5.1929 1.1514 0.0136 0.2708 0.9907
40� 0.8513 4.2430 1.0540 0.0094 0.0952 0.9924
45� 0.8100 4.2300 2.176 0.0032 0.0249 0.9864
50� 0.5900 4.1032 0.1316 0.0073 0.1000 0.9548
60� 0.2394 0.0010 0.7378 0.0001 0.0200 �1.4691
70� 0.1000 0.1000 0.1838 0.1000 0.1000 �1.5491
80� 0.0127 0.1000 0.0788 0.0001 0.0001 �1.1500
90� 0.0347 0.0001 0.2079 0.0001 0.0001 �3.5160
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4.2.1. Cosine – power function
The parameters g and n, are found by introducing Eqs. (4) and (5) into Eq. (3) and solving it by taking the initial values of

these parameters obtained in exclusive approach of previous as follows,
K int ¼ Aðcos2 hÞnðd� 1Þ�g
: ð7Þ
The combined effect of orientation angle and cavity separation distance can now be evaluated by the above empirical
equation. The constants in Eq. (7) are evaluated by surface fitting the values of Kt over d and h simultaneously, in two dimen-
sions. The constants are evaluated by regression analysis, with the following results,
A ¼ 0:246; n ¼ 1:868; g ¼ 0:644: ð8Þ
The model fits the set of data given in Table 1 with a R2 value of 0.988. The value of R2 closer to 1 suggests the proposed
equation fits the computed data with the minimum error. Fig. 8 shows a fitted surface plot of Eq. (7) against the computed
values from finite element analysis with variation of stress concentration factor Kt over inter-cavity normalized distance d
and orientation angle h.
4.2.2. Cosine – exponential function
In order to consider the combined effect of the angle of orientation and distance of separation between the cavities, the

double exponential function for F(d) and the cosine power function a(h) are introduced simultaneously into Eq. (3) as follows
(Fig. 9),
K int ¼ Aðcos2 hÞn B1 exp �ðd� 1Þ
t1

� �
þ B2 exp �ðd� 1Þ

t2

� �� �
: ð9Þ
Non-linear surface fitting is carried out for the above function over d and h axes against the computed finite element data
for Kt listed in Table 1, and the parameters of Eq. (9) are evaluated by regression analysis as follows,
A ¼ 0:945; n ¼ 1:878; B1 ¼ 3:07; B2 ¼ 1:0; t1 ¼ 0:0095; t2 ¼ 0:12048: ð10Þ
The empirical formula given in Eq. (9) fits the computed data with R2 = 0.9897. Fig. 10 shows a fitted surface plot of Eq. (9)
against the computed values of Kt by finite element analysis for variation of stress concentration factor over inter-cavity nor-
malized distance d and orientation angle h.

The R2 values in Tables 3 and 4 are lower for higher orientation angles because these values are calculated from a relative
error that is a ratio between a regression sum of squares (Sreg) and sample variance (Stot), and is defined as R2 = 1 � Sreg/Stot

[24]. Therefore, if sample variance is lower, as in the case of higher orientation angles, R2 will have a low value, even though
Sreg is small.
5. Discussion

The empirical formulae presented in Eqs. (7) and (9) are simple in structure and do not involve complicated mathematical
formulations or series that demand substantial computational effort. In previous research involving the stress fields around
dual cavity systems, evaluation of the stress concentration factor would involve finding a solution to complex stress or dis-
placement functions using power series, spherical harmonics, or other expansion series involving many parameters [9–12].
Furthermore, convergence would not always be guaranteed. In contrast, the empirical formulation presented in this paper
has few parameters, requiring the user to simply input the inter-cavity distance and the orientation angle. Evaluation of
the stress concentration factor is straightforward and fast. There is no issue with convergence, as the evaluation does not
involve iteration.



Eq. (7)
FEM

Fig. 9. Simultaneous cosine-power function fitting of stress concentration variation with normalized inter-cavity distance and orientation angle – coupled
function fitting.

Eq. (9)
FEM

Fig. 10. Simultaneous cosine-double exponential function fitting of stress concentration variation with normalized inter-cavity distance and orientation
angle – coupled function fitting.
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The primary limitation of empirical formulation is that it is not possible to obtain the entire stress distribution around the
cavities, but rather the method predicts only the maximum stress value. However, in many practical engineering design
problems, evaluation of the maximum stress is critical. For example, the empirical formulation is applicable for components
containing gas pores such as aluminum die castings in which the local stress concentration factor plays an important role in
determining fatigue life [3].

