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A construction method for optimally universal hash families and its
consequences for the existence of RBIBDs

Philipp Woelfel1

Department of Computer Science, University of Toronto, 10 King’s College Rd., Toronto, ON, Canada M5S 3G4

Abstract

We introduce a method for constructing optimally universal hash families and equivalently RBIBDs. As a consequence of our
construction we obtain minimal optimally universal hash families, if the cardinalities of the universe and the range are powers of the
same prime. A corollary of this result is that the necessary conditions for the existence of an RBIBD with parameters v, k, �, namely
v ≡ 0 (mod k) and �(v − 1) ≡ 0(mod k − 1), are sufficient, if v and k are powers of the same prime. As an application of our
construction, we show that the k-MAXCUT algorithm of Hofmeister and Lefmann [A combinatorial design approach to MAXCUT,
Random Struct. Algorithms 9 (1996) 163–173] can be implemented such that it has a polynomial running time, in the case that the
number of vertices and k are powers of the same prime.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and results

The concept of universal hashing as introduced by Carter and Wegman [4] in 1979 has found a wide variety of
applications. Besides of being an important tool for hashing schemes (see e.g., [4,8,7]), universal hashing has been
used in many other areas of computer science such as complexity theory, cryptography or algorithmics. The importance
of this concept has led to a search for practical hash families with good properties and to the investigation of the
combinatorial structure of such hash families. In 1994, Stinson [17] has drawn the first connections between universal
hash families and combinatorial designs such as resolvable balanced incomplete block designs or orthogonal arrays.
Later on, more connections to combinatorial designs and other structures as, e.g., authentication codes were discovered.
While on one hand, such connections have led to new applications of universal hashing in cryptography or the theory
of combinatorial designs, they also allowed new constructions of universal hash families and new ways of analyzing
them (for some references see e.g., [18,19,1,3]).

Definition 1. An (N; u, r)-hash family H is a family of N functions U → R, where U and R are finite sets of cardinality
u > 1 and r > 1, resp.
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If H is a hash family of functions U → R, then U is called universe and R is called range of H. We call the elements
from the universe keys, and say that two keys x1, x2 ∈ U collide under a function h ∈ H, if h(x1) = h(x2). The
collision probability of x1 and x2 is the probability that x1 and x2 collide under a randomly chosen function in H,
i.e., Probh∈H (h(x1) = h(x2)).

It was the original intention behind using hash families in hashing schemes to guarantee that under a randomly chosen
hash function the expected number of collisions among a set of keys is low. This motivates the following common
definition.

Definition 2 (Rogaway [14], Stinson [17]). A hash family with universe U is �-universal, if any two distinct keys x1,
x2 ∈ U have a collision probability of at most �. A (1/r)-universal (N; u, r)-hash family is simply called universal.

Note that if r �u, then any injective function f : U → R forms a 0-universal (1; u, r)-hash family {f }. Therefore,
we assume w.l.o.g. that u�r if we talk about �-universal hash families. However, we will later introduce other types
of hash families (as e.g., �-universal hash families), where we also consider the case r > u.

Many constructions of �-universal hash families have been proposed, and some of them can be implemented by
means of simple arithmetic operations such as multiplication [6] or convolution [12]. But besides the search for
efficient hash families, there has also been some interest in investigating the properties of hash families with extremely
small cardinalities or collision probabilities.

We denote by gcd and lcm the greatest common divisor and the least common multiple, resp. It can be shown [15] that
no �-universal (N; u, r)-hash family exists, if � < (u − r)/(r(u − 1)), and that for any �-universal (N; u, r)-hash family
with � = (u − r)/(r(u − 1)), it is N �(u − 1)/gcd (u − 1, r − 1). These properties justify the following definition.

Definition 3 (Sarwate [15]). Let u�r . An �-universal (N; u, r)-hash family H is called optimally universal or short
OU, if � = �opt(u, r) := (u − r)/(r(u − 1)). If in addition N = (u − 1)/gcd (u − 1, r − 1), then H is called minimal
optimally universal.

