NOTE

A CHARACTERIZATION OF POWER-FREE MORPHISMS

Michel LECONTE
Université PARIS VII (LITP), 2, Place Jussieu, 75221 Paris Cedex 05, France

Communicated by D. Perrin

Received June 1984
Revised November 1984

Abstract

A word is called k th power-free if it does not contain any non-empty factor u^{k}. A morphism is k th power-free if it preserves k th power-free words. A morphism is power-free if it is k th power-free for every $k>1$. We show that it is decidable whether a morphism is power-free; more precisely, we prove that a morphism h is power-free iff: h is a square-free morphism and, for each letter a, the image $h\left(a^{2}\right)$ is cube-free.

Introduction

The notion of k th power-free words (i.e., words containing no factor of the form u^{k} with $u \neq 1$) has been the subject of several works since Thue's paper [8].

An account of basic results may be found in [6,7]. Berstel [3] gives a survey of some recent results about square-free words and related topics. Properties of k th power-free morphisms and of power-free morphisms are investigated in [1], where the more general concept of an avoidable pattern is introduced.

Usually infinite k th power-free words are constructed by iterating special morphisms. This naturally leads to the notion of k th power-free morphisms (ie., morphisms which preserve the k th power-free property).

For $k=2$, the decidability of k th power-free property for morphisms was proved in [2]. The characterization of square-free morphisms has been sharpened in [4, 5] and is now optimal.

On the other hand, Bean et al. [1] study, among others things, what we will call here power-free morphisms. These are morphisms which preserve k th power-free words for every $k>1$.

Here we give an effective and simple characterization of power-free morphisms (Theorem 2.1). This result is obtained as a consequence of another result (Theorem 2.2) which shows the relationship between square-free morphisms and k th powerfree morphisms.

Section 1 presents some technical lemmas about morphisms which preserve the square-free property of words of length three. Section 2 gives the announced theorems about power-free morphisms and square-free morphisms.

1. Preliminaries

Given a finite alphabet A, we denote by A^{*} (respectively A^{+}) the free monoid (respectively semigroup) generated by A. The empty word is denoted by 1 , thus $A^{+}=A^{*}-1$.

A k-th power is a nonempty word of the form u^{k}.
A word is k th power-free if none of its factors is a k th power. If $k=2(k=3)$ we say square (cube) instead of k th power. A morphism is a k-th power-free morphism provided $h(w)$ is a k th power-free word whenever w is k th power-free.

A morphism is power-free if it is a k th power-free morphism for every $k \geqslant 2$.
A word w is said primitive if it is not a proper power of another word (i.e., $w \in u^{+}$ implies that $w=u$), otherwise w is said unprimitive.

The following statement concerning unprimitive words is well known (see, for example, [6]).

Proposition 1.1. A non-empty word w is unprimitive iff $w=u v=v u$ for some nonempty words u, v.

We now turn to the study of special morphisms.
Proposition 1.2. Let h be a morphism from A^{*} into B^{*} such that $h(A) \neq\{1\}$. Assume further that $h(w)$ is square-free whenever w is a square-free word of length $\leqslant 3$. Then $h(A)$ is a biprefix code.

Proof. Let a be a letter of A. If $h(a)=1$, let $b \in A$ with $h(b) \neq 1$; then $h(b a b)$ contains a square. Thus $h(a) \neq 1$.

Suppose now that $h(a) \neq 1$ and $h(a)$ is a prefix (respectively suffix) of $h(b)$; then, $h(a b)$ (respectively $h(b a)$) contains a square; a contradiction.

Lemma 1.3. Let h be a morphism from A^{*} into B^{*} such that $h(w)$ is square-free whenever w is a square-free word of length $\leqslant 3$. Let $e_{1}, e_{2} \in A$ be two letters, and let $v \in A^{*}$ be a word. Let $h\left(e_{i}\right)=E_{i}^{\prime} E_{i}^{\prime \prime}(i=1,2)$ be factorizations of $h\left(e_{i}\right)$ such that $E_{1}^{\prime \prime} E_{2}^{\prime} \neq 1$. Assume finally that $E_{1}^{\prime \prime} h(v) E_{2}^{\prime}$ is a prefix or a suffix of $h\left(e_{0}\right)$ for a letter $e_{0} \in A$. Then $v=1$.

