NOTE

A CHARACTERIZATION OF POWER-FREE MORPHISMS

Michel LECONTE

Université PARIS VII (LITP), 2, Place Jussieu, 75221 Paris Cedex 05, France

Communicated by D. Perrin Received June 1984 Revised November 1984

Abstract. A word is called kth power-free if it does not contain any non-empty factor u^k . A morphism is kth power-free if it preserves kth power-free words. A morphism is power-free if it is kth power-free for every k > 1.

We show that it is decidable whether a morphism is power-free; more precisely, we prove that a morphism h is power-free iff: h is a square-free morphism and, for each letter a, the image $h(a^2)$ is cube-free.

Introduction

The notion of kth power-free words (i.e., words containing no factor of the form u^k with $u \neq 1$) has been the subject of several works since Thue's paper [8].

An account of basic results may be found in [6, 7]. Berstel [3] gives a survey of some recent results about square-free words and related topics. Properties of kth power-free morphisms and of power-free morphisms are investigated in [1], where the more general concept of an avoidable pattern is introduced.

Usually infinite kth power-free words are constructed by iterating special morphisms. This naturally leads to the notion of kth power-free morphisms (ie., morphisms which preserve the kth power-free property).

For k = 2, the decidability of kth power-free property for morphisms was proved in [2]. The characterization of square-free morphisms has been sharpened in [4, 5] and is now optimal.

On the other hand, Bean et al. [1] study, among others things, what we will call here *power-free morphisms*. These are morphisms which preserve kth power-free words for every k > 1.

Here we give an effective and simple characterization of power-free morphisms (Theorem 2.1). This result is obtained as a consequence of another result (Theorem 2.2) which shows the relationship between square-free morphisms and kth power-free morphisms.

Section 1 presents some technical lemmas about morphisms which preserve the square-free property of words of length three. Section 2 gives the announced theorems about power-free morphisms and square-free morphisms.

1. Preliminaries

Given a finite alphabet A, we denote by A^* (respectively A^+) the free monoid (respectively semigroup) generated by A. The empty word is denoted by 1, thus $A^+ = A^* - 1$.

A k-th power is a nonempty word of the form u^k .

A word is kth power-free if none of its factors is a kth power. If k = 2 (k = 3) we say square (cube) instead of kth power. A morphism is a k-th power-free morphism provided h(w) is a kth power-free word whenever w is kth power-free.

A morphism is *power-free* if it is a kth power-free morphism for every $k \ge 2$.

A word w is said *primitive* if it is not a proper power of another word (i.e., $w \in u^+$ implies that w = u), otherwise w is said *unprimitive*.

The following statement concerning unprimitive words is well known (see, for example, [6]).

Proposition 1.1. A non-empty word w is unprimitive iff w = uv = vu for some nonempty words u, v.

We now turn to the study of special morphisms.

Proposition 1.2. Let h be a morphism from A^* into B^* such that $h(A) \neq \{1\}$. Assume further that h(w) is square-free whenever w is a square-free word of length ≤ 3 . Then h(A) is a biprefix code.

Proof. Let a be a letter of A. If h(a) = 1, let $b \in A$ with $h(b) \neq 1$; then h(bab) contains a square. Thus $h(a) \neq 1$.

Suppose now that $h(a) \neq 1$ and h(a) is a prefix (respectively suffix) of h(b); then, h(ab) (respectively h(ba)) contains a square; a contradiction. \Box

Lemma 1.3. Let h be a morphism from A^* into B^* such that h(w) is square-free whenever w is a square-free word of length ≤ 3 . Let $e_1, e_2 \in A$ be two letters, and let $v \in A^*$ be a word. Let $h(e_i) = E'_i E''_i$ (i = 1, 2) be factorizations of $h(e_i)$ such that $E''_1 E'_2 \neq 1$. Assume finally that $E''_1 h(v) E'_2$ is a prefix or a suffix of $h(e_0)$ for a letter $e_0 \in A$. Then v = 1.

Proof. By symmetry we consider only the case $E_1''h(v)E_2' = E_0'$ with $h(e_0) = E_0'E_0''$ (see Fig. 1).

