Available at
www.ElsevierComputerScience.com
Theoretical
Computer Science

A Halfliar's game

Ioana Dumitriu ${ }^{\mathrm{a}, *}$, Joel Spencer ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, U.C. Berkeley, 751 Evans Hall, Berkeley, CA 94720, USA
${ }^{\mathrm{b}}$ Courant Institute of Mathematical Sciences, room 2-333, 77 Massachusetts Avenue, New York, NY 10012, USA

Received 6 March 2002; received in revised form 21 September 2002; accepted 30 September 2002

Abstract

In Ulam's game Paul tries to find one of n possibilities with q yes-no questions, while responder Carole is allowed to lie a fixed number k of times. We consider an asymmetric variant in which Carole must say yes when that is the correct answer (whence the halflie). We show that this variation allows Paul to distinguish between roughly 2^{k} as many possibilities as in Ulam's game. (c) 2003 Elsevier B.V. All rights reserved.

Keywords: Combinatorial game theory; Two-person games; Liar games

1. Introduction

The basic liar game has two players whom we call Paul and Carole and three integer parameters (n, q, k). Paul is trying to find an unknown $x \in\{1, \ldots, n\}$ by asking q questions of Carole. The questions must all be of the form "Is $x \in A$?", where A is a subset of $\{1, \ldots, n\}$. Carole, the responder, is allowed to lie; however, she may lie at most k times. Paul wins if at the end of the q questions and responses the answer x is known with certainty.

Carole is allowed to play (and will play) an adversary strategy. That is, she does not preselect a particular x, but rather answers questions in a manner consistent with at least one possible x. At the end of the game, if there are at least two answers x, x^{\prime} still valid (i.e., for which Carole has lied at most k times) then Carole has won; otherwise Paul is the winner of the game.

[^0]We further note that Paul's questions may (and generally will) be adaptive. That is, Paul's choice of question depends on Carole's previous answers.

In this formulation we have a two person perfect information game; thus we know that for any given triplet (n, q, k) either Paul or Carole has a perfect strategy. The question is, which one? Due to monotonicity, it suffices to answer the following more explicit question: given q and k, what is the maximal n (which we will denote by $\left.A_{k}^{*}(q)\right)$ for which Paul has a winning strategy?

Much work on the basic liar game was inspired by comments in the autobiography of Stanislas Ulam [7]. For this reason we, like many other authors, refer to the liar game as Ulam's game. Other early references include work by Alfred Rényi [5] and Elwyn Berlekamp [1]. Pelc [3] solved the problem completely when $k=1$.

Spencer [6] solved the problem completely for any fixed k with q sufficiently large. In particular, it is known that for any fixed k

$$
A_{k}^{*}(q) \sim \frac{2^{q}}{\binom{q}{k}},
$$

where the asymptotics are as $q \rightarrow \infty$.
A very good reference for a more in-depth understanding of the relation between liar games and coding theory is the recent survey paper by Pelc [4].

In this paper we modify Carole's ability to lie: she is still allowed to lie at most k times, but she is only allowed to lie when the truthful answer is "no". In other words, for Paul, any "no" he hears is a truthful answer and thus completely trustworthy; and any "yes" answer he hears is a potential lie.

We call this the halfie game. We shall set $A_{k}(q)$ equal to the maximal n such that Paul has a winning strategy in the halflie game with parameters (n, q, k). Our main result is the following:

Theorem 1. For any fixed $k \in \mathbb{N}$,

$$
A_{k}(q) \sim 2^{k} \frac{2^{q}}{\binom{q}{k}},
$$

where the asymptotics are as $q \rightarrow \infty$.
Informally, the restriction of Carole to halflies, as opposed to full lies, allows Paul to probe 2^{k} times as many possibilities.

Many authors have commented on the connection between the now classic liar problem and the classic coding theory problem of sending n messages through a binary channel which may make up to k errors. The two problems are equivalent if Paul is required to pose all q queries at once-i.e., if his strategy must be nonadaptive. Alternatively, the liar problem is the coding theory problem with "feedback".

We may make a similar connection to the halfliar game. Consider what is sometimes called in the coding theory literature the Z -channel. In this channel, a one may be accidentally transformed into a zero, but a zero is never transformed into a one.

We naturally identify zero with yes and one with no. Our halfliar game may then be considered, roughly, the coding theory problem on the Z-channel with feedback.

Our result for $k=1$ (Carole is allowed 1 lie) has been proven independently by Cicalese and Mundici [2]. Indeed, a number of the key ideas of their paper have proven to be very useful in our argument for general fixed k.

2. Two perspectives

2.1. The vector game

There is a natural way to describe the state of the game in a middle position, after Paul has asked and Carole has answered a certain number of questions. For each (still) valid answer α there must be a certain number of lies that Carole has already used. If that number is greater than k then α is no longer a possibility (it is not viable). Suppose then that for a certain still viable α, the number of lies Carole has used is $k-i$ for some $0 \leqslant i \leqslant k$. It follows that Carole still has the opportunity to lie i more times. Let us then say that possibility α is in state i.

We can thus describe the position of the game as a vector $\left(x_{k}, x_{k-1}, \ldots, x_{0}\right)$ where x_{i} is the number of possibilities in state i.

We further consider a query "Is $x \in A$?" by Paul to be described by a vector $\left(a_{k}, \ldots, a_{0}\right)$ where a_{i} is the number of $\alpha \in A$ of state i. Now consider the two possibilities.