Proof. By symmetry we consider only the case $E_{1}^{\prime \prime} h(v) E_{2}^{\prime}=E_{0}^{\prime}$ with $h\left(e_{0}\right)=E_{0}^{\prime} E_{0}^{\prime \prime}$ (see Fig. 1).

Arguing by contradiction, suppose that $v \neq 1$ and set $v=e v^{\prime}$ with $e \in A$.

Fig. 1. $E_{1}^{\prime \prime} h(v) E_{2}^{\prime}$ is a prefix of $h\left(e_{0}\right)$.
Note first that $E_{1}^{\prime \prime} \neq 1$; indeed, on the contrary one would have $E_{2}^{\prime}=1$, since $h(A)$ is a prefix code, contradicting the hypothesis. Then $h\left(e_{1} e_{0}\right)=E_{1}^{\prime}\left(E_{1}^{\prime \prime}\right)^{2} h(v) E_{2}^{\prime} E_{0}^{\prime \prime}$ contains a square, hence $e_{1}=e_{0}$. It follows that $h\left(e_{0} e e_{0}\right)=h\left(e_{1} e e_{0}\right)=$ $E_{1}^{\prime}\left(E_{1}^{\prime \prime} h(e)\right)^{2} h\left(v^{\prime}\right) E_{2}^{\prime} E_{0}^{\prime \prime}$ also contains a square, and consequently $e_{0}=e$.

Thus, $h\left(e_{0}\right)=E_{0}^{\prime} E_{0}^{\prime \prime}=E_{1}^{\prime \prime} h\left(e_{0} v^{\prime}\right) E_{2}^{\prime} E_{0}^{\prime \prime}$ and $E_{1}^{\prime \prime} E_{2}^{\prime} \neq 1$ implies that $h\left(e_{0}\right)$ is a proper factor of itself, which yields the contradiction.

Proposition 1.4. Let h be a morphism from A^{*} into B^{*} such that $h(w)$ is square-free whenever w is a square-free word of length $\leqslant 3$. Let w, v be two words of A^{*} such that $h(w)=x h(v) y$ with $x, y \notin h\left(A^{*}\right)$.

Then there exist a letter $a \in A$ and two words w_{1}, w_{2} of A^{*} such that $w=w_{1} a w_{2}$ and $h(a)=x_{1} h(v) x_{2}, x=h\left(w_{1}\right) x_{1}, y=x_{2} h\left(w_{2}\right)$.

Proof. Assume the conclusion is false. There is a letter e of v such that $h(e)=$ $E_{1}^{\prime \prime} h(u) E_{2}^{\prime}$ where $e_{1} u e_{2}$ is a factor of w with $e_{1}, e_{2} \in A, u \in A^{*}$, and $h\left(e_{i}\right)=E_{i}^{\prime} E_{i}^{\prime \prime}$ ($i=1,2$).

Note that $E_{1}^{\prime \prime}$ and E_{2}^{\prime} are nonempty words since $h(A)$ is a biprefix code and x, $y \notin h\left(A^{*}\right)$. By Lemma 1.3 we obtain that $u=1$.

On the other hand, $h\left(e_{1} e\right)$ contains $E_{1}^{\prime \prime 2}$ and $h\left(e e_{2}\right)$ contains $E_{2}^{\prime 2}$. Thus we have $e_{1}=e=e_{2}$.

From $h(e)=E_{1}^{\prime} E_{1}^{\prime \prime}=E_{1}^{\prime \prime} E_{2}^{\prime}=E_{2}^{\prime} E_{2}^{\prime \prime}$ we derive that $h(e)=E_{2}^{\prime} E_{1}^{\prime \prime}=E_{1}^{\prime \prime} E_{2}^{\prime}$ since $\left|E_{1}^{\prime}\right|=\left|E_{2}^{\prime}\right|$. This means that $h(e)$ is unprimitive and thus $h(e)$ contains a square. This yields the contradiction and completes the proof.

