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a nonlinear state feedback mechanism and the controller gains are selected within a multi-
objective optimization (MOO) framework to satisfy the conditions of asymptotic stability,
which are derived analytically. The MOO obtains a set of solutions on the Pareto optimal
front for the multiple conflicting objectives that are considered. We demonstrate that there
is a trade-off between the multiple design objectives where better performance for one
objective can only be obtained at the cost of degrading the performance for the other
objectives. The multi-objective controller design was compared using three different
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system MOO techniques, i.e., non-dominated sorting genetic algorithm-II, epsilon variable multi-
Fractional order nonlinear systems objective genetic algorithm, and multi-objective evolutionary algorithm with decomposi-
Multi-objective active control tion. The robustness of the same control policy designed with the nominal system settings

was also investigated with gradual decrease in the commensurate and incommensurate
fractional orders of the financial system.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Investigations of the chaotic dynamics of physical systems have identified their presence in various different fields. In
particular, financial systems have been shown to exhibit significant chaotic behavior [1]. Fractional calculus-driven modeling
techniques, especially fractional Brownian motion, have been a major huge focus as potential tools for describing the dynam-
ical behavior of the stochastic variations in financial time series [2]. Data-driven models of financial systems have been
shown to possess power law characteristics, i.e., the Fourier transform spectra decays as a power law with respect to
frequency [3,4]. In finance, Meerschaert and Scalas [5] showed that the relationship between random variables such as
log-returns and waiting times, are suitable for modeling using fractional order (FO) partial differential equations. FO noise
characteristics have also been used to identify periods of economic crisis based on financial time series [6]. The effects of
parameter switching on FO chaotic financial systems were studied by Danca et al. [7]. Other perspective on financial
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modeling has also been developed for empirical market data, e.g., the FO volatility model [8]. The concept of FO financial
modeling has been extended to variable order financial systems [9] where the FOs change over time. These studies show that
sudden large fluctuations in financial time series have power law characteristics and they possess close relationships with
fractional calculus. A realistic FO macroeconomic model was estimated using national economic data from the UK, Canada,
and Australia by Skovranek et al. [10]. Similarly, nonlinear model parameter estimation has been proposed using least
squares to model macroeconomic data from the USA [11] and interest rate changes in Japan [12]. Studies have also shown
that the presence of time delays in these financial systems modifies the chaotic behavior of the system where one policy
change takes some time to modify the overall system’s dynamics [13].

It has been found that complex financial systems exhibit both stochastic and deterministic dynamics, where the first
branch has emerged to model typical behaviors such as the non-stationarity, non-Gaussianity, randomness, and long-range
dependency (or power law characteristics) of these systems, as discussed earlier. The second branch has emerged to analyze
significant nonlinear dynamical behaviors such as chaos, bifurcation [14], and hyper-chaos [15] in large-scale financial sys-
tems. Several studies have attempted to investigate chaotic dynamics in financial time series using delay embedding-based
phase space reconstruction, Lyapunov exponent estimation based on parametric and nonparametric methods [16], recur-
rence plots [17], and other approaches. In addition to practical data or time series-based studies, continuous time [14]
and discrete time models [18] have been proposed to model the chaotic dynamics of financial systems. Thus, the co-exis-
tence of chaotic and FO characteristics is an inherent feature of financial systems, which has motivated the study of active
control policies for these systems.

Chaotic dynamics are undesirable and they must be suppressed to reduce financial risks and improve the performance of
the economy [17]. Classically, two broad methods are employed for chaos control, i.e., the Ott-Greborgi-Yorke (OGY)
method of intermittent control and the continuous control method [19,20]. FO economical or financial systems [21] have
been controlled or synchronized using several approaches, e.g., sliding mode [22], time-delayed feedback [23], linear control
[24], lag projective synchronization [25], Lyapunov linearization, and stability condition [26]. In [27], the control of an uncer-
tain FO financial system was addressed using an adaptive sliding mode control. However, in all of these examples, chaos con-
trol was addressed from a stability viewpoint where the control performance was not considered. Other computational
intelligence-based techniques that use intelligent algorithms for chaos control [28], [29] or synchronization [30] include per-
formance measures based on rapid synchronization or control in the formulation of the objective function itself. However,
the drawback of this type of design method is that guaranteed analytical stability is not enforced during the process so the
scheme might not work with initial conditions other than those used in the simulation. In addition, only single objectives
were considered as performance measures in the designs reported in [29,30]. In practical design problems, there are multiple
trade-offs among a set of conflicting objectives. Therefore, a design methodology must consider these challenges and obtain
optimal solutions that satisfy these objectives adequately. In other words, it is necessary to apply multi-objective optimiza-
tion (MOO) methods to these problems to obtain efficient designs.

Multi-objective synchronization for chaotic systems has been investigated recently [31], where the coupling strengths
between two chaotic systems are optimized using evolutionary MOO. In this case, however, analytical stability is not
included within the optimization algorithm. Thus, chaotic systems might not synchronize using the proposed methodol-
ogy [31] if the values of the initial conditions are different. This is because the synchronization is only achieved in a mean
squared sense and the guaranteed analytical stability of the error dynamical system is not enforced. In the present study,
we extend the concept of the multi-objective synchronization of chaotic systems [31] to chaos control. In contrast the
previously described approach [31], we incorporate the analytical stability conditions for chaos control within the opti-
mization algorithm itself. This ensures the stability of the optimized solutions in all cases, even when considering differ-
ent initial conditions. To the best of our knowledge, the present study is the first active control policy design for
commensurate and incommensurate FO chaotic systems in a multi-objective framework with guaranteed analytical sta-
bility considerations.