- Carole says "no". Paul knows this is a truthful answer. Then none of the a_{i} possibilities of state i that were in A are viable, while the $x_{i}-a_{i}$ possibilities of state i that were not in A are still in state i. The new position is $\left(x_{k}-a_{k}, \ldots, x_{0}-a_{0}\right)$.
- Carole says "yes". The a_{i} possibilities of state i that were in A remain in state i; further, as Carole may have been lying, the $x_{i}-a_{i}$ possibilities of state i that were not in A move to state $i-1$ (when $i=0$ these possibilities are no longer viable). The new position is then $\left(a_{k}, a_{k-1}+x_{k}-a_{k}, \ldots, a_{0}+x_{1}-a_{1}\right)$.
We can describe the vector game without any reference to lying. There are q rounds. There is an initial vector $\vec{P}=\left(z_{k}, \ldots, z_{0}\right)$ with all z_{j} nonnegative integers. Each round Paul selects a vector $\vec{a}=\left(a_{k}, \ldots, a_{0}\right)$ with all a_{j} integers satisfying $0 \leqslant a_{j} \leqslant z_{j}$. Carole then resets \vec{P} to either $\left(x_{k}-a_{k}, \ldots, x_{0}-a_{0}\right)$ or $\left(a_{k}, a_{k-1}+x_{k}-a_{k}, \ldots, a_{0}+\right.$ $x_{1}-a_{1}$). Paul wins if at the end of the game the sum of the coefficients of \vec{P} is either zero or one. (Strictly speaking, a move by Carole that sets $\vec{P}=\overrightarrow{0}$ would be cheating. It is convenient, however, to allow this move and then declare Paul the winner.)

The halfliar game with parameters (n, q, k) is then equivalent to the q-round vector game with initial vector $\vec{P}=(n, 0, \ldots, 0)$ (of length $k+1$).

Remark 2. The vector format may also be used in the full lie problem. The only distinction is that when $\vec{P}=\left(x_{k}, \ldots, x_{0}\right)$ and Paul selects $\vec{a}=\left(a_{k}, \ldots, a_{0}\right)$ then Carole may reset \vec{P} to either $\left(a_{k}, a_{k-1}+x_{k}-a_{k}, \ldots, a_{0}+x_{1}-a_{1}\right)$ (as above) or $\left(x_{k}-a_{k}, x_{k-1}-\right.$ $\left.a_{k-1}+a_{k}, \ldots, x_{0}-a_{0}+a_{1}\right)$.

2.2. Packing k-trees

In this section we define two concepts that proved to be crucial in our understanding of the problem, by providing a second format to the Halfliar game (or Halflie game).
First, we introduce the (perhaps familiar) δ function, which we use to define the two concepts mentioned above: those of k-tree and k-set.

Definition 3. Given two points in $\{Y, N\}^{q}, w=w_{1} w_{2} \ldots w_{q}$ and $w^{\prime}=w_{1}^{\prime} w_{2}^{\prime} \ldots w_{q}^{\prime}$, we define $\delta\left(w, w^{\prime}\right)$ to be the smallest i for which $w_{i} \neq w_{i}^{\prime}$.

Definition 4. A k-tree is a rooted tree of depth at most k whose vertices are points of $\{Y, N\}^{q}$ with the following properties:
(1) Let the root be $r=r_{1} r_{2} \ldots r_{q}$. For each $1 \leqslant i \leqslant q$ such that $r_{i}=N$, there exists exactly one child r^{\prime} of r with $\delta\left(r, r^{\prime}\right)=i$. Moreover, these are all the children of r.
(2) Let r^{\prime} be a nonroot point, with parent r^{*}, and of depth less than k. For each $i>\delta\left(r^{\prime}, r^{*}\right)$ for which $r_{i}^{\prime}=N$, there exists exactly one child \tilde{r} of r^{\prime} such that $\delta\left(\tilde{r}, r^{\prime}\right)=i$. Moreover, these are all the children of r^{\prime}.

Definition 5. We call the set of nodes of a k-tree a k-set, and we call the sequence at the root of the tree the stem.

Remark 6. It is worth noting that there is a one-to-one correspondence between k-trees and k-sets.

To better illustrate the definitions above, we have inserted Fig. 1.
Remark 7. Note that any point in $\{Y, N\}^{q}$ is a 0 -set; critically, the set of paths leading to a given value α in the decision tree for the Halflie game with k lies form a k-set (and this would be an equivalent alternative definition of a k-set).

Lemma 8. Let A be a k-set in $\{Y, N\}^{q}$ with stem v.
(i) Suppose v starts with a Y. Then $\{w: Y w \in A\}$ is a k-set (in $\{Y, N\}^{q-1}$) and $\{w: N w \in A\}=\emptyset$.

Fig. 1. A 2 -tree (left) and the corresponding 2 -set (list, right) when $q=5$; the boxed letters and the numbers on the arrows represent δ (parent, child) and the place where N has turned into Y in the child sequence.
(ii) Suppose v begins with an N. Then $\{w: Y w \in A\}$ is a $(k-1)$-set (in $\{Y, N\}^{q-1}$) and $\{w: N w \in A\}$ is a k-set.

Proof. The proof is immediate from the definition.
The k-sets prove to be essential for proving both upper and lower asymptotic bounds for $A_{k}(q)$; we will state and prove here two results that will be used in the subsequent sections.

The following lemma follows easily from the definition.
Lemma 9. For any k and q, the maximum size of a k-set in $\{Y, N\}^{q}$ is at most

$$
m_{k}(q)=1+\binom{q}{1}+\cdots+\binom{q}{k} .
$$

Proof. We will show that the number of elements on level i of the k-tree is bounded from above by $\binom{q}{i}$.

Let w be a node at level i, and let $r=x_{0}, x_{1}, \ldots, x_{i}=w$ be the path from the root r to w in the tree. Let $p_{1}=\delta\left(x_{0}, x_{1}\right), p_{2}=\delta\left(x_{1}, x_{2}\right), \ldots, p_{i}=\delta\left(x_{i-1}, x_{i}\right)$. Note that $1 \leqslant p_{1}<p_{2}<\cdots<p_{i} \leqslant q$.

