
Theoretical Computer Science 262 (2001) 285–310
www.elsevier.com/locate/tcs

Algebraic nets with #exible arcs�

Ekkart Kindler ∗, Hagen V,olzer 1

Humboldt-Universit�at zu Berlin, Institut f�ur Informatik, D-10099 Berlin, Germany

Received February 1999; revised March 2000; accepted May 2000
Communicated by G. Rozenberg

Abstract

Algebraic Petri nets as de5ned by Reisig (Theoret. Comput. Sci. 80 (1991) 1–34.) lack a
feature for modelling distributed network algorithms, viz. #exible arcs. In this paper, we equip
algebraic Petri nets with #exible arcs and call the resulting extension algebraic system nets.
We demonstrate that algebraic system nets are better suited for modelling distributed algorithms.
Besides this practical motivation for introducing algebraic system nets, there is a theoretical
one. The concept of place invariants introduced along with algebraic Petri nets has a slight
insu=ciency: There may be place invariants of the unfolded algebraic Petri net that cannot
be expressed as a place invariant of the algebraic Petri net itself. By introducing algebraic
system nets along with a more general concept of place invariants we eliminate this insu=ciency
too. Moreover, we generalize the concept of place invariants, which we call simulations. Many
well-known concepts of Petri net theory such as siphons, traps, modulo-invariants, sur-invariants
and sub-invariants are special cases of a simulation. Still, a simulation can be veri5ed in the
same style as classical place invariants of algebraic Petri nets. c© 2001 Elsevier Science B.V.
All rights reserved.

Keywords: Algebraic Petri nets; Flexible arcs; Linear-algebraic veri5cation techniques; Place
invariants

0. Introduction

Algebraic Petri nets as proposed by Reisig [21] lack a feature that is convenient
for modelling distributed network algorithms: Arcs with #exible throughput – #exible
arcs for short – are not allowed. We will motivate the use and the necessity of #exible
arcs with the help of an example. Then, we formally introduce a generalized version

� A preliminary version of this paper was published in [14].
∗ Corresponding author.
E-mail address: kindler@informatik.hu-berlin.de (E. Kindler).
1 Supported by DFG: Konsensalgorithmen.

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00205 -X

286 E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310

of algebraic Petri nets that supports #exible arcs. We call this version algebraic system
nets.
Algebraic system nets will be equipped with a concept of place invariants, which

overcomes a problem of Reisig’s version [21]. There, the unfolded algebraic Petri net
may have a (low-level) place invariant that has no corresponding (high-level) place
invariant in the algebraic Petri net. We will give an example for such a place invariant.
For convenience, we do not use the traditional representation of a place invariant as

a vector of weight functions [10] or as a vector of terms [21]. Rather, we represent
a place invariant as a multiset-valued linear expression in which place names may
occur as bag-valued 2 variables. Though this diIerence is only syntactical, it allows a
smoother transition between Petri net properties and temporal logic (cf. [22, 13, 27, 12]).
Moreover, it gives rise to a generalization: We can use expressions that evaluate to
an arbitrary commutative monoid equipped with some a9ne preorder. We call this
generalization simulation. Algebraically, a simulation is a homomorphism from the oc-
currence graph of the net to the preordered commutative monoid. The use of linear
weight functions into more general domains has been proposed before (cf. [25, 7]);
the use of a=ne preorders, however, is new. It turns out that well-known concepts
like siphons (deadlocks) and traps [19, 20], modulo-invariants [7], and sur-invariants
and sub-invariants [16] are special cases of simulations. Traps and siphons for al-
gebraic Petri nets have been already introduced by Schmidt [23]. Modulo-invariants,
sub-invariants, and sur-invariants for algebraic nets are introduced in this paper as
the canonical adaptation of the low-level versions. Moreover, we introduce semi-place
invariants and stabilization expressions as further instances of simulations. Since all
techniques are instances of the same concept, simulations allow us to apply these tech-
niques in a uniform way. This simpli5es the implementation of tools that support these
veri5cation techniques (see [1] for details).
The use of #exible arcs in algebraic Petri nets is not completely new. Billington [3, 4]

proposed some extensions that allow a restricted kind of ‘#exibility’, and Reisig [21]
indicated some possible extensions. Our de5nition of algebraic system nets has been
introduced in [11] – without any results and without the concept of place invariants.
Here, we present the above-mentioned results about algebraic system nets and the
de5nition and investigation of place invariants. The relation of algebraic system nets
with the versions of algebraic Petri nets of Vautherin [26] and Reisig [21] will be
discussed in the conclusion.
In this paper, we de5ne the semantics of an algebraic system net in two ways:

We de5ne the processes of an algebraic system net as a behavioural semantics, and
we de5ne the unfolding of an algebraic system net to a place=transition system. Un-
foldings will be used to relate the concept of a place invariant of an algebraic sys-
tem net to the classical concept of a place invariant of a place=transition-system.
Since place=transition-systems have a behavioural semantics of their own, we have two

2 In our terminology, a bag is a 5nite non-negative multiset.

E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310 287

behavioural semantics for algebraic system nets: the processes of the algebraic system
net itself and the processes of its unfolding. We show that both concepts coincide.
The paper is organized as follows. In Section 1, we informally introduce algebraic

system nets and motivate the need for #exible arcs. Moreover, we informally intro-
duce our notation for place invariants and the generalization to simulations. Then, we
formally de5ne algebraic system nets and their processes in Section 2 and their place
invariants in Section 3. In Section 4, we de5ne unfoldings of algebraic system nets and
discuss the relation of place invariants of an unfolding to the place invariants of the
algebraic system net itself. The generalization of place invariants to simulations will
be de5ned in Section 5. Last, we show that the processes of the unfolding are identical
to the processes of the algebraic system net itself.

1. An example

Before we formally introduce algebraic system nets, we present an example, which
models a simple distributed algorithm. The example motivates the need for #exible arcs
and provides some intuitive understanding of algebraic system nets and the concept of
place invariants.

1.1. A minimum distance algorithm

The algorithm works on a network of agents where some distinguished agents are
so-called roots of the network. The algorithm computes the minimal distance from a
root, for each agent of the network. This algorithm was inspired by a simple spanning
tree algorithm [6]; the net model was presented already in [11] and veri5ed in [12].
We denote the set of agents by A, the set of distinguished root-agents by R⊆A;

the set of other agents, the set of the so-called inner agents, is denoted by I =A\R.
The underlying network is denoted by N ⊆A×A. The algebraic system net �1 shown
in Fig. 1 models the behaviour of each agent x∈A: Initially, a root-agent x∈R sends
a message to each of its neighbours in the network. With this message, it informs
its neighbours that they have distance 1 from a root (viz. from x itself). The agent
x∈R makes an entry for itself that its distance from a root is 0. The currently known
distance n of an agent x from some root agent is represented as a pair (x; n) on place
distance. So, an agent may be in exactly one of the three states rootagent; inneragent
or it knows some distance from a root. The behaviour of a root agent is modelled
by transition t1 of �1; a message m to an agent y∈A is represented as a pair (y;m)
on place messages. Suppose y1; : : : ; yn are the neighbours of x in the communication
network, then M (x; 1) denotes the set of pairs 3 [(y1; 1); : : : ; (yn; 1)], where each pair
represents a message to one neighbour.
An inner agent x∈ I waits until it receives a message from some of its neighbours.

When it receives a message, it accepts the distance n from this message; in addition,

3 The use of square brackets indicates that we actually use bags rather than sets.

288 E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310

Fig. 1. A minimum distance algorithm �1.

Fig. 2. A network of agents.

it sends a message n + 1 to each of its neighbours. This behaviour is modelled by
transition t2.
When an agent x∈A receives another message with a distance n that is shorter than

the distance m which it already knows, it accepts the new distance n and sends the
new distance n+1 to each of its neighbours. This behaviour is modelled by transition
t3, where the transition guard guarantees n¡m. Altogether, this behaviour guarantees
that eventually each agent knows its minimal distance to a root – if there is a path to
some root at all.
Let us consider how messages are sent out in �1 in more detail: As we said above,

a message to an agent x is modelled as a pair (x; n) on place messages where n
represents the contents of the message – in our example a number. In order to get a
simple and concise Petri net model of the algorithm, we have modelled the sending of
messages to all neighbours by a single transition; this is possible because M (x; 1) resp.
M (x; n) represents a set of messages. Of course, the set denoted by M (x; n) depends on
the agent x and the underlying network N . For the network shown in Fig. 2, we have:
M (a; n)= [(b; n); (c; n)]; M (b; n)= [(c; n)], and M (c; n)= [] for each n∈N, where []
denotes the empty bag. For this network, the number of pairs in M (x; n) varies for
the diIerent agents. Therefore, the number of tokens ‘#owing through’ the arc from
transition t1 to place messages varies between 0 and 2. This is a typical example for
a #exible arc. Therefore, �1 is not a conventional algebraic Petri net as de5ned by
Reisig [21].

