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Abstract

We analyze some features of the behaviour of quantum automata, providing analogies and
di"erences with the corresponding stochastic models. In particular, we prove:
• there is a quantum automaton where the change of state depends on unitary transformations

de1ned by matrices with nonnull amplitudes that accepts a non regular language with cut
point zero and inverse error polynomially bounded,

• stochastic automata with matrices having nonnull elements and with polynomial bounds on
the inverse error recognize only regular languages,

• the class of stochastic languages contains the class of quantum languages,
• quantum languages are empty or contain an in1nite number of words,
• the class of quantum languages is not closed under complementation.
c© 2001 Published by Elsevier Science B.V.
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1. Introductions

Even if the present technology does consent to realize only very simple devices
based on the principles of quantum mechanics, many authors considered it to be worth
asking whether a theoretical model of quantum computation could o"er any substan-
tial bene1ts over the correspondent theoretical model based on the assumptions of
classical physics. Recently, this question has received considerable attention because
of the growing belief that quantum mechanical processes might be able to perform
computation that traditional computing machines can only perform ine8ciently. For
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an extensive bibliography and illustration of the main results in the area the reader is
referred to [4, 6, 16, 18, 33, 34, 37].
In 1982 Benio" [2] 1rst considered that devices computing according to the princi-

ples of quantum mechanics could be at least as powerful as classical computers. The
question whether the computational power of quantum mechanical processes might
be beyond that of traditional computation models was raised by Feynmann [19] who
gave arguments as to why quantum mechanics might be computationally expensive
to simulate on a classical computer. In 1985 Deutsch [13], re-examined the Church
Turing Principle, on which the current computational complexity theory is founded,
and he proposed a precise model of a quantum physical computer, so, de1ning quan-
tum Turing machines. Then, Deutsch [14] de1ned quantum networks and investi-
gated some of their properties. Bernstein and Vazirani [6] gave the foundations of
the quantum theory of computational complexity and described an e8cient universal
quantum computer that simulates a large class of Quantum Turing Machines. Yao
[37] introduced the quantum complexity theory in terms of quantum networks and
showed the existence of an e8cient quantum simulator for each Quantum Turing
Machine.
Several authors o"ered evidence that the quantum model of computation may have

signi1cantly more complexity theoretic power than the traditional Turing Machines
[6–8, 15, 19, 20, 33, 34]. Berthiaume and Brassard [7, 8] and Deutsch and Jozsa [15]
introduced problems that quantum computers can quickly solve exactly, while classi-
cal ones can only solve quickly with a bounded probability of error. Bernstein and
Vazirani [6], proposed an oracle problem that can be solved in polynomial time by
quantum computation, but requires super-polynomial time on a classical machine. This
result was improved by Simon [34], who gave a simpler construction of an oracle
problem that takes polynomial time by quantum computation, but exponential time
on a classical computer. Simon’s algorithm inspired the work of Shor [33] that pre-
sented quantum polynomial time algorithms for the discrete logarithm and integer fac-
toring problems that, as it is well known, are unlikely to be solvable in polynomial
time by classical computation. Indeed, the integer factoring is so widely believed to
be hard that the RSA public cryptosystem [30] is based on the assumption of its
hardness.
Although some suggestions have been made to design quantum computers

[36, 25, 26, 11, 17, 35, 10], there are substantial di8culties in building any of these
because of the destabilizing e"ects of the environmental interaction that is a major
experimental (and theoretical) obstacle. Such di8culties become very serious as the
computation time and the size of the computer grow so that it is conceivable to build
only small or very simple quantum machines.
The problems of the destabilizing e"ects of interaction with an environment suggest

