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Abstract

Motivated by combinational circuit veri6cation and testing, we study the approximate evalua-
tion of characteristic polynomials of Boolean functions. We consider an oracle model in which
the values of the characteristic polynomials are approximated using the evaluations of the corre-
sponding Boolean functions. The approximation error is de6ned in the worst case, average case
and randomized settings. We derive lower bounds on the approximation errors in terms of the
number of Boolean function evaluations. We design algorithms with an error that matches the
lower bound. Let k(�; n) denote the minimal number of Boolean function evaluations needed to
reduce the initial error by a factor of � where n is the number of Boolean variables. We show
that k(�; n) is exponential in n in the worst and average case settings, and that it is indepen-
dent of n and of order �−2 in the randomized setting. c© 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In combinational circuit veri6cation we want to check if two given circuits are
identical, or equivalently, if two given Boolean functions are identical. That is, given
two Boolean functions f(x) and g(x) where x is a Boolean vector, we want to verify
if they are identical: f≡ g. The problem is obviously NP-hard. In testing [10] we
have a speci6cation circuit, a Boolean function f(x), for which we have complete
information, and an implementation circuit, a Boolean function g(x), which is given
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as a “black-box”, to which we can only supply inputs and observe outputs. We want
to check if the implementation conforms to the speci6cation, or equivalently, if their
corresponding Boolean functions are identical: f≡ g.
One approach for solving the circuit veri6cation and testing problems is to use char-

acteristic polynomials [14, 1]. For a Boolean function f(x) of n Boolean variables there
is a unique characteristic polynomial F(X) of n real variables de6ned in [0; 1]n. Two
Boolean functions f and g are identical if and only if their corresponding character-
istic polynomials F and G are identical. This can be checked by the one evaluation
of the characteristic polynomials at a randomly chosen real vector, and that gives a
correct answer with probability one. Speci6cally, let X∗ be a real vector chosen uni-
formly at random from [0; 1]n. If F(X∗) �= G(X∗) then obviously F �≡G and hence
f �≡ g. Conversely, if F(X∗)=G(X∗) then F ≡G and hence f≡ g with probability
one. Therefore, we reduce the problem of checking Boolean function equivalence (or
circuit equivalence) to an evaluation of characteristic polynomials at a real vector. Note
that for veri6cation we have complete information of both Boolean functions for an
evaluation of their corresponding characteristic polynomials. However, for testing we
only have complete information of the speci6cation Boolean function f and we do not
know the structure of the implementation Boolean function g; we can only observe
the Boolean outputs from its Boolean inputs. Also note that characteristic polynomials
are multi-linear extensions of Boolean functions, as is also used in probabilistically
checkable-proof literature [13, 4, 21].
There are algorithms for the exact evaluation of the characteristic polynomials. One

is the Shannon Expansion [1] which is eIective if all Boolean function values are
known, and the degree of the characteristic polynomial is relatively small or Boolean
functions have certain properties [11]. However, it is, in general, impractical to exactly
evaluate the characteristic polynomial of a given Boolean function due to an exponential
“blow-up” of the number of terms in the characteristic polynomial. In fact, the exact
evaluation of characteristic polynomials is equivalent to the satis6ability problem and
is known to be NP-hard [9, 12].
Therefore, we study approximate evaluation of characteristic polynomials at real

vectors. To cover the problem of circuit testing, we use an oracle model. That is, we
do not know the structure of a Boolean function f; instead, we assume that the values
f(x) for any Boolean vector x can be obtained, and we want to approximate the values
of its characteristic polynomial from the Boolean function evaluations. Our model is
weaker than the commonly used model in the study of satis6ability and veri6cation
of Boolean functions where it is assumed that one knows the structure of the Boolean
functions [12].
Suppose that we use k Boolean function values for an approximate evaluation of a

characteristic polynomial of a Boolean function of n variables. We consider approx-
imation errors in the worst case, average case, and randomized settings. We provide
algorithms with errors that match the lower bounds of approximation errors.
Suppose that with k Boolean function evaluations the approximation error lower

bound is ek . We consider a relative error, ek=e0, which is the reduction of errors
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with k Boolean function evaluations from the initial error without any Boolean values.
We compute the smallest number k = k(n; �) of Boolean function values, which is
needed to obtain a relative error �∈ [0; 1). We prove that k(n; �) is exponential in n
for all �∈ [0; 1) in the worst and average case settings. Speci6cally, this holds for the
Lp-norm, p∈ [1;∞], in the worst case setting, and for the L2-norm in the average case
setting. Hence, the problem of approximate evaluations of characteristic polynomials in
the oracle model is intractable. In the randomized setting, we consider the L2-norm and
prove that k(n; �) is independent of n and is of order �−2. Hence, k(�; n) is polynomial
in 1=� and the problem is tractable in 1=�.
The proof techniques in this paper are typical in information-based complexity [23]

