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a b s t r a c t

We prove a superlinear lower bound on the size of a bounded depth bilinear
arithmetical circuit computing cyclic convolution. Our proof uses the strengthening of the
Donoho–Stark uncertainty principle [D.L. Donoho, P.B. Stark, Uncertainty principles and
signal recovery, SIAM Journal of Applied Mathematics 49 (1989) 906–931] given by Tao
[T. Tao, An uncertainty principle for cyclic groups of prime order, Mathematical Research
Letters 12 (2005) 121–127], and a combinatorial lemma by Raz and Shpilka [R. Raz,
A. Shpilka, Lower bounds formatrix product, in arbitrary circuits with bounded gates, SIAM
Journal of Computing 32 (2003) 488–513]. This combination and an observation on ranks
of circulant matrices, which we use to give a much shorter proof of the Donoho–Stark
principle, may have other applications.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

One of the central mysteries in arithmetic circuit complexity is the computational power conferred by the ability to
perform arithmetic operations with arbitrary field elements at unit cost. Over the real numbers, for example, this assigns
unit cost to manipulations with numbers of infinite precision and/or unbounded magnitude. Morgenstern [6] argued that
most algorithms used in practice use only constants of ‘‘reasonably’’ boundedmagnitude. Possible exceptions are algorithms
with constants obtained via de-randomization procedures or polynomial interpolation.
Restricting scalars in circuits to have bounded magnitude does make it easier to prove lower bounds. Examples are the

volumetric lower bounds of [6] for bounded coefficient linear circuits, and the Ω(N logN) size lower bound of Raz [9] in
the bounded coefficient bilinear model for the mapping defined by multiplication of two n × nmatrices, where N = n2 [9].
Bürgisser and Lotz [1], building on the work of Raz, proved a tight Ω(n log n) size lower bound for the convolution of two
n-vectors of variables.
For linear and bilinear circuits with unrestricted constants, however, no superlinear size lower bounds have been

obtained despite four decades of attention. The question is whether this owes only to a current lack of lower bound
techniques, orwhether there is a real loss in computational powerwhen restricting scalarmagnitudes. The known results are
mainly size-depth tradeoffs. For linear circuits of fixed depth d, Pudlák [7] obtained size lower bounds of orderΩ(nλd(n)),
where the functions λd(n) for d = 1, 2, . . . are unbounded but extremely slow growing. These were partly based on lower
bounds for depth-d superconcentrators. Shoup and Smolensky [13] gave lower bounds of order Ω(dn1+1/d) for the task of
evaluating a univariate polynomial at some fixed set of complex numbers p1, p2, . . . , pn. This corresponds to computation
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of the linear map defined by the Vandermonde matrix with ijth entry pji. Here, either p1, p2, . . . , pn are required to be
algebraically independent over the field of rationals, or they have to grow very rapidly. This result can also be interpreted
as giving a lower bound for a set of degree n polynomials, by considering p1, p2, . . . , pn to be part of the input. Related to
this, in a very recent paper, Raz has proved an Ω(n1+1/(2d)) lower bound on the size of depth-d circuits computing some
explicitly defined polynomials of degree 5d+ 2 [10].
For bounded depth bilinear circuits, Raz and Shpilka proved that any depth d circuit for multiplying twom×mmatrices

is of size Ω( 1
d2
m2λd(m2)) [11]. In this paper, building on the work of [11], we prove a size-depth tradeoff for the circular

convolution mapping that was considered in [1]. We employ Tao’s strengthening for prime n [14] of the discrete form of
the Heisenberg uncertainty principle obtained by Donoho and Stark [5]. The next section gives background and circuit
definitions, a new and notably shorter proof of Donoho and Stark’s result, a sketch of Tao’s proof, and combinatorial
information used in the above-cited papers.