E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310 289

Of course, it is possible to model the above algorithm by a conventional algebraic
Petri net. For example, one could send the messages to each neighbour one after the
other. But, the resulting algebraic Petri net has more transitions and is more complicated
than �1; the simplicity of �1 results from the use of #exible arcs. Moreover, sending
messages to each neighbour in some order is a design decision, which is completely
irrelevant for the correctness of the algorithm. In this sense, the above model represents
the algorithmic idea more concisely.

1.2. Place invariants as linear expressions

In our setting, a place invariant of an algebraic system net is represented by a linear
expression in which place names of the net may occur as variables (of the corre-
sponding bag type). Such an expression is, for example, rootagents+ inneragents+
pr1(distance). The function pr1 :A×N→A is the projection of pairs to the 5rst com-
ponent. In order to apply this function to the bag distance, we linearly extended it to
a function pr1 :B(A×N)→B(A), where B(A) denotes the bags over the set A.
Given a marking, the expression evaluates to some multiset. Each place name stands

for the bag of tokens at that place at the given marking. The example expression
evaluates to the multiset 4 R+ I + []=A in the initial marking. A linear expression is
a place invariant if for each occurrence of a transition the expression evaluates to the
same value at the marking before and at the marking after this occurrence.
The expression rootagents + inneragents+pr1(distance) is a place invariant of

the above algebraic system net �1. Since this expression evaluates to A in the initial
marking, we can conclude that in each reachable marking of the system, the propo-
sition rootagents + inneragents+pr1(distance)=A holds. This property implies the
previously mentioned observation that each agent is in exactly one of the three states
rootagent; inneragent or distance. Representing a place invariant by an expression
rather than by a vector of weights allows an easy integration of place invariants into
a temporal logic framework: For a place invariant u that evaluates to a multiset A in
the initial marking, we derive the temporal formula u=A.
To verify that a linear expression is a place invariant of the system, we have to check

the validity of one equation for each transition. We consider transition t1 as an example.
We construct the equation as follows: For the left-hand side of the equation we take the
expression rootagents+inneragents+pr1(distance) and substitute each place name by
the inscription of the arc from that place to transition t1, and we substitute [], when no
arc exists. This gives us x+[]+pr1([]). For the right-hand side we substitute each place
name by the inscription of the arc from t1 to that place; this gives us []+[]+pr1((x; 0)).
Obviously, the resulting equation x + [] + pr1([])= [] + [] + pr1((x; 0)) is valid.
The substitutions for the left-hand side and the right-hand side of the equation cor-

responding to a transition t will be denoted by t− and t+, respectively. Then, a linear
expression u is a place invariant of the algebraic system net, if for each transition t

4 We treat sets as multisets by identifying them with their characteristic function.

290 E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310

of the algebraic system net the equation t−(u)= t+(u) holds true (in the underlying
algebra).
Usually, place invariants are characterized as follows: For each transition, t+ − t−

constitutes one column of the transposed incidence matrix NT of the algebraic Petri
net [21]. Then, a place invariant is a vector i of multiset-valued terms satisfying
NT · i=0, where multiplication is term substitution. Our syntactical representation is
just a diIerent view, which is more convenient for correctness proofs because it allows
a smoother transition from place invariant equations to temporal propositions (cf. [13]).
This, however, is only a matter of taste. What makes our concept of place invariants
more powerful is that we also allow ‘#exible expressions’ in place invariants, which
will be demonstrated in Section 4. Note that this would also be possible in vector
notation.

1.3. More linear expressions

A place invariant is a linear expression of some multiset type. Its veri5cation con-
dition for each transition t is t−(u)= t+(u). Now, let u be a linear expression of some
monoid type X , and let ,→ ⊆X ×X be an a=ne 5 preorder in the monoid. Then, we
say that ,→ simulates � via u if t−(u) ,→ t+(u). If u evaluates to u0 in the initial
marking, we have u0 ,→ u for each reachable marking.
From u0 ,→ u, we can infer invariance properties of �. For example, if we choose the

monoid (2A;∪; ∅) and the preorder ⊇, then, �1 is simulated via the linear expression
supp(rootagents) ∪ supp(inneragents), where supp denotes the support of a bag, i.e.
the set of elements which occur at least once in the bag. We can conclude that for
each reachable marking of �1 holds A⊇ supp(rootagents) ∪ supp(inneragents).
Such an expression is called (individual) siphon of �: A transition adds a partic-

ular token to the siphon only if that token is also removed by that transition. Other
veri5cation techniques such as traps and modulo-place invariants can be formalized
similarily. Moreover, we introduce semi-place invariants and stabilization expressions
as further useful instances of simulations.
If an algebraic system net is simulated by a well-founded a=ne order, then the

corresponding expression is called stabilization expression. Transitions which strictly
decrease the value of the stabilization expression can happen only 5nitely many times.
A special case of stabilization is termination: A termination expression proves that
each run is 5nite. Sometimes, in Petri net theory, sur-place invariants and sub-place
invariants [16] are used to prove termination. They are closely related to termination
expressions and they will also be de5ned as special simulations.
As all these veri5cation techniques are instances of the same scheme, they can be

checked in the same way, by the simple local condition t−(u) ,→ t+(u). The uni5cation
of veri5cation techniques is one of the main bene5ts of our approach.

5 A relation ,→ is a=ne if, for each x ,→ y and each z, we have also z + x ,→ z + y.

E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310 291

2. Algebraic system nets

In this section, we formalize algebraic system nets and their processes.

2.1. Basic notations

First, we introduce some notations and basic concepts from Petri nets [20] and
algebraic speci5cations [8]. The only new concept is the bag-signature together with
a corresponding concept of a bag-algebra.

Sets; families; functions; and relations: By B;N; and Z we denote the set {true; false}
of truth values, the set of natural numbers with 0, and the set of integers, respectively.
For a set A, we denote the cardinality of A by |A|, we denote the set of all non-empty
5nite sequences over A by A+, and we denote the set of all subsets of A by 2A. A family
of sets over some index set I is denoted by (Ai)i∈I . The family (Ai)i∈I is pairwise
disjoint, if for each i; j∈ I with i �= j holds Ai∩Aj = ∅. For a family A=(Ai)i∈I , we use
A also to denote the set

⋃
i∈I Ai when ambiguities are excluded by the context. For two

sets A and B, we denote the set of all mappings from A to B by BA= {f |f: A → B}.
If R⊆A×A is some relation over A then R+ denotes the transitive closure of R, and
R∗ denotes the re#exive and transitive closure of R.

Monoids: A set A together with a commutative and associative binary operation + and
a neutral element 0 is called commutative monoid. A re#exive and transitive relation
,→ ⊆A×A is a9ne if ∀x; y; z ∈A : x ,→y⇒ z+x ,→ z+y. If (A;+; 0) is a commutative
monoid and ,→ ⊆A×A is an a=ne re#exive and transitive relation, M=(A;+; 0; ,→)
is a preordered commutative monoid.
Let M=(A;+; 0; ,→) be a preordered commutative monoid and B be a set. By

LB(M)= (AB;+l; 0l; ,→l), we denote the lifting of M over B where +l; 0l; ,→l are de-
5ned by (f1+lf2)(x)=f1(x)+f2(x); 0l(x)= 0; and f1 ,→lf2 if ∀x∈B : f1(x) ,→f2(x).
We omit the index l where clear from the context. Obviously, LB(M) is a preordered
commutative monoid.