The remainder of this paper is organized as follows. Section 2 outlines the preliminary background of the fractional
calculus and the numerical methods for simulating FO chaotic systems. Section 3 introduces the FO financial system and pro-
poses the mathematical underpinnings of the active control strategy. Section 4 highlights the need for MOO in chaos control
and provides brief descriptions of the non-dominated sorting genetic algorithm-II (NSGA-II), epsilon variable multi-objective
genetic algorithm (ev-MOGA), and multi-objective evolutionary algorithm with decomposition (MOEA/D) as multi-objective
optimizers. Section 5 presents the results and discussions. Section 6 gives our conclusions.

2. Mathematical preliminaries
2.1. Basics of fractional calculus
Fractional calculus is an extension of integer order successive differentiation and integration for any arbitrary real order.

The fundamental operator that represents non-integer order differentiation or integration is given by ,D? in (1), where o € R
is the order of the differ-integration and a and t are the bounds of the operation.
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d*/dt*, a>0,
Df =41, o=0, (M
[i(dv)*, a<o.

There are three main definitions of fractional calculus, i.e., Griinwald-Letnikov, Riemann-Liouville, and Caputo. There are
also other definitions such as those of Weyl, Fourier, Cauchy, Abel, and Nishimoto. In FO systems and control-related studies,
Caputo’s fractional differentiation formula is generally preferred. This typical definition of a fractional derivative is generally
used to derive FO transfer function models from FO ordinary differential equations with zero initial conditions. According to
Caputo’s definition, the oth order derivative of a function f{t) with respect to time is given by (2)

1 DTSt
oD () “Tm—u) /a (tirj)rij]fmdr, aeR", mezt, m-1<oa<m, (2)
where, ['(a) = j'é e tt*~1dt is Euler’s Gamma function. We use this definition to implement the fractional integro-differential
operators of the chaotic system. The Caputo definition of a fractional derivative is advantageous for control-related applica-
tions compared with the Riemann-Liouville definition because it only requires the initial conditions for integer order deriv-
atives and not the initial conditions of the fractional derivatives. The Laplace transform of the Caputo fractional derivative is
given by (3) [32].

m-1

L[oDIf(t)] = /an e DX (t)dt = s*F(s) — Zs“*"*lf’"(O), m-1<a<m. (3)

k=0

For zero initial conditions, the Laplace transform of the three definitions amounts to the same expression s*F(s), which is
used extensively in many modern control applications. In addition, continuous or discrete time rational approximation tech-
niques for the FO differ-integrator s** are often employed in simulations [33].

2.2. Numerical method for simulating FO chaotic systems

Chaotic coupled differential equations can be simulated numerically using the power series expansion method, Adams-
Bashford-Moulton predictor corrector method [34], continued fraction expansion (CFE) method [35], and other approaches.
As shown by Petras [32], the chaotic FO differential equations in (4) can be written in the form of a set of integral equations,
as in (7), and band-limited rational approximations can be used for the fractional differentials. This method is used in the
present study to simulate the FO chaotic system.

For a set of coupled fractional differential equations of the form (4),

oDI"x(t) = f(x(1), y(t),2(1)),
oDPy(t) = gx(t), y (1), 2(1)), 4)
oDPz(t) = h(x(t),y(t), 2(1)),

considering that the fractional differ-integrals are linear operators, i.e.,

oDF (A (t) + 1g(t)) = 2Dif (t) + paDig(t), (5)
and that the FO derivative commutes with the integer order derivative, i.e.,
d d"f(t)

(DEf(D) = an( ) = DS (0). (6)

dt" dat"
Eq. (4) can also be written in the form of integral equations as (7).

X(8) = oD} ( [IF(x(0), (), 2()]de),

Y(t) = oD} ( folgx(t). y(0), 2(t))]dt) (7)

2(6) = oD}~  Jy h(x(0), y(8),2(0)))dt ).

An implementation of this transformation in a Matlab/Simulink based environment is capable of simulating FO chaotic
systems, as shown by Petras [32].

Each value of the FO differ-integrals {1 — q;, 1 — g2, 1 — g3} is rationalized with Oustaloup’s 5th order rational approxima-
tion [36]. The FO differ-integrals are basically infinite dimensional linear filters. However, band-limited realizations of FO
elements are necessary for simulations. In the present simulation study, each FO element is rationalized with Oustaloup’s
recursive filter [36], which is given by Eqgs. (8) and (9). If it is assumed that the expected fitting range or frequency range
of the controller operation is (wp, wy), then the higher order filter that approximates the FO element s* can be written as
(8)[37]:
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N /

S+w
Gi(s) =s*=K k 8
5(6) 1o ®)

—-N
where the poles, zeros, and gain of the filter can be evaluated as follows
k+N+%(1+1) k+N+%[1—1)

Wy = Op(Wy/p)" T, @) = wp(wy/wp)” T, K= of. 9)

In Egs. (8) and (9), « is the order of the differ-integration and (2N + 1) is the order of the filter. In the present study, we apply
a 5th order Oustaloup rational approximation to the FO elements within the frequency range w € {1072, 10%} rad/s [36,37].

3. System description and theoretical formulation

The FO chaotic financial dynamical system [21] is given by (10).
Ex =74 (y—a)x,

@y 1 —by -2, (10)

d3z _
22— —x—cz.