By the definition of the k-tree, the choice of the positions p_{1}, \ldots, p_{i} determines the element w completely. Since there are at most $\binom{q}{i}$ possibilities for the choice of the $p_{i} \mathrm{~s}$, it follows that there are at most $\binom{q}{i}$ elements on the i th level of the tree.

2.3. The synthesis

The final result that we state and prove in this section is the following crucial equivalence theorem, which connects the two formats of the Halflie game (vectorial and k-set) that we have presented here.

Theorem 10. Given a number q of questions, the position $\left(x_{k}, x_{k-1}, \ldots, x_{1}, x_{0}\right)$ is a winning position in q moves for Paul if and only if one can find a family \mathscr{P} of disjoint sets $P_{i, j}, 0 \leqslant i \leqslant k, 1 \leqslant j \leqslant x_{i}$, such that
(1) for all i and $j, P_{i, j}$ is an i-set;
(2) for all i and j, the elements of $P_{i, j}$ are in $\{Y, N\}^{q}$.

If such a family of disjoint sets exists, we will say that we can pack (simultaneously) $x_{i} i$-sets, $i=0, \ldots, k$, in the full binary tree of size 2^{q}.

For an example of what it means to "pack" a k-set, refer to Fig. 2 below.
Proof. The "left to right" direction of the argument is easy; indeed, if Paul can win the game from $\left(x_{k}, x_{k-1}, \ldots, x_{1}, x_{0}\right)$ in q moves, let us examine the Decision Tree for the Halflie game, starting at this position. If we look at the set $P_{i, j}$ of possible paths that lead to a given answer (call it $\alpha_{i, j}$) from among the x_{i} possible answers in the case when Carol has already lied $k-i$ times, we can easily see that $P_{i, j}$ is an i-set.

Fig. 2. Packing the 2 -set of Fig. 1 into the Decision Tree; the rest of the Decision Tree vertices are not drawn for convenience.

Since all such sets, for all the i 's, are disjoint, it follows that they represent a packing of $x_{i} i$-sets, $i=0, \ldots, k$, in the full binary tree of size 2^{q}.

For the other direction, we will show how to construct the splitting questions which lie at the nodes of the Decision Tree. We can pack the i-sets, $0 \leqslant i \leqslant k$, and we choose to label each set of leaves that correspond to an i-set by a number from 1 through $n:=x_{k}+\cdots+x_{0}$. Also, we assume that the packing is done so that the "no" branches to the left, whereas the "yes" branches to the right, just like in Fig. 2.

For each node z of the Decision Tree we define

$$
\begin{aligned}
& L(z)=\{r: \text { some leaf in the left subtree of } z \text { has label } r\}, \\
& Q(z)=\{1,2, \ldots, n\} \backslash L(z) .
\end{aligned}
$$

At node z, we place the question "Is the answer in $Q(z)$?".
Lemma 11. The questions we indicated above represent a strategy for Paul.
Proof. We proceed by induction on the number of questions q. The case $q=0$ corresponds to $n=1$ and $k=0$, in other words Paul knows what the answer is and no questions are needed.

Assume we have proved that packing implies winning for any number of questions smaller than q, and let us examine the question at the root of the q-Decision Tree. Paul asks the question "Is the answer in Q (root)?" and

- if Carole's answer is "no", Paul knows that she is telling the truth, and it follows that the answer must be one of the labels present at the leaves of the left subtree of the root. Since she answered "no", that is where he will search.

Let

$$
A_{\mathrm{no}}(i, j)=\{w: N w \in P(i, j) \text { and } P(i, j) \text { 's stem starts with a } N\} ;
$$

any one of these paths lead to a valid answer, and any valid answer has such a path leading to it.

Using Lemma 8, we get that $A_{\text {no }}(i, j)$ is an i-set. Since these i-sets are packed in the left subtree, they are packed in the Decision Tree corresponding to the $q-1$ question game. By induction, Paul can use the same strategy to win.

- if Carole's answer is "yes", Paul cannot, generally, determine the truthfulness of her answer.

Let

$$
\begin{aligned}
& A_{\text {yes }}(i, j)=\{w: Y w \in P(i, j) \text { and } P(i, j) \text { 's stem starts with a } Y\}, \\
& B_{\text {yes }}(i, j)=\{w: Y w \in P(i, j) \text { and } P(i, j) \text { 's stem starts with a } N\}
\end{aligned}
$$

and again each such path leads to a valid answer and any valid answer has such a path leading to it.

Using Lemma 8, we get that all $A_{\text {yes }}(i, j)$ are i-sets, and all $B_{\text {yes }}(i, j)$ are $(i-1)$ sets. Moreover, both $A_{\text {yes }}(i, j) \mathrm{s}$ and $B_{\text {yes }}(i, j) \mathrm{s}$ are packed in the right subtree of the root. But since Carole has answered "yes", Paul will be searching in the right subtree of the root! And since by induction, because these i - and $(i-1)$-sets are packed in the right subtree (and thus in the $q-1$ question Decision Tree), it follows that Paul can use the strategy to win.
This completes the proof of Lemma 11.
The second implication is proved, and so is Theorem 10.

3. Lower bounds

We will start with a definition. Here we are essentially using the vector format previously described. It shall be more convenient to index the variables in increasing order so that we shall henceforth label a position as $\left(x_{0}, \ldots, x_{k}\right)$.

Definition 12. We say that from position $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ we can make a perfect split if there exists an allowable question $\left(a_{0}, a_{1}, \ldots, a_{k}\right)$ that Paul can ask, such that the outcome in the case of an affirmative answer is the same as for a negative one.

If they exist, the integers a_{0}, \ldots, a_{k} are (uniquely) defined by the following set of equations:

$$
\begin{aligned}
& a_{0}=\frac{x_{0}}{2} \\
& a_{i}=\frac{x_{i}-x_{i-1}+a_{i-1}}{2}, \quad \forall 1 \leqslant i \leqslant k .
\end{aligned}
$$

Remark 13. There are two ways in which a perfect split can fail to exist: the first one is due to issues of parity, and the second one is due to the fact that the question might not be allowable (for a question to be allowable we must have $0 \leqslant a_{i} \leqslant x_{i}$ for every $0 \leqslant i \leqslant k$).