Multisets and bags: A multiset over a 5xed set A is a mapping M : A→Z. The set
of all multisets over A is denoted by ZA. We write M [a] instead of M (a) for the
multiplicity of an element a in M . We de5ne addition +, the empty multiset [], and
inclusion 6 of multisets by lifting (Z;+; 0;6) over A. The support of a multiset is
de5ned by supp(M)= {x∈A |M [x] �=0}. A multiset M is non-negative if M [x]¿0 for
all x in A, and M is <nite if supp(M) is 5nite. We consider sets as special multisets
by identifying them with their characteristic function.
A 5nite non-negative multiset is also called bag. The set of all bags over A is

denoted by B(A). We represent a bag by enumerating its elements in square brackets:
[a1; : : : ; an] (according to the multiplicities). We de5ne the cardinality of a bag M by
|M |= ∑

x∈A M [x].

292 E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310

2.2. Place=transition systems

Petri nets: A Petri net (net for short) N =(P; T; F) consists of two disjoint sets P and
T and a relation F ⊆ (P×T) ∪ (T ×P). An element of P is called place, an element
of T is called transition, and an element of F is called arc of the net. As usual, we
graphically represent a place by a circle, a transition by a square, and an arc by an
arrow between the corresponding elements. A net is 5nite if both, P and T , are 5nite.

Place=transition systems: Basically, a place=transition system is a net with natural
numbers as arc inscriptions. For convenience, we represent the arc inscriptions by two
mappings W−; W+ :T → B(P). The numbers W−(t)[p] and W+(t)[p] represent the
inscription of arc (p; t) and (t; p), respectively. The respective number is 0 if and only
if there is no such arc in the net.

De�nition 1 (Place=transition system). A place=transition system "=(P; T;W−;
W+; M0) consists of
1. a set P of places and a set T of transitions, disjoint from P,
2. two mappings W−; W+ :T → B(P),
3. a marking M0, called initial marking of �, where a marking M ∈B(P) of a place=
transition system is a bag over P.

At a given marking M1 ∈B(P), a transition t is enabled, if there exists a marking M
such that M1 =W−(t) +M , i.e. if W−(t)6M1. Then, transition t may occur resulting
in the successor marking M2 =M +W+(t). We denote the occurrence of transition t
by M1

t−→ M2. If M2 is a successor marking of M1, we write M1 → M2. If we have
M ∗−→ M ′, we say M ′ is reachable from M .

2.3. Algebras

Algebras and signatures: A signature SIG=(S;OP) consists of a 5nite set S of sort
symbols and a pairwise disjoint family OP=(OPa)a∈S+ of operation symbols. A SIG-
algebra A=((As)s∈S ; (fop)op∈OP) consists of a family A=(As)s∈S of sets and a family
(fop)op∈OP of total functions such that for each op∈OPs1 ::: sn sn+1 we have fop : As1×· · ·×
Asn →Asn+1 . A set As of the algebra is called domain and a function fop is called
operation of the algebra.

Variables and terms: For a signature SIG=(S;OP) we call a pairwise disjoint family
X =(Xs)s∈S with X ∩OP= ∅ a sorted SIG-variable set. Next we de5ne terms. Each
term is associated with a particular sort. Let X =(Xs)s∈S be a sorted SIG-variable set.
The set of SIG-terms over X of sort s is denoted by TSIG

s (X) and inductively de5ned
by:

1. x∈Xs implies x∈TSIG
s (X).

E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310 293

2. ui ∈TSIG
si (X) for i=1; : : : ; n and op∈OPs1 ::: sn sn+1 implies op(u1; : : : ; un)∈TSIG

sn+1 (X).

The set of all terms (of any sort) is denoted by TSIG(X). A term without variables is
called ground term. We denote the set of ground terms by TSIG =TSIG(∅) and the set
of ground terms of sort s by TSIG

s =TSIG
s (∅). We also write Ts for TSIG

s (X) whenever
SIG is clear from the context.

Evaluation of terms: For a signature SIG=(S;OP), a sorted SIG-variable set X =
(Xs)s∈S , and a SIG-algebra A=((As)s∈S ; (fop)op∈OP) a mapping % :X →A is an as-
signment for X if for each s∈ S and x∈Xs holds %(x)∈As. We inductively extend %
to a mapping % : T(X)→A by

%(op(u1; : : : ; un)) = fop(%(u1); : : : ; %(un)) for op(u1; : : : ; un) ∈ T(X):

The mapping % is called %-evaluation in A. Let %∅ : ∅ → A be the unique assignment
for the empty variable set; %∅ evaluates ground terms.

Substitutions: Let X and Y be SIG-variable sets. A mapping ' : X → T(Y) is called
substitution if x∈Xs implies '(x)∈Ts(Y). Analogously to evaluations, we also extend
' to a mapping ' : T(X) → T(Y) in order to apply it to terms. In case of Y = ∅ we
call ' ground substitution. For an assignment % and substitutions ' and (, we write
%'(t) short for %('(t)) and we write '((t) short for '(((t)).

Bag-signatures and -algebras: We introduce bag-signatures as particular signatures. In
a bag-signature we distinguish some ground-sorts and we assign a bag-sort to each
ground-sort. In a bag-algebra the domain associated with a bag-sort must be the bags
over the domain of the corresponding ground-sort.

De�nition 2 (Bag-signature; BSIG-algebra). Let SIG=(S;OP) be a signature and
GS;BS⊆ S; BSIG=(S;OP; bs) is a bag-signature if bs :GS → BS is a bijective map-
ping. An element of GS is called ground-sort, an element of BS is called bag-sort of
BSIG. A SIG-algebra A is a BSIG-algebra if for each s∈GS holds Abs(s) =B(As),
i.e. if for each ground-domain the corresponding bag-domain is actually the set of all
bags over the ground-domain.

In the following, we assume that a bag-signature BSIG has a sort symbol bool∈ S
and in each BSIG-algebra the corresponding domain is Abool=B. Furthermore, we as-
sume that for each bag-sort the usual bag operations (e.g. ·+ ·, [·], []) are prede5ned.
A bag-signature BSIG=(S;OP; bs) is a specialized signature SIG=(S;OP) and by
de5nition each BSIG-algebra is a SIG-algebra. Therefore, variables, terms, assign-
ments, evaluation, and substitutions are de5ned for bag-signatures, too. For a boolean
term u∈Tbool(X), we say that u holds true in A if for all assignments % of X , we
have %(u)= true.

294 E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310

Sometimes, it will be necessary to extend an algebra of a net by some additional
operations and sorts for analysis and veri5cation purposes. Since the necessary ex-
tensions are not a priori known, it must be possible to extend an algebra without
changing the original parts of the algebra. To this end, we de5ne the concept of a
conservative extension of an algebra. We call a signature SIG=(S;OP) a subsig-
nature of a signature SIG′=(S ′;OP′), if S ⊆ S ′ and for each arity a∈ S+ we have
OPa⊆OP′

a. We also call SIG
′ an extension of SIG. Basically, SIG′ may introduce

new sorts and new operation symbols, but must not change the arity of operation sym-
bols of SIG. A SIG′-Algebra A′=((A′

s)s∈S ; (f
′
op)op∈OP′) is a conservative extension

of a SIG-Algebra A=((As)s∈S ; (fop)op∈OP) if for all s∈ S we have A′
s=As and for all

op∈OP we have f′
op=fop. This way, A

′ coincides with A for all sorts and operations
of SIG.
Typically, we will extend a SIG-Algebra A by some sorts and operations of a

speci5c structure. For example, we will use monoids, bags, or multisets. Technically,
the extension A′ is a conservative extension of two algebras: A and an algebra which
represents the extended data type. For example, let SIG=(S;OP) be some signature
and MSIG=({s};+sss; 0s) be a signature of a monoid (such that symbols s, + and 0
do not occur in SIG). Then, we call SIG′=(S∪{s}; OP∪{+; 0}) a monoid extension
of SIG. A SIG′-algebra A′ is called a monoid extension of a SIG-Algebra A if it is
a conservative extension of both, A and some monoid M. Similarly, we refer to bag
and multiset extensions if M is a bag or a multiset algebra.

2.4. Algebraic system nets

In this section, we de5ne algebraic system nets, their markings, and the occurrence
rule.