The state variables x, y, z represent respectively the interest rate, the investment demand, and the price index of a financial
system, respectively. The first state variable (x), which is the interest rate, can be influenced by the surplus between investment
and savings as well as structural adjustments of the prices. The second state variable (y) is in proportion to the rate of invest-
ment, and inversely proportional to the cost of investment and the interest rate. The third state variable (z) depends on the
difference between supply and demand in the market, and it is also influenced by the inflation rate [14]. The three constant
coefficients {a, b, c} represent the savings amount, the cost per investment, and the elasticity of the demand of commercial
markets, respectively. Figs. 1 and 2 show the variation in the three state variables, i.e., the interest rate, investment demand,
and price index, with time (in days) [10] for the commensurate and incommensurate FO financial systems, respectively. All
three time series exhibit erratic fluctuations for both systems, thereby leading to chaotic motion in the respective phase space
diagrams. The second state variable (investment demand) exhibits more rapid fluctuations than the other two states, thereby
indicating the high spectral power in the high frequency operation. Further details of the fractional financial system and its
control are reported in Pan et al. [29]. Although stochastic modeling of financial systems has been reported previously, the cha-
otic deterministic model of financial systems is more popular for the development of effective control policies.
For the active control of the system described by (10), three active control functions u;(t), ux(t), us(t) can be applied to

each of the three states of the system in (10) to yield the following set of equations.

Bx — 74 (y — a)x + Uy (t),

G =1-by—x +us(t), (1)
47— X —cz+us(t).
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Fig. 1. Phase portrait and state trajectories of the commensurate (g, = g2 = s = ¢ = 0.9) FO financial system.



504 I. Pan et al./Applied Mathematical Modelling 39 (2015) 500-514

3 4
2R g 3
1 | | 2 |
= 0 ] = 1
1 0
2} | 1
B 50 100 150 200 250 2 50 100 150 200 250
t (days) t (days)
15
1 4
05
0
-05+
SRR 05 0 0 10 OO0 OO OO O L O A R
15t i
2 50 100 150 200 250

t (days)
Fig. 2. Phase portrait and state trajectories of the incommensurate (q; = 0.9, g, = 0.95, g3 = 0.8) FO financial system.

The nonlinear active state-feedback control functions are selected as (12)-(14) to make the closed loop control system
linear.

up (t) = Vy(t) — xy, (12)
U (t) = Vo (t) — 1+ 22, (13)
us(t) = Vs(t). (14)

The terms Vi(t) Vi € {1, 2, 3} are linear functions of the three system state variables {x, y, z}. Using Eqs. (12)-(14) in Eq. (11),
we obtain (15).

%:zfax+vl(t),

G = —by +Va(t), (15)
Bz _x—cz+Vs(t).

The active control terms Vj(t) Vi € {1, 2, 3} can be represented by (16), where the constants m; € R, Vi,j € {1,2,3}.

Vi my My My | [X
Vol =|my my mp||y|. (16)
V3 Mm3; M3y M3z z

Thus, (15) and (16) can be combined to obtain (17):

X X —a+ My M2 1+ my3 X
D1 yl| = P yl| = my —-b+ myy my3 yi, (17)
z z -1 +my ms; —C+ms3 | |Z

where q =[q1, g2, g5]" € (0, 2).

The presence of the squared and cross-product terms of the state variables in the active control inputs in (12)-(14) can be
viewed as a nonlinear state feedback control design for commensurate and incommensurate FO systems. The nonlinear con-
trol inputs linearize the closed loop system to facilitate the establishment of analytical stabilization schemes [32] for com-
mensurate and incommensurate FO linear systems because the analytical stability design for the nonlinear counterpart is
more involved and difficult to design.

The elements of the matrix in (16) are real. Hence, it may be diagonalized to produce an equivalent control action where
each of the control signals is a function of its own state only and not the other states. This would remove the number of cou-
plings and reduce the complications in the design process. The number of elements that need to be selected is three instead
of nine, which would reduce the burden on the optimization algorithm. However, in many cases, the eigenvalues obtained by
the diagonalization might be complex conjugates, thus the physical realization of state-feedback controllers with complex
gains would be infeasible. Therefore, all nine components are selected using the optimization in (16) instead of selecting
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the diagonals only in our proposed approach. Another aspect of the control action that can be deduced from Eqs. (12)-(14) is
that when the individual states become zero due to the application of the control action, i.e., x =y =z =0, then u, becomes
(-1) and, u; and u3 become zero.

Next, to ensure the asymptotic stability of system (17), the constants m;; must be selected such that the eigenvalues () of
matrix P satisfy the following condition, which known as Matignon’s theorem [38]:

. 4
|arg(eig (P))| = |arg()| > TF, 0<q<2, (18)

for the commensurate FO system where q; =g, = g3 = q.

For the incommensurate FO system, the asymptotic stability of Eq. (17) can be derived using Deng’s theorem as outlined
in [39]. Let the incommensurate orders g; of Eq. (17) be written in the form q; = v;/u;, u;, v; € Z,. Let m be the lowest com-
mon multiple (LCM) of u; and let y = 1/m.

The characteristic equation can then be derived from (17) as shown in (19) by denoting the FO operators s% by 2™, where
diag denotes a diagonal matrix [39,40].