Sarwate [15] has presented constructions of minimal optimally universal (N; qn, qm)-hash families for any prime
power q in the cases m = 1 and m = n − 1 (n�1). He states though, that while several ad hoc constructions of small
OU universal (N; qn, qm)-hash families can be obtained for many values of n and m, there is no general construction
method known that produces minimal OU hash families for all n and m. The main purpose of this paper is to present
such a general construction method, as summarized by the following theorem.

Theorem 1. Let q be an arbitrary prime power. For any 1�m�n there exists a minimal optimally universal
(N; qn, qm)-hash family.

The construction is based on the definition of a new type of hash families, called partitioned universal. Our proof
does not only show the existence of the optimally universal hash families, but describes in fact an efficient algorithm
for constructing them. Moreover, the resulting hash functions can be evaluated fairly simple by means of finite field
arithmetic.We show below, that our construction has algorithmic consequences as well as consequences for the existence
of certain important combinatorial objects.

Definition 4. A balanced incomplete block design (short: BIBD) with parameters v, k, � (v, k, � ∈ N) is a pair (V , B),
where V is a v-set of points and B is a set of k-subsets of V called blocks, such that for any two distinct points p, p′ ∈ V

there are exactly � blocks b ∈ B where
{
p, p′} ⊆ b. If some blocks form a partition of V , then the set of these blocks

is called parallel class. A BIBD is resolvable, if its blocks can be partitioned into parallel classes. A resolvable BIBD
with parameters v, k, � is denoted by RBIBD�[k; v].

RBIBDs are well-investigated combinatorial structures and a lot of research has been spent on finding RBIBDs
with certain parameters or on disproving their existence (a broad overview on results can be found in the monographs
[2,5]). BIBDs and RBIBDs have also some algorithmic applications. E.g., the construction of layouts for redundant
disk arrays in [10,16] is based on BIBDs and Hofmeister and Lefmann [9] show how to find a large k-cut in a graph
with n vertices using an RBIBD�[k; n]. The authors complain, though, that although various algebraic construction
methods for BIBDs are known in the literature, not a lot of attention has been paid to their exact running times.
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Besides of the algorithmic problem of constructing RBIBDs, it is an important open question of design theory, for
which parameters RBIBDs do exist. It is well-known that the following two conditions are necessary for the existence
of an RBIBD�[k; v]:

v ≡ 0 (mod k) (C1)

and

�(v − 1) ≡ 0 (mod k − 1). (C2)

It is easy to see that the second condition is fulfilled if and only if � is a multiple of �min(k, v) := (k − 1)/

gcd (k − 1, v − 1). Thus, �min(k, v) is the minimal value for � such that an RBIBD with parameters v, k, � may exist.
As Stinson [17] has shown, an OU hash family H of functions U → R describes an RBIBD, by taking U as point

set and each set h−1(y) with y ∈ R and h ∈ H as a block. Clearly, for a fixed h, the blocks h−1(y) with y ∈ R form a
parallel class. Taking into account that in an OU hash family any pair of keys has the same collision probability [15], it
is easy to see that this block design is in fact an RBIBD. This construction can also be reversed such that one obtains
from any RBIBD an OU hash family.

Theorem 2 (Stinson [17]). Let u�r . An optimally universal (N; u, r)-hash family exists if and only if there is an
RBIBD�[k; v] with v = u, k = u/r , and � = N(u − r)/(r(u − 1)).

Plugging the minimal possible �-value, �min, into this theorem, it is easy to see that a minimal optimally universal
(N; u, r)-hash family exists if and only if there exists an RBIBD�[u/r; u]with� = �min(u/r, u). Using this equivalence,
our construction method of minimal OU hash families from Theorem 1 implies the existence of an RBIBD�min(k,v)[k; v]
for any k = qn−m and v = qn where q is a prime power (and m�n). Since in addition any � satisfying (C2) is a multiple
of �min(k, v), for any such � an RBIBD�[k; v] can be obtained by taking multiple copies of an RBIBD�min(k,v)[k; v].