2. Preliminaries

Wedefine the discrete Fourier transformmatrixDFTn by (DFT n)st = ωst , for s, t ∈ {0, 1, . . . , n−1}, andwhereω = e2π i/n.
Let Fn = n−1/2DFT n. The conjugate transpose of a matrix Awill be denoted by A∗. The cyclic convolution x◦y of two n-vectors
x = (x0, x1, . . . , xn−1)T and y = (y0, y1, . . . , yn−1)T is the n-vector z = (z0, . . . , zn−1)T with components

zk =
∑

i+j≡k mod n

xiyj,

for 0 ≤ k < n. In other words, thinking of x and y as representing univariate polynomials f =
∑n−1
i=0 xit

i and g =
∑n−1
i=0 yit

i,
z = x ◦ y represents the polynomial f · g computed modulo tn − 1. For example with n = 5:

x ◦ y =


x0y0 + x4y1 + x3y2 + x2y3 + x1y4
x1y0 + x0y1 + x4y2 + x3y3 + x2y4
x2y0 + x1y1 + x0y2 + x4y3 + x3y4
x3y0 + x2y1 + x1y2 + x0y3 + x4y4
x4y0 + x3y1 + x2y2 + x1y3 + x0y4

 .
For vector x = (x0, . . . , xn−1)T, the circulant matrix Circ(x) is defined by

Circ(x) =


x0 xn−1 · · · x2 x1
x1 x0 · · · x3 x2
...

...
...

...
xn−2 xn−3 · · · x0 xn−1
xn−1 xn−2 · · · x1 x0

 .
We have that x ◦ y = Circ(x)y = Circ(y)x. We write diag(x) for the n × n matrix with x on the main diagonal and 0’s
elsewhere. Convolution can be computed using the Fourier transform, according to the following folklore result:

Theorem 2.1 (The Convolution Theorem). For any n-vector x = (x0, x1, . . . , xn−1)T,

Circ(x) = F∗n diag(DFTnx)Fn.

2.1. Discrete uncertainty principles

The following alternative proof exploits Theorem 2.1 and the relation it gives between rank and the support of an
n-vector f , which is defined by supp(f ) = {i : fi 6= 0}. The size of supp(f ) is a crude measure of the amount of localization
of the vector f . Analogous to the Heisenberg uncertainty principle, the following says that a nonzero vector f and its Fourier
transform f̂ =def Fnf cannot both be arbitrarily narrowly localized.

Theorem 2.2 ([5]). For any n-vector f 6= 0, |supp(f )| · |supp(f̂ )| ≥ n.

Proof. Since by Theorem 2.1,

Circ(f ) =
√
nF∗n diag(f̂ )Fn,

we have that |supp(f̂ )| = rank(Circ(f )). Now partition f into ‘‘blocks’’ consisting of a nonzero entry and the maximal string
of zero entries following it, wrapping from the end of the vector to the beginning if needed. Take R to be the maximum
length of a block. Then R ≥ n/|supp(f )|. Now consider the R rows of Circ(f ) corresponding to a size-R block—without loss of
generality we may cycle these around to the first R positions. These contain an R× R upper-triangular matrix with nonzero
main diagonal, and so are independent. Hence rank(Circ(f )) ≥ R ≥ n

|supp(f )| . �
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In case n is prime, Tao showed that Theorem 2.2 can be significantly improved [14]. The point is that for prime p the
matrix DFTp is totally regular , i.e. every square submatrix is nonsingular, a fact attributed to Chebotarëv in [12]. Given this
fact, for which [14] gives an elementary proof, Tao’s improvement follows readily:

Theorem 2.3 ([14]). For prime p, for any nonzero p-vector f and its Fourier transform f̂ = Fpf we have that |supp(f )|
+ |supp(f̂ )| ≥ p+ 1.

Proof. Let k = p − |supp(f̂ )|. There are k zeroes in f̂ . Let I ⊆ { 0, 1, . . . , p − 1 } be the indices of these zeroes. Suppose
|supp(f )| ≤ k. Let J ⊆ { 0, 1, . . . , p − 1 } be a set of size k that contains all indices of nonzero entries of f . In the following
DFT pI,J denotes the minor of DFTp with rows I and columns J . We have that (DFT

p
I,J)fJ = (DFTpf )I = 0, but fJ 6= 0 since f 6= 0.