where the oracle model is studied for general computational problems. To make this pa-
per self-contained we present complete proofs without shortcuts which are made possi-
ble by using information-based complexity results. Therefore, knowledge of
information-based complexity is not needed, although it might be helpful to the readers.
We now summarize the contents of this paper. Section 2 deals with the de6nition

and properties of characteristic polynomials F(X) of Boolean functions f : {0; 1}n →
{0; 1}. Here, X ∈ [0; 1]n. In particular, we show that the value of a characteristic poly-
nomial is given by a multivariate integral over the unit cube [0; 1]n. This representation
permits us to use the classical Monte Carlo algorithm for the approximate evaluation of
characteristic polynomials in the randomized setting. In Section 3, we introduce algo-
rithms that use Boolean functions values at k sample points. We study two classes of
such algorithms depending on whether the sample points depend on the vector X . Sec-
tion 3 deals with the worst case setting in which the approximation error is determined
by the worst possible Boolean function and by taking the Lp-norm with respect to X
for p∈ [1;∞]. We prove that the problem is intractable for all � and all p. Section 4
deals with the average case setting. The approximation error is relaxed by averaging
over the Boolean function space. We assume that Boolean functions are equi-probable
and we choose the L2-norm for vectors X . Due to the averaging “artifacts”, the initial
error is exponentially small in n but the problem remains intractable. Section 5 deals
with the 6xed evaluation point problem where we consider the approximate evaluation
of characteristic polynomials for a 6xed vector X . We prove that the measure of the
set of vectors X for which the initial error is reduced by a factor  is exponentially
small in n. This holds in both the worst and average case settings. Section 6 deals
with the randomized setting in which the sample points and the algorithms are chosen
randomly. If randomization is independent of the evaluation point X then the problem
is still intractable. If, however, randomization depends on X then the problem becomes
tractable. In the 6nal Section 7, we comment on related works.

2. Characteristic polynomials

In this section we discuss characteristic polynomials of Boolean functions and derive
their basic properties. We use lower case letters for Boolean variables or numbers with
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values in {0; 1}: xi, i=1; 2; : : : ; n, and Boolean vectors x= [x1; x2; : : : ; xn]. We use upper
case letters for real variables or numbers with values in R: Xi, i=1; 2; : : : ; n, and real
vectors X = [X1; X2; : : : ; Xn]. Similarly, we use lower case letters for Boolean functions
f : {0; 1}n→{0; 1} and upper case letters for real functions F : Rn→R.
We consider Boolean functions (expressions) of n variables x= [x1; x2; : : : ; xn]. A

Boolean function f can be uniquely represented by a truth table. The standard sum of
products form of f can be obtained from the given truth table by taking a minterm
for each combination of variables which produces a value 1 (TRUE) in the function,
and then taking the OR of all those minterms. Let K be the total number of TRUE’s
in the truth table, K ∈ [0; 2n]. Then

f = E1 ∨ E2 ∨ · · · ∨ EK ; (1)

where each minterm is

Ej = �j;1 ∧ �j;2 ∧ · · · ∧ �j;n; j = 1; 2; : : : ; K

and

�j;i = xi or �j;i = xi′ := 1− xi:

If we replace each Boolean variable xi by a real variable Xi, x′i by 1 − Xi, AND
operation by product, and OR by summation, then we obtain a real-valued polynomial
of n variables. Speci6cally, we construct a real-valued polynomial by the following
substitutions in (1):

xi← Xi

x′i ← 1− Xi

∧← ·

∨←+:

We obtain a real-valued polynomial of n variables: F(X)=F(X1; X2; : : : ; Xn) [14]. For
a Boolean function f, the corresponding polynomial F is unique, and is called the
characteristic polynomial of the given Boolean function. We denote the transformation
of a Boolean function to its characteristic polynomial by � and we have

F(X) = �(f)(X) =
∑

x=[x1 ; x2 ; :::; xn]∈{0;1}n
f(x)Ex(X); (2)

where

Ex(X) =
n∏
i=1

X xi
i (1− Xi)1−xi with 00 = 1:
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Observe that Ex as well as F are polynomials of a total degree n which are linear in
each variable Xi. Clearly, Ex(X)¿0 for X ∈ [0; 1]n. It is easy to show by induction on
n that