In the automotive industry, pressure die casting introduces micro-porosity of nearly spherical shape in many compo-
nents. Evaluation of the maximum stress is more practical for industrial use to cope with fatigue life prediction than detail
stress distribution due to presence of such cavities. An easy, reliable method of obtaining the maximum stress is highly use-
ful, since this would enable fatigue life prediction. Information regarding pore size, location, and orientation are usually
obtained from X-ray CT images or optical micrographs of sample cross-sections. Therefore, in this situation, the empirical
formulation can be a useful tool for evaluating stress concentration factors without going through complex numerical
calculations or expensive finite element modeling. The empirical formulation in its present form only deals with equally
sized cavities, but these cavities are often of different sizes in actual die castings. Therefore, the empirical formulation should
be modified to account for an unequally sized cavity pair for better application to practical situations.



Table 5
Comparison of parameters obtained from exclusive and coupled search methods.

Parameters Exclusive method Coupled method

Cosine – power function n 1.9472 1.8680
g 0.5740 0.6440

Cosine-exponential function t1 0.0065 0.0095
t2 0.0863 0.1205
B1 3.1692 3.0700
B2 1.0743 1.0000
n 1.9472 1.8780
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Although both of the formulations presented in this paper can accurately predict the stress concentration factors over a
wide range of inter-cavity separations and orientations, they overestimate the stress concentration that would arise in actual
components containing very closely spaced cavities. In such cases, in which the cavity boundaries almost touch each other,
the power formulation in Eq. (7) would predict a stress concentration factor of infinity, while the double exponential formu-
lation in Eq. (9) gives rise to a stress concentration factor of 5.89.

A quantitative comparison of parameters obtained by exclusive and coupled search method has been presented in Table
5, both for single power and double exponential function. Both exclusive and coupled approach yield parametric values quite
close to each other. Mathematically any of the chosen functions, single power or double exponential, fit the simulation data
quite well. Selecting a function should be based on practical application. Depending on external loading, the material may
yield before attaining such high stress concentrations. It should be noted that the double exponential formulation has a bet-
ter predictive capability than the power law formulation for closely spaced cavities, as the prediction converges to a rela-
tively reasonable finite value that could occur under low loading conditions. There is also inaccuracy in predicting stress
concentration factors using empirical formulae for cavity pairs whose inter-cavity axis is oriented at a high angle to the load-
ing direction, especially for an orientation angle 90� and a closely separated cavity pair. In such situations, the empirical for-
mulation overestimates the Kt values by about 10%. Such level of overestimation is not so critical and the slight decrease in
stress concentration factor at 90� is not important to evaluate the strength of materials. Moreover, the probability of 90�
alignment of closely separated cavities is very low in practical situations. Therefore, the empirical formulation is probably
acceptable from a practical perspective. Alternatively, one may employ the Kt of an isolated cavity instead of using the empir-
ical formula, neglecting the interaction effect when there is a high orientation angle. In this study although we have formu-
lated empirical function of dual cavity system, in practical case of die cast materials there are many cavities. So the effect of
multi-cavities on stress concentration factor cannot be neglected. However, we can guess the closest neighbor cavities are
the most dangerous and important but the stress relief by vertical orientation should not be neglected.

6. Conclusions

Extensive finite element analysis was carried out to understand the effects of various parameters on the stress concen-
tration factor for a pair of spherical cavities. Two empirical formulae are proposed, which take into account parameters such
as the relative separation distance between the cavities and the angle between the inter-cavity axis and the loading direc-
tion. Both of the formulations can accurately predict the stress concentration factors, except when the cavities are very clo-
sely spaced. The single power function represents an ideal elastic stress analysis, while the double exponential function is
more realistic especially when the cavities are very close to each other. The double exponential formulation has a better pre-
dictive capability for closely spaced cavities and under low loading. For orientation angles below 45� and for inter-cavity sep-
arations d of less than 1.2, there is strong interaction between the cavities. These simple empirical formula are useful in
deciding which particular gas pores in an aluminum die cast would be critical from a stress concentration point of view,
and can therefore be used as a tool to predict fatigue crack initiation. In future work, the empirical formulae will be modified
to take into account gas pores of unequal size.
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