Corollary 1. The necessary conditions (C1) and (C2) for the existence of an RBIBD�[k; v] are sufficient, if k and v

are powers of the same prime.

According to the author’s knowledge, such a general result about the existence of “optimal” RBIBDs for a wide
range of parameters was not known before. It should be noted, though, that the RBIBDs we obtain are not necessarily
simple, i.e., they may contain repeated blocks. In fact, our construction of OU hash families requires to take several hash
functions multiple times which yields multiple copies of the same resolvable classes in the corresponding RBIBDs.

Due to the fact that the hash families from Theorem 1 can be constructed efficiently, we also obtain an efficient
algorithm for constructing these RBIBDs. Therefore, they may be useful for algorithmic problems, as we demonstrate
in the next section.

2. Application to k-MAXCUT

In [9], Hofmeister and Lefmann have presented a deterministic algorithm for computing a large k-cut in a graph,
using RBIBDs. Let G = (V , E) be an undirected graph whose edges are weighted by a function w : E → N0. By
w(G) we denote the sum of edge weights, i.e., w(G) = ∑

e∈E w(e). A balanced k-cut of G is a partition of the vertices
V into k sets V1, . . . , Vk of equal size. The cut size of a k-cut (V1, . . . , Vk) is the sum of weights of all crossing edges,
that is edges e = {v, w} with (v, w) ∈ Vi × Vj with i �= j .

Assume that an RBIBD�[n; k] is given by a description of the blocks, and that the list of these blocks is already
arranged in such a way, that all blocks of each parallel class appear one after the other. Hofmeister and Lefmann have

shown that in this case a balanced k-cut of size at least w(G) · k−1
k

· (1 + 1
n−1 ) can be computed for any graph G with

n vertices in time O
(
k(n + m) + �n2

)
. Note that for any constant 0 < � < 1/(k − 1), k�2, it is already NP-complete

to decide whether a graph with m edges admits a k-cut of size at least m · k−1
k

· (1 + �) [13].

The algorithm of Hofmeister and Lefmann relies on having the explicit description of an RBIBD with appropriate
parameters at hand. Since most known RBIBDs are ad hoc constructions and algorithms for the construction of RBIBDs
for a wide variety of parameters are rarely described in literature, it is not clear for which parameters the algorithm
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can be implemented. In fact, the only statement Hofmeister and Lefmann can make is that for n being a multiple of
3 and n, n − 1 or n − 2 being a prime power, a polynomial time algorithm exists for the construction of the desired
RBIBDs.

Using our construction of optimally universal hash families, we obtain now explicit implementations of their algo-
rithm for all n and k being powers of the same prime. We assume a RAM model allowing arithmetics over natural
numbers and finite fields of order at most n in constant time.

Corollary 2. If n and k are powers of the same prime, then for any graph with n vertices and m edges a balanced k-cut

of weight at least w(G) · k−1
k

· (1 + 1
n−1 ) can be computed in time O

(
k(n + m) + k · n2/gcd (n − 1, k − 1)

)
.

Note that this result is obtained by simply plugging our RBIBD construction into the algorithm of Hofmeister and
Lefmann. Furthermore, since we use RBIBDs with the minimal possible parameter �, we cannot improve on this result
by using the same algorithm with other RBIBDs. Nevertheless, we can do better if we want to find k-cuts with k >

√
n

by a very similar and simple algorithm using OU hash families.
Let G = (V , E) be a graph with n vertices and let H be an �-universal (N; n, k)-hash family with universe V and

range {1, . . . , k}.Any hash function h ∈ H defines a cut (V1, . . . , Vk) on the graph, by letting Vi = {v ∈ V | h(v) = i}.
Moreover, if H is optimally universal, then the cut is balanced, because it is well-known that in this case

∣∣h−1(i)
∣∣ = n/k

(see e.g., [15]). Now choose a random hash function h from H and consider the cut (V1, . . . , Vk) defined by h. Since H
is �-universal, each edge is a crossing edge with a probability of at least 1 − �. Hence, by the linearity of expectation,
the expected cut size is bounded below by (1 − �)w(G). This means that there exists a hash function h ∈ H which
defines a cut having at least that size. Using � = �opt(n, k) = (n − k)/(k(n − 1)) if H is optimally universal, yields an

edge weight of at least w(G) ·
(

1 − n−k
k(n−1)

)
= w(G) · k−1

k
· (1 + 1

n−1 ).