∑
x∈{0;1}n

Epx (X) =
n∏
i=1
(Xp

i + (1− Xi)p); ∀X ∈ [0; 1]n; ∀p¿0: (3)

Indeed, for n=1 it is trivial and

∑
x∈{0;1}n

Epx (X)

=
∑

x=[x1 ;:::; xn−1]∈{0;1}n−1

(
n−1∏
i=1

X xip
i (1− Xi)(1−xi)p(Xp

n + (1− Xn)p)
)

= (Xp
n + (1− Xn)p)

∑
x∈{0;1}n−1

Epx (X1; X2; : : : ; Xn−1)

=
n∏
i=1
(Xp

i + (1− Xi)p):

In particular, for p=1 we have

∑
x∈{0;1}n

Ex(X) = 1; ∀X ∈ [0; 1]n:

From this we have

06F(X)61; ∀X ∈ [0; 1]n:

These properties allow a probabilistic interpretation of the value of the characteristic
polynomial F(X). Namely, let 06Xi61, i=1; 2; : : : ; n. Let us interpret Xi as the prob-
ability that the independent random Boolean variables xi’s take value 1. Then for each
minterm Ej in (1), Ex(X) is the probability that this minterm takes Boolean value 1.
Taking the summation, F(X)= �(f)(X) is the probability that the Boolean function f
takes value 1. We summarize this interpretation in

Proposition 1. Let 06Xi61 be the probability that the independent random Boolean
variables xi take value 1; i=1; : : : ; n. Then the value of the characteristic polynomial
at X ; �(f)(X); is the probability that the Boolean function f takes value 1.

We now derive Shannon’s expansion for characteristic polynomials. For a Boolean
function f : {0; 1}n → {0; 1} by fx1=a : {0; 1}n−1 → {0; 1} we mean a Boolean
function such that fx1=a(x2; x3; : : : ; xn)=f(a; x2; x3; : : : ; xn). Here, obviously, a∈{0; 1}.
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Proposition 2. Shannon’s expansion

�(f)(X) = X1�(fx1=1)(X2; X3; : : : ; Xn) + (1− X1)�(fx1=0)(X2; X3; : : : ; Xn):

Proof. Indeed, for n=1 it is trivial and for n¿2 we use induction. From (2) we have

�(f)(X) = X1
∑

x=[x2 ; x3 ;:::; xn]∈{0;1}n−1

f(1; x)Ex(X2; X3; : : : ; Xn)

+ (1− X1)
∑

x=[x2 ;x3 ;:::; xn]∈{0;1}n−1

f(0; x)Ex(X2; X3; : : : ; Xn)

= X1�(fx1=1)(X2; X3; : : : ; Xn) + (1− X1)�(fx1=0)(X2; X3; : : : ; Xn);
as claimed.

We now show that characteristic polynomials of Boolean functions are related to
multivariate integrals over the unit cube. To do this let us de6ne a step function
S : [0; 1]2 → {0; 1} by

S(Y; X ) =

{
1 06Y6X61;

0 06X ¡ Y61

and its multivariate analog

S(Y ;X) = [S(Y1; X1); S(Y2; X2); : : : ; S(Yn; Xn)]:

Proposition 3. Given a Boolean function f of n variables and a real vector X ∈ [0; 1]n;
the value of the characteristic polynomial at X ; F(X)= �(f)(X); is equal to the mean
of f(S(Y ;X)) for a uniformly distributed Y over [0; 1]n. That is;

F(X) = �(f)(X) =
∫
[0;1]n

f(S(Y ;X) dY : (4)

Proof. We use induction on n. For n=1 we have∫ 1

0
f(S(Y1; X1) dY1 =

∫ X1

0
f(1) dY1 +

∫ 1

X1
f(0) dY1

=f(1)X1 + f(0)(1− X1);
which, due to (2) is equal to F(X1).
For n¿2 we have∫

[0;1]n
f(S(Y ;X) dY

=
∫
[0;1]n−1

dY2 · · · dYn
(∫ X1

0
f(1; S(Y2; X2); : : : ; S(Yn; Xn)) dY1
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+
∫ 1

X1
f(0; S(Y2; X2); : : : ; S(Yn; Xn)) dY1

)

=
∫
[0;1]n−1

(X1 · fx1=1(S(Y2; X2); : : : ; S(Yn; Xn))

+ (1− X1) · fx1=0(S(Y2; X2); : : : ; S(Yn; Xn))) dY2 · · · dYn:

From the inductive hypothesis we conclude∫
[0;1]n

f(S(Y ;X) dY = X1�(fx1=1)(X2; : : : ; Xn) + (1− X1)�(fx1=0)(X2; : : : ; Xn)

and by Shannon’s expansion, we have proved (4).