Arguing by contradiction, suppose that $v \neq 1$ and set v = ev' with $e \in A$.

Fig. 1. $E_1''h(v)E_2'$ is a prefix of $h(e_0)$.

Note first that $E_1'' \neq 1$; indeed, on the contrary one would have $E_2' = 1$, since h(A) is a prefix code, contradicting the hypothesis. Then $h(e_1e_0) = E_1'(E_1'')^2h(v)E_2'E_0''$ contains a square, hence $e_1 = e_0$. It follows that $h(e_0ee_0) = h(e_1ee_0) = E_1'(E_1''h(e))^2h(v')E_2'E_0''$ also contains a square, and consequently $e_0 = e$.

Thus, $h(e_0) = E'_0 E''_0 = E''_1 h(e_0 v') E'_2 E''_0$ and $E''_1 E'_2 \neq 1$ implies that $h(e_0)$ is a proper factor of itself, which yields the contradiction. \Box

Proposition 1.4. Let h be a morphism from A^* into B^* such that h(w) is square-free whenever w is a square-free word of length ≤ 3 . Let w, v be two words of A^* such that h(w) = xh(v)y with x, $y \notin h(A^*)$.

Then there exist a letter $a \in A$ and two words w_1 , w_2 of A^* such that $w = w_1 a w_2$ and $h(a) = x_1 h(v) x_2$, $x = h(w_1) x_1$, $y = x_2 h(w_2)$.

Proof. Assume the conclusion is false. There is a letter e of v such that $h(e) = E_1''h(u)E_2'$ where e_1ue_2 is a factor of w with e_1 , $e_2 \in A$, $u \in A^*$, and $h(e_i) = E_i'E_i''$ (i = 1, 2).

Note that E''_1 and E'_2 are nonempty words since h(A) is a biprefix code and x, $y \notin h(A^*)$. By Lemma 1.3 we obtain that u = 1.

On the other hand, $h(e_1e)$ contains $E_1''^2$ and $h(ee_2)$ contains $E_2'^2$. Thus we have $e_1 = e = e_2$.

From $h(e) = E'_1 E''_1 = E''_1 E'_2 = E'_2 E''_2$ we derive that $h(e) = E'_2 E''_1 = E''_1 E'_2$ since $|E'_1| = |E'_2|$. This means that h(e) is unprimitive and thus h(e) contains a square. This yields the contradiction and completes the proof. \Box

At last we state the following lemma.

Lemma 1.5. Let h be a morphism for A^* into B^* such that h(w) is square-free whenever w is a square-free word of length ≤ 3 . Let e_i (i = 1, 2, 3, 4) be letters of A and v, \bar{v} be two words of A^* , with $v\bar{v} \neq 1$.

Assume that $E_1''h(v)E_2' = E_3''h(\bar{v})E_4'$ with $h(e_i) = E_i'E_i''$ (i = 1, 2, 3, 4) for some factorisations such that E_2' , E_4' are nonempty words. Then $E_2' = E_4'$.

Proof. Assume the contrary. By symmetry it suffices to consider the case $|E'_2| < |E'_4|$.

According to Proposition 1.4 we have that h(v) is a factor of $h(e_4)$ since $|E'_2| < |E'_4|$. Consequently, $E'_4 = \bar{E}''_1 h(v) E'_2$ where \bar{E}''_1 is some suffix of E''_1 .

A first application of Lemma 1.3 gives us v = 1. Hence $E_1''E_2' = E_3''h(\bar{v})E_4'$ and more precisely $E_1'' = E_3''h(\bar{v})\bar{E}_4'$ where $\bar{E}_4' = \bar{E}_1''$ is a prefix of E_4' .

A second application of Lemma 1.3 gives us $\bar{v} = 1$. Thus, $v\bar{v} = 1$ and this contradicts the assumptions of the lemma. \Box

2. Power-free morphisms

This section is devoted to an effective characterization of power-free morphisms. That is, we shall prove the following theorem.

Theorem 2.1. A morphism h is power-free iff h is a square-free morphism and $h(a^2)$ is cube-free for each letter a.