As we will show in the remainder of this paper, the hash functions from the minimal OU hash family H claimed
to exist in Theorem 1 can be enumerated in time O(N), where N = (n − 1)/gcd (n − 1, k − 1). Moreover, under the
assumption of a RAM where (finite field) arithmetics can be done in constant time, the hash functions can be evaluated
in constant time. Once we have picked a hash function h ∈ H, we can evaluate the hash function values of all n vertices
in time O(n) in order to compute the corresponding cut (V1, . . . , Vk). Now, for each set Vi , the sum of weights of edges
within Vi (that is edges e = {v, w} with v, w ∈ Vi), can be computed in time O

(
n2/k2

)
(assuming that the graph is

given by an adjacency matrix). This way, we can compute the sum s(V1, . . . , Vk) of weights of all non-crossing edges
in time O(n2/k) and the k-cut with the minimal value s(V1, . . . , Vk) has the maximal weight w(G) − s(V1, . . . , Vk).

Hence, the total running time is bounded by O(N · n2/k) = O
(
n3/(k · gcd (n − 1, k − 1))

)
. For k >

√
n this is better

than the result of Corollary 2. It should be noted, though, that the algorithm we have just described computes a cut
but not its weight, because for some parameters the time bound may not allow us to spend O(n2) time for computing
w(G).

Theorem 3. If n and k are powers of the same prime, then for any graph with n vertices given by an adjacency matrix,
a balanced k-cut of weight at least w(G) · k−1

k
· (1 + 1

n−1 ) can be computed in time O
(
n3/(k · gcd (n − 1, k − 1))

)
.

3. Partitioned universal hash families

In the following, we define a new type of hash families, called partitioned universal. They are the main ingredients
for our construction of optimally universal hash families.

Definition 5. An (N; u, r)-hash family is partitioned �-universal if it is �-universal and if there exists an equivalence
relation partitioning the universe in equivalence classes of size r such that any two distinct keys from the same
equivalence class have a collision probability of 0. In the case � = 1/r the hash family is simply called partitioned
universal.

In the remainder of the text we use the convention that if the universe of a partitioned universal hash family with
range R is written as W × R, then the equivalence classes to which the above definition refers to, are the classes Ux ,
x ∈ W , where Ux = {

(x, x′)
∣∣ x′ ∈ R

}
.
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While we have defined partitioned �-universal hash families mainly in order to prove Theorem 1, there are several
examples of well-known �-universal hash families, which in fact turn out to be �-partitioned universal. One example
where this is the case is the multiplicative (2/r)-universal hash family defined in [6]. As we will see in the following,
partitioned universal hash families are quite easy to construct by means of another type of hash families, defined by
Stinson in 1996.

Definition 6 (Stinson [19]). Let H be an (N; u, r)-hash family with range U and universe R, where R is an additive
abelian group. H is called �-�-universal if for any two distinct keys x1, x2 ∈ U and any d ∈ R, Probh∈H (h(x1) − h(x2))

= d � �. In the case � = 1/r , H is simply called �-universal.

Although not explicitly defined there, �-universal hash families have already been used by Carter and Wegman in
1979 [4] in order to construct universal hash families for long keys. In the last years, they have found applications
mainly in message authentication [11,14], and Stinson [19] has used them to construct strongly universal hash families
(a restricted type of universal hash families).

Here is a well-known construction (see e.g., [19]): denote by Fq a finite field of order q and let U = (Fq)n and
R = (Fq)m be extension fields of Fq . If � : U → R is a surjective homomorphism then it is easy to see that the family{
fa

∣∣ a ∈ Fqn

}
, where fa : U → R, x �→ �(ax), is �-universal. If n < m, then any �-universal (qm; qm, qm)-hash

family is also �-universal for an arbitrary qn-element subset of the universe. Thus, one gets the following result.