Formula (4) will be used later for approximate evaluations of the characteristic
polynomial. Observe that the integrand in (4) is piecewise constant and is, in general,
a discontinuous function.
We now 6nd more relations between the Boolean functions and their characteristic

polynomials. Observe for any distinct x; y∈{0; 1}n we have

Ex(x) = 1 and Ex(y) = 0: (5)

This yields

F(x) = f(x); ∀x ∈ {0; 1}n: (6)

Hence, two Boolean functions f and g are identical f≡ g if and only if their charac-
teristic polynomials are identical: �(f)≡ �(g).
A Boolean function is satis6able if it is not identically zero. The satis6ability problem

is known to be NP-hard [12]. Since for any x∈{0; 1}n and for any X with 0¡Xi¡1
for all i we have Ex(X) �= 0 it is obvious that

Proposition 4. A Boolean function f is satisCable if and only if for any X with
0¡Xi¡1; i = 1; 2; : : : ; n; we have �(f)(X)¿0.

Therefore, the satis6ability problem can be reduced to one evaluation of the charac-
teristic polynomial. This yields

Corollary 1. Given a Boolean function f and an arbitrary rational vector X ∈ (0; 1)n;
an evaluation of the characteristic polynomial �(f) at X is NP-hard.

In view of Corollary 1, it is very unlikely that we can 6nd an eLcient algorithm
for computing the values of characteristic polynomials. Therefore it is natural to dis-
cuss various approximation techniques for computing them. This will be done in the
subsequent sections.
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3. Worst case setting

In this section we deal with approximate computation of the characteristic poly-
nomials in the worst case setting. More precisely, we approximate the values of the
characteristic polynomial F(X)= �(f)(X) for an arbitrary Boolean function f and for
an arbitrary vector X from the unit cube [0; 1]n.
Let Fn be the class of all Boolean functions f : {0; 1}n → {0; 1}. We assume that

we can evaluate a Boolean function f at any point. Let

N (f;X) = [f(x1); f(x2); : : : ; f(xk);X ]; f ∈Fn (7)

be the information on the Boolean function f, and k is the cardinality of the informa-
tion.
We consider two classes of information. The 6rst class I resk is the class of restricted

information which is de6ned as the set of all N of form (7) with the sample points xi
which are independent of X . That is, the same points xi are used for approximating
the characteristic polynomial �(f)(X) for all X ∈ [0; 1]n. The second class I unrk is the
class of unrestricted information which is de6ned as the set of all N of form (7) with
the sample points xi in (7) which may depend on X , xi= xi(X). This means that we
can approximate �(f)(X) by using diIerent sample points for varying X .
The information N is nonadaptive if and only if the sample points xi are given a

priori and they do not depend on f. For adaptive information, the choice of xi may
depend on the already computed f(x1); f(x2); : : : ; f(xi−1). For the class I resk we write
this as

xi = xi(f) = xi(f(x1); f(x2); : : : ; f(xi−1))

and for the class I unrk as

xi = xi(f;X) = xi(f(x1); f(x2); : : : ; f(xi−1);X):

In Sections 4 and 6 where the average case and randomized settings are considered,
we will also allow the number k of Boolean evaluations to vary adaptively with f
and X .
By an algorithm we mean a mapping � :N (Fn × [0; 1]n) → R and �(N (f;X)) is

regarded as an approximation to �(f)(X). We have two classes of algorithms, depend-
ing on the information they used. The class �resk is the class of all algorithms that use
restricted information from I resk , whereas the class �

unr
k is the class of all algorithms that

use unrestricted information from I unrk . For notational convenience, we shall sometimes
denote

�(f;X) = �(N (f;X));

when information N is clear from the context.
The parameter k is the total number of Boolean function values used by the al-

gorithm. Since f is de6ned over the set of cardinality 2n we always assume that
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k ∈ [0; 2n]. The extreme values of k are, however, not interesting. Indeed, k =0 means
that we do not use samples of f and algorithms are independent of f and may only
depend on X . For k =2n, we may sample f at all Boolean points and in this case
�(f; ·)= �(f) is well de6ned. Our emphasis will be on k which are essentially less
than 2n.
We now present examples of two algorithms. The 6rst one is the constant algorithm

�con(f;X)= 0:5 for all Boolean functions f and vectors X from [0; 1]n. Obviously,
�con ∈�resk ; ∀ k; and �con does not use samples of f. As we shall see, the constant
algorithm has minimal error in the class �resk as long as k¡2n. The second algorithm
is denoted by �unrk , belongs to the class �unrk , and, as we shall see, has minimal error
in this class. To de6ne �unrk we proceed as follows. For a given vector X ∈ [0; 1]n
consider the set