the study of quantum devices, simpler than quantum machines, such as those corre-
sponding to classical automata, that can be experimentally useful to understand better
and possibly control quantum phenomena. A 1nite control state Quantum Automaton
(QA) can be viewed as a particular quantum Turing machine, where the head moves
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only to the right reading and writing the same symbol. The states of a QA with m
control states {1; : : : ; m} can be described as unit length m-dimensional complex vec-
tors whose kth component represents the amplitude of the control state k (16k6m).
We recall that an observation of the state �=(v1; : : : ; vm)∈Cm produces the control
state k with probability |vk |2. The possible input messages are words over a 1nite
alphabet 
; the input symbol �∈
 causes a change of state according to a unitary
transformation M (�) : Cm→Cm such that M (�)(�)= �M (�). Fixed an initial state 
,
a word �1 : : : �n ∈
∗ determines a new state �′ = 
M (�1) : : : M (�n). The probabilistic
event realized by QA is de1ned by the probability PQA(�1 : : : �n) that the control state
observed from �′ belongs to a preassigned set F of 1nal control states. Given a cut
point �∈ [0; 1), the behaviour of the quantum automaton QA can be de1ned by the
language LQA; � containing the input words �1 : : : �n for which p(�1 : : : �n)¿�. An im-
portant notion associated to the automaton QA with cut point � is the error function
�QA; � : N→ [0; 1], that represents the minimum absolute value of the di"erence between
the probability of a word of length at most n and the cut point �. The inverse error
�−1
QA; �(n), for �QA; �(n) �=0, is an estimation of the number of repetitions of an experi-
ment to decide the correct membership to LQA; � of a word of length at most n with
high con1dence. If there is �¿0 for which �QA; �(n)¿�, we say that the cut point � is
isolated. The notion of quantum automaton has strong analogies with that of stochas-
tic automaton. Nevertheless, in this paper we emphasize some di"erences between the
behaviours of the two computational models. Roughly speaking, the use of amplitudes,
instead of probabilities, increases the computational power of the quantum automata
with respect to the stochastic automata. Conversely, the reversibility constraints limit
the computational capabilities of the quantum automata. To be more precise, we show
that stochastic automata with matrices having nonnull elements and with polynomial
bounds on the inverse error recognize only regular languages. On the other hand, we
exhibit a quantum automaton, where the change of state depends on unitary transfor-
mations de1ned by matrices with nonnull amplitudes and that recognizes a non regular
language with cut point 0 and inverse error polynomially bounded. Notice that it is
well known that stochastic automata accept with cut point 0 only regular languages.
We prove that the class of stochastic languages, that is, those accepted by stochastic
automata with cut point, contains the class of quantum languages (accepted by quan-
tum automata with cut point). A property to check whether a language is not accepted
by a quantum automaton is given. Then, the property is used to prove that quantum
languages are empty or contain in1nite words and that the class of quantum languages
is not closed under complementation.

2. Preliminaries

In this section we review the basic concepts used in the rest of the paper. To
a more exhaustive illustration of the topics presented here the reader is referred to
[9, 12, 21, 23, 24, 27, 31].
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2.1. Formal power series

Let 〈
∗; ·; 1〉 be the free monoid generated by a 1nite alphabet 
 consisting of the
words over 
 along with concatenation product · and the empty word 1. Given a 1eld
K, the class K〈〈
〉〉 of formal power series in non commuting variables in 
 and
coe8cients in K is the set of functions of the type s : 
∗→K. Typically, the value
s(w) of the function s on w∈
∗ is denoted by (s; w) and referred as the coe8cient
of the series. The power series is written as a formal sum

s =
∑

w∈
∗
(s; w)w:

The usual operations de1ned on two power series s : 
∗→K and t : 
∗→K are the
sum

∑
w∈
∗

(s+ t; w)w =
∑

w∈
∗
[(s; w) + (t; w)]w

and the Cauchy product
∑

w∈
∗
(st; w) =

∑
w=uv

(s; u)(t; v)w:

Moreover, the Hadamard product s ◦ t of s and t is the function s ◦ t : 
∗→R de1ned
by s◦t(w)= s(w)t(w). The support of s is the language supp(s)= {w∈
∗: (s; w) �=0}.
A polynomial is a series of 1nite support. The family KRat〈〈
〉〉 of K− rational power
series over 
 is the smallest subdomain of K〈〈
〉〉 containing the polynomials and
closed under the operations of sum, Cauchy product and star, where star of a power
series s, such that (s; 1)= 0, is de1ned by

s∗ =
∑
n¿0

sn:

It is well known that the class of rational power series is closed under the oper-
ation of Hadamard product. A linear representation of a power series s is a triple
〈p; {A(�): �∈
}; �〉 with p∈K1×m; A(�)∈Km×m for each �∈
; �∈Km×1 and such
that for w= �1 : : : �k ∈
∗ it results

(s; w) = p
k∏

j=1
A(�j)�:

The following result [32, 9, 31] characterizes the rational power series, extending
Kleene’s Theorem [23] to the power series.

Theorem 1 (Scutzenberger [32]). A power series is rational if and only if it has a
linear representation of 6nite dimension.

2.2. Stochastic automata

Let 〈
∗; ·; 1〉 be the free monoid generated by a 1nite alphabet 
 consisting of the
words over 
 along with concatenation product and the empty word 1. We denote the
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length of the word w∈
∗ by |w|, while by 
6n we mean the set of the words in 
∗
of length at most n.