This is a contradiction since DFT pI,J is nonsingular. Hence |supp(f )| > k = p− |supp(f̂ )|. �

2.2. Combinatorial lemma

For a function f : N → N, define f (i) to be the composition of f with itself i times—i.e., f (0) is the identity function, and
for i > 0, f (i) = f ◦ f (i−1). Then provided f (n) < n for all n > 0, define

f ∗(n) = min{i : f (i) ≤ 1}.
The labeling of the following set of extremely slow-growing functions λd(n) follows [11]; each is amonotone nondecreasing
function tending to infinity.
Definition 2.1 ([11]). Let
1. λ1(n) = b

√
nc,

2. λ2(n) = dlog ne,
3. λd(n) = λ∗d−2(n), for d > 2.
For a directed acyclic graph G, VG denotes the set of all nodes, IG those with in-degree 0, and OG those with out-degree 0.

The depth of G is the length in edges of the longest path from IG to OG. For subsets A ⊆ IG, B ⊆ OG and V ⊂ VG, let P[A, B, V ]
be the number of distinct paths from vertices in A to vertices in B that do not go over vertices in V .
Lemma 2.4 ([11]). Let 0 < β < 1, 0 < ε < 1/400, and d ≥ 2. For any large enough n, if G is a leveled directed acyclic graph
of depth d, with more than n vertices and less than εnλd(n) edges, then there exists a set of vertices V and a set J of inputs and
outputs such that:
1.
√
n ≤ |V | ≤ βn,

2. |J| ≤ 5εdn, and
3. PG[IG\J,OG\J, V ] ≤ ε n

2

|V | .

2.3. Bilinear circuits

Let C denote the field of complex numbers. An arithmetical circuit over inputs X = {x1, x2, . . . , xn} and C is given by
a directed acyclic graph G = (V , E). Vertices of in-degree zero are called inputs, and are labeled with variables from X or
field constants from C. Vertices with out-degree zero are called outputs. Any vertex of in-degree at least one is labeled with
an element ∈ {+,×}. These are called gates. Edges are labeled with field constants. A label α ∈ C on an edge is intended
to mean multiplication with α. Associated then, with each input or gate g is the polynomial computed by g , defined in the
obvious way. Linear circuits are those without× gates.
Since we are working over a field of characteristic zero, for the computation of bilinear forms, we can assume our circuits

to be bilinear, at the cost of a constant factor increase in size and depth (See Proposition 4.2 in [11]). A bilinear circuit over
sets of variables X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} has the following structure. First, there is a set S1 of addition
gates computing homogeneous linear forms in X . Second, there is a set S2 disjoint from S1 computing homogeneous linear
forms in Y . Third, there is a set S3 of multiplication gates of degree two, that take one input from S1 and one from S2. Finally,
there is a set S4 of addition gates that compute linear combinations of the bilinear forms computed by the multiplication
gates in S3. The outputs of the circuit form a subset of S4. As in [11], we only count the number of edges present in the circuit
above the multiplication gates.
Definition 2.2 ([11]). For a bounded depth bilinear circuit C , define its size s(C) to be the number of edges in the circuit
between the multiplication gates and the outputs, and define its depth d(C) to be the length of a longest path in edges from
a multiplication gate to an output.
A circuit of depth d is leveled, if we can partition the vertices into sets L0, L1, . . . , Ld, such that edge only go between

consecutive levels Li and Li+1. A circuit of depth d can be leveled at the cost of increasing the size by factor of d.
Note that Cooley and Tukey [3] gave O(n log n) size, O(log n) depth linear circuits that compute DFTn. So using

Theorem 2.1, we obtain O(n log n) size bilinear circuits for computing circular convolution. These circuits have complex
coefficients on the wires of norm 1. Bürgisser and Lotz proved that this is optimal for circuits that have their constants
restricted to be of norm O(1) [1].
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3. Lower bounds for cyclic convolution

For depth one we have the following result, which is tight due to Theorem 2.1.

Proposition 3.1. Any leveled bilinear circuit C of depth 1 computing the circular convolution xTCirc(y) has size s(C) ≥ n2.