De�nition 3 (Algebraic system net). Let BSIG=(S;OP; bs) be a bag-signature with
bag-sorts BS. An algebraic system net �=(N;A; X; i) over BSIG consists of

1. a 5nite net N =(P; T; F) where P is sorted over BS, i.e., P=(Ps)s∈BS is a bag-
valued BSIG-variable set,

2. a BSIG-Algebra A,
3. a sorted BSIG-variable set X disjoint from P,
4. a net inscription i : P ∪ T ∪ F → TBSIG(X) such that
(a) for each p∈Ps: i(p)∈TBSIG

s , i.e., the restriction of i to P is a ground substi-
tution for P,

(b) for each t ∈T : i(t)∈TBSIG
bool (X), and

(c) for each t ∈T , and for each p∈Ps with f=(t; p)∈F or f=(p; t)∈F holds
i(f)∈TBSIG

s (X).

For a place p∈P, the inscription i(p) is called symbolic initial marking of p; for a
transition t ∈T , the term i(t) is called guard of t. Note that a place is considered to
be a variable and the sort of a place is a bag-sort.

E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310 295

De�nition 4 (Pre- and post-substitution). For each transition t of an algebraic sys-
tem net � we de5ne the two substitutions t−; t+ :P→T(X), called pre- and post-
substitution respectively, by:

t−(p) =

{
i(p; t) if (p; t) ∈ F;

[] otherwise;
t+(p) =

{
i(t; p) if (t; p) ∈ F;

[] otherwise:

De5nition 3 gives the syntax of an algebraic system net. The algebra, however, is still
given semantically because we want to be #exible. We can incorporate any appropriate
formalism for representing an algebra. In the tool proposed in [1], for example, the
algebra of an algebraic system net is characterized as a theory for a theorem prover
for 5rst-order predicate logic. The semantics, i.e. the processes, of an algebraic system
net will be de5ned in Section 2.5. Here, we de5ne markings and the occurrence-rule
for algebraic system nets. A marking associates each place of an algebraic system net
with a bag over the corresponding sort.

De�nition 5 (Marking and initial marking). Let BSIG be a bag-signature and � be
an algebraic system net as in De5nition 3. A marking M of � is an assignment for P.
The marking M0 with M0(p)= %∅(i(p)) for each p∈P is called the initial marking
of �. We de5ne the addition and inclusion of markings by lifting bags over P.

Transitions of algebraic system nets occur in modes. A mode of a transition associates
each variable of X with some value of the algebra. In a particular mode, an arc-
inscription evaluates to some bag. A transition t may occur in mode , if all elements
denoted by the inscription of the arcs pointing to t are present in the current marking
and the guard of the transition evaluates to true. We formalize the occurrence-rule by
the help of the markings ,t− and ,t+. The marking ,t− and the marking ,t+ represent
the elements which are removed and added, respectively, when t occurs in mode ,.
A pair (t; ,) is also denoted by t:,. We call t:, an action.

De�nition 6 (Occurrence rule and reachable markings). Let � be an algebraic sys-
tem net as in De5nition 3. Let t ∈T and , be an assignment for X in A. In a given
marking M1, a transition t is enabled in mode , if there exists a marking M such
that M1 = ,t− +M and ,(i(t))= true. Then, transition t may occur in mode ,, which
results in the successor marking M2 =M+,t+. We denote the occurrence of transition
t in mode , by M1

t:,−→ M2. If M2 is any successor marking of M1, then we denote
this by M1 −→ M2. If we have M

∗−→ M ′ then we say M ′ is reachable from M . We
say that M is a reachable marking of � if M is reachable from M0, i.e. the initial
marking of �.

Remark 1. In the following, we only consider algebraic system nets in which for each
transition t and each mode ,, the markings ,t− and ,t+ are nonempty. This helps to
avoid some anomalies in the de5nition of processes (see [2] for further explanation).

296 E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310

Fig. 3. A process of �1.

2.5. Processes of algebraic system nets

Now, we de5ne non-sequential processes [9, 2] for algebraic system nets. Fig. 3
shows a process of the algebraic system net �1 (see Fig. 1) on the network shown in
Fig. 2. Basically, a process is an inscribed acyclic Petri net with non-branching places.
The inscription of the initial places corresponds to the initial marking of the algebraic
system net and each transition corresponds to the occurrence of a transition of the
algebraic system net in some mode.
For the formal de5nition of processes we start with some notations and de5nitions,

which mainly follow the lines of [2].

De�nition 7. Let N =(P; T; F) be a net.

1. For an element x∈P ∪T of N , we de5ne the preset of x by •x= {y∈P ∪T | (y; x)
∈F} and the postset of x by x•= {y∈P ∪T | (x; y)∈F}.

2. We de5ne the minimal elements of N by ◦N = {x∈P ∪T | •x= ∅} and the maximal
elements of N by N ◦ = {x∈P ∪T | x•= ∅}.

3. For x∈P ∪T we de5ne the set of predecessors by ↓x= {y∈P ∪T | (y; x)∈F+}.

Processes are de5ned by the help of occurrence nets. An occurrence net has two
main features: The #ow relation is acyclic and is not branching at places. Moreover,
each element of an occurrence net has only 5nitely many predecessors. For a detailed
motivation of all features we refer to [9, 2].

De�nition 8 (Occurrence net). A net K =(B; E;¡·) is an occurrence net if

1. ◦K ⊆B and K◦ ⊆B,

E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310 297

2. ◦K is 5nite and for each e∈E both, •e and e•, are 5nite,
3. for each b∈B holds |•b|61 and |b•|61, and
4. for each b∈B the set of predecessors ↓b is 5nite and b =∈↓b.

For the sake of clarity, we use other symbols for places and transitions in an oc-
currence net. Moreover, we call a place of an occurrence net condition and we call a
transition event. Next we de5ne the states of an occurrence net.

De�nition 9 (States of an occurrence net). Let K =(B; E;¡·) be an occurrence net.
For two subsets of conditions Q;Q′ ⊆B we de5ne the occurrence relation −→ by:
Q −→ Q′ if there exists an event e∈E such that •e⊆Q and Q′=(Q\•e)∪ e•. For
Q;Q′ ⊆B we say Q′ is reachable from Q if Q ∗−→ Q′. A subset of conditions Q⊆B
is a state of K , if Q is reachable from ◦K . The set ◦K is called the initial state
of K .

Processes of algebraic system nets: In a process, each condition of the occurrence
net is associated with some place of the algebraic system net along with an element
of the corresponding domain. This is formalized as condition labelling.
In the following, we use the notation p:a for the pair (p; a) if p is a place and if

a is a token of an algebraic system net.

De�nition 10 (Condition labelling). Let � be an algebraic system net over a bag-
signature BSIG as in De5nition 3, and let K =(B; E;¡·) be an occurrence net.
A mapping r : B→P×A is a condition labelling of K if for each b∈B with r(b)=p:a
it holds that a∈As implies p∈Pbs(s). For a given condition labelling r, each 5nite sub-
set Q⊆B can be associated with a marking. We denote this marking by r(Q) and
de5ne it by r(Q) : P→B(A) with r(Q)(p)[a] = |{b∈Q | r(b)=p:a}|.

An occurrence net with labelled conditions is a process of an algebraic system net
if the initial state is labelled by the initial marking and each event corresponds to the
occurrence of a transition in some mode (cf. Fig. 3).

De�nition 11 (Process). Let � be an algebraic system net, let K =(B; E;¡·) be an
occurrence net, and let r be a condition labelling of K . Then, (K; r) is a process
of �, if

1. r(◦K)=M0, where M0 is the initial marking of �, and
2. for each event e∈E there exists a transition t ∈T and a mode , such that ,(i(t))
= true, r(•e)= ,t−, and r(e•)= ,t+.

De5nition 11 is the canonical extension of processes [2] to algebraic system nets,
which will be veri5ed in Section 6.

298 E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310

3. Place invariants

In this section, we will de5ne and investigate place invariants for algebraic system
nets. As already shown in the introduction, we use a linear expression rather than a
vector of terms to represent a place invariant. In this expression, a place is interpreted
as a variable of the corresponding bag-sort.

Remark 2. In the following, we employ terms over mixed variable sets, for example
a term ’∈TBSIG

bool (P ∪Y). Since P and Y are assumed to be disjoint, an assignment M
for P (i.e. a marking) and an assignment % for Y can be canonically composed to an
assignment for P ∪Y , which is denoted by M%.

