
Theoretical Computer Science 531 (2014) 77–89
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A bijective variant of the Burrows–Wheeler Transform
using V -order

Jacqueline W. Daykin a,b,∗, W.F. Smyth c,d

a Department of Computer Science, Royal Holloway, University of London, UK
b Department of Informatics, King’s College London, UK
c Algorithms Research Group, Department of Computing & Software, McMaster University, Hamilton ON L8S 4K1, Canada
d School of Mathematics & Statistics, University of Western Australia, Perth, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 September 2012
Received in revised form 19 January 2014
Accepted 4 March 2014
Communicated by A. Apostolico

Keywords:
Algorithm
Bijective
Burrows–Wheeler Transform
Complexity
Lexicographic order
Lex-extension order
Linear
Lyndon word
String
Suffix array
Total order
V -BWT
V -order
V -transform
V -word
Word

In this paper we introduce the V -transform (V -BWT), a variant of the classic Burrows–
Wheeler Transform. The original BWT uses lexicographic order, whereas we apply a
distinct total ordering of strings called V -order. V -order string comparison and Lyndon-
like factorization of a string x = x[1..n] into V -words have recently been shown to be
linear in their use of time and space (Daykin et al., 2011) [18]. Here we apply these
subcomputations, along with Θ(n) suffix-sorting (Ko and Aluru, 2003) [26], to implement
linear V -sorting of all the rotations of a string. When it is known that the input string x
is a V -word, we compute the V -transform in Θ(n) time and space, and also outline an
efficient algorithm for inverting the V -transform and recovering x. We further outline a
bijective algorithm in the case that x is arbitrary. We propose future research into other
variants of transforms using lex-extension orderings (Daykin et al., 2013) [19]. Motivation
for this work arises in possible applications to data compression.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We present here a variant of the Burrows–Wheeler Transform [4,9,33,22] based on a new underlying order. The classic
transform applies lexorder (lexicographic order); we introduce the V -transform (V -BWT) which applies V -order [11,14,
18,19]. The Burrows–Wheeler Transform (BWT) admits linear-time algorithms for both the transform and inverse [2], and
space saving techniques have been achieved by factoring the input string into Lyndon words [8,13,21,28,32,34]. Similarly, we
factor the input string into V -words, which are analogues of Lyndon words that use V -order – for V -words, we compute
the V -transform in linear time and propose an efficient priority queue approach to computing the inverse. We note that
both Lyndon words and V -words have arisen naturally in rhythms in traditional African music [6,7].

* Corresponding author.
E-mail addresses: jackie.daykin@rhul.ac.uk, jackie.daykin@kcl.ac.uk (J.W. Daykin), smyth@mcmaster.ca (W.F. Smyth).
http://dx.doi.org/10.1016/j.tcs.2014.03.014
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.03.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:jackie.daykin@rhul.ac.uk
mailto:jackie.daykin@kcl.ac.uk
mailto:smyth@mcmaster.ca
http://dx.doi.org/10.1016/j.tcs.2014.03.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.03.014&domain=pdf

78 J.W. Daykin, W.F. Smyth / Theoretical Computer Science 531 (2014) 77–89
V -words are defined using a simple extension of lexorder, lex-extension, which in this case is a combination of lexorder
and V -order, as explained in Section 2. This connection with lexorder allows us to modify and apply linear-time methods
for sorting the suffixes of a V -word. The sorted suffixes can then be used to V -order the rotations of a given V -word from
which we derive its V -transform. In this paper we describe modifications to the suffix-sorting algorithm of Ko and Aluru
[26], but other linear-time suffix-sorting methods such as [24,31] could equally have been used.

The BWT has been heavily researched in the last decade leading to efficient time and space implementations, notably
[25,23,10], along with a range of bijective variants such as the sort transform [27,22]; wide ranging applications of the BWT
include bioinformatics and multimedia information retrieval [2].

The BWT often clusters occurrences of the same letter in the input string into runs. Hence applications arise in data
compression, for instance as preprocessing for the run-length encoding method which is suitable for faxed documents and
simple graphic images. To our knowledge this paper is the first to compute the BWT using nonlexicographic ordering of
the elements, a demonstration that the concept is viable – see also Question 6.4. Indeed, for some strings the use of
V -order yields better clustering, thus better compression. Our ultimate objective is to identify total orders that achieve
improved clustering over a wide range of input strings – we provide here one new strategy worthy of both theoretical and
experimental further investigation; see motivational Question 6.1.

1.1. Definitions

We use standard terminology from automata theory and stringology, so we just give a few basic stringological definitions
(see [34] for further stringology theory and algorithms):

• If for some string x we can write x = uv = wu for some nonempty u, then we say that x has border u; if no such u
exists, then x is said to be border-free.

• If we can write x = uk for some nonempty u and some integer k > 1, we say that x is a repetition; otherwise, we say
that x is primitive.

• If a string x = uv , then vu is said to be a rotation (cyclic shift) of x, specifically the |u|th rotation R |u|(x), where
|u| ∈ {0, . . . , |x|}. Note that R0(x) = R |x|(x).

If a string x is less than a string y in lexorder, we write x < y and y > x. Note that the terms string and word mean
the same thing, hence we use both here. Also, for the examples included over the non-negative integers, the natural order
will be assumed, that is {0 < 1 < 2 < · · ·}. All strings are written in mathbold: x, w , and so on; ε denotes the empty string.

The remainder of this paper is organized as follows. Section 2 gives necessary preliminaries about V -order that will
be required in order to understand our algorithms. Section 3 describes the V -order computation of the BWT (and reverse
BWT) when the input string is a V -word; this is generalized in Section 4 to an arbitrary input. Section 5 provides a separate
description of the method used for V -sorting all the rotations of a given string – this is the main component of the BWT
calculation. In Section 6 we suggest future research directions.

2. V -order and V -words

In this section we define V -order and associated strings called V -words, along with stating related results which will be
applied to computing the transform and its inverse. (See [11,12,14] for further details on V -order and V -words; see [18,19]
for a linear sequential algorithm for computing the unique V -word factorization of a string – an optimal parallel PRAM
variant is given in [16].)

Let Σ be a totally ordered alphabet, and let u = u1u2 . . . un be a string over Σ . Define h ∈ {1, . . . ,n} by h = 1 if u1 �
u2 � · · · � un; otherwise, by the unique value h such that uh−1 > uh � uh+1 � uh+2 � · · · � un; thus h = n if un−1 > un ,
since un+1 does not exist. Let u∗ = u1u2 . . . uh−1uh+1 . . . un , where the star * indicates deletion of the letter uh . Write us∗
for (. . . (u∗)∗ . . .)∗ with s � 0 stars.1 Let g = max{u1, u2, . . . , un}, and let k be the number of occurrences of g in u. Then
the sequence u, u∗, u2∗, . . . ends gk, . . . , g2, g1, g0 = ε. In the star tree each string u over Σ labels a vertex, and there is a
directed edge from u to u∗ , with ε as the root. Note that, in case of equality (uh = uh+1), it is immaterial whether uh or
uh+1 is deleted: all equal adjacent letters will be deleted in sequence.

Definition 2.1. We define V -order ≺ between distinct strings u, v . First v ≺ u if v is in the path u, u∗, u2∗, . . . ,ε. If u, v
are not in a path, there exist smallest s, t such that u(s+1)∗ = v(t+1)∗ . Put c = us∗ and d = vt∗; then c �= d but |c| = |d| = m
say. Let j be the greatest i in 1 � i � m such that c[i] �= d[i]. If c[j] < d[j] in Σ then u ≺ v . Clearly ≺ is a total order.

