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a b s t r a c t

A subsequence is obtained from a string by deleting any number of characters; thus
in contrast to a substring, a subsequence is not necessarily a contiguous part of the
string. Counting subsequences under various constraints has become relevant to biological
sequence analysis, to machine learning, to coding theory, to the analysis of categorical
time series in the social sciences, and to the theory of word complexity. We present
theorems that lead to efficient dynamic programming algorithms to count (1) distinct
subsequences in a string, (2) distinct common subsequences of two strings, (3) matching
joint embeddings in two strings, (4) distinct subsequences with a given minimum span,
and (5) sequences generated by a string allowing characters to come in runs of a length
that is bounded from above.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Over the last decades, combinatorial theory on sequences of symbols has found wide application, most notably in
computational biology and information sciences, but also in physics and in the social sciences. Usually, the symbols of these
sequences are called characters or letters, the set of all characters is called an alphabet and the sequences themselves are
called strings or words. For an overview on word combinatorics, the reader is referred to [23,24].
The terminology and notation concerning parts of strings have not yet arrived at a commonly accepted standard.

Therefore, we start by explicitly defining two basic concepts, substring and subsequence.
A substring is a contiguous (possibly empty) part of a string, i.e., if s = s1 . . . sn denotes a string, then for any 1 ≤ i ≤ j ≤ n,

si . . . sj is a substring, and so is the empty string. In other words, a substring is constructed by deleting a prefix and a suffix
from the original string. Often, substrings are also called factors or subwords in the literature (e.g. [26,7]), but unfortunately
they are sometimes also referred to as subsequences. Substrings play an important role in the vast literature on approximate
string matching (e.g. [14]).
Subsequences are constructed by deleting characters anywhere in the given string. So, characters that are adjacent in

the remaining subsequence, are not necessarily adjacent in the original string. Subsequences are unfortunately also called
subwords or scattered subwords (e.g. [27]).
A string of n characters has

(n+1
2

)
+ 1 = Θ(n2) substrings but

∑
k

(n
k

)
= 2n subsequences. Therefore, we may

expect that counting subsequences is much more involved than counting substrings. However, it will appear that the
subsequenceproblems canbe solvedbydynamic programming algorithms efficiently. Surprisingly, the problemsof counting
and enumerating subsequences and variants thereof have received little attention so far (but see [5,26,18,19,12]).
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The number of distinct subsequences of a string can be used to quantify ‘‘complexity’’ of strings: the more distinct
subsequences, the more complex (see [2,11]). Identifying fixed-length strings that maximize the number of distinct
subsequences is useful to normalize such complexity measures. Furthermore, in coding theory, such ‘‘maximizing’’ strings
and (bounds on) their numbers of distinct subsequences are central to the problem of reconstructing a binary string from
a subset of its subsequences, i.e. the problem of correcting insertions and deletions (see [20,21,16,22,28]). In [28], an
expression is provided for the number of subsequences that a binary sequence will have after two deletions.
In modern life sciences, DNA microarrays have become an indispensable tool to monitor the activity of thousands of

genes simultaneously in a certain cell or tissue type. They consist of billions of single stranded DNA molecules of different
types. During the manufacturing process, they are synthesized as subsequences of a common supersequence of a certain
structure and length [25]. Here the question arises, howmany distinct sequences of a given length can be constructed from
the supersequence, and which supersequence maximizes the number of distinct subsequences. We answer these questions
in Section 3.
Different stringsmay have certain substrings or subsequences in common and such common objects and their properties

are important in pattern matching, especially longest common substrings and longest common subsequences [15,14,3,4].
Applications arise in the comparison of categorical time series [10] and the computation of string kernels in kernel-based
machine learning methods, where the number of common subsequences is used to define proximity or similarity between
strings [29]. In Section 4, we present a theorem that enables us to efficiently count common subsequences with a length of
at least k ≥ 0, generalizing results published in [5,25,29,9]. In order to take into account the frequency of subsequences
in strings, we further consider the problem of counting matching embeddings, i.e., the frequency weighted common
subsequences. This is relevant for time series in which the repetition of certain patterns is important, as for example in job
careers. A theorem is presented, that implies an algorithm that counts such matches much faster than a previous algorithm
proposed in [8].
In Section 5, we introduce the constraint that the subsequences we consider must span a certain range in the original

sequence. This has again applications to the analysis of categorical time series in social sciences, and also allows us to
introduce different notions of word complexity.
Finally, we consider the problem of counting sequences that are generated by length restricted runs. This is

a generalization of the subsequence counting problem, and has an interesting application in high-throughput DNA
sequencing: Some modern DNA sequencing technologies allow that a whole run of a nucleotide is sequenced at once. A
run refers to a contiguous repetition of a single letter. For example, the string AACCCTA consists of four runs (A,C,T,A) of
lengths (2, 3, 1, 1), respectively. The sequencing machine tests in turn for each nucleotide (A, C, G, T), if a run of this type is
available to be sequenced. A run can be reliably sequenced if it is not too long (e.g., at most 4 or 5 characters). This leads to
the question of howmany distinct sequences of a given length can be sequenced in, say 100 turns. The theorems of Section 6
give efficiently computable answers to such questions.