For example, from $(2,1)$ we can make a perfect split by asking the question $(1,0)$, which regardless of the answer takes Paul to position $(1,1)$.

Intuitively, whenever one is in need of perfect splits in the Halflie game, the best initial values to start from are powers of 2 (or "close" to a power of 2 , like a "small"
multiple of a power of 2). Unfortunately, not every number is of such a form, which is an inconvenience. However, in this game, there is a concept of dominance which will make things easier, and will allow us to reduce the study of the problem to numbers $n=a 2^{s}$ where a will be "small" compared to s.

Definition 14. We will say that position $p=\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ dominates position $p^{\prime}=$ $\left(x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ if for all $i \leqslant k, \quad \sum_{j=0}^{i} x_{i} \geqslant \sum_{j=0}^{i} x_{i}^{\prime}$. For example, $(2,3,0,0,1)$ dominates $(2,1,1,1,1)$.

Remark 15. The essential fact about a position p dominating another position p^{\prime} is that, trivially, if p is a winning position for Paul in q moves, then so is p^{\prime}. In particular, if $n \leqslant a 2^{s}$ for some a and s, and if $\left(a 2^{s}, 0, \ldots, 0\right)$ is a winning position for Paul when q questions are left, then so is $(n, 0, \ldots, 0)$.

In what follows, we show that for any given $k, \alpha<2^{k}$, and q large enough, there exists a "small" multiple of a power of 2 between $\alpha 2^{q} /\binom{q}{k}$ and $2^{k} 2^{q} /\binom{q}{k}$.

Lemma 16. For any $k \geqslant 1$ and α such that $\alpha<2^{k}$, there exist integers T and q_{0} such that for all $q \geqslant q_{0}$, there exists at least one $a \in\left(2^{T}, 2^{T+1}\right] \cap \mathbb{N}$ such that

$$
\left\lceil\alpha \frac{2^{q}}{\binom{q}{k}}\right\rceil \leqslant a 2^{s}<\left\lfloor\frac{2^{k}+\alpha}{2} \frac{2^{q}}{\binom{q}{k}}\right\rfloor
$$

for some integer s.
Proof. Given k and α as in the statement of the lemma, a simple calculation shows that there is a value q_{0} such that for all $q \geqslant q_{0}$,

$$
\frac{\left\lfloor\left[\left(2^{k}+\alpha\right) / 2\right] 2^{q} /\binom{q}{k}\right\rfloor-\left\lceil\alpha 2^{q} /\binom{q}{k}\right\rceil}{\left\lceil\alpha 2^{q} /\binom{q}{k}\right\rceil}>\frac{2^{k}-\alpha}{4 \alpha} .
$$

Thus, choose $q \geqslant q_{0}$, and T the smallest integer such that

$$
\frac{1}{2^{T}} \leqslant \frac{2^{k}-\alpha}{4 \alpha}
$$

and consider all numbers of the form $a 2^{s}$, with $a \in\left(2^{T}, 2^{T+1}\right] \cap \mathbb{N}$ and s an integer. Let $n_{1}=\left(a_{1}-1\right) 2^{s_{1}}$ be the largest such number smaller than or equal to $\left\lceil\alpha 2^{q} /\binom{q}{k}\right\rceil$. We will show that $a_{1} 2^{s_{1}}$ is strictly between $\left\lceil\alpha 2^{q} /\binom{q}{k}\right\rceil$ and $\left\lfloor(2+\alpha) / 2\left(2^{q} /\binom{q}{k}\right)\right\rfloor$.

To begin with, it is clear by choice of a_{1} and s_{1} that

$$
\left\lceil\alpha \frac{2^{q}}{\binom{q}{k}}\right\rceil<a_{1} 2^{s_{1}} .
$$

The other inequality is almost as easy to prove. Indeed,

$$
\begin{aligned}
a_{1} 2^{s_{1}} & =\left(\frac{1}{a_{1}-1}+1\right)\left(a_{1}-1\right) 2^{s_{1}} \\
& \leqslant\left(\frac{1}{2^{T}}+1\right)\left[\alpha \frac{2^{q}}{\binom{q}{k}}\right] \\
& \leqslant\left(\frac{2^{k}-\alpha}{4 \alpha}+1\right)\left[\alpha \frac{2^{q}}{\binom{q}{k}}\right] \\
& <\left\lfloor\frac{2^{k}+\alpha}{2} \frac{2^{q}}{\binom{q}{k}}\right\rfloor
\end{aligned}
$$

by way of choosing T and q_{0}.
Remark 17. Note that if α is considerably smaller than 2^{k}, one does not have to go too far to find a suitable T; it is when α is close to 2^{k} that T gets large. However, since α is always fixed, so is T.

The following result is a crucial splitting lemma.
Lemma 18. Let $a \in \mathbb{N}$. Let $1=m_{0}, m_{1}, \ldots, m_{k}$ such that $m_{i} \geqslant \sum_{j=0}^{i-1} m_{j}$ for all $1 \leqslant i \leqslant k$. Set $j_{0}=n_{0}=1$. For $1 \leqslant i \leqslant k$ set

$$
j_{i}=m_{i}-m_{i-1}-m_{i-2}-\cdots-m_{0}
$$

and

$$
n_{i}=2 m_{i}-j_{i}=m_{i}+m_{i-1}+m_{i-2}+\cdots+m_{0} .
$$

Let $t>k$. Then from position $\left(a m_{0} 2^{t}, a m_{1} 2^{t-1}, \ldots, a m_{k} 2^{t-k}\right)$ we can make a perfect split by asking question $\left(a j_{0} 2^{t-1}, a j_{1} 2^{t-2}, \ldots, a j_{k} 2^{t-k-1}\right)$, with resulting position $\left(a n_{0} 2^{t-1}, a n_{1} 2^{t-2}, \ldots, a n_{k} 2^{t-k-1}\right)$. Furthermore, $n_{i} \geqslant \sum_{j=0}^{i-1} n_{j}$, for all $1 \leqslant i \leqslant k$.