The V -ordering of two strings can be computed in linear time using a linked list [18,19]. For the V -BWT, we will be
ordering the rotations of a string in V -order ≺, illustrated by:

1 Note that this star operator, as defined in [11,14] etc., is distinct from the Kleene star operator: Kleene star is applied to sets, while this V -star is
applied to strings.

J.W. Daykin, W.F. Smyth / Theoretical Computer Science 531 (2014) 77–89 79
Example 2.2. Consider the rotations of x = 53531. We have (53531)2∗ = (53153)2∗ = 535, namely their common ancestor in
the star tree. Then (53531)∗ = 5353 and (53153)∗ = 5315, with a rightmost mismatch in position 4 (3 < 5), from which we
conclude that 53531 ≺ 53153. For 53153 and 15353 the common ancestor is 55; adding back the last deleted letter yields
535 and 155, respectively, with a rightmost mismatch in position 2 (3 < 5), so that 53153 ≺ 15353. Similarly 15353 ≺
35315 ≺ 31535, completing all the rotations.

In contrast to lexorder, if u is any proper subsequence of x, then u ≺ x:

Lemma 2.3. (See [18].) Given a string x of length n, let u = x[i1]x[i2] . . . x[ir] for 1 � i1 < i2 < · · · < ir , 0 � r < n. Then u ≺ x.

For the calculation of the inverse V -BWT, the following will be useful:

Remark 2.4. Given strings u and v �= u, suppose that in the deletion sequence of u and v , s, t are the least integers such
that u(s+1)∗ = v(t+1)∗ . If u ≺ v (respectively, u � v), then for every s1 ∈ 0..s, t1 ∈ 0..t , us1∗ ≺ vt1∗ (respectively, us1∗ � vt1∗).

Using this remark, we can now establish an important new property of V -order that, as we shall see, facilitates the
ordering of the rotations of a given string, often without the need to access the text.

Lemma 2.5. Given strings u and v �= u, where |u| = |v|,
u ≺ v ⇐⇒ λu ≺ λv,

where λ is any letter.

Proof. The proof is by induction on |u|. For |u| = 1 and u ≺ v (thus u < v), there are five initial cases (the underscore
denotes the first letter deleted):

(a) λ < u (for example, λ = 1 : 12 ≺ 14);
(b) λ = u (for example, λ = 2 : 22 ≺ 24);
(c) u < λ < v (for example, λ = 3 : 32 ≺ 34);
(d) λ = v (for example, λ = 4 : 42 ≺ 44);
(e) λ > v (for example, λ = 5 : 52 ≺ 54).

In each case, u ≺ v (2 < 4) ensures that λu ≺ λv and vice versa.
Suppose then that the lemma holds for every |u| = |v| = k � 1; that is, for u �= v , u ≺ v if and only if λu ≺ λv . Consider

therefore strings u and v �= u, where |u| = |v| = k + 1. Two cases arise: Case 1, where u∗ = v∗ (s = t = 0 in the deletion
sequence of u and v) or else Case 2, where for u ≺ v ,

u∗ ≺ v∗ (by Remark 2.4) (1)

so that, for arbitrary λ,

λu∗ ≺ λv∗ (by the inductive assumption), (2)

with ≺ replaced by � for u � v . We consider these cases in terms of the four possibilities that arise in the deletion
sequence:

(P1) (λu)∗ = λu∗, (λv)∗ = λv∗ .
Here the same letter is deleted from λu as from u, from λv as from v . Thus in Case 1, adding back the deleted letters
yields the same ≺ relationship for u, v as for λu, λv , as required. In Case 2, since |u∗| = |v∗| = k, the result follows
immediately from (1) and (2).

(P2) (λu)∗ = u, (λv)∗ = v .
Now u and v are on the same deletion path as λu and λv , respectively (that is, (λu)2∗ = u∗ and (λv)2∗ = v∗), so that
by Remark 2.4 the result for both pairs must be the same.

(P3) (λu)∗ = λu∗, (λv)∗ = v .
Each of λv , v and vr∗ , for every r ∈ 1..|v|, must be a monotone nondecreasing (MND) sequence of letters, with the
leftmost letter therefore always deleted; on the other hand, λu is not MND because its leftmost position is not deleted.
Let s ∈ 0..|u| − 1 be the least integer such that us∗ is MND. Then

(λu)s∗ = λus∗, (λv)s∗ = v(s−1)∗, (λv)(s+1)∗ = v s∗.
Note that, even though us∗ is MND, it may still be true that λ > us∗[1]; thus we know only that (λu)(s+1)∗ equals one
of us∗ or λu(s+1)∗ . Accordingly, let t ∈ s..|u| be the least integer such that ut∗ = vt∗ , and let t′ be the least integer such

80 J.W. Daykin, W.F. Smyth / Theoretical Computer Science 531 (2014) 77–89
that (λu)t′∗ = (λv)t′∗ . Then either t′ = t or t′ = t +1. Next let s′ ∈ s..|u| be the least integer such that (λu)(s′+1)∗ = us′∗ .
Since certainly (λu)t∗ = ut∗ , we see that t � s′ . We therefore consider three possibilities, which it may be helpful to
relate to three examples:

t > s′: u = 322, v = 222, λ = 1;
t′ = t = s′: u = 311, v = 223, λ = 2;
t′ = t + 1 = s′ + 1: u = 311, v = 233, λ = 2.

If t > s′ , then the addback letters for λu, λv cannot include λ; thus these letters are identical to the addback letters
of u, v , and so the ≺ relation between u, v must be the same as that between λu, λv , as required. Suppose then that
t = s′ . If t′ = t , then t is the least integer such that ut∗ = vt∗ and independently such that (λu)t∗ = (λv)t∗ . It follows
that the addback letter for both ut∗ and (λu)t∗ must be the same: ut∗[j] for some j � 1. On the other hand, the
addback letters for vt∗ and (λv)t∗ will be the adjacent entries v[t] and v[t − 1], respectively, with

ut∗[j] < λ � v[t − 1] � v[t],
so that u ≺ v and λu ≺ λv , as required. Finally, suppose that t′ = t + 1 = s′ + 1. In this case the addback letters for
u, v will be u[j] < λ and v[t′ − 1] � λ, while for λu and λv , they will be λ and v[t] � v[t′ − 1]. Thus here also u ≺ v
and λu ≺ λv .

(P4) (λu)∗ = u, (λv)∗ = λv∗ .
This case is complementary to (P3) with complementary results. �

This fundamental property of V -order allows us to assume that for distinct strings u, v of equal length, wu ≺ w v if
and only if u ≺ v , where w is any string. The condition |u| = |v| is in a sense superfluous, since for |v ′| > |u|, the lemma
applies after the deletion sequence reduces v ′ to v .

The V-form of a string x is defined in [11,18] as

Vk(x) = x = x0 gx1 g . . . xk−1 gxk, (3)

for possibly empty xi, i = 0,1, . . . ,k. (Thus we suppose that the largest letter g in x occurs exactly k times.)
The following lemmas are applied in Section 3 to form and invert the V -transform.