2. Preliminaries

In this section, we define the key concepts formally and introduce the necessary notation. Refinements and special cases
of these concepts will be introduced when appropriate.
Let Σ = {σ1, . . . , σd} be a finite alphabet, and let Σ? denote the set of finite strings that are constructed from the

characters of Σ by concatenation. We say that a string x = x1 . . . xn has length |x| = n or that x is n-long if it consists
of n, not necessarily distinct, characters fromΣ . The empty string or empty sequence, which has a length of zero, is denoted
by λ. The set Σn denotes the set of all n-long strings over Σ . If a string x is n-long, it has n nonempty prefixes xi = x1 . . . xi
(in particular, xn = x), and the empty prefix x0 = λ.
A string y is a substring of another string x if there exist not necessarily distinct and possibly empty strings v1, v2 ∈ Σ?

such that v1yv2 = x.
A k-long string y = y1 . . . yk is a subsequence of x if there exist k+ 1, not necessarily distinct and possibly empty, strings

v1, . . . , vk+1 ∈ Σ
?, such that v1y1 . . . vkykvk+1 = x and we write y � x to denote this fact. Clearly, if y = xi1 . . . xik is a

substring of x, then ij+1 − ij = 1 for all j, i.e., the characters that are adjacent in y are adjacent in x, too. This is not required
if y is a subsequence. The set of all subsequences of x is denoted by S(x). If u � x and u � y, we write u � (x, y) and we say
that u is a common subsequence of x and y andwewill write S(x, y) to denote the set of all common subsequences of x and y.
A subsequence u � xmay be embedded in xmore than once. For example u = ab is embedded three times in x = abab.

We will write |x|u = r to denote the fact that u � x has r distinct embeddings in x. We formally define an embedding iu(x)
of u � x as a sequence of indices 1 ≤ i1 < · · · < i|u| ≤ |x|, such that uj = xij for 1 ≤ j ≤ |u| and we write Iu(x) for the set
of embeddings of u in x. So, |Iu(x)| = |x|u. We say that an embedding ı̂u(x) = ı̂1 . . . ı̂|u| is canonical (sometimes also called
left-most) if each of its indices is as small as possible: for each iu(x) ∈ Iu(x), ı̂j ≤ ij for 1 ≤ j ≤ |u|. The right-most embedding
is defined similarly. Each u � x has exactly one canonical embedding. Hence, setting ı̂λ = 0, there exists a bijectivemapping
of the set of canonical embeddings Î(x) = {ı̂u(x) : u ∈ S(x)} to the set of subsequences S(x).
If u � (x, y), we say that the pair (ı̂u(x), ı̂u(y)) is the joint canonical embedding of u in x and y. There exists a set of such

pairs Î(x, y)with
∣∣∣Î(x, y)∣∣∣ = |S(x, y)|.
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The canonical embedding can be considered as resulting from an algorithm (e.g. [6]) that verifies whether or not u � x:
find the index i1 of the first appearance of u1 in x, then find the index of the first appearance of u2 after that, etc. and u � x
if the first occurrence of u|u| occurs at or before xn. If the algorithm fails, u � x. The next lemma provides a straightforward
(not the most efficient) algorithm to determine |x|y and ı̂y(x).

Lemma 1. Let x, y ∈ Σ? with y � x and ı̂y(x) = ı̂1 . . . ı̂|y|. Let E =
(
eij
)
be a (|y| × |x|)-matrix with eij = 1 if and only if yi = xj

and eij = 0 otherwise. Furthermore, let F =
(
fij
)
be a (|y| × |x|)-matrix with f1j = e1j and fij = eij ·

∑
k<j fi−1,k for 1 ≤ j ≤ |x|

and 2 ≤ i ≤ |y|. Then

|x|yi =
∑
j

fij,

ı̂j = min
{
k : fjk > 0

}
.

Proof. The proof is straightforward by induction, once one realizes that fij equals the number of embeddings of yi in xj that
end at position j in x. �

We conclude this section with a note on the complexity of the algorithms put forward in this paper. Since the number
of subsequences may grow exponentially with the length of the input string, storing this number requiresΘ(n) bits for an
n-character text, so it is inappropriate to assume that arithmetic operations can be done in constant time. For example,
additions take Θ(n) time and multiplications Θ(n log n) time. We have, however, measured the running time of the
algorithms in terms of arithmetic operations. In some applications, it is reasonable to assume a constant-size alphabet
|Σ | = Θ(1); in others, however, we may need to allow that |Σ | = Θ(n) in order to be realistic. Where necessary, we
include |Σ | as a parameter in the complexity analysis.

3. Counting distinct subsequences

In this section, we present an efficient solution to the problem of counting all distinct subsequences of length k ≥ 0 of
a given string, and study strings that have maximally many distinct subsequences. We begin with the simple problem of
counting all distinct subsequences of a given string, since this allows us to introduce a basic proof technique in a simple,
straightforward manner.
The number of distinct subsequences of an n-long string x can be computed withΘ(n) arithmetic operations as follows:

when we elongate the prefix xn−1 with a character xn that does not yet occur in xn−1 (we say that xn is new to xn−1), the
number of distinct subsequences doubles: we retain all the subsequences already counted for xn−1, and we further generate
new subsequences by elongating all of these subsequenceswith xn. If xn is not new to xn−1, wemust compensate the doubling
by subtracting all the elongated subsequences that were really new when x` = xn was used to elongate some previous,
shorter prefix x`−1 with ` < n. We repeat this procedure, starting with the first prefix x1, which elongates λ, elongating it
with x2, etc. This reasoning is formalized in the next lemma.