For a morphism h let us define the deviation e(h) of h by

 $e(h) = \max\{|u| | h(u) \text{ is a proper factor of } h(e) \text{ for a letter } e\}.$

This is closely related with the notion of the so-called deviation introduced in [2].

Theorem 2.1 is an immediate consequence of the next theorem. Effectiveness of characterization (we only consider finite alphabets) is shown by condition (iii) which has been proved independently in [4] and [5].

Theorem 2.2. Let h be a morphism from A^* into B^* such that h(w) is square-free whenever w is a square-free word of length ≤ 3 . Then the following conditions hold: (i) h is k-th power-free for all k > 3.

(ii) if $h(a^2)$ is cube-free for each letter $a \in A$, then h is cube-free.

(iii) if h(w) is square-free whenever w is a square-free word of length $\leq e(h)+2$, then h is square-free.

Proof of Theorem 2.2. Let w be a word such that h(w) is not kth power-free with k > 1. Then $|w| \ge 2$ since each letter is square-free by hypothesis. We set $w = e_1 \dots e_n$ $(e_i \in A)$. By shortening w if necessary we can assume that $h(w) = E'_1 u^k E''_n$ where E''_1 , u, E'_n are nonempty words and $h(e_1) = E'_1 E''_1$, $h(e_n) = E'_n E''_n$ for some factorizations.

Let us define the growing sequence (i_s) , $0 \le s \le k$, by: $h(e_1 \ldots e_{i_s}) = E'_1 u^s E''_{i_s}$ where $h(e_{i_s}) = E'_{i_s} E''_{i_s}$ and $E'_{i_s} \ne 1$ if $s \ne 0$.

Since $h(w) = E'_1 u^k E''_n$ and $E'_n \neq 1$ we have $i_0 = 1$ and $i_k = n$. Now we prove the followings claims.

Claim 2.2.1. If $1 = i_{k-1}$ or $i_1 = n$, then k = 2 and $|w| \le e(h) + 2$.

Proof. By symmetry we suppose $i_{k-1} = 1$. By definition of the sequence (i_s) , $h(e_1)$ contains a (k-1)st power. Hence, k=2 and $i_1 = 1$. Then, $u = E''_{i_1}h(e_2 \dots e_{n-1})E'_n$ and $h(e_1) = E'_1 u E''_{i_1}$. Thus, $h(e_2 \dots e_{n-1})$ is a factor of $h(e_1)$ which implies $|e_2 \dots e_{n-1}| \le e(h)$. Therefore, $|w| \le e(h) + 2$. \Box

Claim 2.2.2. If $i_1 = i_{k-1} = 2$ and n = 3, then w is not k-th power-free.

Proof. Since $i_1 = i_{k-1} = 2$, all factors u from the second up to the (k-1)st 'lie' in $h(e_2)$; thus, u^{k-2} is a factor of $h(e_2)$, and consequently $k \le 3$. Let $w = e_1e_2e_3$. We have $u^{k-1} = E_1''E_2' = E_2''E_3'$ with $h(e_i) = E_1'E_i''$ (i = 1, 2, 3).

If k = 2, then u^2 is a factor of w; hence w is not square-free since |w| = 3. If k = 3, then u^2 is a factor of $h(e_1e_2)$ and of $h(e_2e_3)$. Hence, $e_1 = e_2$, $e_2 = e_3$ and $w = e_1^3$ is not cube-free. \Box

Claim 2.2.3. If $i_1 < i_{k-1}$ and n = 2, then $w = e^2$ and k = 3.