Proof. Note that the requirement that $m_{i} \geqslant \sum_{j=0}^{i-1} m_{j}$, for all $1 \leqslant i \leqslant k$, insures that the question Paul asks for the split is an allowable one (basically, it insures that $0 \leqslant j_{i} \leqslant m_{i}$ for all i).

The formulas for j_{i} and n_{i} are easily established by inspection. Let us now examine what it means for the n_{i} 's to inherit the "growth property" of the m_{i} 's. We must show that

$$
n_{i} \geqslant n_{i-1}+n_{i-2}+\cdots+n_{0}
$$

and since

$$
n_{i}=m_{i}+m_{i-1}+\cdots+m_{0}
$$

it suffices to show that $m_{j+1} \geqslant n_{j}$ for all $0 \leqslant j \leqslant i-1$. Since $n_{j}=m_{j}+\cdots+m_{0}$, the latter inequality is just the condition we imposed on the $m_{i} \mathrm{~s}$, and we are done.

We now need to establish a technical result.
We define a (uniquely determined) infinite sequence of polynomials p_{0}, p_{1}, \ldots, p_{j}, \ldots, by the recursion

$$
\begin{align*}
& p_{0}(s)=1 \quad \forall s, \tag{1}\\
& p_{j}(s+1)=p_{j}(s)+p_{j-1}(s)+\cdots+p_{0}(s) \quad \forall j \geqslant 1, \tag{2}\\
& p_{j}(0)=2^{j-1} \quad \forall j \geqslant 1 . \tag{3}
\end{align*}
$$

Lemma 19. For every $j \geqslant 1$ and every $s \geqslant 0$

$$
p_{j}(s) \geqslant p_{j-1}(s) .
$$

Furthermore, $p_{j}(s)=\binom{s}{j}+q_{j}(s)$ for some polynomial q_{j} with $\operatorname{deg}\left(q_{j}\right) \leqslant j-1$.
Proof. Since the initial values (at $s=0$) of the polynomials satisfy the same kind of recurrence as the $m_{i} \mathrm{~S}$ of Lemma 18, it follows by the argument used there that $p_{j}(s) \geqslant p_{j-1}(s)$ for all integer s and $j \geqslant 1$.

The second part of this technical lemma can be proved inductively. For $j=1$, we see from the recurrence that $p_{1}(s)=s+1=\binom{s}{1}+1$ for all s.

Assume now that we have proved the result for all $i \leqslant j-1$ and let us prove it for j.

First, note that the polynomial recurrence can be replaced by the simpler 2-term recurrence

$$
p_{j}(s+1)=p_{j}(s)+p_{j-1}(s+1) .
$$

Hence, by going backwards, we obtain that

$$
p_{j}(s+1)=\sum_{k=1}^{s+1} p_{j-1}(k)+p_{j}(0)=2^{j-1}+\sum_{k=1}^{s+1} p_{j-1}(k) .
$$

By induction, $p_{j-1}(k)=\binom{k}{j-1}+q_{j-1}(k)$, where q_{j-1} is a polynomial of degree at most $j-2$. Thus,

$$
p_{j}(s+1)=2^{j-1}+\sum_{k=1}^{s+1} p_{j-1}(k)=2^{j-1}+\sum_{k=1}^{s+1}\left(\binom{k}{j-1}+q_{j-1}(k)\right) .
$$

By the additive property of binomial coefficients,

$$
\begin{aligned}
p_{j}(s+1) & =\binom{s+2}{j}+\sum_{k=1}^{s+1} q_{j-1}(k)+2^{j-1} \\
& =\binom{s+1}{j}+\left(2^{j-1}+\sum_{k=1}^{s+1} q_{j-1}(k)+\binom{s+2}{j}-\binom{s+1}{j}\right) .
\end{aligned}
$$

Since the degree of q_{j-1} is at most $j-2$, it follows that $\sum_{k=1}^{s+1} q_{j-1}(k)$ is a polynomial of degree at most $j-1$. Thus the polynomial

$$
q_{j}(s+1)=2^{j-1}+\sum_{k=1}^{s+1} q_{j-1}(k)+\binom{s+2}{j}-\binom{s+1}{j}
$$

has degree at most $j-1$ (since $\binom{s+2}{j}-\binom{c+1}{j}$ has degree $j-1$), and the lemma is proved by induction.

Remark 20. In fact, one can prove that

$$
p_{j}(s)=\binom{s+j}{j}+\sum_{i=2}^{j} 2^{j-2}\binom{s+j-i}{j-i}
$$

for all $j \geqslant 2$ and $s \geqslant 0$.
Lemma 21. For any k, a and $s \geqslant k$ integers, from starting position ($a 2^{s}, a 2^{s-1}$, $\left.a 2^{s-1}, \ldots, a 2^{s-1}\right)$, Paul can make $s-k$ perfect splits. Furthermore, after the j th split, the resulting position is $\left(a 2^{s-j}, a p_{1}(j) 2^{s-1-j}, \ldots, a p_{k}(j) 2^{s-k-j}\right)$.

Proof. The proof follows directly from Lemmas 18 and 19.
Lemma 22. If $\sum_{i=1}^{k} x_{i}\left(1+q+\cdots+\binom{q}{i}\right)=2^{q}-S$ with $S \geqslant 0$, and if Paul wins the q question game from $\left(x_{k}, \ldots, x_{1}, 0\right)$ then he wins from $\left(x_{k}, \ldots, x_{1}, S\right)$.