Lemma 2 ([9]). Let x ∈ Σn be a nonempty string and let φ(x) := |S(x)| denote the number of distinct subsequences of x.
Furthermore, let `(x, σ ) denote the last position of the character σ ∈ Σ in x: `(x, σ ) := max{i : xi = σ } if σ � x and
`(x, σ ) := 0 otherwise; for brevity we write ` := `(xn−1, xn). Then

φ(x) =
{
2φ(xn−1) if xn � xn−1,
2φ(xn−1)− φ(x`−1) if xn � xn−1.

(1)

Proof. We observe that the set of canonical embeddings can be written as

Î(x) = Î(xn−1) ∪
{
(ı̂u(xn−1), n) : ı̂u(xn−1) ∈ Î(xn−1) \ Î(x`−1)

}
.

The two sets are disjoint, since the sequences of the first one never end on n, while the sequences in the second one always
do. So,∣∣∣Î(x)∣∣∣ = 2 ∣∣∣Î(xn−1)∣∣∣− ∣∣∣Î(x`−1)∣∣∣ .
Using the existence of a bijective map from S(x) to Î(x) and the fact that

∣∣∣Î(x`−1)∣∣∣ = 0 when xn � xn−1 then yields the
required result (1). �

Lemma 2 implies a simple dynamic programming algorithm with Θ(|x|) arithmetic operations that specifies how to
count subsequences, irrespective of their length.
However, in some applications (e.g., [25,9]) it is necessary to count subsequences that have a length of precisely k. The

next Lemma is a specialization of Lemma 2 in the sense that it is about subsequences of a particular length k. It implies an
algorithm that, given a string of length |x|, usesΘ(k |x|) arithmetic operations.
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Lemma 3 ([5,9]). Let x ∈ Σn be a nonempty string, S(x|k) the set of its k-long subsequences and φ(x|k) := |S(x|k)|. Then

φ(x|k) =
{
φ(xn−1 | k)+ φ(xn−1 | k− 1) if xn � xn−1,
φ(xn−1 | k)+ φ(xn−1 | k− 1)− φ(x`−1 | k− 1) if xn � xn−1.

Proof. The proof is analogous to that of Lemma 2, additionally tracking the length of the canonical embeddings. �

Maximizing the number of subsequences. Whenever the number of distinct subsequences is used to express the complexity of
a string, it is interesting to knowwhich string z ∈ Σnmaximizes the quantityφ(·) among all strings of length n. For example,
if we define the complexity of a string x ∈ Σn as φ(x), it becomes relevant to study the relative complexity φ(x)/φ(z)where
|x| = |z| = n. Therefore we concisely discuss some of the properties of this φ-maximizing z. We letΣ := {σ1, . . . , σd} and
z ∈ Σn such that

z = σ1 . . . σdσ1 . . . σdσ1 . . . σmod(n,d),

i.e., z is constructed as a repeated permutation of the alphabet. In [5,16,12], it is shown that φ(z|k) ≥ φ(x|k) for any x ∈ Σn
and any k, equality holding for all k ≥ 0 only if x also consists of a repeated, possibly different permutation ofΣ .
The reader notes that we could use Lemma 2, to prove that the repeated permutation zmaximizes the number of distinct

subsequences. The next lemma was also provided in [12]; it shows that φ(z) satisfies a generalized Fibonacci-recurrence.
Because of Lemma 2, the proof has become almost trivial.

Lemma 4 ([12]). Let zn ∈ Σn be a repeated permutation of an alphabetΣ of size |Σ | = d. Then

φ(zn) =
d∑
k=1

φ(zn−k)+ 1 if n ≥ d,

and φ(zn) = 2n for 0 ≤ n < d.

Proof. Because of Lemma 2 and the fact that z is a repeated permutation ofΣ , we have

φ(zn) =
{
2n if 0 ≤ n < d,
2φ(zn−1)− φ(zn−1−d) if n ≥ d.

Using the recursive part of the above equation to repeatedly expand terms of the form 2φ(zn−j) as

φ(zn−j)+ 2φ(zn−j−1)− φ(zn−j−1−d),

and adding, ultimately yields

φ(zn) =
d∑
k=1

φ(zn−k)+ 2d − 2d−1 − · · · − 20 =
d∑
k=1

φ(zn−k)+ 1,

as required. �

To discuss a result that is relevant to coding theory, we refine our notation: we write φd(z|k) to denote the number of
k-long subsequences of a repeated permutation z of an alphabetΣ of size |Σ | = d. Interestingly, in [16, Theorem 2.6], it is
proven that

φd(zn|k) =
n−k∑
i=0

(
k
i

)
φd−1(zn−k|n− k− i).

However, using Lemma 3, it is immediate that

φd(zn|k) = φd(zn−1|k)+ φd(zn−1|k− 1)− φd(zn−d−1|k− 1)

and φd(zn|k) =
(n
k

)
for 0 ≤ n ≤ d, a recursion that does not need the φd−1(·).