Proof. A circuit of depth 1 has a very simple structure. There are some number r of multiplication gates Mr computing
products Mr = Lr(x)Rr(y), where Lr(x) and Rr(y) are homogeneous linear forms. Then there is one layer of output gates,
each gate computing summation over some set of input multiplication gates.
We will argue that each output gate must be connected to at least n multiplication gates. For purpose of contradiction

suppose that this is not the case. Say someoutput gateOi takes input from< nmultiplication gates.Without loss of generality
we may assume gate Oi computes (Circ(y)x)i. Consider the subspace of dimension at least 1 defined by equations Lj(x) = 0,
for each multiplication gate j attached to output Oi. We can select a nonzero vector a from this space such that for any
assignment y = b,

(Circ(b)a)i = 0.

This yields a contradiction, for examplewe can take b to be equal to a∗ shifted by i, then Circ(b)a)i = ||a||22, which is nonzero,
since a is a nonzero vector. �

Theorem 3.2. There exists δ > 0, such that for any d, for any large enough prime number p, any leveled bilinear circuit with inputs
x = (x0, x1, . . . , xp−1)T and y = (y0, y1, . . . , yp−1)T of depth d computing cyclic convolution Circ(y)x has size s(C) ≥ δ 1dpλd(p).

Proof. The result holds for d = 1 by Proposition 3.1. Assume d ≥ 2. Write using Theorem 2.1,

Circ(y)x = F∗p diag(DFTp(y))Fpx.

We first apply substitutions x := F∗p x
′ and y = 1

pDFT
∗
p y
′ at the inputs. This does not alter the circuit above the multiplication

gates, but now we have a circuit computing

F∗p diag(y
′)x′.

For simplicity, let us rename x′ by x and y′ by y again. Let G be the leveled directed acyclic graph of depth d given by the part
of circuit above the multiplication gates. The set IG is the collection of multiplication gatesMi = Li(x)Ri(y), where Li(x) and
Ri(y) are homogeneous linear forms. Take OG = {1, 2, . . . , p} to be the set of outputs of the circuit. Let δ > 0 and β > 0 be
small enough constants to be determined later. Let ε = δ

400d . Trivially G has at least p vertices. Suppose that G has strictly
fewer than εpλd(p) edges. Lemma 2.4 applies, and we obtain sets I ⊂ IG, O ⊂ OG, and V ⊂ VG such that

1. |I|, |O| ≤ 5εdp = 5δ
400p,

2. |V | = k, with
√
p ≤ k ≤ βp, and

3. PG[IG\I,OG\O, V ] ≤ ε
p2

k .

For each output node i ∈ OG\O, define P(i) to be the number of multiplication gates in IG\I for which there exists a
directed path that bypasses V and reaches node i. Let R be a set of r = 10k output gates with lowest P(i) values. This
restricts 10β ≤ 1− 5δ

400 . By averaging we get that∑
i∈R

P(i) ≤
r

|OG\O|

∑
i∈OG\O

P(i) ≤
r

p− 5εdp
·
εp2

k
=

10εp
1− 5εd

.

Let I ′ be the set of all multiplication gates in IG\I for which there exist directed paths to nodes in R that bypass V . We can
conclude that

|I ′| ≤
10εp
1− 5εd

= p
10δ

400d− 5δ
.

Define a linear subspaceW by the set of equations

Ri(y) = 0 for all i ∈ I ∪ I ′.

For any fixed substitution for y ∈ W , the resulting circuit has all of the gates computing linear functions in the x variables.
Relative to a fixed choice for y, define a linear subspaceWy by equations gv(x) = 0 for all v ∈ V , where gv(x) denotes the
linear form computed at gate v. Note that

dim(W ) ≥ p
(
1−

5δ
400
−

10δ
400d− 5δ

)
, (1)

and, for each y,

dim(Wy) ≥ p− k ≥ p(1− β).
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For small enough δ and β , both dim(W ) > 0 and dim(Wy) > 0. Now we have arranged that for each y ∈ W , and each
x ∈ Wy,

(F∗p diag(y)x)i = 0, (2)

for each i ∈ R. In order to reach a contradiction, we will now argue that it is possible to select y ∈ W and x ∈ Wy such that
some output in R is nonzero.
First of all, fix a vector y ∈ W that has at most p( 5δ400 +

10δ
400d−5δ ) zeroes. This can be done because of Eq. (1). Let A be the

set of indices i for which yi = 0. Letm = |A|. LetW ′y be a subspace ofWy of dimension 1 obtained by adding equations to a
defining set S of equations ofWy in two steps as follows:

1. Add xi = 0 to S, for each i ∈ A.
2. One-by-one, for each i /∈ A, add the equation xi = 0 to S, as long as the dimension of the solution space of (S) is bigger
than one.