Proof. By Theorem 10, since Paul wins we can simultaneously pack all x_{i} of the i-sets, for all $1 \leqslant i \leqslant k$. Because of their size limitation (see Lemma 9), this packing leaves at least S points of $\{Y, N\}^{q}$ uncovered-but each point can be a 0 -set, and hence we can add another $S 0$-sets to the packing. Thus Paul wins from $\left(x_{k}, \ldots, x_{1}, S\right)$.

The last lemma we need is the following:
Let now $k, \alpha<2^{k}$, and T be fixed, satisfying Lemma 16 . Let p_{0}, \ldots, p_{k} the polynomials of Lemma 19.

Lemma 23. There exists q_{1} such that for all $q \geqslant q_{1}$, the following holds: Let a, s be integers such that $2^{t}<a \leqslant 2^{T+1}$ and $a 2^{s} \leqslant \alpha\left[2^{q} /\binom{q}{k}\right]$. Set $r=q-s+k$. Then Paul can win the r-question game from position $\left(a 2^{k}, a p_{1}(s-k) 2^{k-1}, \ldots, a p_{k}(s-k)\right)$.

Proof. What we must do here is to show that it is possible to simultaneously pack $a 2^{k} k$-sets, $a 2_{k-1} p_{1}(s-k)(k-1)$-sets, \ldots, and $a p_{k}(s-k) 0$-sets in the full binary 2^{r} tree.

Since $a 2^{s} \leqslant \alpha\left[2^{q} /\binom{q}{k}\right], s \leqslant q-k \log _{2} q+\mathrm{O}(1)$, and hence $r=q-s+k \rightarrow \infty$ as $q \rightarrow \infty$.

We proceed by induction over k. For $k=0$ (the no-lie case), we know that if $a 2^{s} \leqslant a 2^{q}$, then we can win the game starting at (a) with r questions, as $a \leqslant 2^{q-s}=2^{r}$.

Assume now that we have proved the statement for all numbers smaller than $k-1$, and we will now show it for k.
Now since $\left(a 2^{k}, \sum_{i=1}^{k-1} a p_{i}(s-k) 2^{k-i}, 0, \ldots, 0, a p_{k}(s-k)\right)$ dominates $\left(a 2^{k}, a p_{1}(s-\right.$ $k) 2^{k-1}, \ldots, a p_{k}(s-k)$), it suffices to pack $a 2^{k} k$-sets, $\sum_{i=1}^{k-1} a p_{i}(s-k) 2^{k-i}(k-1)$-sets, and $a p_{k}(s-k) 0$-sets in the full binary 2^{r} tree.

We will choose the $a 2^{k} k$-sets as follows:

$$
\begin{aligned}
S_{1}= & \left\{e_{1}, e_{2}, \ldots, e_{k+1}\right\} \\
S_{2}= & \left\{e_{k+2}, e_{k+3}, \ldots, e_{2 k+2}\right\} \\
& \vdots \\
S_{a 2^{k}}= & \left\{e_{\left(a 2^{k}-1\right)(k+1)+1}, e_{\left(a 2^{k}-1\right)(k+1)+2}, \ldots, e_{a 2^{k}(k+1)}\right\},
\end{aligned}
$$

where e_{r} is the sequence of all $N \mathrm{~s}$ except for the r th location which contains a Y (for example, $\left.e_{1}=Y N N N N \ldots\right)$. Here we assume that q is much larger than $a 2^{k}(k+1)$.

It is immediate to check that these are indeed k-sets and they are disjoint.
To insure that the $(k-1)$-sets that we construct are disjoint from these, we will require that any point in $\{Y, N\}^{q}$ that goes into any one of the $(k-1)$-sets starts with $a 2^{k}(k+1) N$'s (which means that in effect we will be packing the ($k-1$)-sets into the full binary tree of size $\left.2^{r-a 2^{k}(k+1)}\right)$.

Lemma 24. Under all the assumptions above, for q large enough, we can pack $\sum_{i=1}^{k-1}$ $a p_{i}(s-k) 2^{k-i}(k-1)$-sets in the full binary tree of size $2^{r-a 2^{k}(k+1)}$.

Proof. From the fact that $a 2^{s} \leqslant \alpha\left[2^{q} /\binom{q}{k}\right]$ one easily obtains that

$$
\begin{equation*}
a\binom{s-k}{k}<\frac{\alpha}{2^{k}} 2^{r} \tag{4}
\end{equation*}
$$

and hence, given some small δ such that $\alpha^{\prime}=\alpha+\delta<2^{k}$, for q large enough, we shall have that $a p_{k}(s-k)<\left(\alpha^{\prime} / 2^{k}\right) 2^{r}$.

From (4) we also obtain that as q gets large,

$$
\begin{equation*}
a\binom{s-k}{k-1}=\mathrm{o}\left(2^{r([(k-1) / k]+\varepsilon)}\right), \tag{5}
\end{equation*}
$$

where $\varepsilon<1 / k$ is an arbitrary (but fixed) small number.
Now since

$$
\sum_{i=1}^{k-1} a p_{i}(s-k) 2^{k-i}=2 a\binom{s-k}{k-1}(1+\mathrm{o}(1))
$$

in asymptotic notation (because the polynomials, with the exception of p_{k-1}, are all of degree smaller than $k-1$, and the leading term in $p_{k-1}(t)$ is $\binom{t}{k-1}$), (5)
implies that

$$
\sum_{i=1}^{k-1} a p_{i}(s-k) 2^{k-i}=\mathrm{o}\left(2^{r([(k-1) / k]+\varepsilon)}\right) .
$$