4. Counting common subsequences

Next we turn our attention to counting common subsequences of two strings. We write φ(x, y) := |S(x, y)| and start
with a simple lemma, stated in [29].
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Lemma 5 ([29]). Let the strings x, y ∈ Σ? have lengths m and n, respectively. Let neither of them contain multiple occurrences
of any of the characters ofΣ , i.e. |x|σ , |y|σ ∈ {0, 1} for all σ ∈ Σ . Then

φ(x, y) =
{
2φ(xm−1, yn−1) if xm = yn,
φ(xm−1, y)+ φ(x, yn−1)− φ(xm−1, yn−1) if xm 6= yn.

Proof. Suppose xm = yn. By assumption, xm � xm−1 and yn � yn−1, so uxm /∈ S(xn−1, yn−1) but uxm ∈ S(x, y) if u ∈
S(xm−1, yn−1). Therefore, if xm = yn, then S(x, y) = S(xm−1, yn−1)∪{uxm : u ∈ S(xm−1, yn−1)}, so φ(x, y) = 2φ(xm−1, yn−1),
since these sets are disjoint.
Now suppose xm 6= yn. Then either xm � y or xm � yn−1. If xm � y, S(x, y) = S(xm−1, y) and S(x, yn−1) = S(xm−1, yn−1).

On the other hand, if xm � yn−1, then S(x, y) = S(xm−1, y) ∪ S(x, yn−1) but these sets may not be disjoint. �

Evidently, Lemma 5 implies a simple dynamic programming algorithm [29, Algorithm 3.1]. Equally evident is that
the lemma is not correct if a character occurs repeatedly in either string; then φ(x, y) could well be much smaller than
2φ(xm−1, yn−1)when xm = yn. To obtain a more general result, we must explicitly account for multiple embeddings. This is
exactly what the next lemma does: for |x| = m, it relates φ(x, y) to φ(xm−1, y) under three different conditions.
First, if xm � y, elongation of xm−1 with xm does not increase the number of common subsequences. Under the second

condition, we suppose that xm is contained in y and that xm is new to xm−1. New common subsequences arise by elongating
the common subsequences of (xm−1, y`y−1) with xm where `y := `(y, xm). Under the third condition, we again assume
that xm � y but now we also suppose that xm is not new to xm−1. We must compensate the number of new common
subsequences that arise by elongation, by subtracting those that were formedwhen elongating with xm at the previous time
we encountered xm.

Lemma 6 ([9]). Let x and y be finite, nonempty strings over Σ with lengths |x| = m and |y|, respectively. For each σ ∈ Σ , let
`(x, σ ) := max{i : xi = σ } with `(x, σ ) := 0 if σ � x. For brevity, we set `x := `(xm−1, xm) and `y := `(y, xm). Then

φ(x, y) =


φ(xm−1, y) if xm � y,
φ(xm−1, y)+φ(xm−1, y`y−1) if xm � y, xm � xm−1,
φ(xm−1, y)+φ(xm−1, y`y−1)

− φ(x`x−1, y`y−1) if xm � y, xm � xm−1.

Proof. If xm � y then Î(xm−1, y) = Î(x, y) hence φ(x, y) = φ(xm−1, y).
If xm � y and xm � xm−1 then

Î(x, y) = Î(xm−1, y) ∪ C

with

C =
{(
iuxm(x), iuxm(y

`y)
)
:
(
iu(xm−1), iu(y`y−1)

)
∈ Î(xm−1, y`y−1)

}
,

and these sets are disjoint, since the embeddings in C end with m whereas the embeddings in Î(xm−1, y) do not. Note that
the joint embeddings in C are canonical since xm � xm−1. Hence it follows that

φ(x, y) = φ(xm−1, y)+ φ(xm−1, y`y−1),

as required.
If xm � y and xm � xm−1 then

Î(x, y) = Î(xm−1, y) ∪ D

with

D =
{(
iuxm(x), iuxm(y

`y)
)
:
(
iu(xm−1), iu(y`y−1)

)
∈ E

}
and

E = Î(xm−1, y`y−1) \ Î(x`x−1, y`y−1).

Therefore

φ(x, y) = φ(xm−1, y)+ φ(xm−1, y`y−1)− φ(x`x−1, y`y−1),

as required. �

Lemma 6 implies a dynamic programming algorithm that requires Θ(|x||y|) arithmetic operations. The reader notes
that in Lemma 6, we presume that the numerical values of `x and `y are known. This implies that these values have to be
computed before the dynamic algorithm is put to work.
Finally, we generalize Lemma 6 to the problem of computing the number φ(x, y|

−→
k ) of all common subsequences that

are at least k-long.
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Theorem 1. Let x and y be finite, nonempty strings over Σ with lengths |x| = m and |y| respectively. Furthermore, for each
σ ∈ Σ , let `(x, σ ) := max{i : xi = σ } with `(x, σ ) := 0 if σ � x. For brevity, we set `x := `(xm−1, xm) and `y := `(y, xm).
Then, for 0 ≤ k ≤ min{|x| , |y|},

φ(x, y|
−→
k ) =


φ(xm−1, y|

−→
k ) if xm � y,

φ(xm−1, y|
−→
k ) + φ(xm−1, y`y−1|

−−→
k− 1) if xm � y, xm � xm−1,

φ(xm−1, y|
−→
k ) + φ(xm−1, y`y−1|

−−→
k− 1)

− φ(x`x−1, y`y−1|
−−→
k− 1) if xm � y, xm � xm−1.