De�nition 12 (Place invariant). Let BSIG be a bag-signature, �=(N;A; X; i) be an
algebraic system net over BSIG with places P and let A′ be a SIG′-algebra that is
a multiset extension of A with multiset sort s. Furthermore, let Y be a variable set
for SIG′ disjoint from P and let v∈TSIG′

s (Y ∪P) be a multiset-valued expression. An
expression v is called a place invariant of � if and only if

1. v is linear, i.e. for each two markings M1 and M2 and each assignment % for Y , it
holds that (M1 +M2)

%(v)=M1
%(v) +M2

%(v), and
2. for all transitions t, the conditional equation i(t)⇒ t−(v)= t+(v) holds.

Remark 3. The integers can be considered to be multisets (multisets over {•}). There-
fore, integer-valued expressions are also place invariants if the corresponding conditions
are satis5ed.

Note that we de5ned linearity semantically. A syntactical characterization is straight-
forward and can be found in [27]. As already stated, the evaluation of a place invariant
is constant for all reachable markings:

Proposition 1. A linear multiset-valued expression v∈Ts(Y ∪P) is a place invariant
of an algebraic system net � if and only if; for each transition t and each mode , of
�; each assignment % for Y; and each two markings M1 and M2 of � with M1

t:,−→ M2;
we have M1

%(v)=M2
%(v).

This result is an immediate consequence of the de5nition of the occurrence rule and
the de5nition of place invariants. We will formalize and prove a more general result
in Theorem 2.
Reisig [21] represents a place invariant by a P-vector of multiset terms: A non-

#exible multiset term is assigned to each place p∈P, which represents a function fp.
Here, non-#exibility means: For all markings M1 and M2 with |M1(p) | = |M2(p) |
we have |fp(M1(p)) | = |fp(M2(p)) | . An immediate consequence of this is the fol-
lowing: For fp there exists a number np such that |fp(p)|= np ·|p|. The vector notation
of [21] translates to the linear expression fp1 (p1) + fp2 (p2) + · · ·+ fpn(pn).

E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310 299

4. Unfoldings

In Section 2.5, we have de5ned the semantics of an algebraic system net in terms
of processes. An alternative approach is to de5ne the semantics of an algebraic system
net by unfolding it to a place=transition system (e.g. [24]). Here, we will de5ne the
unfolding of an algebraic system net. The main reason, however, for de5ning unfoldings
is that we want to relate the place invariants of an algebraic system net with the place
invariants of its unfolding.
In this section, we 5rst present the de5nition of an unfolding. Then, we give an

example of an algebraic Petri net [21] which has a place invariant in the unfolding but
no corresponding place invariant (according to the de5nition of [21]) in the algebraic
Petri net itself. Last we will show, that this does no longer hold for our version of
place invariants: According to our de5nition each place invariant of the unfolding has
a corresponding place invariant in the algebraic system net itself.

4.1. De<nition of the unfolding

The unfolding of an algebraic system net is a place=transition-system. The main idea
of the unfolding is the following: Each transition of the unfolding corresponds to a
transition of the algebraic system net in a particular mode; i.e. an action. Each place
corresponds to a place of the algebraic system net projected to a particular element on
that place. Technically, a transition of the unfolding is a pair of a transition t of the
algebraic system net and a mode ,; a place of the unfolding is a pair of a place of
the algebraic system net and an element a of the corresponding domain. Arcs and the
arc-inscriptions transfer accordingly.

De�nition 13 (Unfolding). Let �=(N;A; X; i) be an algebraic system net over BSIG
=(S;OP; bs) with N =(P; T; F), ground sorts GS, and initial marking M0. We de5ne

1. P̂= {p:a | s∈GS; p∈Pbs(s); a∈As}
2. T̂ = {t:, | t ∈T; , is an assignment for X with ,(i(t))= true}
3. W− : T̂ →B(P̂) by W−(t:,)[p:a] = ,t−(p)[a] for t:,∈ T̂ and p:a∈ P̂.
4. W+ : T̂ →B(P̂) by W+(t:,)[p:a] = ,t+(p)[a] for t:,∈ T̂ and p:a∈ P̂.
5. M̂0 ∈B(P̂) by M̂0[p:a] =M0(p)[a] for p:a∈ P̂.
The place=transition system �̂=(P̂; T̂ ; W−; W+; M̂0) is called the unfolding of �.

An example of an algebraic system net �2 and its unfolding �̂2 can be found in
Figs. 4 and 5, where we assume that the domain of both places is B({a; b}). This
is a very simple example since each transition has exactly one mode (there are no
variables).
For a marking M of an algebraic system net �, we denote the corresponding marking

in the unfolding �̂ by M̂ , where M̂ is de5ned by M̂ [p:a] =M (p)[a] for each p:a∈ P̂.
Obviously, the occurrence rule of an algebraic system net and its unfolding coincide
in the following way:

300 E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310

Fig. 4. An algebraic system net �2.

Fig. 5. The unfolding �̂2.

Proposition 2. Let � be an algebraic system net; let M1 and M2 be markings of �;
and let t:, be an action of �. Then; we have M1

t:,−→ M2 if and only if t:, is a
transition of �̂ and M̂1

t:,−→ M̂2.

In Section 6, we will generalize this result by proving that the processes of the
unfolding coincide with the processes of the algebraic system net itself.

4.2. Place invariants of place=transition systems

Before de5ning the correspondence between place invariants of algebraic system
nets and their unfoldings, let us brie#y rephrase the concept of place invariants for our
de5nition of place=transition systems. A place invariant of a place=transition system
associates a weight with each place such that the weighted sum of tokens is the same
for all reachable markings.

De�nition 14 (Place invariants of place=transition systems). Let "=(P; T;W−; W+;
M0) be a place=transition system. A weight function j : P→Z is called a place
invariant of ", if for each transition t ∈T the equation 6∑

p∈P
j(p) ·W−(t)[p] =

∑
p∈P

j(p) ·W−(t)[p]

holds.

Similar to Proposition 1, there is a behavioural characterization of place invariants
for place=transition systems.

6 This equation is often written in vector notation: j ·W− = j ·W+.

E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310 301

Proposition 3. Let " be a place=transition system. A weight function j : P→Z is a
place invariant of "; if and only if for each transition t and each two markings M1

and M2 of " with M1
t−→ M2 we have

∑
p∈P j(p) ·M1[p] =

∑
p∈P j(p) ·M2[p].

In the following, we will write j ·M as a shorthand for
∑

p∈P j(p) ·M [p].

4.3. Correspondence of place invariants

In this section, we will show that there is an exact correspondence between the place
invariants of an algebraic system net and its unfolding. Before formalizing this result,
let us give a counter-example which shows that in the formalism of Reisig [21] there
exists a place invariant of the unfolding which has no corresponding place invariant in
the algebraic system net itself: Consider the algebraic Petri net �2 of Fig. 4, where a
and b are two diIerent constants of the same sort. Fig. 5 shows the unfolding �̂2 of
this algebraic system net. Obviously, j= p1:a+ p2:a is a place invariant of �̂2. Now,
we will show that �2 has no place invariant that corresponds to j, when we restrict
ourselves to non-#exible expressions. Actually, we show that �2 has only a trivial non-
#exible place invariant. Assume that a non-#exible expression u is a place invariant of
�2. Then, u can be represented by f1(p1)+f2(p2). It follows that |f1(p1) + f2(p2)| is
also a place invariant of �2 which can equivalently be rewritten to |f1(p1)|+ |f2(p2)|.
Since the invariant u is non-#exible by assumption, we know that there exist integer
values n1 and n2 such that |f1(p1)|+ |f2(p2)|= n1 · |p1|+ n2 · |p2|. By de5nition, this
expression is a place invariant if and only if the following two equations hold true:
n1 · |[a]| + n2 · |[]|= n1 · |[]| + n2 · |[a]| and n1 · |[a]| + n2 · |[]|= n1 · |[]| + n2 · |[a] + [b]|.
These equations can be simpli5ed to n1 = n2 and n1 = 2 · n2. This implies n1 = n2 = 0.
Therefore, u is a trivial place invariant; i.e. u evaluates to the empty multiset [] for
all markings. Since the only assumption imposed on u was that it is a non-#exible
place invariant of �2, we know that all non-#exible place invariants of �2 are trivial.
In particular, there is no non-#exible place invariant which corresponds to j.
The reason why there are only trivial place invariants of �2 in the approach of Reisig