At last we state the following lemma.
Lemma 1.5. Let h be a morphism for A^{*} into B^{*} such that $h(w)$ is square-free whenever w is a square-free word of length $\leqslant 3$. Let $e_{i}(i=1,2,3,4)$ be letters of A and v, \bar{v} be t wo words of A^{*}, with $v \bar{v} \neq 1$.

Assume that $E_{1}^{\prime \prime} h(v) E_{2}^{\prime}=E_{3}^{\prime \prime} h(\bar{v}) E_{4}^{\prime}$ with $h\left(e_{i}\right)=E_{i}^{\prime} E_{i}^{\prime \prime}(i=1,2,3,4)$ for some factorisations such that $E_{2}^{\prime}, E_{4}^{\prime}$ are nonempty words.

Then $E_{2}^{\prime}=E_{4}^{\prime}$.
Proof. Assume the contrary. By symmetry it suffices to consider the case $\left|E_{2}^{\prime}\right|<\left|E_{4}^{\prime}\right|$.

According to Proposition 1.4 we have that $h(v)$ is a factor of $h\left(e_{4}\right)$ since $\left|E_{2}^{\prime}\right|<\left|E_{4}^{\prime}\right|$. Consequently, $E_{4}^{\prime}=\bar{E}_{1}^{\prime \prime} h(v) E_{2}^{\prime}$ where $\bar{E}_{1}^{\prime \prime}$ is some suffix of $E_{1}^{\prime \prime}$.

A first application of Lemma 1.3 gives us $v=1$. Hence $E_{1}^{\prime \prime} E_{2}^{\prime}=E_{3}^{\prime \prime} h(\bar{v}) E_{4}^{\prime}$ and more precisely $E_{1}^{\prime \prime}=E_{3}^{\prime \prime} h(\bar{v}) \bar{E}_{4}^{\prime}$ where $\bar{E}_{4}^{\prime}=\bar{E}_{1}^{\prime \prime}$ is a prefix of E_{4}^{\prime}.

A second application of Lemma 1.3 gives us $\bar{v}=1$. Thus, $v \bar{v}=1$ and this contradicts the assumptions of the lemma.

2. Power-free morphisms

This section is devoted to an effective characterization of power-free morphisms. That is, we shall prove the following theorem.

Theorem 2.1. A morphism h is power-free iff h is a square-free morphism and $h\left(a^{2}\right)$ is cube-free for each letter a.

For a morphism h let us define the deviation $e(h)$ of h by

$$
e(h)=\max \{\mid u \| h(u) \text { is a proper factor of } h(e) \text { for a letter } e\} .
$$

This is closely related with the notion of the so-called deviation introduced in [2].
Theorem 2.1 is an immediate consequence of the next theorem. Effectiveness of characterization (we only consider finite alphabets) is shown by condition (iii) which has been proved independently in [4] and [5].

Theorem 2.2. Let h be a morphism from A^{*} into B^{*} such that $h(w)$ is square-free whenever w is a square-free word of length $\leqslant 3$. Then the following conditions hold:
(i) h is k-th power-free for all $k>3$.
(ii) if $h\left(a^{2}\right)$ is cube-free for each letter $a \in A$, then h is cube-free.
(iii) if $h(w)$ is square-free whenever w is a square-free word of length $\leqslant e(h)+2$, then h is square-free.

Proof of Theorem 2.2. Let w be a word such that $h(w)$ is not k th power-free with $k>1$. Then $|w| \geqslant 2$ since each letter is square-free by hypothesis. We set $w=e_{1} \ldots e_{n}$ $\left(e_{i} \in A\right)$. By shortening w if necessary we can assume that $h(w)=E_{1}^{\prime} u^{k} E_{n}^{\prime \prime}$ where $E_{1}^{\prime \prime}, u, E_{n}^{\prime}$ are nonempty words and $h\left(e_{1}\right)=E_{1}^{\prime} E_{1}^{\prime \prime}, h\left(e_{n}\right)=E_{n}^{\prime} E_{n}^{\prime \prime}$ for some factorizations.

Let us define the growing sequence (i_{s}), $0 \leqslant s \leqslant k$, by: $h\left(e_{1} \ldots e_{i_{s}}\right)=E_{1}^{\prime} u^{s} E_{i_{s}}^{\prime \prime}$ where $h\left(e_{i_{s}}\right)=E_{i_{s}}^{\prime} E_{i_{s}}^{\prime \prime}$ and $E_{i_{s}}^{\prime} \neq 1$ if $s \neq 0$.