Lemma 2.6. (See [14].) Suppose distinct strings u and v have V -forms

u = u0 gu u1 gu . . . u j−1 gu u j, v = v0 gv v1 gv . . . vk−1 gv vk,

where gu and gv are the largest letters in u and v , respectively. Then u ≺ v if and only if one of the following conditions holds:

(1) gu < gv ;
(2) gu = gv and j < k;
(3) gu = gv and j = k and uh ≺ vh, where h ∈ 0.. j is the least integer such that uh �= vh.

Similar to variants of the original Burrows–Wheeler Transform which utilize Lyndon words [27,22], we will assume that
the input is factored into V -words, a natural analogue of Lyndon words (see Example 2.2):

Definition 2.7. (See [14].) A string x over Σ is a V -word if it is the unique minimum in V -order ≺ among the set of
rotations of x.

Note that, like Lyndon words, V -words are both primitive and border-free [15], properties which we will use for inverting
the V -transform. Despite these similarities, Lyndon words and V -words are generally distinct [19] except for trivial cases
(individual letters, for example).

Example 2.8. (1) The V -ordering of all rotations of the string 12345 gives 51234 ≺ 45123 ≺ 34512 ≺ 23451 ≺ 12345. Hence
12345 is not a V -word (though it is a Lyndon word), while 51234 is a V -word but not Lyndon.

(2) 321312 and 4440414243 are both V -words, while 123213 and 0414243444 are Lyndon.

In order to describe the structure of V -words, we introduce the lexicographic extension (lex-extension) ≺LEX of ≺ order
[14] as follows:

J.W. Daykin, W.F. Smyth / Theoretical Computer Science 531 (2014) 77–89 81
Definition 2.9. Suppose that according to some factorization F , two strings u, v ∈ Σ+ are expressed in terms of nonempty
factors:

u = u1u2 . . . um, v = v1 v2 . . . vn.

Then u ≺LEX(F) v if and only if one of the following holds:

(1) u is a proper prefix of v (that is, ui = v i for 1 � i � m < n); or
(2) for some i ∈ 1..min(m,n), u j = v j for j = 1,2, . . . , i − 1, and ui ≺ v i .

In other words, u1u2 . . . um ≺ v1 v2 . . . vn in the lexicographic order of strings, using not < but ≺. We will generally
write ≺LEX rather than ≺LEX(F) when the factorization F is clear from the context. For further discussion of lex-extension
see [19].

Clearly xi � x j implies gxi � gx j , which leads to the following insight, where we just use the g ’s to distinguish the
substrings xi and apply the Lyndon property.

Theorem 2.10. (See [14].) Let x ∈ Σ+ . Then x is a V -word if and only if its V -form (3) has x0 = ε with x1x2 . . . xk a Lyndon word
under lex-extension.

From now on we will denote the set of V -words by V (like Lyndon words, V is an instance of a circ-UMFF, see [14,15]).
Notice that the V -form (3) of a V -word x must, by the properties of V -order, begin with the largest letter g in x. Thus

in (3) x0 = ε, and a V -word must take the form

Vk(x) = x = gx1 . . . gxk−1 gxk. (4)

For the sorting of the suffixes of a string into V -order, it is important that V -words are of type Flight Deck [17]; that is,
that for every V -word x = x[1..n], x[1] �O x[i], for every 1 � i � n, where O is some global ordering. For example, the set of
Lyndon words is type Flight Deck under lexorder, while the V -words are also Flight Deck according to the ordering V – that
is, using V -order and lex-extension but with an inverted alphabet (see [19], Lemma 3.16). The Flight Deck condition includes
trivial cases known as V -letters [19], where the first letter in a string is strictly greater (over Σ) than the subsequent letters;
for example, the V -word 51234.

When sorting sets of rotations into their V -order in Section 5, we will use the natural cyclic order of V -letters (see
Example 2.8):

Lemma 2.11. (See [19].) Let x be a V -letter of length n. If ri = Ri(x), i = 1,2, . . . ,n, then r1 � r2 � · · · � rn = x.

The following lemma, slightly more precise than in its original form, and also relevant to sorting rotations, shows that
similar to a Lyndon word, a V -word precedes any of its proper suffixes.

Lemma 2.12. (See [19].) Let x ∈ V , where x = gx1 gx2 . . . gxk is in V -form (4). If p = gx1 gx2 . . . gx j ∈ V , where 1 � j < k, and if s is
any proper suffix of x, then px, pxs, xs ∈ V .

3. BWT using V -order (V -word input)

In this section we show how to compute the BWT (and its inverse) using V -order on a given string known to be a
V -word; the next section deals with the corresponding construction on an arbitrary string.

3.1. The V -BWT

The method is analogous to the standard Burrows–Wheeler Transform, but exchanges lexorder for V -order. Also, similarly
to variants of the original transform which assume the input to be a Lyndon word [27], we assume that the input string
has been factored into V -words: this saves O (log n) space for a pointer to the least rotation of a V -word. The method for
computing the bijective V -transform of a given V -word x is then:

1. Form the unordered set (as an n × n matrix) R of all cyclic rotations of an input string x of length n.
2. Sort all the rows (all the suffixes) of R into increasing V -order, forming R≺ .
3. The last column of R≺ is the V -transform, denoted T .

82 J.W. Daykin, W.F. Smyth / Theoretical Computer Science 531 (2014) 77–89
Example 3.1. Let the V -word x = 5312543. Then, using Lemma 2.6, the sorted set of rotations R≺ is:

5 3 1 2 5 4 3
5 4 3 5 3 1 2
2 5 4 3 5 3 1
1 2 5 4 3 5 3
3 5 3 1 2 5 4
3 1 2 5 4 3 5
4 3 5 3 1 2 5

The V -transform, T , is the last column: 3213455. Note that the 5’s have been clustered into a run, but not the 3’s. However,
the classic lexorder BWT of x yields the transform 3154532, with no clustering of letters at all.

We defer till Section 5 a description of the details of the modifications to a standard suffix-sorting algorithm [26] required
to convert it from lexorder to V -order.

3.2. The inverse V -BWT

We show here how to recover the input data from the V -transform T , where the input (first row of R≺) is assumed to
be a V -word x, hence the minimum rotation (Definition 2.7). Starting with T , the last column in R≺ , we deduce the first
column C , then use information about the path traced in this process to compute x in reverse order. Let T = t1t2 . . . tn , and
suppose that g is the greatest letter in T . The column C consists of the single-letter prefixes of the strictly increasing (in
V -order) rotations of x that form the rows of R≺ . By the structure (4) of V -words, the input string x starts with x[1] = g .
Letting k denote the frequency of g in T , we know moreover from Lemma 2.6 that the first k rows in R≺ must start with g
(that is, in the V -form (3), x0 = ε). Hence these k rows have the form g . . . ti for 1 � i � k, which starts our boot-strapping
procedure for computing the inverse.

From the first k rows we know that there are other rotations of x in R≺ starting with ti g which we then sort into their
increasing V -order, and repeat the process for longer prefixes. The invariant is that, during the reconstruction of R≺ , the
current list of prefixes in C is correctly sorted in V -order. The method for prefix sorting applies Lemmas 2.3, 2.5 and 2.6;
note that the first k rows of R≺ are in the V -form (4), while all subsequent rows are in V -form (3) with x0 �= ε.