Lemma 1 (Stinson [19]). Let q be a prime power. For any positive integers n and m, there exists a �-universal
(N; qn, qm)-hash family, where N = max {qn, qm}.

Using �-�-universal hash families, it is very easy to construct partitioned �-universal ones as the following lemma
shows.

Lemma 2. If there is an �-�-universal (N; u, r)-hash family, then there is also a partitioned �-universal (N; ur, r)-
hash family.

Proof. Let H : U → R be an �-�-universal hash family where |U | = u and |R| = r . For each h ∈ H we define the
mapping fh : U × R → R, (x1, x2) �→ h(x1) + x2. Then F = {fh | h ∈ H} is the desired partitioned �-universal
(N; ur, r)-hash family. To see this, define the equivalence relation ∼ on U × R as (x1, x2) ∼ (x′

1, x
′
2) ⇔ x1 = x′

1.
Clearly, two different keys (x1, x2) and (x′

1, x
′
2) collide if and only if h(x1) − h(x′

1) = x′
2 − x2. Because H is �-�-

universal, this is for x1 �= x′
1 the case with a probability of at most �. If x1 = x′

1, then both keys belong to the same
equivalence class and they differ only in the second component. Thus, they do not collide under any function in F .
Since the size of each equivalence class is r, F is partitioned �-universal. �

It is well-known that u/r is a lower bound on the size N of a (1/r)-universal (N; u, r)-hash family (see e.g., [18]).
This is clearly not a tight lower bound for the case r < u < r2, since for r < u, there is at least one key pair whose
collision probability is not 0, and thus at least r hash functions are required to obtain a collision probability of at
most 1/r .

Definition 7. A (partitioned) universal (N; u, r)-hash family is called minimal if

N =
{

1 if u�r,

max {u/r, r} otherwise.

Note that for u�r , a minimal partitioned universal (N; u, r)-hash family is the set consisting of the identity, only.
Using Lemmas 1 and 2 for the case u > r , we obtain minimal partitioned universal hash families for all u and r which
are powers of the same prime.

Corollary 3. Let q be a prime power. For any positive integers n and m, there exists a minimal partitioned universal
(N; qn, qm)-hash family.
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We present now two construction methods, which can later be combined to recursively construct the minimal OU
hash families from Theorem 1. Both of them combine two hash families in order to obtain a new OU (N; u, r)-hash
family, where u = k ·r (note that r|u is necessary for the existence for an OU hash family with universe size u and range
size r). For the first construction method we assume u|r2 and we combine a partitioned universal (N1; u, r)-hash family
with an OU (N2; r, r2/u)-hash family. The second method deals with the case u�r and combines a (N1; u, r)-hash
family with an OU (N ′

2; u/r, r)-hash family.

Lemma 3. Let u = k2 · � and r = k · �. If G is a partitioned universal (N1; k2�, k�)-hash family and F is an optimally
universal (N2; k�, �)-hash family, then there is an optimally universal (N; u, r)-hash family H, where

N = N1N2(u − 1)

gcd (N1(r − 1), N2(u − r))
.

Moreover, if G and F are both minimal, then so is H.

For the proof, the following simple statement is needed.

Remark 1. If m, n ∈ N and n is a multiple of m, then gcd (m − 1, n − 1) = gcd (m − 1, n/m − 1).

Proof. Using the euclidian algorithm we obtain that gcd (m − 1, n − 1) equals gcd
(
m − 1, n − 1 − n

m
(m − 1)

)
= gcd

(
m − 1, n

m
− 1

)
. �

Proof of Lemma 3. Let K and L be sets of cardinality k and �, resp. We may assume w.l.o.g. that G consists of
mappingsK×R → R, whereR = K×L, andF consists of mappingsK×L → L. Let z = lcm (N1(r − 1), N2(u − r))

and z1 = z/(N1(r − 1)) as well as z2 = z/(N2(u − r)). Let the family G′ consist of z1 copies of each hash function
in G and the family F ′ consist of z2 copies of the hash functions in F . For each function f ∈ G′ ∪ F ′ we define the
mapping

hf : K × R → K × L, (x1, x2) �→
{

f (x1, x2) if f ∈ G′,
(x1, f (x2)) iff ∈ F ′.