[21] is that each token on a place is mapped to a multiset of the same cardinality.
In order to express the invariant j of the unfolding, it is necessary to map a token a
on places p1 and p2 to a singleton multiset (e.g. to [a]) and a token b to the empty
multiset []. The invariant of �̂2 from Fig. 5 can be formulated as a place invariant of
�2 by the expression p1+fa(p2) where fa is a linear function de5ned by fa([a])= [a]
and fa([b])= [], where fa is not a legal function in the approach of [21].
In the above example, it was easy to show that there is no corresponding place

invariant in the algebraic system net, because there was no non-trivial non-#exible place
invariant at all. So, there was no need to formalize the concept of correspondence. In
order to make the result precise, we need to formalize the concept of correspondence.
The idea is quite simple: Each place invariant v canonically induces an equivalence
≡v on the markings: Two markings are equivalent, if v evaluates to the same value
in both markings. Furthermore, each marking M of an algebraic system net uniquely

302 E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310

maps to a corresponding marking M̂ in the unfolding. Now, a place invariant v of
an algebraic system net corresponds to a place invariant j of the unfolding �, if for
all markings M1 and M2 of � we have M1 ≡v M2 if and only if M̂1≡j M̂2. In the
following formalization, we generalize this idea to sets of place invariants because a
single place invariant of an algebraic system net in general corresponds to a set of
place invariants of the unfolding.

De�nition 15 (Equivalence of markings; correspondence).
1. Let � be an algebraic system net and V be a set of place invariants of �. The

equivalence ≡V on markings of � induced by V is de5ned by M1 ≡V M2 if and only
if, for each v∈V and each assignment %, we have M1

%(v)=M2
%(v).

2. Let " be a place=transition system and J be a set of place invariants of ". The
equivalence ≡J on markings of " induced by J is de5ned by M1≡J M2 if and only
if, for each j∈ J , we have j ·M1 = j ·M2.
3. Now, let �̂ be the unfolding of �. The set V of place invariants of � corresponds

to the set of place invariants J of �̂ if and only if, for each two markings M1 and M2

of �, we have: M1 ≡V M2 if and only if M̂1≡J M̂2.

In the following, we will show that, for each set V of place invariants of an algebraic
system net �, there exists a corresponding set J of place invariants of the unfolding.
Note that J may be in5nite even for 5nite sets V . Vice versa, we show that, for each
set J of place invariants of the unfolding, there exists a corresponding set of place
invariants V of the algebraic system net. The second correspondence does not hold for
Reisig’s formalism [21].

Theorem 1. Let � be an algebraic system net and let �̂ be its unfolding.

1. For each set of place invariants V of �; there exists a corresponding set of place
invariants J of �̂.

2. For each set of place invariants J of �̂; there exists a corresponding set of place
invariants V of �.

Proof. 1. For each place p∈Pbs(s) and each a∈As, let Mp:a be the marking with
Mp:a(p)[a] = 1 and Mp′ : a′(p′)[a′] = 0 for p′ �=p or a′ �= a. For each place invariant
v∈TSIG′

s (Y ∪P) of � and each assignment % for Y , we de5ne a mapping j%v : P̂→Z
by j%v (p:a)=Mp:a

% (v).
Since v is linear, we have Mp:a

% (v)=
∑

s∈GS

∑
p∈Pbs(s)

∑
a∈As M (p)[a] ·Mp:a

% (v)=∑
p∈P̂ M̂ (p) · j

%
v (p)= j

%
v · M̂ . Thus, we have M ≡v M ′ if and only if M̂ ≡j%v

M̂ ′ for
all assignments % for Y . Therefore, a place invariant v of � corresponds to the set
{ j%v | % is an assignment for Y}.
By Proposition 2, we have for each two markings M̂1 and M̂2 and each t:,∈ T̂

with M̂1
t:,−→ M̂2: M1

t:,−→ M2. Since v is a place invariant of �, we know M1
%(v)=

M2
%(v) for each assignment %. Altogether, we have j%v · M̂1 =M1

%(v)=M2
%(v)= j%v · M̂2.

E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310 303

By Proposition 3, j%v is a place invariant of �̂.
Now, let J = {j%v | v∈V; % is an assignment for Y}. By de5nition and the above
arguments, J is a set of place invariants corresponding to V .
2. For each place invariant j of �̂ and each place p∈Ps of �, we extend the algebra

by an operation fj
p : s→Z de5ned as the linear extension of fj

p ([a])= j(p:a). Then,
the expression v=fj

p1 (p1) + · · · + fj
pn(pn) is linear. By de5nition, we have for each

marking M of � : M (v)= j · M̂ . By the same arguments as above, we get that v is a
place invariant of � which corresponds to j.
Altogether, the set V = {fj

p1 (p1) + · · ·+ fj
pn(pn) | j∈ J} is a set of place invariants

of � which corresponds to J .

5. More linear veri�cation techniques

In this section, we show that, besides place invariants, there are other classical
veri5cation techniques that can be represented as linear expressions. Such techniques
are traps, siphons, modulo-place invariants, sub- and sur-invariants. The bene5t of
this approach is twofold: On the one hand, we gain a common calculus for all these
techniques, i.e. a common veri5cation condition and common use of the techniques. On
the other hand, other instantiations of linear expressions may lead to new veri5cation
techniques. This will be illustrated by introducing semi-place invariants and stabilization
expressions.
We start with the central notion of this section, viz. simulations.

De�nition 16 (Linear expression; simulation). Let BSIG be a bag-signature with sorts
S and let �=(N;A; X; i) be an algebraic system net over BSIG with places P. Let
M=(As;+; 0; ,→) be a preordered commutative monoid and let A′ be a SIG-algebra
such that A′ is a conservative extension of A and M. Let Y be a variable set for
SIG disjoint from P.
A �-expression is a M-valued term u∈TSIG′

s (Y ∪P), which is called linear if:

∀% : ∀M1; M2 : (M1 +M2)%(,) = M%
1 (u) +M%

2 (u):

We say M simulates � via u if, for each transition t of �, the following condition is
satis5ed:

i(t)⇒ t−(u) ,→ t+(u):

The following theorem is the basis for deriving invariance properties from simula-
tions: The value of each reachable marking is related to the initial value (by ,→),
in other words: A marking, to which the expression is applied such that the resulting
value does not relate to the initial value, is not reachable.

304 E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310

Theorem 2. Let � be an algebraic system net with initial state M0; and let M sim-
ulate � via u. Then; for each assignment % and for each reachable marking M of �
we have M0

%(u) ,→M%(u).

Proof. Let % be an arbitrary assignment. First we show that M1
t:,−→ M2 implies

M1
%(u) ,→M2

%(u) for all markings M1; M2 of �: If we have M1
t:,−→ M2 then we

have ,(i(t))= true and it exists a marking M such that M1 = ,t− +M and M2 =M +
,t+. Since M simulates � via u, we get (,t−)%(u) ,→ (,t+)%(u). By a=nity of ,→
also M%(u) + (,t−)%(u) ,→M%(u) + (,t+)%(u) holds. This yields (M + ,t−)%(u) ,→
(M + ,t+)%(u) by linearity, which is what we wanted to show.
Now, by re#exivity and transitivity of ,→ we get M0

%(u) ,→M%(u) for each reachable
marking M of �.

We now express traditional notions as special cases of simulations.

De�nition 17 (Invariant expression; monotonic expression). Let � be an algebraic
system net, M=(B;+; 0; ,→) a preordered commutative monoid such that M sim-
ulates � via u. Then, u is called

1. M-valued invariant expression of � if ,→ is an equivalence.
2. M-valued monotonic expression of � if ,→ is an order.

De�nition 18 (Place invariant; modulo-place invariant). Let B be a set. AnM-valued
invariant expression u of � is called

1. place invariant if M=LB(Z;+; 0;=).
2. modulo-k-place invariant if M=LB(Z;+; 0;≡mod k), where ≡mod k denotes the
residue class equivalence modulo k.

The expressiveness of invariant expressions, and therewith of place invariants, is
quite restricted. Each invariant property that is implied by a linear invariant expression
is preserved under reverse occurrence of transitions. Often however, central invariant
properties of a system are not preserved under reverse occurrence of transitions. There-
fore, invariant expressions are not su=cient for proving arbitrary invariant properties
of the net. Classical supplementing techniques are traps and siphons which are special
monotonic expressions. Here, we also introduce semi-place invariants which have not
been considered so far for proving invariance properties. Subsequently, an example
illustrates the bene5t of using semi-place invariants.