De�nition 1. A Stochastic Automaton SA over 
 and with m control states is a system

SA = 〈p; {A(�); � ∈ 
}; F〉;

where p∈Rm is a stochastic vector, A(�)∈Rm×m is a stochastic matrix m×m (�∈
),
and F ⊆{1; : : : ; m}.

The function A : 
→Rm×m can be extended to 
∗ in such a way that for any word
�1 : : : �l ∈
∗ we have

A(�1 : : : �l) =
l∏

j=1
A(�j):

The probability distribution pA(w), for w∈
∗, is obtained processing the system, ini-
tialized in control state j with probability pj (16j6m), on the input words in 
∗.
The stochastic event generated by SA is the function

PSA : 
∗ → [0; 1];

de1ned by

PSA(w) =
∑
k∈F

(pA(w))k :

The stochastic event PSA de1ned by the stochastic automaton SA is, indeed, a rational
power series by the theorem enunciated in the previous subsection. Given a stochastic
automaton SA and �∈ [0; 1), the language LSA; � accepted by SA with cut point � is

LSA;� = {w: PSA(w) ¿ �}:

The class of languages accepted with a cut point by stochastic automata is the class
of stochastic languages. The error function �SA; � : N→ [0; 1] is de1ned by

�SA;�(n) = min
w:|w|6n

|PSA(w)− �|:

When there exists �¿0 such that �SA; �(n)¿� for every n∈N, then � is said to be
isolated with respect to SA. Notice that ��−1

SA; �(n)�, for �QA; �(n) �=0, is the number
of occurrences of the experiment required to know whether word w∈
6n is in the
language LSA; � with suitable con1dence.
The following are the well-known results in the literature.

Fact 1. For each stochastic automaton SA LSA;0 is a regular language.

Theorem 2 (Rabin [29]). If � is isolated with respect to SA; then LSA; � is regular.
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Theorem 3 (Saloma and Soittola [31] Turakainen). A language L is stochastic if and
only if there exists a rational power series � : 
∗→R and a nonnegative real � such
that

L = {w :�(w) ¿ �}:

2.3. Quantum automata

De�nition 2. A quantum automaton (QA) with m control states over 
 is a system

QA = 〈
; {M (�); � ∈ 
}; F〉;

where 
 is a vector in Cm such that ‖
‖=1, M (�) de1nes a unitary transformation
M (�) : Cm→Cm and F ⊆{1; : : : ; m}.

By M (�1 : : : �l) : Cm→Cm (�1 : : : �j ∈
∗) we mean the transformation

M (�1 : : : �l) =
l∏

j=1
M (�j):

The stochastic event generated by QA is the function

PQA : 
∗ → [0; 1];

de1ned by

PQA(w) =
∑
k∈F

|(
M (w))k |2:

The language LQA; � accepted by QA with cut point �∈ [0; 1) is

LQA;� = {w: PQA(w) ¿ �}:

Given a quantum automaton QA and �∈ [0; 1), the error function �QA; � : N→ [0; 1] is
de1ned by

�QA;�(n) = min
w:|w|6n

|PQA(w)− �|

Moreover, when there exists �¿0 such that �QA; �(n)¿� for every n∈N, then � is said
to be isolated with respect to QA.

3. A non regular language accepted with cut point zero and inverse error
polynomial

In this section, we exhibit a quantum automaton with two control states that accepts
a non regular language with cut point 0 and it has inverse error polynomial in the
length of the input. First, we prove the following lemma.
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Lemma 1. If �=(
√
5− 1)=2; then sin2(k��)¿( 2

27 )
21=k2 for all integers k �=0.

Proof. By (Hardy and Wright [22]), it is known that if � is a quadratic irrational, then

inf
p∈Z

|k�− p|¿ 1
(M + 2)3|k| ;

where M is any upper bound of the nth quotient of the continued fraction converging
to �. If �=(

√
5− 1)=2, then each quotient is 1, from which it follows that

inf
p∈Z

|k�− p|¿ 1
27|k| : (1)

Thus, we have

sin2( k�) = sin2
(
 inf
p∈Z

|k�− p|
)

(since sin2  x = sin2  (x ± p))

¿ 4 inf
p∈Z

|k�− p|2 (since sin2  x¿4x2 for 06x6 1
2

and 06 inf
p∈Z

|k�− p|6 1
2 )

¿
(

2
27

)2 1
k2

(by (1))

Theorem 4. There exists a quantum automaton QA such that
1: the language LQA;0 accepted by QA with cut point 0 is not regular;
2: �QA;0(n)¿( 2

27 )
21=n2.