In order to determine the next entry in R≺ , we maintain a priority queue (say a heap H) of the subsequent rotations
of each row already entered. Thus, for the first k rows, the rotations beginning t1 g, t2 g, . . . , tk g need to be entered in
some form into H. (However, to avoid duplicates, we enter into H only those items i for which ti < g; this means that
the maximum number of entries in H will be, not k, but k′ , the number of sequences of largest letters g .) To assist in
determining the minimum of each pair of rotations, each entry in H contains the following fields:

r: the rank of the preceding item in R≺ (for example, i whenever i ∈ 1..k);
�: the number of letters so far rotated into the first position (for i ∈ 1..k, � = 1);
λ: the letter currently rotated from T (and prefix of the current rotation);
λ̂: the maximum over all letters λ so far rotated into the first position;
#: the number of occurrences of λ̂;
j: the leftmost position at which λ̂ occurs (1 � j � �).

Using Lemma 2.5, the variables (r, �, λ) may determine the order of u and v as follows:

(R1) whenever �u = �v and λu = λv , then u ≺ v ⇐⇒ ru < rv .

Similarly, the variables (λ̂,#, j) enable the order of two entries u and v to be computed in constant time in many cases,
making use of the following rules (derived from Lemma 2.6):

(R2) if λ̂u < λ̂v , choose u;
(R3) if λ̂u = λ̂v and #u < #v , choose u;
(R4) if λ̂u = λ̂v and #u = #v and ju < jv , choose u.

However, when none of these rules apply, for instance with u = 13 and v = 23, then it will be necessary to directly compare
the letters in u and v , using for example one of the algorithms described in [19,3].

Fig. 1 shows the computation of C and x from T . Each insertion (denoted by
+←) into the heap H occurs at the lowest

level, resulting in a sequence of pairwise comparisons of tuples that restores the heap invariant; that is, that the root entry
is minimum. The “top” operator removes the current root, after which the heap invariant is similarly restored. Since the
occurrence of consecutive g ’s in x (C[i] = T [i] = g) leads to no insertion in H, it follows that the maximum number of

J.W. Daykin, W.F. Smyth / Theoretical Computer Science 531 (2014) 77–89 83
procedure TC(T ,C, x,n,k, g)

– Compute the reverse V -BWT C and pointers P .
k0 ← 0
for i ← 1 to k do

C[i] ← g
if T [i] = g then

k0 ← k0 + 1; P[i] ← k0

else

H +← (i,1,T [i],T [i],1,1)

for i ← k + 1 to n do
(r, �, λ, λ̂,#, j) ← top(H)

C[i] ← λ; P[r] ← i
if T [i] = g then

k0 ← k0 + 1; P[i] ← k0

else
UPDATE(r, �, λ, λ̂,#, j)

H +← (r, �, λ, λ̂,#, j)
— Compute x from the pointers P .

x[n] ← T [1]; h ← 1
for i ← n − 1 downto 1 do

h ← P[h]; x[i] ← T [h]

procedure UPDATE(r, �, λ, λ̂,#, j)
r ← i; � ← � + 1; λ ← T [i]
if λ > λ̂ then

λ̂ ← λ; # ← 1; j ← 1
elsif λ = λ̂ then

← # + 1; j ← 1
else

j ← j + 1

Fig. 1. Compute C and the original V -word x from T : heap H contains the number k′ of sequences of g ’s in x, and on exit is empty.

entries is k′ and that therefore its maximum height is �log2 k′�. Thus Ω(log k′) processing time is required for each of n
accesses to H, but it may be as much as O ((n − k)2/k). In the final stage, x is computed by a straightforward for loop that
requires Θ(n) time.

To see that the algorithm is correct, observe that at step i � k + 1 the ith minimum rotation must be the least rotation
of one of the at most k′ entries most recently determined – that is, one of the entries beginning with C[j] and ending
with T [j], 1 � j � i − 1. The heap H keeps track of this minimum by applying the rules (R1)–(R4) to the log k′ pairwise
comparisons required for update, and, when necessary, using the linear-time V -order comparison algorithm of [19].

Next consider the entries in the “previous” array P – the pointer from the previously selected item r to i, the currently
selected one. Each row i � k + 1 of R≺ is reached from the current minimum entry in H, whose rank is r; thus P[r] ← i.
If in addition T [i] = g , we must link row i to the preceding row k0 � k for which C[k0] = g by setting P[i] ← k0. Exactly
k of these latter settings will be made, so that each (perhaps void) sequence of non-g ’s will relate to each previous such
sequence in x. Thus following the links of P yields x in reverse order; in other words P is an implementation of the usual
BWT Last First (LF) mapping for the V -BWT. We have

Theorem 3.2. Given a string x[1..n] on an ordered alphabet, Algorithm TC correctly computes the inverse C and the original input
V -word x corresponding to the V -BWT T in time O (n2 log k′), using O (n + k′) words of additional storage, where k′ is the number of
sequences of largest letters g in x.

Example 3.3. Suppose we are given T = 2515355. Then k = 4 and C[1..4] = 54. The first two entries in H will therefore
be u = (1,1,2,2,1,1), v = (3,1,1,1,1,1) with v < u by (R2). Since T [2] = 5 and T [4] = 5, therefore P[2] ← 1 and
P[4] ← 2, respectively.

i = 5 (3,1,1,1,1,1) is removed from H and C[5] ← 1, P[3] ← 5. Since T [5] = 3, the entry (5,2,3,3,1,1) will be
inserted in H with (1,1,2,2,1,1) as root.

i = 6 (1,1,2,2,1,1) is removed, C[6] ← 2, P[1] ← 6. Since T [6] = 5, P[6] ← 3.
i = 7 (5,2,3,3,1,1) is removed, C[7] ← 3, P[5] ← 7; since T [7] = 5, P[7] ← 4.

Thus we find C = 5555123 and P = 6152734. Accordingly we set x[7] ← T [1] = 2, then x[6] ← T [P[1]] = T [6] = 5, x[5] ←
T [P[6]] = T [3] = 1, and so on, yielding x = 5553152, the unique V -word implied by T = 2515355.

84 J.W. Daykin, W.F. Smyth / Theoretical Computer Science 531 (2014) 77–89
4. BWT using V -order (arbitrary input)

We now outline the computation of the V -transform and inverse for an arbitrary input which is not necessarily a
V -word. The method is derived from Scott’s bijective variant of the lexorder Burrows–Wheeler Transform as described by
Kufleitner [27].

Since we are dealing with rotations of strings, we also adopt the extension of lexorder � to an infinite order �ω given
(with more detail) in [27]. For u, v ∈ Σ+ , let uω = uuu . . . be the infinite sequence obtained as the infinite power of u;
then the ω-lexorder u �ω v means that the infinite sequences uω and vω satisfy uω � vω .

The bijective lexorder BWT of an arbitrary word x of length n is defined as follows. Let x = v s . . . v1 with v s � · · · � v1
be the Lyndon factorization of x. Denote by Rω(v i) the set of rotations (conjugacy class) of v i in ω-lexorder; Rω(x) is
the set of rotations of the union of the Rω(v i) all in ω-lexorder (ω-lexorder is used to homogenize the dimensions of
the v i). Then, the bijective BWT of x is BWT(x) = Rω(x)[i,n], for 1 � i � n, that is, the transform is the usual last column
of the BWT matrix. The inverse, that recovers the individual factors v i and hence the input x, can be achieved by detecting
Lyndon seeds of periodicities in the rows of the reconstructed Rω(x) – however, we give an alternative method for the
V -BWT below. Note that as well as being bijective, no indexes for the least rotations of each of the conjugacy classes, or
‘End-of-File’ symbols are required.