Proof. We first define Î(x, y|
−→
k ) as the set of all joint canonical embeddings of x and y that are at least k-long. If xm � y then

Î(xm−1, y|
−→
k ) = Î(x, y|

−→
k ); hence φ(x, y|

−→
k ) = φ(xm−1, y|

−→
k ).

If xm � y and xm � xm−1 then

Î(x, y|
−→
k ) = Î(xm−1, y|

−→
k ) ∪ C

with

C =
{(
iuxm(x), iuxm(y

`y)
)
:
(
iu(xm−1), iu(y`y−1)

)
∈ Î(xm−1, y`y−1|

−−→
k− 1)

}
;

and these sets are disjoint, since the embeddings in C end withmwhereas the embeddings in the first set do not. Note that
the joint embeddings in C are canonical since xm � xm−1. Hence it follows that

φ(x, y|
−→
k ) = φ(xm−1, y|

−→
k )+ φ(xm−1, y`y−1|

−−→
k− 1),

as required.
If xm � y and xm � xm−1 then

Î(x, y|
−→
k ) = Î(xm−1, y|

−→
k ) ∪ D

with
D =

{(
iuxm(x), iuxm(y

`y)
)
:
(
iu(xm−1), iu(y`y−1)

)
∈ E

}
and

E = Î(xm−1, y`y−1|
−−→
k− 1) \ Î(x`x−1, y`y−1|

−−→
k− 1).

Therefore,

φ(x, y|
−→
k ) = φ(xm−1, y|

−→
k )+ φ(xm−1, y`y−1|

−−→
k− 1)− φ(x`x−1, y`y−1|

−−→
k− 1),

as required. �

Clearly, Theorem 1 implies a dynamic programming algorithm withΘ(k · |x| · |y|) arithmetic operations. Obviously, the
possibility to compute the quantity φ(x, y|

−→
k ) suffices to compute the related quantities

φ(x, y|k) = φ(x, y|
−→
k )− φ(x, y|

−−→
k+ 1)

and
φ(x, y|

←−
k ) = φ(x, y)− φ(x, y|

−→
k ),

where φ(x, y|
←−
k ) denotes the number of common subsequences with a length that is smaller than k.

Counting matching embeddings. In Section 2, we discussed the concept of an embedding of u � x: a sequence of integers
1 ≤ i1 < · · · < i|u| ≤ i|x| such that u = xi1 . . . xi|u| . For example, ab � abab = x has 3 embeddings: Iu(x) = {12, 14, 34}.
In the analysis of categorical time series, it may be important to account for the fact that certain subsequences have, or do
not have, multiple embeddings. For example, consider a set of job career sequences, built from three characters: E for being
employed, U for being unemployed and T for a spell of government supported vocational training. Then the subsequence
u = TEU both occurs in x = TEUTEUTEU and in y = TEUE. But the fact that this ‘‘failure’’-subsequence occurs 10 times
in x and only once in y is not accounted for, if one just counts common subsequences. This example illustrates that it is
often useful to account for the number of embeddings, too. This is achieved by evaluating the number µ(x, y) of matching
nonempty embeddings,

µ(x, y) :=
∑

u∈S(x,y),u6=λ

|x|u · |y|u .

So, in µ(x, y), each nonempty common subsequence is weighted according to the number |x|u · |y|u of its joint embeddings
(iu(x), iu(y)). In other words, each nonempty common subsequence is weighted by the product of the frequencies of it in
either of the sequences.
Let us write µ(x, y|k) for the number of matching embeddings of length k. Clearly then, we have that µ(x, y) =∑
k≥1 µ(x, y|k). The next lemma implies that we first calculate µ(x, y|1), then the 1-long subsequences are, if possible,

elongated to 2-long common subsequences upon which µ(x, y|2) is calculated, etc.
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Lemma 7 ([8]). Let x, y ∈ Σ?, and let E(k) = {e(k)ij } denote |x|× |y|-matrices as follows. We set e
(1)
ij := 1 if xi = yj, and e

(1)
ij := 0

otherwise. For 2 ≤ k ≤ min{|x| , |y|} =: M, we set e(k)ij := e
(1)
ij
∑
a>i,b>j e

(k−1)
ab . Furthermore, we set Sk :=

∑
ij e
(k)
ij . Then, for

k ≥ 1,
µ(x, y|k) = Sk.

Proof. By induction over k, e(k)ij equals the number of k-long joint embeddings that start at position i in x and at position j in
y and spell the same string. Hence also Sk = µ(x, y|k). �

To calculate µ(x, y), we need µ(x, y|k) for each 1 ≤ k ≤ M and this requires that we construct each E(k) and add its
elements. So, the implied algorithm needsΘ(M · |x| · |y|) arithmetic operations. The algorithm uses only little information
in each of itsM steps, so we suspect the existence of a faster algorithm. Indeed, such an algorithm exists and it requires only
Θ(|x| · |y|) operations. To prove its correctness, we first need the next lemma:
Lemma 8. Let x ∈ Σm and u ∈ Σ?. Then

|x|u =
{
|xm−1|u if xm 6= u|u|
|xm−1|u + |xm−1|u|u|−1 if xm = u|u|.