Jma +a—mq —Mmy; -1 - mys
det(s%] — P) = det (diag[ A" ™2 )™ ] — P) = det —my M2 4 b —my, —Mys3 =0. (19)
1—ms —ms; AT 4 ¢ — ma3

If all the roots Z;, Vi € [1,2,3] of the characteristic equation, as given in Eq. (19), satisfy | arg(4;)| > &, Vi € [1,2,3], then the
system described by Eq. (17) is stable. The characteristic equation (19) is transformed into a higher integer-order polynomial
equation if the incommensurate orders g; are considered as rational numbers. Matlab’s Symbolic Math Toolbox function
solve() was used in the present study to obtain the roots of the characteristic polynomial equation (19). In this case, m is
20 for the incommensurate orders q; = 0.9, g = 0.95, g3 = 0.8. To check the stability of incommensurate FO systems, it is suf-
ficient to verify the argument of the roots in the primary Riemann sheet only since the hyper-damped and ultra-damped
roots in the higher Riemann sheets are always stable. Depending on the rational number representation of the incommen-
surate orders and by taking their LCM, the number of Riemann sheets can be extremely high and different roots might also be
distributed in different higher Riemann sheets but this does not affect the stability of the incommensurate FO system. There-
fore, most previous studies only considered the first Riemann sheet for stability checking, as (7/2m) < |arg(/)| < (7/m). Of
course, we could place the root at specific locations, even in the higher Riemann sheets, e.g., the placement of ultra-damped
roots for commensurate order systems as reported by Bhalekar and Gejji [41]. During optimization-based controller design
for both the commensurate and incommensurate FO systems, a constraint is imposed such that at least two roots lie in the
stable region of the primary Riemann sheet i.e., (1/2m) < |arg(4)| < (rt/m). This allows the design of a relatively fast control
system, as opposed to the safe but very slow control operation when all the closed loop poles were pushed to the higher
Riemann sheet (i.e., hyper-damped and ultra-damped roots) in the study reported by Das et al. [42].

4. MOO for active control
4.1. Requirements for MOO

In any practical real-world problem with constraints on resources, it is usual that the satisfaction of one criterion to a
greater extent will result in the satisfaction of other conflicting criteria to a lesser extent. The concept of Pareto optimality
[43] applies this concept to economics in the areas of income distribution and economic efficiency. Given that a finite number
of goods are allocated among a set of individuals, if the economic allocation is Pareto efficient, no individual will become better
off without one or more individuals being worse off. This same concept can be applied to the controller design problem for
financial systems. Thus, there is a trade-off in any controller design problem, as discussed previously [44,45]. The two conflict-
ing objective functions can be selected as the integral of the time multiplied squared error (ITSE) (J;) and the integral of the
squared deviation of controller output (ISDCO) (J>). These two contradictory objectives can be expressed mathematically as:

Jy = ITSEseepoine — / te2 (t)dt, (20)
12

J, = ISDCO = /m (u(t) — ug)*dt, (21)
13

where i represents the instant of time when the control signal was applied and es, represents the error signal, i.e., the devi-
ation of the chaotic trajectory from the desired set-point.

The first objective function J; tries to ensure the rapid tracking of the desired set-point. The time multiplication term
assigns heavy penalties to errors that occur at later stages, which ensures a faster settling time. The second objective function
J» tries to reduce the change in the control signal because large control signal deviations necessitate large changes in the
manipulated variables, which are not desirable [46]. This is because the manipulated variables are physical quantities and
this might result in shocks to the system. J, is given by Eq. (21) and the term Au(t) = u(t) — us represents the change in
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the absolute value of the control signal from its steady state value. J; and J, are conflicting objectives because the controller
must exert greater effort to reduce the steady state tracking error or to obtain fast tracking (i.e., to minimize J;), hence the
value of J, will increase and vice versa. To evaluate Eqs. (20) and (21), any of the three states x, ¥, z may be considered, or all
of together. The choice depends on the practical constraints of the design. In the present study, we make a trade-off between
different conflicting performance objectives by considering only one of the states y to evaluate Egs. (20) and (21). Therefore,
extensive simulations of all possible cases are not reported.

In control design-related optimization problems, there are often conflicts between two or more objectives, i.e., the speed
of response and the control effort required [45]. However, this is not obvious for any chosen control objective. For example,
several tracking performance measures, such as the integral of the time multiplied absolute error, ITSE, integral of absolute
error, and integral of squared error, may yield a Pareto front under a MOO framework but this does not guarantee that these
objective are in conflict. The trade-off design is only important when there are physical constraints on arbitrarily increasing
one objective while maintaining the other objectives at the same level. Herreros et al. [44] formulated several conflicting
objectives in the frequency domain design of linear control systems. However, frequency domain measures cannot be
derived for all possible nonlinear chaotic systems. Therefore, in the present study, we rely on the time domain conflict mea-
sures, ITSE and ISDCO [45]. This trade-off consideration is also relevant from the viewpoint of financial systems. The three
state variables x, y and z represent financial quantities that can be regulated, but which cannot be arbitrarily increased or
decreased in a practical setting. Depending on the how the objective functions are framed, we might want to suppress
the chaotic oscillations as rapidly as possible while still maintaining the deviations in these state variables and minimizing
the control effort required. This might be contradictory so a multi-objective methodology is required in the present scenario.

4.2. NSGA-II algorithm employed for multi-objective controller design

A generalized multi-objective optimization framework can be defined as follows:
Minimize

F(x) = (h(x).£(x),....fn(x)), (22)

such that x € Q, where Q is the decision space, R™ is the objective space, and F : Q — R™ comprises m real valued objective
functions.