Since k is fixed, but r is allowed to be very large, it follows that

$$
\begin{equation*}
\sum_{i=1}^{k-1} a p_{i}(s-k) 2^{k-i}=\mathrm{o}\left(2^{r([(k-1) / k]+\varepsilon)}\right)=\mathrm{o}\left(\frac{2^{r-a 2^{k}(k+1)}}{\binom{r}{k-1}}\right) . \tag{6}
\end{equation*}
$$

Consider now the $k-1$ lie problem; fix $\tilde{\alpha}<2^{k-1}$, for example $\tilde{\alpha}=\frac{1}{2}$. By induction, Paul wins the s-question game from starting position $\left(\sum_{i=1}^{k-1} a p_{i}(s-k) 2^{k-i}, 0, \ldots, 0\right)$, provided that s is large enough to have

$$
\sum_{i=1}^{k-1} a p_{i}(s-k) 2^{k-i}<\frac{1}{2} \frac{2^{s}}{\binom{s}{k-1}}
$$

Now choose $s=r-a 2^{k}(k+1)$. From (6), for r large enough,

$$
\sum_{i=1}^{k-1} a p_{i}(s-k) 2^{k-i}=\mathrm{o}\left(\frac{2^{r-a 2^{k}(k+1)}}{\binom{r}{k-1}}\right) \leqslant \frac{1}{2} \frac{2^{s}}{\binom{s}{k-1}} .
$$

But this says that Paul wins the $r-a 2^{k}(k+1)$ question game from position ($\sum_{i=1}^{k-1} a p_{i}$ $\left.(s-k) 2^{k-i}, 0, \ldots, 0\right)$, provided that r is large enough.

Since as $q \rightarrow \infty, r \rightarrow \infty$, this holds when q is large enough.
Thus, we can pack the $a 2^{k} k$-sets and the $\sum_{i=1}^{k-1} a p_{i}(s-k) 2^{k-i}(k-1)$-sets in a disjoint fashion in the full binary tree on 2^{r} vertices. But how much space do we have left? The k-sets take up $\mathrm{O}(1)$ space, the $(k-1)$-sets take up at most $1+\binom{s-k}{1}+\cdots+$ $\binom{s-k}{k-1}$ space each, by Lemma 9; hence by (6), the total space taken is at most

$$
\mathrm{O}(1)+\sum_{i=1}^{k-1} a p_{i}(s-k) 2^{k-i}\left(1+\binom{s-k}{1}+\cdots+\binom{s-k}{k-1}\right)=\mathrm{o}\left(2^{r}\right) .
$$

Since the singletons, all $a p_{k}(s-k)$ of them, take up at most a constant fraction $\alpha^{\prime} / 2^{k}$ of the total size of the tree, it follows that, by use of Lemma 22, Paul wins the r question game starting at $\left(a 2^{k}, \sum_{i=1}^{k-1} a p_{i}(s-k) 2^{k-i}, 0, \ldots, 0, a p_{k}(s-k)\right.$), and because this position dominates $\left(a 2^{k}, a p_{1}(s-k) 2^{k-1}, \ldots, a p_{k}(s-k)\right)$, he also wins with r questions from the latter position.

Remark 25. An alternate proof of Lemma 23 may be given by proving that Paul wins the (harder) full lie r-question game from position $\left(a 2^{k}, a p_{1}(s-k) 2^{k-1}, \ldots, a p_{k}(s-k)\right)$.

It is shown in [6] that for all k there exists c such that for r sufficiently large Paul wins the r-question full lie game from position $\left(x_{k}, \ldots, x_{0}\right)$ whenever

$$
\sum_{i=0}^{k} x_{i}\left(\sum_{j=0}^{i}\binom{r}{i}\right)<2^{r}-c r^{k}
$$

A calculation shows that for r sufficiently large the initial position of Lemma 23 satisfies this condition.

All that is left is now to put together the results of this section.
Theorem 26. For all k and $\alpha<2^{k}$, there exists a q large enough so that for any $n \leqslant \alpha\left[2^{q} /\binom{q}{k}\right]$, Paul can win the q-question game from position $(n, 0,0, \ldots, 0)$.

Proof. Using the results of Lemma 16, it is enough to prove the theorem for $n=a 2^{s}$ with $a \in\left(2^{T}, 2^{T+1}\right] \cap \mathbb{N}$. But since $\left(a 2^{s}, 0, \ldots, 0\right)$ is dominated by $\left(a 2^{s}, a 2^{s-1}, \ldots, a 2^{s-1}\right)$, it is sufficient to show that Paul can win the q-question game starting from the latter position.

From ($a 2^{s}, a 2^{s-1}, \ldots, a 2^{s-1}$), Paul first makes the $s-k$ perfect splits of Lemma 21, resulting in position $\left(a 2^{k}, a p_{1}(s-k) 2^{k-1}, \ldots, a p_{k}(s-k)\right)$. By Lemma 23 he then wins with $r=q-s+k$ further questions.

4. Upper bounds

We will start with a double definition. Let x be a parameter later to be optimized.
Definition 27. A k-set A is normal if all sequences $w \in A$ have at least $(q / 2)-x N$ s. Otherwise the set is abnormal.

This definition allows for two easy lemmas.
Lemma 28. The minimum size of a k-set is bounded from below by

$$
\sum_{i=1}^{k}\binom{\frac{q}{2}-x+i-1}{i}
$$

Proof. We look at the number of points on the i th level of the k-tree corresponding to the k-set. These are paths for which exactly i lies have been committed by Carole.

Let the path from the root of the k-tree down to node $w \in\{Y, N\}^{q}$ on level i be $r_{0}=$ root $, r_{1}, \ldots, r_{i}$, and let $\delta\left(r_{j}, r_{j+1}\right)$, for all $0 \leqslant j \leqslant i-1$, be the place where r_{j+1} first differs from its parent.