Proof. Consider the following QA with two control states and over 
= {�; �′}:

QA =
〈

 = (1; 0); M (�) =

(
cos  � − sin  �
sin  � cos  �

)
;

M (�′) =
(

cos  � sin  �
− sin  � cos  �

)
; F = {2}

〉
;

where �=(
√
5 − 1)=2. Note that M (�′) is the inverse of M (�) and represents the

rotation of the angle ��. If #�(w); #�′(w) denote the number of � and �′ in a word
w∈
∗, respectively, it is straightforward to check that PQA(w)= sin2(�k�), where
k =#�(w)−#�′(w). Since � is irrational, it follows that the language accepted with cut
point �=0 by QA is

LQA;0 = {w: #�(w) �= #�′(w)}:
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The language LQA;0 is not regular; moreover, if w∈LQA;0 by the previous lemma we
have that

PQA(w)¿
(

2
27

)2
1=(#�(w)− #�′(w))2

¿
(

2
27

)2 1
|w|2 :

4. Quantum and stochastic languages

Denote by e1 the m-dimensional vector e1 = (1; 0; : : : ; 0) and by P the cyclic per-
mutation matrix

P =



0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 :

Given the function � : 
∗→C; let Re� :
∗→R and Co� :
∗→R be such that
�(w) = Re�(w) + iCo�(w) for each w ∈ 
∗.

Lemma 2. If � :
∗→C is a rational power series represented by

〈
 = 
1 + i
2; {M (�) = M1(�) + iM2(�): � ∈ 
}; �〉;
then Re� :
∗→R is the rational power series represented by

〈
̂= 
1 ⊗ e1I + 
2 ⊗ e1P; {M̂ (�) = M1(�)⊗ I +M2(�)⊗ P: � ∈ 
};
�̂1 = �⊗ (1; 0;−1; 0)T〉:

and Co� :
∗→R is the rational power series represented by

〈
̂; {M̂ (�): � ∈ 
}; �̂2 = �⊗ (0; 1; 0;−1)T〉:

Proof. By induction on the length n of the words we can show that if


M (�1) · · ·M (�n) = a1 + ia2

and


̂M̂ (�1) · · · M̂ (�n) = b1 ⊗ e1I + b2 ⊗ e1P + b3 ⊗ e1P2 + b4 ⊗ e1P3;

then it holds a1 = b1 − b3 and a2 = b2 − b4. Consequently, we have


̂M̂ (�1) · · · M̂ (�n)�̂1 = (b1; b2; b3; b4)(�; 0;−�; 0)T
= (b1 − b3)� = a1�
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and


̂M̂ (�1) · · · M̂ (�n)�̂2 = a2�;

where


M (�1) · · ·M (�n)� = a1�+ ia2�:

Theorem 5. The language

LQA;� = {w: PQA;� ¿ �}
accepted by a quantum automaton QA with cut point � is a stochastic language.

Proof. The stochastic event

PQA : 
∗ → [0; 1];

is de1ned by

PQA(w) =
∑
k∈F

|(
M (w))k |2

=
∑
k∈F

{Re2[(
M (w))k ] + Co2[(
M (w))k ]};

where Re[(
M (w))k ] + iCo[(
M (w))k ] = (
M (w))k (w ∈ 
∗). Since �k : 
∗→C
such that �k(w) = (
M (w))k is a rational power series, then by Lemma 2 both Re�k :

∗→R and Co�k : �∗→R are rational power series. The class of power series is
closed under the sum and the Hadamard product. Therefore, the proof follows by
Theorem 3.

Lemma 3. If M is any unitary matrix of order m over the complex 6eld and Im is
the identity matrix over Cm; then for any �¿0 there exists ( ∈ N such that it holds

‖M( − Im‖6�:

Proof. Consider the linear space of matrices of order m over the complex 1eld with
norm ‖M‖ = sup�∈USm ‖�M‖. Each unitary matrix M is such that ‖M‖ = 1; moreover,
the set of unitary matrices along with the distance d(M;M ′) = ‖M −M ′‖ is a compact
metric space. Then, from the sequence {Mn}n∈N we can extract a Cauchy sequence
{Mnk}k∈N, i.e. for each �¿0 there exists (� ∈ N such that nk1 ; nk2¿(� implies ‖Mnk2 −
Mnk1 ‖6�. Fix nk2¿nk1¿(� and set ( = nk2 − nk1 . We have

‖M( − Im‖ = ‖M−nk1Mnk1+( −M−nk1Mnk1 ‖
= ‖M−nk1 (Mnk1+( −Mnk1 )‖
= ‖Mnk1+( −Mnk1 ‖ (since M−nk1 preserves length)

6 �
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The following lemma states a useful property to check whether a language is not
accepted by any quantum automaton.