Letu={uy,...,un}, v={vy,..., vn} € R™ be two vectors and u is said to dominate vifu;<y;Vi €{1,2,...,m}and u # v. A
point x* € Q is called Pareto optimal if Ax|x € Q such that F(x) dominates F(x*). The set of all Pareto optimal points denoted by
PS is called the Pareto set. The set of all Pareto objective vectors, PF = {F(x) € R™, x € PS}, is called the Pareto front. This
implies that no other feasible objective vector exists that can improve one objective function without simultaneous degrad-
ing some other objective function.

MOEAs that use non-dominated sorting and sharing have higher computational complexity, where they employ a non-
elitist approach that requires the specification of a sharing parameter. However, the NSGA-II eliminates these problems
and it can find a better spread of solutions with better convergence close to the actual Pareto optimal front [47]. The
pseudo-code for the NSGA-II is as follows [47,48].

NSGA II Algorithm
Step 1: generate population Py randomly
Step 2: set Py =(Fy, F5, . ..) = non-dominated-sort (Pg)
Step 3: for all F; € Py
crowding-distance-assignment (F;)
Step 4: sett=0
while (not completed)
generate child population Q; from P;
set Ry=P; U Q;
set F = (Fy, F>, ...) = non-dominated-sort (R;)
set P =¢
i=1
while |Ppq| + |Fi| <N
crowding-distance-assignment (F;)
Pivq =Puq UF;
i=it+1
end
sort F; on crowding distances
set Py =Puqg UF [1: (N — |Peq])]
sett=t+1
end
return F,
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In this case, N represents the number of chromosomes in the population, i.e., the population size. The NSGA-II converts M
different objectives into one fitness measure by composing distinct fronts, which are sorted based on the principle of non-
domination. During the process of fitness assignment, the solution set that is not dominated by any other solutions in the
population is designated as the first front F; and these solutions are given the highest fitness value. These solutions are then
excluded and the second non-dominated front is created from the remaining population F, and ascribed the second highest
fitness. This method is iterated until all the solutions are assigned a fitness value. The crowding distance is the normalized
distance between a solution vector and its closest neighboring solution vectors in each of the fronts. All of the constituent
elements of the front are assigned crowding distances, which are used later for niching. The selection is determined in tour-
naments of size 2 according to the following logics.

(a) If the solution vector lies on a lower front than its opponent, then it is selected.
(b) If both the solution vectors are on the same front, then the solution with the highest crowding distance wins. This
approach retains the solution vectors in the regions of the front that are scarcely populated.

The population size is taken as 100 and the algorithm is run until the cumulative change in fitness function value is less
than the function tolerance of 10~ over 100 generations. The crossover fraction is taken as 0.8 and an intermediate crossover
scheme is adopted. The mutation fraction is taken as 0.2. To select the parent vectors based on their scaled fitness values, the
algorithm uses a tournament selection method with a tournament size of 2. The Pareto front population fraction is taken as
0.7. This parameter indicates the fraction of the population that the solver tests to limit the Pareto front. The optimization
variables are the components of the active control functions, i.e.,, m;V1i,j € {1, 2, 3}. Thus, there are nine optimization vari-
ables in total. To ensure that the solutions obtained are guaranteed to be stable, the stability criteria given by Matignon’s
theorem for commensurate and incommensurate FO system are incorporated into the algorithm during each objective func-
tion evaluation. Thus, the solutions that are generated by cross-over, mutation, or reproduction in each generation are tested
first to determine whether they satisfy the stability criteria. If the criteria are satisfied, the objective function is evaluated by
simulating the chaotic system with the optimum controller gains obtained using the NSGA-II algorithm. If the criteria are not
satisfied, then a high value objective function is assigned to the solution without simulating the chaotic system because that
particular controller cannot stabilize the system. This automatically assigns a fitness that is worse than the others to these
unstable solutions. Therefore, over the generations, the algorithm rejects the unstable solutions and converges toward those
regions in the solution space that give stable controller values.

4.3. Testing two other MOO algorithms for the controller design: ev-MOGA and MOEA/D

To facilitate comparisons with the results obtained using the NSGA-II algorithm, two other popular MOO algorithms are
also used for active control policy design, i.e., ev-MOGA and MOEA/D. The e&-MOGA is an elitist multi-objective evolutionary
algorithm based on the concept of e-dominance, as discussed in Laumanns et al. [49]. In Deb et al. [50], a comparison of
&-MOEA was performed with other algorithms, such as NSGA-II, Pareto envelope-based selection algorithm, and strength
Pareto evolutionary algorithm-II, where ev-MOGA was found to be superior. The e-MOGA variable (¢v-MOGA) is an improved
version of ev-MOGA, which can characterize the Pareto front better than the e&-MOGA algorithm with several test-bench
functions, as reported by Martinez-Iranzo et al. [51]. The ¢v-MOGA generates an ¢-Pareto set (©,), which aims to converge
on the actual Pareto optimal set by adjusting the anchor points of the Pareto front J(®,) dynamically while preventing the
ends of the Pareto front from being eliminated over the generations [52]. To achieve this, the objective space is divided into a
fixed number of boxes, n_box;, which are specified by the user when the algorithm starts. The algorithm comprises a main
population of size Njyq,, an auxiliary population of size Ninq, and an archive that stores the intermediate solutions, which has
an upper limit of Ning_max_a = 300. The maximum number of generations is tmax = 2500. In the present simulation, Niyg, is 10,
Ning, is 30, n_box = [1000 1000], the lower bounds of the variables are 6, =[-5 -5 -5 -5 -5 -5 -5 -5 -5]
and the upper bounds of the variables are 6,,=[5 5 5 5 5 5 5 5 5].