Since $h(w)=E_{1}^{\prime} u^{k} E_{n}^{\prime \prime}$ and $E_{n}^{\prime} \neq 1$ we have $i_{0}=1$ and $i_{k}=n$. Now we prove the followings claims.

Claim 2.2.1. If $1=i_{k-1}$ or $i_{1}=n$, then $k=2$ and $|w| \leqslant e(h)+2$.

Proof. By symmetry we suppose $i_{k-1}=1$. By definition of the sequence $\left(i_{s}\right), h\left(e_{1}\right)$ contains a $(k-1)$ st power. Hence, $k=2$ and $i_{1}=1$. Then, $u=E_{i_{1}}^{\prime \prime} h\left(e_{2} \ldots e_{n-1}\right) E_{n}^{\prime}$ and $h\left(e_{1}\right)=E_{1}^{\prime} u E_{i_{1}}^{\prime \prime}$. Thus, $h\left(e_{2} \ldots e_{n-1}\right)$ is a factor of $h\left(e_{1}\right)$ which implies $\left|e_{2} \ldots e_{n-1}\right| \leqslant e(h)$. Therefore, $|w| \leqslant e(h)+2$.

Claim 2.2.2. If $i_{1}=i_{k-1}=2$ and $n=3$, then w is not k-th power-free.

Proof. Since $i_{1}=i_{k-1}=2$, all factors u from the second up to the ($k-1$)st 'lie' in $h\left(e_{2}\right)$; thus, u^{k-2} is a factor of $h\left(e_{2}\right)$, and consequently $k \leqslant 3$. Let $w=e_{1} e_{2} e_{3}$. We have $u^{k-1}=E_{1}^{\prime \prime} E_{2}^{\prime}=E_{2}^{\prime \prime} E_{3}^{\prime}$ with $h\left(e_{i}\right)=E_{1}^{\prime} E_{i}^{\prime \prime}(i=1,2,3)$.

If $k=2$, then u^{2} is a factor of w; hence w is not square-free since $|w|=3$. If $k=3$, then u^{2} is a factor of $h\left(e_{1} e_{2}\right)$ and of $h\left(e_{2} e_{3}\right)$. Hence, $e_{1}=e_{2}, e_{2}=e_{3}$ and $w=e_{1}^{3}$ is not cube-free.

Claim 2.2.3. If $i_{1}<i_{k-1}$ and $n=2$, then $w=e^{2}$ and $k=3$.

Proof. Let $w=e_{1} e_{2}$. We have $i_{1}=1, i_{k-1}=2$, and $k \geqslant 3$ since $i_{1}<i_{k-1}$. If $k>3$, then $i_{1}<i_{k-2}$ since $h\left(e_{1}\right)$ is square-free. But then $h\left(e_{2}\right)$ is not square-free since $2=i_{k}=$ $i_{k-1}=i_{k-2}$. Consequently, $k=3: u^{3}$ is a factor of $h\left(e_{1} e_{2}\right)$, thus $h\left(e_{1} e_{2}\right)$ is not squarefree, and hence $e_{1}=e_{2}$.

Proof of Theorem 2.2 (continued). If $1=i_{k-1}$ or $i_{1}=n$ we apply Claim 2.2.1. If $i_{k-1}=2$ and $i_{1}=n-1$ we apply Claim 2.2.2 or Claim 2.2 .3 according to whether $i_{1}=i_{k-1}$ or $i_{1}<i_{k-1}$. Thus, we can assume that $1<i_{k-1}, i_{1}<n$, and $\left(2<i_{k-1}\right.$ or $\left.i_{1}<n-1\right)$. We have

$$
u^{k-1}=E_{1}^{\prime \prime} h\left(e_{2} \ldots e_{i_{k-1}-1}\right) E_{i_{k-1}}^{\prime}=E_{i_{1}}^{\prime \prime} h\left(e_{i_{1}+1} \ldots e_{n-1}\right) E_{n}^{\prime} .
$$