Proof. Let $w = e_1e_2$. We have $i_1 = 1$, $i_{k-1} = 2$, and $k \ge 3$ since $i_1 < i_{k-1}$. If k > 3, then $i_1 < i_{k-2}$ since $h(e_1)$ is square-free. But then $h(e_2)$ is not square-free since $2 = i_k = i_{k-1} = i_{k-2}$. Consequently, k = 3: u^3 is a factor of $h(e_1e_2)$, thus $h(e_1e_2)$ is not square-free, and hence $e_1 = e_2$. \Box

Proof of Theorem 2.2 (continued). If $1 = i_{k-1}$ or $i_1 = n$ we apply Claim 2.2.1. If $i_{k-1} = 2$ and $i_1 = n-1$ we apply Claim 2.2.2 or Claim 2.2.3 according to whether $i_1 = i_{k-1}$ or $i_1 < i_{k-1}$. Thus, we can assume that $1 < i_{k-1}$, $i_1 < n$, and $(2 < i_{k-1}$ or $i_1 < n-1$). We have

$$u^{k-1} = E_1'' h(e_2 \dots e_{i_{k-1}-1}) E_{i_{k-1}}' = E_{i_1}'' h(e_{i_1+1} \dots e_{n-1}) E_n'$$

By construction $E'_{i_{k-1}}$, E'_n are nonempty words and by applying Lemma 1.5 on factorizations of u^{k-1} we obtain $E'_{i_{k-1}} = E'_n$. Since h(A) is a biprefix code, this implies (see Fig. 2) for all j, t with $0 < j < i_1, 0 < t < k$, the equalities

$$e_{i_t+j} = e_j$$
 and $e_{i_t} = e_n$ if $E''_n = 1$.
 $e_{i_t+j} = e_{j+1}$, $E''_1 = E''_{i_t}$ and $E'_{i_t} = E'_n$ if $E''_n \neq 1$.

The asymmetry of these formulas is due to the fact that $E_1'' \neq 1$.

We deduce from them that $w = (e_1 \dots e_{i_1})^k$ if $E''_n = 1$ and that $h(e_1 e_{i_1} e_n) = E'_1 (E''_1 E'_{i_1})^2 E'_n$ if $E''_n \neq 1$.

In the second case, $e_n = e_{i_1}$ (or $e_{i_1} = e_1$) since $h(e_1 e_{i_1} e_n)$ contains a square, and hence $w = e_1 (e_2 \dots e_{i_1})^k$ (or $w = (e_1 \dots e_{i_1-1})^k e_n$). Thus w is not kth power-free and this completes the proof. \Box

The condition that $h(a^2)$ is cube-free for each letter *a* is necessary, as is shown by the following example due to Bean et al. [1].

Fig. 2. $u^{k-1} = E_1'' h(e_2 \dots e_{i_{k-1}-1}) E_{i_{k-1}}' = E_{i_1}'' h(e_{i_1+1} \dots e_{n-1}) E_n'$.

Example. Let h be an endomorphism on $\{a, b, c, d\}^*$ induced by

 $a \vdash abacbab$, $c \vdash cdacabcbd$, $b \vdash cdabcabd$, $d \vdash cdacbcacbd$.

h is square-free according to Theorem 2.2 (e(h) = 0) but $h(a^2) = abac(ba)^3 cbab$ and so h is not power-free.

Acknowledgment

I would like to thank Professors J. Berstel and D. Perrin for their encouragements.

References

- D. Bean, A. Ehrenfeucht and G. McNulty, Avoidable patterns in strings of symbols, Pacific J. Math. 85 (2) (1979) 261-294.
- [2] J. Berstel, Sur les mots sans carré définis par un morphisme, In: 6th ICALP Symp., Lecture Notes in Computer Science 71 (Springer, Berlin, 1979) 16-25.
- [3] J. Berstel, Some recent results on square-free words (STACS' 84), Tech. Rept. LITP No. 84-6, 1984.
- [4] M. Crochemore, Sharp characterizations of square-free morphisms, Theoret. Comput. Sci. 18 (1982) 221-226.
- [5] A. Ehrenfeucht and G. Rozenberg, Repetitions in homomorphisms and languages, in: 9th ICALP Symp., Lecture Notes in Computer Science 140 (Springer, Berlin, 1982) 192-196.
- [6] M. Lothaire, Combinatoric on words, in: G.-C. Rota, ed., Encyclopedia of Mathematics and its Applications Vol. 17 (Addison-Wesley, Reading, MA, 1983).
- [7] A. Salomaa, Jewels of Formal Language Theory (Pitman, London, 1981).
- [8] A. Thue, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. Mat. Nat. Kl (Kristiana) 7 (1906) 1-22.