De�nition 19 (Trap; siphon; semi-place invariant). Let B be a set. An M-valued
monotonic expression u of � is called

1. (individual) trap if M=(2B; ∪; ∅; ⊆).
2. (individual) siphon if M=(2B; ∪; ∅; ⊇).
3. increasing semi-place invariant if M=LB(Z;+; 0;6).

E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310 305

4. decreasing semi-place invariant if M=LB′(Z;+; 0;¿).

In �1, we have, for example, the trap supp(pr1(messages+distance)): Once there is
a token with x as its 5rst component at messages or distance, it remains so forever.
Another trap of �1 is F(distance) where F is de5ned by F(x; n)= {(x; m) |m¿n}.
Treating F(x; n) as a multiset, F(distance) is even an increasing semi-place invariant.
From a trap, we can conclude that there is always a particular token at one of the

corresponding places. An increasing semi-place invariant, however, has more potential:
If it contains negative terms we may infer implications such as: If there is a particular
token at place p then there is some other token at place q. Such a case is demonstrated
in the following example.

Example 1 (Semi-place invariant). We consider �1 again. We de5ne functions F;G :
B(A×N)→ZA×N as linear extensions of F;G : A×N→ZA×N de5ned by:

F(x; n) = {(x; m) |m¿n} and G(x; n) = M (x; n+ 1);

where M is the function that occurs in the inscription of �1. Then, the linear expression
messages+F(distance)−G(distance) is an increasing semi-place invariant of �1 and
its initial value is []. First, we illustrate the veri5cation of this statement. Subsequently,
we derive an invariant proposition for �1.
For veri5cation we consider transition t3 as an example. Applying the substitutions

t3+ and t3− to the expression we get the following proof obligation:

n ¡ m⇒ (x; n) + F(x; m)− G(x; m)6M (x; n+ 1) + F(x; n)− G(x; n):

By de5nition of G this is equivalent to

n ¡ m⇒ (x; n) + F(x; m)6F(x; n) + G(x; m)

which holds true because, for n ¡ m, we have

F(x; n)= [(x; n); (x; n+ 1); : : : ; (x; m− 1)] + F(x; m):

The obligations for t1 and t2 can be veri5ed similarily. We now show how Theorem 2
can be exploited.
By Theorem 2, we get that the following in-equation is satis5ed:

[]6messages+ F(distance)− G(distance)

which is equivalent to

G(distance)6messages+ F(distance)

This in-equation on multisets is equivalent to the following propositions on elements:

∀x; n : G(distance)[(x; n)]6messages[(x; n)] + F(distance)[(x; n)]:

306 E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310

By de5nition of F we have F(distance)[(x; n)]=
∑

m6n distance[(x; m)] and by de5ni-
tion of G and M we have for all (y; x)∈N the equation G(distance)[(x; n)]= distance
[(y; n− 1)]. Together we get for all reachable markings:

∀(y; x) ∈ N : distance[(y; n− 1)]6messages[(x; n)] +
∑
m6n

distance[(x; m)]

This immediately implies the following invariance property: If agent y knows distance
n − 1 then each neighbour x has a message (x; n) or knows a distance m6n. This
property is neither implied by any place invariant nor by any trap or siphon.

So far, we have considered linear expressions in order to prove invariance properties.
Linear expressions can also be used for proving eventual properties such as ‘eventually
some transition will not occur anymore’. Such eventual properties in turn help to
prove more general eventual properties. We continue with introducing the notion of a
stabilization expression.

De�nition 20 (Stabilization expression; termination expression). LetM=(B;+; 0;¡)
be a regular preordered commutative monoid, i.e. the monoid satis5es the following
property:

∀x; y; z ∈ B : x + z = y + z ⇒ x = y

Furthermore let u be a M-valued monotonic expression of �.

1. A transition t of � is called strict with respect to u if

i(t)⇒ t−(u) �= t+(u)

2. u is called stabilization expression if ¡ is well-founded. 7

3. A stabilization expression is called termination expression if all transitions of �
are strict with respect to it.

Theorem 3. Let � be an algebraic system net; and let u be a M-valued stabilization
expression of �. Then; each process of � contains only <nitely many occurrences of
transitions that are strict with respect to u.

Proof. Since M simulates �, for each M1
t:,−→ M2 holds M1(u)¡M2(u) (see proof of

Theorem 2). Moreover, we can show in the same manner that M1(u) �= M2(u) when t
is strict w.r.t. u. This is because the contraposition of regularity is a=nity of �=. Since
¡ is well-founded, we know that the value of u can be strictly decreased only 5nitely
many times. Therefore, there can be only 5nitely many occurrences of strict transitions
in a process.

7 An order ¡ is well-founded if there is no in5nite strictly decreasing chain x0� x1� x2� : : : .

E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310 307

As a corollary we get: If there is a termination expression of �, then every pro-
cess of � is 5nite. If we consider �1 and choose the monoid N × N together with
the lexicographic order, then (|rootagents + inneragents|; SUM (pr2(distance))) is a
termination expression, where SUM :B(N)→ N denotes the sum of all elements of a
bag.

De�nition 21 (Sur-place invariant; sub-place invariant).

1. An increasing semi-place invariant is called sur-place invariant if all transitions are
strict with respect to it.

2. A decreasing semi-place invariant is called sub-place invariant if all transitions are
strict with respect to it.

If we have, in addition to a sur-place invariant (sub-place invariant), an upper (lower)
bound for the expression, then we know that the system net always terminates. Proving
termination in this way is sometimes more convenient than proving it by a termination
expression as it allows negative terms.

6. Processes and unfoldings

In Section 2.5, we have de5ned the semantics of an algebraic system net in terms of
its processes. In Section 4, we have de5ned the unfolding to a place=transition-system
as an alternative semantics. On the other hand, there is a standard concept of processes
for place=transition-systems [2]. Therefore, we have two diIerent versions of processes
of an algebraic system net: the processes of the direct de5nition and the processes of
the unfolding.
In this last section, we demonstrate that both de5nitions coincide. To this end, we

rephrase the de5nition of a process of a place=transition system, which mainly follows
the line of [2].

De�nition 22 (Process of a place=transition system). Let (P; T;W−; W+; M0) be a
place=transition system, K =(B; E; F) be an occurrence net and r :B→P be a map-
ping. The pair (K; r) is a process of the place=transition-system if

1. for each place p∈P holds |{b∈ ◦K | r(b)=p}|=M0[p] and
2. for each event e∈E there exists a transition t ∈T such that, for each p∈P, we
have |{b∈ •e | r(b)=p)}|=W−(t)[p] and |{b∈ e• | r(b)=p)}|=W+(t)[p].

Finally, we observe that each process of an algebraic system net is a process of its
unfolding and vice versa.

Theorem 4. Let � be an algebraic system net; and let K be an occurrence net. Then;
(K; r) is a process of � if and only if (K; r) is a process of the unfolding �̂.

308 E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310

Proof. Let �=(N;A; X; i) be an algebraic system net with net N =(P; T; F), K =
(B; E;¡·) be an occurrence net and r be a condition labelling.
By de5nition, r is a mapping from B to P̂. Now, the two conditions for (K; r) being

a process of � and �̂ can be shown to be equivalent, separately:

1. Suppose (K; r) satis5es condition 1 of De5nition 11; i.e. r(◦K)=M0. By de5nition
of equality on multisets, this implies r(◦K)(p)[a] =M0(p)[a] for each ground sort
s∈GS, each place p∈Pbs(s), and each a∈As. By de5nition of r(◦K), this implies
|{b∈ ◦K | r(b)=p:a}|=M0(p)[a]. By de5nition of P̂ and M̂0, we get |{b∈ ◦K | r(b)
=p:a}|= M̂0(p:a) for each p:a∈ P̂. This is condition 1 of De5nition 22.
The reverse direction is similar.