By construction $E_{i_{k-1}}^{\prime}, E_{n}^{\prime}$ are nonempty words and by applying Lemma 1.5 on factorizations of u^{k-1} we obtain $E_{i_{k-1}}^{\prime}=E_{n}^{\prime}$. Since $h(A)$ is a biprefix code, this implies (see Fig. 2) for all j, t with $0<j<i_{1}, 0<t<k$, the equalities

$$
\begin{array}{ll}
e_{i_{i}+j}=e_{j} \quad \text { and } \quad e_{i_{t}}=e_{n} & \text { if } E_{n}^{\prime \prime}=1 . \\
e_{i_{i}+j}=e_{j+1}, \quad E_{1}^{\prime \prime}=E_{i_{t}}^{\prime \prime} \quad \text { and } \quad E_{i_{t}}^{\prime}=E_{n}^{\prime} & \text { if } E_{n}^{\prime \prime} \neq 1 .
\end{array}
$$

The asymmetry of these formulas is due to the fact that $E_{1}^{\prime \prime} \neq 1$.
We deduce from them that $w=\left(e_{1} \ldots e_{i_{1}}\right)^{k}$ if $E_{n}^{\prime \prime}=1$ and that $h\left(e_{1} e_{i_{1}} e_{n}\right)=$ $E_{1}^{\prime}\left(E_{1}^{\prime \prime} E_{i_{1}}^{\prime}\right)^{2} E_{n}^{\prime}$ if $E_{n}^{\prime \prime} \neq 1$.

In the second case, $e_{n}=e_{i_{1}}$ (or $\left.e_{i_{1}}=e_{1}\right)$ since $h\left(e_{1} e_{i_{1}} e_{n}\right)$ contains a square, and hence $w=e_{1}\left(e_{2} \ldots e_{i_{1}}\right)^{k}$ (or $\left.w=\left(e_{1} \ldots e_{i_{1}-1}\right)^{k} e_{n}\right)$. Thus w is not k th power-free and this completes the proof.

The condition that $h\left(a^{2}\right)$ is cube-free for each letter a is necessary, as is shown by the following example due to Bean et al. [1].

Fig. 2. $u^{k-1}=E_{1}^{\prime \prime} h\left(e_{2} \ldots e_{i_{k-1}-1}\right) E_{i_{k-1}}^{\prime}=E_{i_{1}}^{\prime \prime} h\left(e_{i_{1}+1} \ldots e_{n-1}\right) E_{n}^{\prime}$.

Example. Let h be an endomorphism on $\{a, b, c, d\}^{*}$ induced by
$a \vdash a b a c b a b, \quad c \vdash c d a c a b c b d$,
$b \vdash c d a b c a b d, \quad d \vdash c d a c b c a c b d$.
h is square-free according to Theorem $2.2(e(h)=0)$ but $h\left(a^{2}\right)=a b a c(b a)^{3} c b a b$ and so h is not power-free.

Acknowledgment

I would like to thank Professors J. Berstel and D. Perrin for their encouragements.

References

[1] D. Bean, A. Ehrenfeucht and G. McNulty, Avoidable patterns in strings of symbols, Pacific J. Math. 85 (2) (1979) 261-294.
[2] J. Berstel, Sur les mots sans carré définis par un morphisme, In: 6th ICALP Symp., Lecture Notes in Computer Science 71 (Springer, Berlin, 1979) 16-25.
[3] J. Berstel, Some recent results on square-free words (STACS' 84), Tech. Rept. LITP No. 84-6, 1984.
[4] M. Crochemore, Sharp characterizations of square-free morphisms, Theoret. Comput. Sci. 18 (1982) 221-226.
[5] A. Ehrenfeucht and G. Rozenberg, Repetitions in homomorphisms and languages, in: 9th ICALP Symp., Lecture Notes in Computer Science 140 (Springer, Berlin, 1982) 192-196.
[6] M. Lothaire, Combinatoric on words, in: G.-C. Rota, ed., Encyclopedia of Mathematics and its Applications Vol. 17 (Addison-Wesley, Reading, MA, 1983).
[7] A. Salomaa, Jewels of Formal Language Theory (Pitman, London, 1981).
[8] A. Thue, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. Mat. Nat. Kl (Kristiana) 7 (1906) 1-22.