Proof. If xm 6= u|u|, then the embeddings of u in xmust be embedded in xm−1 and if there exist embeddings of u that end on
xm, these embeddings must have their prefixes u|u|−1 embedded in xm−1. �

The reader notes that, since |x|u0 = |x|λ = 1, Lemma 8 implies a dynamic algorithm, requiring onlyΘ(|x|·|u|) operations,
which counts the number of embeddings of u � x.
Theorem 2. Let x ∈ Σm and y ∈ Σn. Then

µ(x, y) =
{
µ(xm−1, y)+ µ(x, yn−1)− µ(xm−1, yn−1) if xm 6= yn,
µ(xm−1, y)+ µ(x, yn−1)+ 1 if xm = yn.

Proof. Since |x| = m, xm denotes the last character of x and, for any string u, u|u| denotes the last character of u. By definition,
we have that |xm|u|u| = 1 if xm = u|u| and |xm|u|u| = 0 otherwise. So, we reformulate Lemma 8 as

|x|u = |xm−1|u + |xm−1|u|u|−1 · |xm|u|u| ,
and we use this fact in

µ(x, y) =
∑
u

|x|u · |y|u

=

∑
u

|xm−1|u · |yn−1|u +
∑
u

|xm−1|u · |yn−1|u|u|−1 · |yn|u|u|

+

∑
u

|xm−1|u|u|−1 · |y
n−1
|u · |xm|u|u| +

∑
u

|xm−1|u|u|−1 · |y
n−1
|u|u|−1 · |xm|u|u| · |yn|u|u| ,

where it is understood that u ∈ Σ?
\ {λ}. Now it is not difficult to see that∑

u

|xm−1|u · |yn−1|u = µ(xm−1, yn−1),∑
u

|xm−1|u · |yn−1|u|u|−1 · |yn|u|u| = µ(x
m−1, yn)− µ(xm−1, yn−1),∑

u

|xm−1|u|u|−1 · |y
n−1
|u · |xm|u|u| = µ(x

m, yn−1)− µ(xm−1, yn−1).

Substituting these identities in the above expression for µ(x, y) then yields

µ(x, y) = µ(xm−1, y)+ µ(x, yn−1)− µ(xm−1, yn−1)+
∑
u

|xm−1|u|u|−1 · |y
n−1
|u|u|−1 · |xm|u|u| · |yn|u|u| .

Whenever xm 6= yn, we must have that |xm|u|u| · |yn|u|u| = 0 for any u so the above expression then reduces to

µ(x, y) = µ(xm−1, y)+ µ(x, yn−1)− µ(xm−1, yn−1),
proving the first part of the theorem.
On the other hand, if xm = yn, the summands are only positive when xm = u|u| = yn. For u|u|−1 6= λ, the sum equals

µ(xm−1, yn−1) and for xm = u = yn, we must have that
|xm−1|u|u|−1 · |y

n−1
|u|u|−1 · |xm|u|u| · |yn|u|u| = 1.

So, for xm = yn, we have that
µ(x, y) = µ(xm−1, y)+ µ(x, yn−1)+ 1,

proving the second part of the theorem. �
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Again, a dynamic programming algorithm follows immediately from Theorem 2.
Unpublished work by Greenberg [13] shows how to compute the number of distinct longest common subsequences and

the number of matching embeddings thereof.
We finally note, that by choosing y = (1, 2, . . . , |Σ |) as one of the sequences and x arbitrarily, the algorithms presented

in this section compute the number of strictly increasing subsequences of x.

5. Span of subsequences

In this section, we examine a property of subsequences that we call the span. Let x be an n-long string and u � x with
embedding iu(x) = i1 . . . i|u|. Then we say that the span of this embedding equals

îu(x) := i|u| − i1 + 1.

Since a subsequence u may have multiple embeddings in x, we define the span of a subsequence as the largest span of its
embeddings:

û � x := max
{
îu(x) : iu ∈ Iu(x)

}
.

We furthermore define the span of the empty embedding as zero, and consequently also λ̂ � x := 0. If a subsequence has
a span ofmwe call it anm-span subsequence.
The span is an interesting property in at least two contexts. First, in social sciences, one may not want to consider

subsequences that consist of states that are too remote, i.e., that have too big a time lapse or toomanyother states in between.
For example, consider a categorical time series that represents a job career and that contains short spells of unemployment.
Such spells may affect the kinds of jobs directly following the unemployment but this effect will fade away with jobs that
are more remote from the unemployment spells. So, it may be interesting to consider only subsequences of labor market
statuses that have limited span.
A second context is that of complexity of finite strings (e.g. [7]). Normally, the (subword) complexity of a finite string

can be expressed as the number of distinct substrings that it contains. [17,18] proposed a special kind of subsequence, the
d-substring, and a class of complexity measures that relies on it. A d-substring from x is a subsequence u = xi1 . . . xi|u| , such
that 1 ≤ ij+1 − ij ≤ d for all 1 ≤ j ≤ |u| − 1, or such that |u| ∈ {0, 1}. Indeed, for d = 1, these objects are the ordinary
substrings and for d > 1, objects arise that are subsequences with bounded gaps (gaps of at most d). The d-complexity Kd(x)
is then taken to be the number of distinct d-substrings of x.
If no character occurs twice in x, it is not difficult to see that

Kd(x) = Kd(xn−1)+ [Kd(xn−1)− Kd(xn−1−d)] + 1.