This concept of constructing a bijective multi-word lexorder BWT was also given earlier by Mantaci et al. [29,30], wherein
the input was divided into blocks of equal length. Moreover, Mantaci et al. proposed an extension of lexorder to infinite
words, and showed that the order relation �ω between two primitive strings u and v can be determined with at most
|u| + |v| − gcd(|u|, |v|) letter comparisons. (As shown in [18], to compute the regular V-order ≺ of u and v , |u| � |v|,
requires at most 4|u| + 2|v| letter comparisons.)

We now overview Scott’s method [22] along with some obvious modifications from lexorder to V -order (see [27] for
fuller details). Also, to ease notation, from now on we will let Rω(x) denote the associated modification to an ω-lex-
extension order, and note that in practice the Rω(x) matrix is not necessarily n × n here.

(i) Compute the linear-time Lyndon factorization of the input [21,13] → linear-time V -word factorization [18,19].
(ii) Compute the multi-word BWT of the Lyndon factors → multi-word V -BWT. We process the V -words v i in x, deter-

mined by the factorization in (i), from right to left in groups G g of v i which all have the same maximum letter g – let
the V -word v∗ have the largest number of V -letters of the v i in a group. For the multi-word form: construct the con-
jugacy class Rω(v i) for each V -word v i , where the dimensions of the v i in a group are first all homogenized to have
the same number of V -letters as v∗ . Therefore the new length of a group is O (n2). The conjugacy classes from each
of the h, say, V -words in a group are then sorted in lex-extension order in linear-time using suffix-sorting techniques
from Section 5; hence O (n2) overall. These h sorted conjugacy classes are then merge sorted into Rω(G g) using linear
V -comparison of strings, that is O (n2 log h)O (n) = O (n3 log h) time for the V -transform of a group.

(iii) Since the conditions of Lemma 2.6(3) are satisfied for the V -ordered conjugates in Rω(G g), we can apply procedure
TC for the inversion of each group of x independently; in particular, for each group procedure TC correctly starts by
putting all largest letters g in the column C .

To establish that we can invert the groups independently we need Lemma 2.6(1) and the following:

Lemma 4.1. Let v ∈ V with max{v} = g and |v| = n. Suppose that V -BWT(v) = t1t2 . . . tn. Then tn = g.

Proof. Suppose not; then the last row r in the BWT matrix R≺ ends with some f < g , and starts with a prefix p (which is
non-empty) prior to the first letter g . Consider a rotation of v in R≺ starting with f pg; applying Lemma 2.3, pg ≺ f pg ,
and hence the last row r in R≺ , starting p and ending f , is not the largest in R≺ . �

So we apply the O (n2 log k′) inversion method of Section 3.2 to each group G g , recovering the V -words in the factor-
ization from smallest to largest in V , that is, from right to left. Note that given the V -word factorization v s �V v s−1 �V
· · · �V v1 of a string, the notation <V indicates concatenation UMFF-order over V (hence �V is factorization); although for
Lyndon words the concatenation order is the same as that for selecting a conjugate, namely lexorder, these orders are not
the same in the case of V -words – see [14,19] for more details on the concatenation UMFF-order of V ; see [15,17] for more
on UMFF-order in general. The inversion procedure induces cycles of letters via the LF mapping, one for each V -word. In
the case of multiple identical rows in Rω(x), when forming an LF cycle, from the rows currently available the one with the
smallest index is chosen.

The following lemma establishes the disjoint nature of the LF cycles, where by an element E j
i we mean the j-th consec-

utive pair of letters in the LF mapping of a V -word v i .

Lemma 4.2. Let v s �V v s−1 �V� · · · �V v1 be the V -word factorization of a string x of length n, and let LF(v i) be the LF mapping

of v i , with elements E j
i , 1 � j � n. For v i+1 �V v i , if E j

i is the prefix of row rs in Rω(x), E j
i+1 the prefix of row rt in Rω(x), and if

E j = E j , then s < t.
i i+1

J.W. Daykin, W.F. Smyth / Theoretical Computer Science 531 (2014) 77–89 85
Proof. In the case of v i+1 = v i , this is immediate from repeatedly choosing, for equivalent rows, the row with the smallest
index to construct the LF mapping. Otherwise, for v i+1 >V v i , the index of the row with prefix v i in Rω(x) is smaller than
the index of the row with prefix v i+1. Let u, w be two arbitrary rows in Rω(x) ending λ,μ, with indexes p,q (p < q)
respectively, hence u ≺ w . Write up, w p for the prefix of u, w without the last letter λ,μ respectively. If λ and μ are
distinct then the LF function maps these suffix letters to equivalent prefix letters, that is distinct rotations in Rω(x).

So suppose that λ = μ, and assume that u, w are in V -form (3). With reference to (3), if the determining point for
deciding u ≺ w occurred between ut and wt , for 0 � t � k − 1, then Lemma 2.5 applies and λup ≺ μw p . Otherwise
suppose that the decision point is at t = k. If λ = μ < g , then if either both λ,μ or neither were deleted then they are not
involved in the final V -order decision, and again λup ≺ μw p ; otherwise, consider the suffixes g . . . γ λ and g . . . δμ, then
one deletion of λ or μ implies that γ > λ and δ � λ, say, and hence the strings cannot become equal under a sequence of
� deletions, so this case is impossible. Finally, if λ = μ = g , then uk = wk = ε in (3), and if the decision point is between
uk−1 and wk−1, then λ = μ will be the last deletions (see Section 2) and hence not involved with the V -ordering.

Therefore, the LF function maps the first occurrence of λ as a suffix to the first occurrence of λ as a prefix in Rω(x) –
in general the ith occurrences. �

Hence choosing the first currently available occurrence in Rω(x) for the LF mapping of a V -word guarantees remaining
in the cycle for that word; once completed, that cycle is effectively deleted from Rω(x), and the process iterates. Since
we can deal with inverting factors in groups, within which LF cycles are disjoint, the inversion of Section 3.2 applies with
overall complexity O (n2 log k′) for a group.

Theorem 4.3. The multi-word V -BWT is bijective.

Proof. The proof derives from several results. Firstly, the V -word factorization of a given string x is unique [14,15], and
hence the multi-words formed from x, each with an associated conjugacy class, are likewise unique. Furthermore, the
factors in a V -factorization are non-increasing (�V) and partially determined by their first letter [14,19] – hence the groups
G g can be inverted independently. Within a group, Lemma 4.2 shows that the LF cycles are disjoint – hence the inversion
procedure TC and Theorem 3.2 apply. �

We illustrate the inversion of the multi-word V -BWT with the following example.

Example 4.4. Consider the input string x = 323132412 and its unique V -word factorization 32 �V 3132 �V 412. After
forming powers of V -letters where necessary to homogenize the dimensions for a group, the conjugacy class for each factor
is then:

Rω(412): Rω(3132): Rω(32):
412 3132 32(32)

124 1323 23(23)

241 3231
2313

Ordering all the conjugates for each group into lex-extension order gives Rω(x):

Rω(x):
412
241
124

———————– (This separates the groups: G3 and G4.)

3132
3231

32(32)

1323
2313

23(23)

Then T , that is, V -BWT(323132412) = 214212333.
For the inverse, T is scanned from right to left detecting maximal letters: 3 and 4. We first find the inverse of group

G4, where the existence of one maximal letter 4 indicates that this factor is a V -letter, and so by applying Lemma 2.11, the
inverse is given simply by reading off letters in the transform T : 412.