The MOEA/D algorithm proposed by Zhang and Li [53] decomposes the MOO problem into a number of scalar optimization
sub-problems and it optimizes them simultaneously. The MOEA/D performs better than the NSGA-II algorithm on test bench
problems and it also has a lower computational complexity than the NSGA-II [53]. In the present study, the population size is
70, the number of iterations is 1000, and the Tchebycheff approach is used for decomposition. The Tchebycheff approach asso-
ciates a weight vector to each of the scalar sub-problems and different Pareto optimal solutions can be obtained by changing
modifying its value. One of the pit falls of this approach, is that its aggregation function is not smooth, but it can be used in the
MOEA framework because there is no need to calculate the derivative of the aggregation function [53].

5. Simulations and results
5.1. Control of commensurate FO financial systems
The system in (17) is simulated with the commensurate order q; = g, = g3 = ¢ = 0.9. The initial states {xo, Yo, Zo} of the sys-

tem are set as {2, —1, 1}. Fig. 3 shows the Pareto optimal set of solutions obtained using the NSGA-II algorithm. Each of the
points represents a particular selection of the active control functions in (16) using three different MOO algorithms. The two
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axes denote the conflicting objectives of rapid synchronization performance and lower controller effort. It can be seen that
each of these solutions satisfies the objectives to different extents. These solutions are non-dominated in the sense that it is
not possible to find another set of solutions that would result in performance improvements for both objectives. Thus, there
is a trade-off and a solution that obtains a better performance in terms of one of the objectives would result in a lower per-
formance in terms of the other objective. The stability condition given in (18) is checked as a sub-problem inside the MOO
algorithms, thus these Pareto solutions are asymptotically stable. All of the simulations reported in the present study are
based on a finite time window of T=50s.

Table 1 shows set of representative solutions from the Pareto front. These solutions are the solutions at the extreme end
of the Pareto front and the median solution. Table 1 shows the numerical values of the coefficients of the active control func-
tion in (16) as well as the values of the two conflicting objectives given in (20) and (21). To verify that the three solutions
selected (for both the commensurate and incommensurate order systems) are indeed obtained by satisfying Matignon’s sta-
bility criterion, Table 2 shows that the arguments of the controlled system roots (at least two principal roots) lie in the stable
region of the primary Riemann sheet [33].

Fig. 4 shows the time domain evolution of the states of the chaotic system and the control input in the second state u,. In
all cases, the time domain performance of the second state and the controller effort required in the second state are consid-
ered in the objective functions of Egs. (20) and (21), similar to that in [29]. Fig. 4 shows that the y-state variable settles to the
equilibrium point very rapidly in solution A; followed by solution B; whereas solution C; is the slowest and it takes a long
time to reach equilibrium. In a practical setting, it is always desirable that the chaos is controlled within the shortest possible
time. Thus, considering the time domain performance objective, solution A is the best and solution C; is the worst. However,
the opposite is true in terms of the controller effort. It can be seen that solution A; requires a control signal with a larger
magnitude than solutions B; or C;. In a real world case, the manipulated variable or the controller effort should be as small
as possible because large changes in the manipulated variable might result in physical shocks to the system, or they might
not be possible to implement due to other constraints. Therefore, solution C; is the best when considering the objective of a
lower control signal and solution A, is the worst.

It is known that chaotic behavior is observed in the FO financial system for specific values of the coefficients and orders of
the state variables (q;, g2, g3), as reported by Chen et al. [21]. We consider these specific values as the nominal financial sys-
tem during active nonlinear state feedback controller design because it exhibits chaos with the suggested parameters
reported in [21]. However, to show that the proposed design technique works reliably with other FOs using the same system
structure and the same coefficients, we decrease the commensurate and incommensurate orders gradually. Our results show
that as the FO decreases gradually, the chaotic behavior disappears with g = 0.8 in the commensurate FO financial system.
Fig. 5 shows that the same controller parameters (median solution on the Pareto front) can also suppress chaotic oscillations
for other values of the commensurate FOs. They also satisfy the analytical stability conditions in this case. However, the
controller parameters might not always be as robust for other systems because the issue of robustness is not considered
explicitly in the analytical formulation of the controller design. To design robust controllers, the same multi-objective meth-
odology can be applied, but the mathematical stability formulation must be changed in an appropriate manner.

* NSGA-II ¢ NSGA-II
v ev-MOGA DB v ev-MOGA |
* MOEA/D * MOEA/D
= Pole assignment DB ]
; ; _ 7 :
7 24 .
/// »»
—~ Pl 20b 4
; ;
= T 1
= g 180 ¥* 1
1 1.6 B
C
/ % 1
B b 1.4 8
\\ ...... /l. ........... A . ;
'w‘oo-/r‘;oqnqu S0 0 essr s ® 1.2 't'!w . L . . P
x Wy o v
4b 6|0 8I0 100 10 é 1I0 1‘5 20
J, (ITSE) J, (ITSE)