For by elongating xn−1 with xn, new d-substrings arise by appending xn to all substrings that have their last characters
in {xn−d, . . . , xn−1}, and xn is new, too. So, in the right hand side of the above expression, the first term refers to the
d-substrings of xn−1, the second term to the new d-substrings that arise by concatenation of xn to the substrings that have
their last character in {xn−d, . . . , xn−1} and the third term, 1, refers to xn itself that is by definition new. Unfortunately, we
were unsuccessful in finding a recurrence that extends to the general case.
The concept of anm-span subsequence is related to that of a d-substring, in the sense that d fixes the maximal gap size,

whereasm fixes the average gap size for a subsequence. While no efficient algorithm for counting d-substrings is known to
us, it is comparatively easy to count the subsequences of any given span.
We first note that the span of a subsequence is completely determined by the position of its first character in its canonical

(left-most), and of its last character in its right-most embedding. The following lemma makes this precise.

Lemma 9. Let a, b ∈ Σ be two (not necessarily distinct) characters and v ∈ Σ? (possibly empty) such that avb � x. Then

̂avb � x = âb � x.

Proof. The proof is straightforward and left to the reader. �

Let us write Ŝ(x|m) for the set of subsequences of a string x, the subsequences having a span of exactlym, and let ϑ(x|m),
denote the cardinality of this set.
Clearly, Ŝ(x|0) = {λ}, so ϑ(x|0) = 1 for any string x. Also, Ŝ(x|1) is simply the set of characters that occur in x, so

ϑ(x|1) = |{σ : `(x, σ ) > 0}|. The following theorem states how to compute Ŝ(x|m) and ϑ(x|m) for m ≥ 2, and is a direct
consequence of the fact that the first and last character determine the span of a subsequence. The theorem translates again
into a dynamic programming algorithm. It needsΘ(|Σ ||x|) arithmetic operations, assuming |Σ | ∈ Θ(|x|).
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Lemma 10. As before, let `(x, σ ) = `σ denote the rightmost position of σ ∈ Σ in x ∈ Σ?, or `(x, σ ) := 0 if σ � x. Conversely,
let f (x, σ ) = fσ denote the leftmost position of σ in x, or f (x, σ ) := 0 if σ � x. Let m ≥ 2. Then

Ŝ(x|m) =
⋃

(a,b)∈Σ2:
`b−fa+1=m

{avb : v ∈ S(xfa+1 . . . x`b−1)}.

Consequently,

ϑ(x|m) =
∑

(a,b)∈Σ2:
`b−fa+1=m

φ(xfa+1 . . . x`b−1).

Proof. Obviously, ab belongs to Ŝ(x|m) if and only if `b − fa + 1 = m. By Lemma 9, the same holds for any subsequence of
the form avbwith v � xfa+1 . . . x`b−1. Since the sequence sets are disjoint for distinct (a, b), the set recurrence immediately
translates to the sum formula. �

We conclude this section, by noting that it is equally easy to keep track of the length of the m-span subsequences; this
follows as in Lemma 10.

Corollary 1. Let Ŝ(x|m; k) denote the set of m-span subsequences of length k and ϑ(x|m; k) its cardinality. Then for m ≥ 2 and
k ≥ 2,

Ŝ(x|m; k) =
⋃

(a,b)∈Σ2:
`b−fa+1=m

{avb : v ∈ S(xfa+1 . . . x`b−1 | k− 2)},

ϑ(x|m; k) =
∑

(a,b)∈Σ2:
`b−fa+1=m

φ(xfa+1 . . . x`b−1 | k− 2).

6. Sequences generated by length-restricted runs

Consider the string x = x1 . . . xr , with xi = σ ∈ Σ for each 1 ≤ i ≤ r , i.e., a string that consists of a run of r repetitions of
the character σ . In this section, we will denote such runs as σ (r) and in particular, σ (0) = λ for all σ ∈ Σ . Now consider an
n-long string x, and let y � x. Then there exists a sequence of integers r1, . . . , rn with ri ∈ {0, 1} for all 1 ≤ i ≤ n such that

y = x(r1)1 x
(r2)
2 . . . x(rn)n .