86 J.W. Daykin, W.F. Smyth / Theoretical Computer Science 531 (2014) 77–89
For the inverse of the lower group G3, using the method in Section 3.2:

After the first for loop: After the second for loop:
3 - - 2 3 - - 2
3 - - 1 3 - - 1
3 - - 2 3 - - 2
- - - 3 1 - - 3
- - - 3 2 - - 3
- - - 3 2 - - 3

Once the left-hand column C is complete, two cycles of LF elements can be detected starting from the top row in G3: (23 -
31 - 13 - 32) and (23 - 32); using the ordering of factors in a factorization, we recover 32 �V 3132.

5. Sorting the rotations of a V -word

Following the algorithm of Ko and Aluru [26], we now describe how to sort the set of rotations R of a V -word (or
any string) into the set R≺ of the rotations in increasing V -order in O (n) time. We partition the set R into two subsets:
rotations starting with g called G , and those not starting with g called G; applying Lemma 2.6, we sort G first as these are
the lesser rows in V -order, followed by sorting G to complete the construction of the sorted set R≺ .

5.1. Sorting the set G

The first row in R≺ is the given input x which is assumed to be a V -word (Definition 2.7) in V . Therefore x is in
V -form (4), and by Theorem 2.10, x has the form of a Lyndon word under lexicographic extension ≺LEX . Note that if x is
a V -letter, then applying Lemma 2.11, the V -transform is obtained simply by reversing x, and likewise to recover x from
the V -transform. More generally, Lemma 2.12 shows that x precedes any of its suffixes, hence we can apply a method for
sorting suffixes composed of V -letters so as to V -order R into R≺ .

However, the following example shows that, unlike Lyndon words, the V -order of two suffixes of a V -word is not the
same as the V -order of the rotations that they belong to.

Example 5.1. Let the V -word v = 9191919293, and consider two suffixes, 919293 and 91919293. From Lemma 2.3, 919293 ≺
91919293. Consider the rotations of v for which these suffixes are the prefix, namely 9192939191 and 9191929391 respec-
tively. With reference to their V -form (4), the number of maximal letters in both strings is k = 5. Hence we can apply
Lemma 2.6(3) with lex-extension ordering, giving 9192939191 � 9191929391.

Due to Lemma 2.6(3), and since we are really interested in ordering rotations of a string, where each rotation has the
same number of maximal letters, we assume here that each suffix is concatenated with (an invisible) suffix, which is its
prefix in the input x. Hence in this case of strings derived from rotations, we can assume lex-extension ordering, and so we
would decide in the above example that 91919293 ≺LEX 919293 (91919293[91] ≺ 919293[9191]).

Furthermore, since, as for Lyndon words, the Flight Deck property holds for V -words, the linear suffix array construction
of Ko and Aluru [26] (which hinges on identifying locally minimal/maximal suffixes) can be modified from lexorder to
V -order basically by interchanging single letters for V -letters (essentially just a change of alphabet). We now outline the
key steps of this modification, using the notation of Ko and Aluru, thus also providing a summary of their clever technique.

We assume that the input string x is a text T = t1t2 . . . tn over the alphabet Σ = {1 < 2 < · · · < n} which is augmented
by a least ‘End-of-File’ character $ = 0 (we assume $ ≺ ε for the case xi = ε in (4)) which occurs uniquely in x; we
assume the V -letter g$ has been appended to x, specifically x = x1 . . . xn−2 g$. Expressing x in its V -form (4), we have
x = gx1 . . . gxm−1 gxm , where m < n. Then let Ti = gxi . . . gxm denote the i-th suffix (of V -letters) of x = T , represented by
the starting position of gxi in T , say i′ , where i′ � i.

We divide all suffixes of T into two types, those S smaller than their righthand neighbour and those L larger than their
righthand neighbour:

• Type S suffixes = {Ti: Ti ≺LEX Ti+1};
• Type L suffixes = {T j: T j �LEX T j+1}.

The last suffix, Tm = g$, is both type S and L. The type of each suffix in T can be determined in one scan of the string.
This follows from the corresponding result, Lemma 1 in [26], along with lex-extension Definition 2.9, together with linear
V -order comparison of V -letter substrings [18]. When scanning for types S and L we identify two further features in T
(w.l.o.g. assume the S suffixes are not more in number):

• Type S positions – position i′ of T is a type S position if the associated suffix Ti is of type S; from the Flight Deck
property, these include the starting positions of each gx1 in T .

J.W. Daykin, W.F. Smyth / Theoretical Computer Science 531 (2014) 77–89 87
• Type S substrings – the substring ti′ . . . t j′ is called a type S substring if both i′ and j′ are type S positions, and every
position between i′ and j′ is not a type S position (that is, it is either a type L position or not the starting position of
a V -letter).

Given a text T , the Ko–Aluru technique consists of three main phases:

1. Bucket suffixes into an array A according to their first letter – we modify this to bucket suffixes according to their first
V -letter in O (n).

2. Sort all suffixes of one of the types S or L in O (n) (assumed to be the one with least, which w.l.o.g. is S (see [26] for
details of when L is least)) – modified here from lexorder to lex-extension order. A linear scan of the sorted list of S
suffixes is performed whereby the S suffixes are moved to the current end of their buckets, and hence into their correct
positions in A.

3. Using a linear scan of A, the lexorder of all suffixes in T is obtained from the sorted S suffixes in step (2), modified
here to lex-extension; within V -letter buckets, suffixes are ordered according to their type, S or L (Lemma 5.4).

In order to sort all the type S suffixes in T for step (2), the type S substrings (which are prefixes of S suffixes) are
first sorted according to lex-extension by defining buckets of identical substrings of V -letters. These sorted buckets are
numbered using consecutive integers starting from 1, which generates a new string T ′ of bucket numbers (in the order in
which the type S substrings appear in T). Note that each type S suffix in T naturally corresponds to a suffix in the new
string T ′ , which is of length at most �n/2�; T ′ is sorted recursively with an additional cost of O (n) for sorting type S
substrings using Bucket Sort (implemented with an initial pre-sorting on a finite alphabet of the V -letters in T).

We now relate suffix-sorting in the text string T to suffix-sorting in the string T ′ of bucket numbers.

Lemma 5.2. Let Ti and T j be two suffixes of T and let T ′
i′ and T ′

j′ be the corresponding suffixes of T ′ . Then, Ti ≺LEX T j ⇔ T ′
i′ < T ′

j′ .

Proof. The proof follows from the corresponding result of Ko and Aluru: Lemma 4 [26]. In particular, we replace character
with V -letter, substring with substring of V -letters, and lexorder of strings with lex-extension in their proof. �

We further relate the sorting of all type S suffixes in T using lex-extension ≺LEX , to sorting all suffixes of bucket numbers
in T ′ using lexorder.

Corollary 5.3. The sorted lexorder of the suffixes of T ′ determines the sorted lex-extension order of the type S suffixes of V -letters of T .

Proof. Since every type S suffix in T starts with a type S substring, there is a one-to-one correspondence between type S
suffixes of T and all suffixes of T ′ . The lexicographical nature of Definition 2.9 then applies, and as shown in Corollary 2
[26], the proof follows from Lemma 5.2. �

The sorted S suffixes are bucketed into the array A, hence at this stage all type S suffixes are correctly sorted in A
(the other buckets are not necessarily sorted). We proceed to overview the modifications for step (3). The following lemma,
required for this computation, is then immediate from Lemma 2 in [26]; we detail the adaptation of their short proof from
lexorder to V -order.