Lemma 4. If LQA; � is a language accepted by a quantum automaton QA; then for
each x ∈ 
∗ and for every w ∈ LQA; � there exists a positive integer R( such that
wx R( ∈ LQA; �.

Proof. For any ( ∈ N it results

|PQA(w)− PQA(wx()| =
∣∣∣∣ ∑
k∈F

(|(
M (w))k |2 − |(
M (wx())k |2)
∣∣∣∣

6 2
∑
k∈F

‖(
M (w))k | − |(
M (wx())k‖

6 2
∑
k∈F

|(
M (w))k − (
M (wx())k |

= 2
∑
k∈F

|
M (w)(I −M((x))ek |

6 2
∑
k∈F

‖I −M((x)‖

= 2|F |‖I −M((x)‖:
Since w∈LQA;�; then PQA(w)¿� and we can set PQA(w) − � = *¿0: By
Lemma 3, there exists R( such that

‖I −M R((x)‖6 *
4|F |

and, consequently,

∣∣PQA(w)− PQA(wx R()
∣∣6*

2
:

We can conclude that wx R( ∈ LQA; � since

PQA(wx()− �¿PQA(w)− *
2
− �¿

*
2
¿ 0:

The next two theorems are consequences of Lemma 4.

Theorem 6. Quantum automata accept languages empty or containing an in6nite
number of words.

Theorem 7. The class of the quantum languages is not closed under complementation.

Proof. Consider the language L⊆{�; �′}∗ such that

L = {w : #�(w) �= #�′(w)}:
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By Theorem 4 there exists a QA accepting L: Moreover, the complement Lc of L is

Lc = {w: #�(w) = #�′(w)}:
Note that if w = ��′ ∈ Lc and x = �2�′; then for each (¿0 #�(wx()¿#�′(wx() and
therefore wx( �∈Lc. The proof follows since by Lemma 4 does not exist a QA accepting
Lc.

Lemma 5 (Paz, [27]). For any m×m stochastic matrix A and m-dimensional
stochastic vectors p=(p1; : : : ; pm); p′ =(p′

1; : : : ; p
′
m) there exists * (06*61) such

that

‖(p− p′)A‖6(1− *)‖p− p′‖;
where ‖p− p′‖ =

∑m
k=1 |pk − p′

k |.

A straightforward consequence of the previous lemma is the following.

Lemma 6. There exists R*; where 06 R*61; such that for any words x; y ∈ 
∗ it holds
that

‖PSA(yx)− PSA(x)‖62(1− R*)|x|:

Lemma 7. If the stochastic automaton SA has stochastic matrices A(�) such that
Aj; r(�) ¿ 0; for j; r = 1; : : : ; m and � ∈ 
; then only one of the properties holds
1: there is w∈
∗ such that PSA(w)= �;
2: the cut point is isolated with respect to SA (in Rabin’s sense);
3: there exists a nonnegative real -¡1 such that �SA; �(n)6-n for each n ∈ N.

Proof. Set

xn = min
x:|x|=n

|PSA(x)− �|:

Suppose that PSA(w) �= � for each w ∈ 
∗: Let R* be the positive integer such that
Lemma 6 holds. If for every n |PSA(xn)− �|63(1− R*)n; then Property 3 holds. Con-
versely, suppose that there exists Rn such that

|PSA(xn)− �| ¿ 3(1− R*) Rn: (2)

Then, for any word z = ya Rn ∈ 
∗ with su8x a Rn of length Rn it holds that

|PSA(z)− �| = |PSA(ya Rn)− PSA(a Rn) + PSA(a Rn)− �|
¿ ‖PSA(a Rn)− �| − |PSA(ya Rn)− PSA(a Rn)‖
¿ ‖PSA(xn)− �| − |PSA(ya Rn)− PSA(a Rn)‖
¿ (1− R*) Rn (by 2 and Lemma 6)
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Therefore, we have

inf
z∈
∗

|PSA(z)− �|= min
{

min
z:|z|¡ Rn

|PSA(z)− �|; inf
z:|z|¿ Rn

|PSA(z)− �|
}

¿min
{

min
z:|z|¡ Rn

|PSA(z)− �|; (1− R*) Rn
}
¿ 0 (since p(z) �= �):

The next theorem is a simple corollary of Lemma 7.

Theorem 8. If for every n∈N there exists a polynomial p(n) such that �SA; �(n)¿
(1=p(n)); then LSA; � is a regular language.

Proof. Obviously, PSA(w) �= � for each w∈
∗. If � were not isolated with respect to
SA; by Theorem 7, we would have

1
p(n)

6�SA;�6-n;

for any n ∈ N: Consequently, � is isolated and LSA; � is regular.
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