In fact, the sequence (ri) is a binary representation of an embedding of y in x. It is natural to say that y is generated from x
and with run-lengths ri. An obvious generalization is to allow the ri to take a wider range {0, . . . , ρ} and call the resulting
objects the ρ-generated sequences of x. We will write y �ρ x to denote that y is ρ-generated from x. With ρ = 1, these
objects are the ordinary subsequences of x and the relation�1 is the same as�.
Although in a ρ-generated sequence y from x, the individual runs are confined to lengths {0, . . . , ρ}, this does not imply

that the runs in y cannot exceed ρ. For example, with x = aba, we can 2-generate a(2)b(0)a(1) = a(3) �2 aba. Motivated
by modern DNA sequencing technology that can sequence a whole run at a time, but only reliably so when the run is not
too long (about 4 or 5 characters), we are interested in counting sequences in which no run-length exceeds ρ. Therefore we
define the setΣkρ of k-long ρ-restricted sequences

Σkρ :=

{
u = u(r1)1 . . . u(rm)m : ui+1 6= ui and 1 ≤ ri ≤ ρ for all i;

m∑
i=1

ri = k

}
.

Now we define the set of k-long, ρ-restricted sequences that are ρ-generated from x ∈ Σn as

Sρ(x|k) :=
{
u ∈ Σkρ : u �ρ x

}
,

and we wish to count the sequences in this set. We subdivide Sρ(x|k) into

Sρ(x|k; σ) := {u ∈ Σkρ : u �ρ x, um = σ },

i.e., we condition on the last letter of the subsequence. Furthermore we set

Sρ(x|k; σ) := Sρ(x|k) \ Sρ(x|k; σ).

Note that for k > 0 we have Sρ(x|k) = ∪σ Sρ(x|k; σ) as a disjoint union. However, for k = 0 we have Sρ(x|0) = {λ} 6= {} =
∪σ Sρ(x|k; σ). We write φρ(x|k), φρ(x|k; σ), and φρ(x|k; σ) for the respective cardinalities of the above sets.
The next theorem [25] again implies a dynamic programming algorithm to compute these quantities.
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Table 1
Subsequence counting problems solved in this paper, along with their Java implementation
Object Symbol Reference Java: count. . .

Distinct subsequences of x φ(x) Lemma 2 Subsequences(x)
Distinct subsequences of length k φ(x|k) Lemma 3 Subsequences(x,k)
Common subsequences φ(x, y) Lemma 6 CommonSubsequences(x,y)
Common subsequences of length≥ k φ(x, y|k) Theorem 1 CommonSubsequences(x,y,k)
Embeddings of y in x |x|y Lemma 8 Embeddings(x,y)
Matching embeddings µ(x, y) Theorem 2 MatchingEmbeddings(x,y)
Matching embeddings of length k µ(x, y|k) Lemma 7 MatchingEmbeddings(x,y,k)
Subsequences with spanm ϑ(x|m) Lemma 10 SubsequencesSpan(x)
Subsequences of length k ϑ(x|m; k) Corollary 1 SubsequencesSpan(x,k)
ρ-generated ρ-restricted seq’s φρ(x) Theorem 3 GeneratedSequences(x)
ρ-generated ρ-restricted seq’s of length k φρ(x|k) Theorem 3 GeneratedSequences(x)

Theorem 3 ([25]). Let x ∈ Σn and k ≥ 1. Then

φρ(x|k; σ) =


φρ(xn−1|k; σ) if σ 6= xn,
min{ρ,k}∑
r=1

φρ(xn−1|k− r; σ) if σ = xn.

Proof. If xn 6= σ , then the sequences in Sρ(x|k; σ) cannot end at xn; hence they are already in Sρ(xn−1|k; σ). Hence the
cardinalities of these sets are equal.
If, on the other hand, xn = σ , we may take any u ∈ S(xn−1|k− r; σ), and append a σ -run σ (r) for any 1 ≤ r ≤ ρ (unless

r > k); this yields a distinct uσ (r) ∈ S(x|k; σ) in each case. Conversely, every string in this set is obtained by appending a
σ -run to such a prefix. Hence S(x|k; σ) = ∪1≤r≤min{ρ,k} S(xn−1|k − r; σ), and since the union is disjoint, the cardinalities
sum up. �

We point out the special case ρ = 1, which counts the number of k-subsequences of x, in which no two adjacent
characters are equal:

φ1(x|k; σ) =
{
φ1(xn−1|k; σ) if σ 6= xn,
φ1(xn−1|k− 1; σ) if σ = xn.

In fact, the formula for general ρ can be derived from this special case by the identity

φρ(x|k) =
∑
m≥0

φ1(x|k) · c(k,m, ρ),

where c(k,m, ρ) denotes the number of compositions [1] of kwithm summands that do not exceed ρ.

7. Conclusion

Up to now, the systematic study of subsequences of one or several strings has received relatively little attention,
compared with the study of substrings. With the present paper, we have collected and extended efficient algorithms to
count subsequences under different constraints; each problemwe consider ismotivated by at least one application field (e.g.,
the study of categorical time series in the social sciences, biological sequence analysis in bioinformatcs, string complexity
considerations and string kernel construction inmachine learning).Weprovide a Java implementation using exact arbitrary-
precision arithmetic of the algorithms contained in this paper at http://gi.cebitec.uni-bielefeld.de/comet/subseq. Table 1
summarizes the counting problems considered in this paper, along with the respective Java function call.
It remains open to find an efficient algorithm to count d-substrings (see Section 5) or prove that this problem is

NP-hard.We have noted that by choosing y = (1, 2, 3, . . . ) in the algorithms that count common subsequences ormatching
embeddings, we can count increasing subsequences or embeddings in x, but possibly for this problem, more efficient
algorithms exist.
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