Lemma 5.4. A type S suffix is greater in lex-extension ≺LEX than a type L suffix that begins with the same first V -letter.

Proof. We prove this by contradiction. Suppose a type S suffix Ti and a type L suffix T j are two suffixes that start with the
same V -letter v , such that Ti ≺LEX T j . We can write Ti = vαv1β and T j = vαv2γ , where v, v1 and v2 are all V -letters
with v1 �= v2, and α,β,γ are (possibly empty) strings of V -letters.

Case 1: α contains a V -letter other than v . Let v3 be the leftmost V -letter in α that is different from v . Since Ti is a type
S suffix, it follows that v3 � v . Similarly, for T j to be a type L suffix, v3 ≺ v , a contradiction.

Case 2: α does not contain any V -letter other than v , or is empty. In this case, we have the following: Ti of type S ⇒ v1 � v
while T j of type L ⇒ v2 � v , hence v2 � v � v1. However, Ti ≺LEX T j implies v1 ≺ v2, a contradiction. �

Similarly, the following corollary is derived from Corollary 1 in [26].

Corollary 5.5. In the suffix array of T, among all suffixes that start with the same V -letter, the type S suffixes appear after the type L
suffixes.

88 J.W. Daykin, W.F. Smyth / Theoretical Computer Science 531 (2014) 77–89
The array A is scanned from left to right. For each entry A[i], if T A[i]−1 is a type L suffix, it is moved to the front of its
bucket in A, and the current front is advanced. This step takes O (n) time and is supported by the following adaptation of
Lemma 3 in [26], established by similar modifications to the proof as in the above results.

Lemma 5.6. When the linear scan of A reaches A[i], then suffix T A[i] of V -letters is already in its sorted position in A.

At the end of this step, the array A contains all the suffixes of T which start with g in sorted V -order, and hence we
have sorted all rows in R≺ starting with g in linear time.

5.2. Sorting the set G

In this case we append a virtual letter g to the beginning of each of the rows in G , and then apply the method of
Section 5.1 (Example 3.1 shows the necessity of sorting G independently). In this case, the finite alphabet for pre-sorting
comprises all proper suffixes of each of the V -letters in the text T ; for each V -letter, the V -order of these suffixes is given
by Lemma 2.11. The sorted set G precedes the sorted set G , and hence overall, V -ordering all the rotations of a string can
be achieved in linear time.

6. Conclusion

In this paper we have introduced the V -transform, a bijective variant of the lexicographic Burrows–Wheeler Transform.
For this we applied V -words derived from V -order, which are analogous structures to Lyndon words based on lexorder. We
have also shown that the Ko–Aluru linear suffix-sorting technique can be modified from lexorder to V -order, which we then
applied to V -order the rotations of a string.

In some cases the V -BWT produces better clustering of letters than the original BWT. The maximal letters g play a
significant role in V -order, so consider the case of clustering the k maximal letters g of a string x into gk in a transform.
For the classic lexorder BWT to achieve gk , it is required that the substrings v i of x between g ’s (g v i g) occur compactly
in lexorder, meaning that no other rotations of x lie within this lexordering which would split up the g ’s in the transform.
However, to get gk with the V -BWT, only a weaker condition overall is required, namely that the conditions of Lemma 2.6
are satisfied for compact lex-extension ordering of the v i – these features are illustrated in Example 3.1. Similarly the weaker
conditions underlie that, for the V -word 5215125432, the lexorder transform is 5253145122, whereas the V -transform
2122315545 gives slightly better clustering.

Since, due to fast suffix-sorting, computing both the BWT and V -BWT for a V -word is linear, the type of transform which
gives better clustering for an input string can be determined in O (n) time, for instance by applying run-length encoding
to the text transformations. For lossless compression and other applications requiring inversion, with the V -BWT we are
thus offering a trade-off between: instances of better clustering in the transform versus complexity (the inverse V -BWT
computation is supralinear).

We conclude by proposing some future lines of enquiry:

Question 6.1. Which transform gives the best degree of clustering for which types of input data? For instance, the lex-
order transform of the V -letter string 54324321 is 23242251; applying Lemma 2.11, the V -transform is the reversed string
12342345 – hence no new clustering although any existing clustering is not reduced, for instance the (reversed) given sub-
string (234)2. For the V -word string 414141414243, the lexorder transform is 444444311112, while the V -transform is
311112444444; both of these transforms, while distinct, have produced perfect clustering of letters. The V -transform of the
V -word 521512521522 is 221223154, better clustered than the lexorder transform 52253212221.

Question 6.2. If we define the transform to be the last column of V -letters in R≺ , rather than single letters, does this lead
to efficiencies?

Question 6.3. Can the inverse V -BWT calculation be performed in close to linear time in the worst case?

Question 6.4. With reference to the effective strategy of [5,1], where it is shown that re-ordering the letters of the alphabet
achieves superior compression for the lexorder BWT compared to using the original ordering of the letters, in particular
grouping the vowels at the start of the alphabet: which alphabet re-ordering algorithm can similarly achieve improved
compression for the V -BWT?

V -words and Lyndon words are instances of Hybrid Lyndons [19]. We suggest further research into Burrows–Wheeler
type transforms for other Hybrid Lyndons, for example [20]. Overall, the goal is a taxonomy of BWT type transforms. This
leads naturally to considering further adaptations of suffix array techniques for other forms of order. Finally, we propose that
parallelism is worth investigating for computing the V -BWT (see [16] for an optimal PRAM V -word factorization algorithm)
and related novel transformations.

J.W. Daykin, W.F. Smyth / Theoretical Computer Science 531 (2014) 77–89 89
Acknowledgements

We thank Travis Gagie, Juha Kärkkäinen and Jouni Sirén for fruitful discussions. We also thank the anonymous referees
for their very thorough reviews and valued comments and suggestions which stimulated us to achieve these results. The
work of the second author was supported in part by Grant No. 8180-2012 from the Natural Sciences and Engineering
Research Council of Canada.

References

[1] J. Abel, W. Teahan, Universal text preprocessing for data compression, IEEE Trans. Comput. 54 (5) (2005) 497–507.
[2] D. Adjeroh, T. Bell, A. Mukherjee, The Burrows–Wheeler Transform: Data Compression, Suffix Arrays, and Pattern Matching, Springer, 2008, 352 pp.
[3] A. Alatabbi, J.W. Daykin, M.S. Rahman, W.F. Smyth, Simple linear comparison of strings in V -order, in: Proc. 8th International Workshop on Algorithms

and Computation (WALCOM), in: Lecture Notes in Comput. Sci., vol. 8344, 2014, pp. 80–89.
[4] M. Burrows, D. Wheeler, A block sorting lossless data compression algorithm, Technical report 124, Digital Equipment Corporation, 1994.
[5] B. Chapin, S.R. Tate, Higher compression from the Burrows–Wheeler transform by modified sorting, in: Proc. 1998 Data Compression Conf. (DCC), 1998,

p. 532.
[6] M. Chemillier, Periodic musical sequences and Lyndon words, Soft Comput. 8 (9) (2004) 611–616, http://dx.doi.org/10.1007/s00500-004-0387-2.
[7] M. Chemillier, C. Truchet, Computation of words satisfying the “rhythmic oddity property” (after Simha Arom’s works), Inform. Process. Lett. 86 (2003)

255–261.
[8] K.T. Chen, R.H. Fox, R.C. Lyndon, Free differential calculus IV – The quotient groups of the lower central series, Ann. Math. 68 (1958) 81–95.
[9] M. Crochemore, J. Désarménien, D. Perrin, A note on the Burrows–Wheeler transformation, Theoret. Comput. Sci. 332 (1–3) (2005) 567–572.