2. Suppose (K; r) satis5es condition 2 of De5nition 11; i.e. for each e∈E, there exists a
transition t ∈T and a mode , such that ,(i(t))= true, r(•e)= ,t−, and r(e•)= ,t+.
By de5nition of r(•e), the de5nition of ,t− and W−; W+ we have for each ground
sort s∈GS, each place p∈Pbs(s), and each a∈As: r(•e)(p)[a] = |{b∈ •e | r(b)=
p:a}|= ,t−(p)[a] = ,(i(p; t))[a] =W−(t:,)[p:a]. Similarly, we get r(e•)(p)[a]
=W+(t:,)[p:a].
This implies that for each e∈E there exists a t̂ ∈ T̂ such that for each p̂∈ P̂ we
have |{b∈ •e | r(b)= p̂}|=W−(t̂)[p̂] and |{b∈ e• | r(b)= p̂}|=W+(t̂)[p̂]. This is
condition 2 of De5nition 22.
The reverse direction is similar.

7. Conclusion

In this paper, we have de5ned algebraic system nets along with a corresponding
concept of place invariants. The main motivation was a net formalism for modelling
distributed network algorithms. For the same reason, we have introduced a diIerent
syntactical representation of place invariants, viz. linear expressions, and their gen-
eralization to simulations. In particular, simulations turned out to be useful in the
veri5cation of distributed algorithms.
In this paper, we have concentrated on one particular kind of high-level nets, where

markings of places are bags; i.e. elements of a free commutative monoid. Invariants
for net types where markings are sets (P=E-systems) can be de5ned in the same way
and give rise to similar veri5cation conditions – we only have to change the allowed
monoids for markings (cf. [17, 18, 5, 15]). Theorem 2 is valid for all net models where
markings are elements of a commutative monoid.
Algebraic system nets are a generalization of algebraic Petri nets which overcomes

some insu=ciencies of the place invariant concept. Though inspired by the work of
Vautherin [26] and Reisig [21], algebraic system nets as proposed in this paper show
some fundamental diIerences:

1. There are no #exible arcs in [26, 21].
2. Reisig [21] uses algebraic speci5cations [8] for representing the involved algebra.

E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310 309

Here, we do not focus on that aspect; rather, we are free to use any appropriate
formalism for representing the used algebra.

3. Reisig [21] represents a place invariant as a vector of terms. For convenience we
represent a place invariant as a linear expression in which places may occur as
variables. This representation was inspired by veri5cation techniques for algebraic
system nets, since linear expressions allow a smooth transition from Petri net con-
cepts such as place invariants to temporal properties (cf. [22, 13, 27, 12]).

4. Reisig [21] introduces an occurrence rule as semantics for algebraic nets, only. In
this paper we also introduce the non-sequential behaviour for algebraic system nets,
which we call processes of the algebraic system net. This is justi5ed, since we have
shown that the set of processes of an algebraic system net exactly corresponds to
the processes [2] of the unfolding.

Acknowledgements

We thank Karsten Schmidt, Wolfgang Reisig, and an anonymous referee for helpful
suggestions and comments.

References

[1] T. Baar, E. Kindler, Hagen V,olzer, Verifying intuition – ILF checks DAWN proofs, in: S. Donatelli,
J. Kleijn (Eds.), Application and Theory of Petri Nets 1999, 20th Internat. Conf., Lecture Notes in
Computer Science, vol. 1639, Springer, Berlin, June 1999, pp. 404–423.

[2] E. Best, C. FernSandez, Nonsequential Processes, Springer, Berlin, 1988.
[3] J. Billington, Extending Coloured Petri Nets, Tech. Rep. 148, Computer Laboratory, University of

Cambridge, Cambridge, October 1988.
[4] J. Billington, Extensions to coloured Petri nets and their application to protocols, Tech. Rep. No. 222,

University of Cambridge, Cambridge, May 1991.
[5] B. Brosowski, A group-theoretical approach to Petri nets, Tech. Rep. 1998, preprint.
[6] M. Broy, On the design and veri5cation of a simple distributed spanning tree algorithm, SFB-Bericht

342=24=90 A, Technische Universtit,at M,unchen, December 1990.
[7] J. Desel, K.-P. Neuendorf, M.-D. Radola, Proving nonreachability by modulo-invariants, Theoret.

Comput. Sci. 153 (1996) 49–64.
[8] H. Ehrig, B. Mahr, Fundamentals of Algebraic Speci5cations 1, Equations and Initial Semantics,

Springer, Berlin, 1985.
[9] U. Goltz, W. Reisig, The non-sequential behaviour of Petri nets, Inform. and Control 57 (1983)

125–147.
[10] K. Jensen, Coloured Petri Nets, vol. 2, Analysis Methods, Springer, Berlin, 1995.
[11] E. Kindler, W. Reisig, Algebraic system nets for modelling distributed algorithms, Petri Net Newslett.

51 (1996) 16–31.
[12] E. Kindler, W. Reisig, Veri5cation of distributed algorithms with algebraic Petri nets, in: C. Freksa,

M. Jantzen, R. Valk (Eds.), Foundations of Computer Science: Potential – Theory – Cognition, Lecture
Notes in Computer Science, vol. 1337, Springer, Berlin, 1997, pp. 261–270.

[13] E. Kindler, W. Reisig, H. V,olzer, R. Walter, Petri net based veri5cation of distributed algorithms: an
example, Formal Aspects Comput. 9 (1997) 409–424.

[14] E. Kindler, H. V,olzer, Flexibility in algebraic nets, in: J. Desel, M. Silva (Eds.), Application and Theory
of Petri Nets 1998, 19th Internat. Conf., Lecture Notes in Computer Science, vol. 1420, Springer, Berlin,
June 1998, pp. 345–364.

310 E. Kindler, H. V�olzer / Theoretical Computer Science 262 (2001) 285–310

[15] E. Kindler, M. Weber, The dimensions of Petri nets: the Petri net cube, EATCS Bull. 66 (1998)
155–166.

[16] G. Memmi, G. Roucairol, Linear algebra in net theory, in: W. Brauer (Ed.), Net Theory and
Applications, Lecture Notes in Computer Science, vol. 84, Springer, Berlin, October 1979, pp. 213–223.

[17] J. Meseguer, U. Montanari, Petri nets are monoids, Inform. and Comput. 88 (1990) 105–155.
[18] J. Padberg, Abstract Petri nets: uniform approach and rule-based re5nement, Ph.D. Thesis, Technische

Universit,at Berlin, February 1996.
[19] J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, Englewood CliIs, NJ,

1981.
[20] W. Reisig, Petri Nets, Springer, Berlin, 1985.
[21] W. Reisig, Petri nets and algebraic speci5cations, Theoret. Comput. Sci. 80 (1991) 1–34.
[22] W. Reisig, Petri net models of distributed algorithms, in: J. van Leeuwen (Ed.), Computer Science

Today: Recent Trends and Developments, Lecture Notes in Computer Science, vol. 1000, Springer,
Berlin, 1995, pp. 441–454.

[23] K. Schmidt, Veri5cation of siphons and traps for algebraic Petri nets, in: P. AzSema, G. Balbo (Eds.),
Application and Theory of Petri Nets 1997, 18th Internat. Conf., Lecture Notes in Computer Science,
vol. 1248, Springer, Berlin, June 1997, pp. 427–446.

[24] E. Smith, W. Reisig, The semantics of a net is a net, an exercise in general net theory, in: K. Voss,
H. Genrich, G. Rozenberg (Eds.), Concurrency and Nets. Springer, Berlin, 1987.

[25] R. Valk, Bridging the gap between place- and Floyd-invariants with applications to preemptive
scheduling, in: M.A. Marsan (Ed.), Application and Theory of Petri Nets 1993, 14th Internat. Conf.,
Lecture Notes in Computer Science, vol. 691, Springer, Berlin, June 1993, pp. 431–452.

[26] J. Vautherin, Parallel systems speci5cations with coloured Petri nets and algebraic speci5cations, in:
G. Rozenberg (Ed.), Advances in Petri Nets, Lecture Notes in Computer Science, vol. 266, Springer,
Berlin, 1987, pp. 293–308.

[27] M. Weber, R. Walter, H. V,olzer, T. Vesper, W. Reisig, S. Peuker, E. Kindler, J. Freiheit,
J. Desel, DAWN: Petrinetzmodelle zur Veri5kation Verteilter Algorithmen, Informatik-Bericht 88,
Humboldt-Universit,at zu Berlin, December 1997.