Fig. 3. Pareto optimal front for commensurate FO financial system.
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Table 1
Representative solutions on the Pareto front for the commensurate and incommensurate FO financial system.
Class of FO model  Solution points  J; 2 my, myy my3 my, My, My3 msq ms, mss3
Commensurate A 1.005 11.627 2.300 0.607 1.633 1357 -2.133 1.041 -0.663 0818 -0.129
By 9.921 1.248 2.049 0902 0.708 -2.412 -0.747 0.000 0572 -0.033 0.757
C 97.152 1.125  2.044 0948 0583 2449 -0.543 -0.049 0.649 -0.038 0.897
Incommensurate Ay 1.001 15995 4.999 -0.018 3312 3.259 -4.880 0.357 0.959 4934 -0.920
B, 2.224 1477 3.124 0.188 2251 -0.625 -0445 -1.673 -0517 0214 -1.250
G, 38.298 1.053 2975 0485 1.838 -1.089 -0.255 -1.925 -1.803 -0413 -1.385
Table 2
Guaranteed stability for the three solutions on the Pareto front for two classes of FO financial systems.
Class of FO model Stability region (in degrees) Solution points Argument of the eigenvalues of matrix P (in
degrees) lying in the primary Riemann sheet
Commensurate order q = 0.85 qm/2 =81 Ay 81.0756 -81.0756
By 83.289 —83.289
G 81.1305 —81.1305
Incommensurate orders q; =0.9, g; =0.95, g3 =0.8 mn/2m=4.5 Ay —8.3496 8.3496
B, -7.1514 7.1514
C, 6.1084 —6.1084

5.2. Control of incommensurate FO financial systems

We simulate the system in (17) with the incommensurate order q; = 0.9, g, = 0.95, g3 = 0.8. The initial states {xo, Yo, Zo}
of the system are set as {2, —1, 1}. Fig. 6 shows the Pareto optimal solutions for the incommensurate order case. The
difference between this simulation and the previous one is that a different stability condition is checked as a sub-
problem in the MOO algorithms, as discussed previously. Three representative solutions on the Pareto fronts (those at
the extreme ends and the median solution) are shown in Table 1 and their corresponding time domain performances
are shown in Fig. 7. Of the two Pareto fronts in Figs. 6 and 3, it can be seen that the extent of the Pareto front is greater
for the incommensurate order example. This implies that when the FOs of the chaotic system are different, more vari-
ations are possible in the controller design and the trade-offs that can be achieved among the different performance
indices are greater.

For both the commensurate and incommensurate FO financial systems, the Pareto fronts obtained using the three MOO
algorithms, i.e., NSGA-II, ev-MOGA, and MOEA/D, are shown in Figs. 3 and 6, respectively. These simulations show that the
MOEA/D solutions are better compared with those obtained using ev-MOGA and NSGA-II (indicating that they are much fit-
ter), but the total spread of the Pareto front is much smaller using ev-MOGA and MOEA/D. Therefore, to obtain a wide range
of solutions for successful trade-off design, we should consider the results with a larger Pareto front. In the present study, we
determined the time domain solutions of the worst, best, and median solutions of the Pareto front with respect to either of
the two control objectives. Similar studies could be possible if the financial control policy designer gives a higher priority to
non-domination rather than the length of the Pareto front or the area covered by the Pareto front with respect to a point
selected in the dominated region [54,55].

The natures of the solutions are illustrated in Fig. 6. These results are also supported by the time domain evolution of the
states of the chaotic system under the action of different controllers in Fig. 7. The interpretations of the results are similar for
the commensurate case. Fig. 7 shows that state y settles fastest to the equilibrium point in solution A, followed by solutions
B, and C,, whereas solution C, exhibits the slowest response. However, the control effort required for state y is the least with
solution G, and the highest with solution A, while that for B, is between these two cases.

For the incommensurate FO system, each of the three FOs of the three state variables are decreased gradually one at a
time from their nominal values that exhibit chaos, i.e., g; =0.9, g, = 0.95, g5 = 0.8, while maintaining the other two FOs as
constant. In a scenario where the incommensurate orders are changed separately, the chaos disappears below g, < 0.8,
g2 < 0.85, g3 < 0.5. However, for all the changes in the system order, the same active control policy is capable of suppressing
the chaotic oscillations in both the commensurate and incommensurate FO financial systems, as shown by the phase por-
traits of the systems under active control in Figs. 5 and 8, respectively. In the present study, with the same controller, the
system satisfies the analytical stability condition given by Matignon’s theorem. As expected, the common control policy
for the perturbed system will not be Pareto optimal compared with different controllers that are tuned for specific fixed val-
ues of the commensurate and incommensurate orders. However, these solutions are still good results in terms of chaos
suppression.
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Fig. 4. Chaos control with representative solutions on the Pareto front for the commensurate FO financial system.

q=0.95

2

5 -2 ) —uncontrolled
——with active control

Fig. 5. Uncontrolled and active controlled phase portraits of the changes in the commensurate FO financial system with the median solution (B;) on the
Pareto front.

5.3. Comparison with direct pole assignment-based active control approach

Most other controller design methods for FO chaotic systems select the active control functions heuristically so the eigen-
values are obtained in the stable region. Bhalekar and Gejji [41] showed that an active control scheme can be designed intu-
itively so all of the eigenvalues in the stability matrix become (—1) for a commensurate FO chaotic system. After a similar
treatment of the commensurate order system, the P matrix in (17) needs to be diagonalized such that the diagonal elements
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Fig. 7. Chaos control with representative solutions on the Pareto front for the incommensurate FO financial system.

a+a 0 -1
are the desired eigenvalues. The corresponding choice of constants m; in (16) becomes [m;] = 0 b+b O to
0 c+c
a 00
make the matrix P= {0 b 0
0 0 ¢

In this case, the desired roots of the chaotic system under active control are set as @ = b = ¢ = —1. This framework is
applied to both the commensurate and incommensurate FO systems under study.