[10] M. Crochemore, R. Grossi, J. Kärkkäinen, G.M. Landau, A constant-space comparison-based algorithm for computing the Burrows–Wheeler transform,
in: Proc. 24th Annual Symposium on Combinatorial Pattern Matching (CPM), 2013, pp. 74–82.

[11] T.-N. Danh, D.E. Daykin, The structure of V -order for integer vectors, in: A.J.W. Hilton (Ed.), Congressus Numerantium, vol. 113, Utilitas Mat. Pub. Inc.,
Winnipeg, Canada, 1996, pp. 43–53.

[12] T.-N. Danh, D.E. Daykin, Ordering integer vectors for coordinate deletions, J. Lond. Math. Soc. (2) 55 (1997) 417–426.
[13] D.E. Daykin, Algorithms for the Lyndon unique maximal factorization, J. Combin. Math. Combin. Comput. 77 (2011) 65–74.
[14] D.E. Daykin, J.W. Daykin, Lyndon-like and V -order factorizations of strings, J. Discrete Algorithms 1 (2003) 357–365.
[15] D.E. Daykin, J.W. Daykin, Properties and construction of unique maximal factorization families for strings, Internat. J. Found. Comput. Sci. 19 (4) (2008)

1073–1084.
[16] D.E. Daykin, J.W. Daykin, C.S. Iliopoulos, W.F. Smyth, Generic algorithms for factoring strings, in: H. Aydinian, F. Cicalese, C. Deppe (Eds.), Information

Theory, Combinatorics, and Search Theory (In Memory of Rudolf Ahlswede), in: Lecture Notes in Comput. Sci., vol. 7777, 2013, pp. 402–418.
[17] D.E. Daykin, J.W. Daykin, W.F. Smyth, Combinatorics of unique maximal factorization families (UMFFs), in: R. Janicki, S.J. Puglisi, M.S. Rahman (Eds.),

Special Issue on Stringology, Fund. Inform. 97 (3) (2009) 295–309.
[18] D.E. Daykin, J.W. Daykin, W.F. Smyth, String comparison and Lyndon-like factorization using V -order in linear time, in: R. Giancarlo, G. Manzini (Eds.),

Proc. 22nd Annual Symposium on Combinatorial Pattern Matching (CPM), in: Lecture Notes in Comput. Sci., vol. 6661, 2011, pp. 65–76.
[19] D.E. Daykin, J.W. Daykin, W.F. Smyth, A linear partitioning algorithm for Hybrid Lyndons using V -order, Theoret. Comput. Sci. 483 (2013) 149–161.
[20] J.W. Daykin, et al., Computing the Burrows–Wheeler transform using binary orders, in preparation.
[21] J.P. Duval, Factorizing words over an ordered alphabet, J. Algorithms 4 (1983) 363–381.
[22] J.Y. Gil, D.A. Scott, A bijective string sorting transform, arXiv:1201.3077, 2012.
[23] J. Kärkkäinen, Fast BWT in small space by blockwise suffix sorting, Theoret. Comput. Sci. 387 (3) (2007) 249–257.
[24] J. Kärkkäinen, P. Sanders, Simple linear work suffix array construction, in: Proc. 30th Internat. Conf. Automata, Languages & Programming, 2003,

pp. 943–955.
[25] J. Kärkkäinen, P. Sanders, S. Burkhardt, Linear work suffix array construction, J. ACM 53 (6) (2006) 918–936.
[26] P. Ko, S. Aluru, Space efficient linear time construction of suffix arrays, in: Proc. 14th Annual Symposium on Combinatorial Pattern Matching, 2003,

pp. 200–210.
[27] M. Kufleitner, On bijective variants of the Burrows–Wheeler transform, Proc. Stringology (2009) 65–79.
[28] M. Lothaire, Combinatorics on Words, 2nd edition, Addison–Wesley, Reading, MA, 1983; Cambridge University Press, Cambridge, 1997.
[29] S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, An extension of the Burrows Wheeler transform and applications to sequence comparison and data com-

pression, in: Alberto Apostolico, Maxime Crochemore, Kunsoo Park (Eds.), Combinatorial Pattern Matching, Proceedings of the 16th Annual Symposium,
CPM 2005, Jeju Island, Korea, 19–22 June 2005, in: Lecture Notes in Comput. Sci., vol. 3537, Springer, 2005, pp. 178–189.

[30] S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, An extension of the Burrows–Wheeler transform, Theoret. Comput. Sci. 387 (3) (2007) 298–312.
[31] G. Nong, S. Zhang, W.H. Chan, Linear suffix array construction by almost pure induced-sorting, in: Proc. 2009 Data Compression Conf. (DCC), 2009,

pp. 193–202.
[32] C. Reutenauer, Free Lie Algebras, Lond. Math. Soc. Monogr. New Ser., vol. 7, Oxford University Press, 1993, 288 pp.
[33] M. Salson, T. Lecroq, M. Léonard, L. Mouchard, A four-stage algorithm for updating a Burrows–Wheeler transform, Theoret. Comput. Sci. 410 (43) (2009)

4350–4359, http://dx.doi.org/10.1016/j.tcs.2009.07.016.
[34] B. Smyth, Computing Patterns in Strings, Pearson, 2003, 423 pp.

http://refhub.elsevier.com/S0304-3975(14)00205-9/bib41542D3035s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib41424D2D3038s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib414452532D3134s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib414452532D3134s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib42572D3934s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib43542D3938s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib43542D3938s1
http://dx.doi.org/10.1007/s00500-004-0387-2
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib43542D3033s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib43542D3033s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib43464C2D3538s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4344502D3035s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib43474B4C2D3133s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib43474B4C2D3133s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4461442D3936s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4461442D3936s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4461443937s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib442D3131s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib44442D3033s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib44442D3038s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib44442D3038s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib444449532D3133s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib444449532D3133s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4444532D3039s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4444532D3039s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4444532D3131s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4444532D3131s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4444532D3133s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib44752D3833s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib47532D3132s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4B2D3037s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4B532D3033s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4B532D3033s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4B53422D3036s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4B412D3033s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4B412D3033s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4B2D3039s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4C2D3833s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4D5252532D3035s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4D5252532D3035s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4D5252532D3035s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4D5252532D3037s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4E5A432D3039s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib4E5A432D3039s1
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib522D3933s1
http://dx.doi.org/10.1016/j.tcs.2009.07.016
http://refhub.elsevier.com/S0304-3975(14)00205-9/bib532D3033s1

	A bijective variant of the Burrows-Wheeler Transform using V-order
	1 Introduction
	1.1 Deﬁnitions

	2 V-order and V-words
	3 BWT using V-order (V-word input)
	3.1 The V-BWT
	3.2 The inverse V-BWT

	4 BWT using V-order (arbitrary input)
	5 Sorting the rotations of a V-word
	5.1 Sorting the set G
	5.2 Sorting the set G

	6 Conclusion
	Acknowledgements
	References