Observe that, since the starting space Wy has dimension at least p − k ≥ p(1 − β), at the end of the first stage, the
dimension will be cut down to at most p− k−m, providedm ≤ p(1− β). The latter holds provided 1− β ≥ 5δ

400 +
10δ

400d−5δ .
This can easily be arranged for absolute constants δ and β close enough to zero. Hence we will be able to add the equation
xi = 0 in the second stage for at least p − k − m − 1 many i with i /∈ A, and still have the final solution spaceW ′y to be of
dimension at least one.
Select an arbitrary nonzero vector x fromW ′y. Observe that of the p−m indices i not in A, xi is nonzero for at most k+ 1

entries, and that xi is zero for all i ∈ A. So xi is zero for each i for which yi = 0. Since x itself is a nonzero vector there must be
some place i where xi and yi are both nonzero. Let f = diag(y)x and f̂ = F∗P f . We thus conclude that f is a nonzero vector,
but that |supp(f )| ≤ k+1. By the discrete uncertainty principle for cyclic groups of prime order [14], stated in Theorem 2.3,
we have that

supp(f )+ supp(f̂ ) ≥ p+ 1.

Hence the output vector of the circuit f̂ is nonzero in at least p + 1 − (k + 1) = p − k places. Since R is of size 10k, by the
pigeonhole principle, there must be some output in R that is nonzero. This is in contradiction with Eq. (2). �

Theorem 3.2 extends to nonprime lengths, as pointed out by an anonymous referee of our original draft.

Corollary 3.3. There exists δ > 0, so that for any d, for any large enough n, any leveled bilinear arithmetical circuit over variables
{x0, x1, . . . , xn−1} and {y0, y1, . . . , yn−1} of depth d computing Circ(y)x requires size at least δ 1dnλd(n).

Proof. By Chebyshev’s proof of Bertrand’s Postulate, for all n ≥ 6 there exists a prime p with bn/4c < p < bn/2c. Given
p-vectors x and y, extend them to n-vectors x′ and y′ by setting x′i = 0 and y

′

i = yi mod p for p ≤ i < n. Then x ◦ y is given
by the first p places of x′ ◦ y′, and since this reduction does not change the depth of the underlying circuits, the statement
follows from Theorem 3.2. �

Applying the observation ascribed to Pitassi andWigderson in [11], also noted to us by the referees, these tradeoffs extend
to families of polynomials that compute a single scalar output, over fields of characteristic zero. This follows because the
construction in the Baur–Strassen Derivative Lemma [2] can be performed while maintaining constant bounded depth. For
example, it can be concluded that the polynomial f = zTCirc(y)x does not have linear size bounded depth circuits over the
complex numbers. It is also worth remarking that a similar combination of Theorem 2.3 and Lemma 2.4 yields lower bounds
for linear circuits, in the case of DFT :

Theorem 3.4 (Case of [7]). There exists δ > 0, such that for any d ≥ 1, for any large enough prime number p, any leveled linear
circuit of depth d with inputs x = (x0, x1, . . . , xp−1)T computing the linear transformation λx.DFTpx has size s(C) ≥ δ 1dpλd(p).

Theorem3.4 likewise extends to arbitrary n, with the same application of Bertand’s Postulate, albeitweakening the constants
involved. This follows via Rader’s FFT algorithm [8] and some padding, reducing DFTp to two applications of DFTn at the cost
of doubling the depth. Of course this result is already known via the lower bounds for superconcentrators given in [7] (and
also [4] for even d), and thewell-known correspondence between superconcentrators and linear circuits computing themap
of a totally regular matrix.

4. Conclusion

We have demonstrated that the discrete uncertainty principle, in its strongest form at least, can be used as a convenient
tool to prove circuit lower bounds for bounded depth linear and bilinear arithmetical circuits. In this area the central open
problem still is to obtain any kind of nonlinear lower bound for unrestricted linear circuits. This problem has remained
elusive for over 35 years.
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