Let $n_{j+1}=$ number of N 's in r_{j} before position $\delta\left(r_{j}, r_{j+1}\right)$, for all $0 \leqslant j \leqslant i-1$. Then it follows that to each sequence

$$
1 \leqslant n_{1} \leqslant n_{2} \leqslant \cdots \leqslant n_{i}
$$

corresponds exactly one point on level i. Since we have at least $(q / 2)-x$ choices for n_{i} (but we could in fact have much more), it follows that level i must contain at least $\binom{\frac{q}{2}-x+i-1}{i}$ different points.

By adding all these lower bounds for levels 0 through i we get the result of the lemma.

Lemma 29. The total number of abnormal sets we can pack in the Decision Tree is at most

$$
\sum_{i=0}^{\frac{q}{2}-x}\binom{q}{i}
$$

Proof. Since they must be disjoint (because of the packing), it follows that the total number of abnormal sequences cannot surpass the total number of sequences with less than $(q / 2)-x N$'s. The result follows.

The two lemmas above allow us to give the following upper bound.

Lemma 30. If Paul can win the k-lie game with q questions starting from position $(n, 0, \ldots, 0)$, then

$$
n \leqslant \frac{2^{q}}{\sum_{i=1}^{k}\binom{\frac{q}{2}-x+i-1}{i}}+\sum_{i=0}^{\frac{q}{2}-x}\binom{q}{i}
$$

for any x.
Proof. If he can win, Paul can somehow pack $n k$-sets, normal and abnormal. The bound follows then immediately from Lemmas 28 and 29.

With this, we are now ready to present the main result of the section. Let $\varepsilon>0$, and k fixed.

Theorem 31. There exists q_{0} sufficiently large such that for all $q \geqslant q_{0}$, for any n such that Paul wins the k-lie, q question game from position ($n, 0, \ldots, 0$),

$$
n \leqslant\left(2^{k}+\varepsilon\right) \frac{2^{q}}{\binom{q}{k}}
$$

Proof. Let $x=c_{k} \sqrt{q \ln q}$, with $c_{k}>\sqrt{k / 2}$.

To win the game, Paul must be able to pack $n k$-sets in the Decision Tree. By Lemma 30 we get that

$$
n \leqslant \frac{2^{q}}{\sum_{i=1}^{k}\binom{\frac{q}{2}-x+i-1}{i}}+\sum_{i=0}^{\frac{q}{2}-x}\binom{q}{i}
$$

Since

$$
\sum_{i=0}^{\frac{q}{2}-x}\binom{q}{i}=2^{q} \operatorname{Pr}\left[S \text { contains less than }\left(\frac{q}{2}-c_{k} \sqrt{q \ln q}\right) N \mathrm{~s}\right]
$$

where S is a random sequence of $q Y$'s and N 's, Chernoff-type bounds yield that

$$
\begin{aligned}
& \operatorname{Pr}\left[S \text { contains less than }\left(\frac{q}{2}-c_{k} \sqrt{q \ln q}\right) N \mathrm{~s}\right] \\
& \quad \leqslant \mathrm{e}^{-c_{k}^{2} q \ln q /(q / 2)}=q^{-2 c_{k}^{2}}=\mathrm{o}\left(\binom{q}{k}^{-1}\right)
\end{aligned}
$$

by our choice of c_{k}.
Thus there exists a q_{0} large enough such that

$$
\begin{equation*}
\sum_{i=0}^{(q / 2)-x}\binom{q}{i}<2^{k-1} \varepsilon \frac{2^{q}}{\binom{q}{k}} . \tag{7}
\end{equation*}
$$

Since $\sum_{i=1}^{k}\binom{\frac{q}{2}-x+i-1}{i}$ is a polynomial in q of degree k, and since $x=\mathrm{o}(q)$, it follows that

$$
\sum_{i=1}^{k}\binom{\frac{q}{2}-x+i-1}{i} \sim\binom{\frac{q}{2}}{k} \sim 2^{-k}\binom{q}{k}
$$

Hence, there must be a q large enough so as to have

$$
\begin{equation*}
\sum_{i=1}^{k}\binom{\frac{q}{2}-x+i-1}{i} \geqslant \frac{1}{2^{k}+(\varepsilon / 2)}\binom{q}{k} \tag{8}
\end{equation*}
$$

From Eqs. (7) and (8), it follows that for any $q \geqslant q_{0}$,

$$
n \leqslant\left(2^{k}+\varepsilon\right) \frac{2^{q}}{\binom{q}{k}}
$$

and the theorem is proved.

References

[1] E.R. Berlekamp, Block coding for the binary symmetric channel with noiseless, delayless feedback, in: H.B. Mann (Ed.), Error-Correcting Codes, Wiley, New York, 1968, pp. 61-88.
[2] F. Cicalese, D. Mundici, Optimal coding with one asymmetric error: below the Sphere Packing bound, in: D.-Z. Du, P. Eades, V. Estevill-Castro, X. Lin, A. Sharma (Eds.), Proc. Sixth Annu. Internat. Conf. Computing and Combinatorics-COCOON'2000, Lecture Notes in Computer Science, Vol. 1858, Springer, Berlin, 2000, pp. 159-169.
[3] A. Pelc, Solution to Ulam's problem on searching with a lie, J. Combin. Theory Ser. A. 44 (1987) 129-142.
[4] A. Pelc, Searching games with errors-fifty years of coping with liars, Theoret. Comput. Sci. 270 (2002) 71-109.
[5] A. Rényi, A Diary on Information Theory, Wiley, New York, 1984 (original publication: Napló az információelméletröl, Gondolat, Budapest, 1976).
[6] J. Spencer, Ulam's searching problem with a fixed number of lies, Theoret. Comput. Sci. 95 (1992) 307-321.
[7] S.M. Ulam, Adventures of a Mathematician, Scribners, New York, 1976.

[^0]: * Corresponding author.

 E-mail addresses: dumitriu@math.berkeley.edu (I. Dumitriu), spencer@cims.nyu.edu (J. Spencer).