As expected, an intuitive choice will never produce the optimum results obtained using the proposed MOO framework. To
highlight this point, Fig. 3 shows the performance of the controlled system in the two-dimensional space between two con-
flicting objectives using the active control design method proposed by Bhalekar and Gejji [41] for commensurate FO chaotic
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Fig. 8. Uncontrolled and active controlled phase portraits based on gradual decreases in the incommensurate FO financial system orders from their nominal
values q; = 0.9, g = 0.95, g3 = 0.8, with the median solution (B,) on the Pareto front.

systems. This approach cannot be extended easily to incommensurate order systems because only the stable roots within the
primary Riemann sheet are normally considered in these systems. In addition, depending on the incommensurate FOs and
the least common multiple (LCM) of the associated denominators of these fractions g;, there may be a variable number of
roots and it is difficult to assign them using an approach similar to that proposed for the commensurate order case by Bhale-
kar and Gejji [41].

In this case, the LCM of gq; is m = 20 for the incommensurate orders selected for the system, i.e., g; = 0.9, g» = 0.95, g3 = 0.8.
To obtain the characteristic equation in the form of the desired roots, the choice of the constants in (16) are my; = a + a,

My =b+b, M33=C+C, Mz=My;=My3=M3,=0, mz=—1, and m3;=1 in order to produce the stability matrix

—a+ mq mi» 1+mys -1 0 0
P= myq —b+my, Mmy3 = 0 -1 0
-1+ ms; ms; —C + M33 0 0 -1

Using this selection, the desired pole locations are @ = b = ¢ = —1 and the characteristic equation becomes (23).

PR | 0 0
det[s? [ — P| = det [(diag[ ;™ ™2 ;™:])-P]=| 0 i?+1 0 |. (23)
0 0 A% 41

As a result, the characteristic equation (23) yields several roots 4;, which satisfy the incommensurate version of Matignon’s
stability criterion. For the current direct pole assignment scheme for the incommensurate FO system, all the roots of the
characteristic equation lie in the hyper-damped region, i.e., |arg(4;)| > qm, which indicates the stable but slower operation
of the system compared with that achieved within a MOO framework. The dominated solution is obtained using the direct
pole assignment technique rather than the Pareto solutions (in terms of control performance) because the pole assignment
scheme obtains all hyper-damped and ultra-damped roots [33], thereby leading to slow system operation and an increase in
the control effort required. Unlike the commensurate FO system, precise pole assignment becomes difficult in the incom-
mensurate FO system stabilization problem due to the inherent higher order polynomial equation solution step. We can
assign the eigenvalues of the matrix P analytically, but manipulating the numbers and locations of all the system roots of
the characteristic equation that are distributed in different higher Riemann sheets for any arbitrary choice of incommensu-
rate FO is still an open problem. Moreover, only one solution is obtained by the direct pole-assignment approach for the com-
mensurate order system, whereas multiple solutions are generated for the incommensurate FO system. As shown in Fig. 6,
the direct pole assignment approach also leads to a dominated solution for the incommensurate system compared with that
obtained using a MOO approach.
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5.4. Discussion

It is important to mention that FO controllers have been traditionally used to enhance the robust stability properties of
linear control systems. For nonlinear chaotic systems, however, extensions of the robust stability properties are expected to
be more complex and they have not yet been investigated by the fractional calculus community, to the best of our knowl-
edge. Moreover, the proposed control strategy does not use the FO controller concept, but instead it employs the nonlinear
state feedback control of FO systems. For both the commensurate and incommensurate order systems, the active control
scheme designed using the nominal system parameters faithfully suppresses chaotic oscillations with gradual decreases
in FOs and it also satisfies the stability checking condition, but this variation has not been considered during the controller
design phase. Therefore, the same controller works well in stabilizing different FO chaotic systems, but this should not be
confused with robust stability where the stability of all possible intermediate solutions are theoretically guaranteed, which
has only been investigated for linear FO systems in previous studies.

6. Conclusions

In this study, an active control policy is proposed for a FO chaotic financial system. The proposed method gives guaran-
teed stability, which is derived analytically for both commensurate and incommensurate FO financial systems. The active
control functions are selected using three multi-objective evolutionary algorithms to satisfy two conflicting time domain
performance objectives, i.e., rapid settling to the equilibrium point and a requirement for low controller effort. Our compar-
ison of three MOOs showed that the NSGA-II yields the largest Pareto front compared with ev-MOGA and MOEA/D, but a
better non-dominated (although shorter) Pareto front could be achieved using MOEA/D. We showed that the two design
objectives cannot be minimized simultaneously using one particular controller. A range of controllers on the Pareto front
satisfy one criterion better but at the cost of performance degradation in terms of other criterion. Thus, the designer can
select a particular controller from the set of non-dominated solutions according to their specific problem requirements.
We also demonstrated the superiority of the proposed technique compared with the direct pole assignment approach
[41]. Decreasing the FOs in the two types of systems (with the median solution of the controllers on the Pareto front)
was shown to stabilize the chaotic systems and they also satisfied the stability checking conditions. Future work should
focus on multi-objective chaos control in the presence of uncertainty, noise, etc., and extend the concept to robust stabiliza-
tion scheme designs for nonlinear chaotic systems.
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