Finally, the hash family H consists of the functions hf with f ∈ G′ ∪ F ′.
In the following, we first show that the cardinality of H is in fact N and then prove that H is optimally universal.

Finally, we give evidence that G and F being minimal implies N = (u − 1)/gcd (u − 1, r − 1) (i.e., H has the size of
a minimal OU hash family).

The following computation shows that |H| = N . Using the identity lcm (m, n) = mn/gcd (m, n) we obtain

z = N1(r − 1) · N2(u − r)

gcd (N1(r − 1), N2(u − r))
.

Therefore,

|H| = z1N1 + z2N2 = z

r − 1
+ z

u − r
= z · u − 1

(r − 1)(u − r)

= N1N2(r − 1)(u − r)

gcd (N1(r − 1), N2(u − r))
· u − 1

(r − 1)(u − r)
= N.

Now we prove that H is optimally universal. Let c = ∣∣G′∣∣/∣∣F ′ ∪ G′∣∣, which is the probability, that a randomly chosen
f ∈ G′ ∪ F ′ is an element of G′. Hence,

c = z1N1

z2N2 + z1N1
= 1/(r − 1)

1/(u − r) + 1/(r − 1)
= u − r

r − 1 + u − r
= u − r

u − 1
. (1)

Thus, by definition of optimally universality it suffices to show that any two distinct keys x = (x1, x2) and x′ = (x′
1, x

′
2)

in K × R have a collision probability of at most c/r .
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Assume first x1 = x′
1, thus x2 �= x′

2. Since in this case x and x′ are elements of the same equivalence class
with respect to the partitioned universality of G′, they do not collide under any function hf with f ∈ G′. Under the
condition that f ∈ F ′, it follows from F ′ being OU that hf (x) equals hf (x′) with a probability of at most
(r − �)/(�(r − 1)). Therefore, we have for randomly chosen f ∈ G′ ∪ F ′ a total collision probability of at most

(1 − c) · r − �

�(r − 1)
= r − 1

u − 1
· r − �

�(r − 1)
= r − �

�(u − 1)
= rk − �k

k�(u − 1)
= u − r

r(u − 1)
= c

r
.

Let now x1 �= x′
1. Under the condition that f was chosen from G′, the collision probability of x and x′ is at most 1/r .

If on the other hand f was chosen from F ′, then the keys do not collide at all, which follows straight from the definition
of hf . Therefore, we again have a total collision probability (for f chosen randomly from G′ ∪ F ′) of at most c/r .

It remains to show that if G and F are minimal, then so is H. Since by assumption we have u = kr and r = k�,
obviously r �u�r2. Thus, by minimality of G we have N1 = min {u/r, r} = r . Further, it follows from the minimality
of F using Remark 1

N2 = r − 1

gcd (r − 1, � − 1)
= r − 1

gcd (r/� − 1, � − 1)
= r − 1

gcd (k − 1, r/k − 1)
. (2)

Therefore, we obtain

(u − r)N2 = r(k − 1) · r − 1

gcd (k − 1, r/k − 1)
= r(r − 1) · lcm (k − 1, r/k − 1)

r/k − 1
.

Since the last fraction obviously is an integer, it follows that N2(u − r) is a multiple of r(r − 1). Using N1 = r , this
implies

gcd (N1(r − 1), N2(u − r)) = N1(r − 1).

By the already proven result on the cardinality of H, we obtain

|H| = N = N1N2(u − 1)

gcd (N1(r − 1), N2(u − r))
= N1N2(u − 1)

N1(r − 1)
.

Using Eq. (2), this simplifies to

N = r − 1

gcd (k − 1, r/k − 1)
· u − 1

r − 1
= u − 1

gcd (k − 1, r/k − 1)
.

Finally, by Remark 1 it is true that

gcd (u − 1, r − 1) = gcd (u/r − 1, r − 1) = gcd (k − 1, r − 1) = gcd (k − 1, r/k − 1),

and it follows

N = u − 1

gcd (u − 1, r − 1)
.

This shows that H is minimal. �

Now we come to the case u�r2.

Lemma 4. Let u = kr and k�r . If G is a partitioned universal (N1; u, r)-hash family and F is an optimally
universal (N2; k, r)-hash family, then there exists an optimally universal (N; u, r)-hash family H, where

N = N1N2(ur − r)

gcd (N1(u − r), N2(ur − u))
.

Moreover, if G and F are both minimal, then so is H.

Proof. Let K be a set of size k and assume w.l.o.g. that G and F consist of mappings K × R → R and K → R,
resp. Let z = lcm (N1(u − r), N2(ur − u)) and z1 = z/(N1(u − r)) as well as z2 = z/(N2(ur − u)). Further, let
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the family G′ consist of z1 copies of each function in G and the family F ′ consist of z2 copies of each function in F .
For each f ∈ G′ ∪ F ′ we define the hash function

hf : K × R → R, (x1, x2) �→
{

f (x1, x2) if f ∈ G′,
f (x1) if f ∈ F ′.

Finally, let H be the family of functions hf with f ∈ G′ ∪ F ′.
In the following, we first show that the cardinality of H is in fact N and after that we prove that H is optimally

universal. Finally, we show that H is minimal if G and F are minimal.
We start by computing the cardinality of |H|. By definition we have

z = N1(u − r) · N2(ur − u)

gcd (N1(u − r), N2(ur − u))
.

Therefore,

|H| = z1N1 + z2N2 = z

u − r
+ z

ur − u
= z · ur − r

(u − r)(ur − u)
= N1N2(ur − r)

gcd (N1(u − r), N2(ur − u))
= N.

We now show that H is optimally universal. Let � = ∣∣F ′∣∣/∣∣F ′ ∪ G′∣∣. Then

� = z2N2

z1N1 + z2N2
= 1/(ur − u)

1/(u − r) + 1/(ur − u)
= u − r

ur − u + u − r
= u − r

ur − r
.

Thus, it suffices to show that any two distinct keys x = (x1, x2) and x′ = (x′
1, x

′
2) in K × R collide under a randomly

chosen function in H with a probability of at most �. Assume first that x1 = x′
1 and thus x2 �= x′

2. Then, by partitioned
universality of G, x and x′ do not collide under any function in G′ but under all functions in F ′. Therefore, the collision
probability is exactly �. Let now x1 �= x′

1. Under the condition f ∈ G′ the keys collide with a probability of at most
1/r . If on the other hand f ∈ F ′, then the collision probability is at most (k − r)/(r(k − 1)) since F ′ is optimally
universal. Therefore, the probability that hf (x) equals hf (x′) for a randomly chosen f ∈ H is bounded above by

(1 − �) · 1

r
+ � · k − r

kr − r
=

(
1 − u − r

ur − r

)
· 1

r
+ u − r

ur − r
· u/r − r

u − r
= u − r

ur − r
= �. (3)

It remains to prove that H is minimal if G and F are minimal. It is

N2(ur − u) = k − 1

gcd (k − 1, r − 1)
· u(r − 1) = lcm (k − 1, r − 1) · u = u · lcm (u/r − 1, r − 1) .

Since N1 = u/r (because of u/r �r), we have N1(u − r) = u (u/r − 1). So, clearly N2(ur − u) is a multiple of
N1(u − r) and thus gcd (N1(u − r), N2(ur − u)) = N1(u − r). By the already proven value for N, we obtain

N = N1N2(ur − r)

N1(u − r)
= ur − r

u − r
· u/r − 1

gcd (u/r − 1, r − 1)
= u − 1

gcd (u − 1, r − 1)
.

This shows, that H is minimal. �

We can now combine the two construction methods in order to prove our main result.

Proof of Theorem 1. Let q be an arbitrary prime power. We show by induction on n that for all 1�m�n there exists
a minimal optimally universal hash family U → R, where U and R are sets of cardinalities u = qn and r = qm, resp.
Note that the statement in Theorem 1 merely claims the existence of the hash families. However, the following proof
in fact shows how to construct such a minimal OU (N; qn, qm)-hash family, which we call Hq

n,m.
We use as the universe and range the extension fields U = (Fq)n and R = (Fq)m, resp. First, we define a minimal

partitioned universal hash family Gq
n,m with universe K × R, where K = (Fq)n−m. Let � = max {n − m, m} and

� : (Fq)� → (Fq)m be a projection from (Fq)� to m arbitrary coordinates of the extension field. For all m�n the hash
family Gq

n,m consists of the functions

fa : (Fq)n−m × (Fq)m → (Fq)m, (x1, x2) �→ �(a · �(x1)) + x2,
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where a ∈ (Fq)� and � : (Fq)n−m → (Fq)� is an arbitrary injective mapping (the identity in the case n − m = �).

Note that for the computation of fa the multiplication is in the field (Fq)� and the addition is in (Fq)m. With the same
arguments as in the discussion before Lemma 1 and in the proof of Lemma 2 it follows that Gq

n,m is partitioned universal.
Moreover,

∣∣Gq
n,m

∣∣ = max
{
qm, qn−m

}
, and thus Gq

n,m is even minimal partitioned universal.
Now we recursively construct the optimally universal hash family Hq

n,m. If m = n, then Hq
n,m contains only

the identity id : (Fq)n → (Fq)n, which is obviously minimal optimally universal. Hence, for n = 1 we obtain a

trivial hash family Hq
1,1. Let now 1�m < n and assume that the hash families Hq

m′,n′ have been constructed for all

1�m′ �n′ < n. In the case m < n�2m, we choose Hq
n,m as the union of z1 copies of Gq

n,m and z2 copies of all

mappings (Fq)n−m × (Fq)m → (Fq)n−m × (Fq)2m−n, (x1, x2) �→ (x1, f (x2)), with f ∈ Hq
m,2m−n, where z1 and z2

are the integers determined in the proof of Lemma 3. In the case n > 2m, we choose Hq
n,m as the union of z′

1 copies of
Gq

n,m and z′
2 copies of the mappings (Fq)n−m × (Fq)m → (Fq)m, (x1, x2) �→ f (x1), with f ∈ Hq

n−m,m, where z′
1 and

z′
2 are the integers determined in the proof of Lemma 4. Then, according to the proofs of Lemmas 3 and 4 and by the

induction hypothesis, Hq
n,m is minimal optimally universal. �

We finally remark that the hash functions from Hq
n,m may in fact be evaluated by simple finite field arithmetic. By

the above proof it is easy to see that each hash function h ∈ Hq
n,m has the form gi,j (x1, . . . , xn) �→ (x1, . . . , xi,

f (xi+1, . . . , xj )), where either i = j and gi,j is the identity, or i < j and f is a function in Gq
j−i,m−i . Hence, h can

essentially be evaluated by one finite field multiplication and one finite field addition. Although the evaluation of these
hash functions is simple, there seems to be no obvious uniform algorithm allowing us to choose a function from Hq

n,m

in constant time. Nevertheless, it is easy to enumerate all hash functions in Hq
n,m in time

∣∣Hq
n,m

∣∣. This means also
that the blocks of the corresponding RBIBD�[k; v] can be constructed in linear time (with respect to the size of their
description) ordered by the parallel classes (recall that a parallel class in the RBIBD corresponds to a hash function in
the hash family). Therefore, the algorithm of Hofmeister and Lefmann can be used to compute a k-cut in a graph as
stated in Corollary 2 and our modified algorithm has in fact the running time stated in Theorem 3.
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