A(X) = {Ex(X) : x ∈ {0; 1}n}:

The set A(X) consists of 2n numbers each of them from [0; 1]. We order the elements
of A(X) from the largest to the smallest. That is, we de6ne xi = xi(X) such that

Ex1 (X)¿Ex2 (X)¿ · · ·¿Ex2n (X): (8)

We stress that the ordering of xi is, in general, not unique.
The algorithm �unrk is de6ned by sampling the Boolean function f at the points xi

for i=1; 2; : : : ; k which correspond to the k largest Ex(X) and by assigning the values
0:5 for the value of f at unsampled points. That is,

�unrk (f;X) =
k∑
i=1

f(xi(X))Exi(X)(X) + 0:5
2n∑

i=k+1
Exi(X)(X): (9)

The second sum is of cardinality 2n − k, and from (3), we have

�unrk (f;K) =
k∑
i=1

f(xi(X))Exi(X)(X) + 0:5
k∑
i=1
(1− Exi(X)(X)):

The last formula may be computationally more convenient especially when k � 2n.
Note that the algorithm �unrk has the same terms as the characteristic polynomial �(f),

and this is the case for terms which correspond to the sample points xi. The remaining
terms correspond to the uncomputed values of f. Since now f(x) is unknown it is
replaced by 0:5 which is the mean of its two possible values 0 and 1.
We wish to 6nd an algorithm � from the class �resk or �unrk such that �(N (f;X))

approximates �(f)(X) with the smallest possible error. Obviously, the error depends
on k and we would like to guarantee a small error even for a relatively small k.
There are many ways to de6ne the error of approximation. In this section we consider

the worst case setting in which the error is de6ned by a worst performance of the
algorithm. In the next sections we relax the error criterion and consider the average
case and randomized settings.
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In the worst case setting we proceed as follows. By the worst case error of the
algorithm � we mean

ewor(�) = sup
f∈Fn

sup
X∈[0;1]n

|�(f)(X)− �(N (f;X))|: (10)

By

ewor(�k) = inf
�∈�k

ewor(�);

we denote the minimal worst case error of algorithms from the class �k =�resk or from
�k =�unrk . We are ready to prove

Theorem 1.

ewor(�resk ) = ewor(�res0 ) = 0:5 for k ∈ [0; 2n − 1];
ewor(�unrk ) = ewor(�unr0 ) = ewor(�unr0 )(1− k 2−n) = 0:5(1− k 2−n):

Let us 6rst comment on this theorem before proving it. For the class �resk , the minimal
error is 0:5 and it is achieved without any sampling by the constant algorithm. This
holds even for k =2n− 1 in which case we may know f except for only one Boolean
point. This shows that k samples are useless for the class �resk as long as k¡2n. This
bad property may indicate that the class �resk is too restrictive.
For the class �unrk , the algorithm �unrk has minimal error. In particular, this means

that the information

N (f;X) = [f(x1(X)); f(x2(X)); : : : ; f(xk(X));X ]

is optimal. The sample points xi(X) vary with X . It is quite natural since for some X
the problem of computing �(f)(X) is easy. Indeed, take X =0. Then �(f)(0)=f(0)
can be computed even exactly with one Boolean function value if we select x1 = 0.
On the other hand, if we take X∗= [0:5; 0:5; : : : ; 0:5] then all Ex(X∗)= 2−n and the
selection of the sample points xi is arbitrary. As we shall see in the proof the vector
X∗ is the most diLcult one for evaluating the characteristic polynomials.
The most important part of Theorem 1 is the formula for the minimal error in the

class �unrk . This formula states that as long as k is small relative to 2n, the minimal error
is large and roughly equal to 0:5. This is a very bad property. The error 0:5 can be ob-
tained without computing function values since we know a priori that �(f)(X)∈ [0; 1].
Hence, to improve the quality of the initial error we must take k of order 2n, that is,
we must take an exponentially large k. To illustrate this point further assume that we
want to reduce the initial error by a factor of �, that is, ewor(�unrk )6�ewor(�unr0 ), where
�∈ [0; 1). Then the minimal k for which we can achieve this is

k = �(1− �)2n�:
So even for a modest �=0:5 we must compute k =2n−1 Boolean function values.
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The exponential dependence on n means that the problem of approximate evalu-
ations of characteristic polynomials in the worst case setting is intractable. Hence,
NP-hardness of this problem cannot be broken by approximation in the worst case
setting.

Proof. Consider 6rst the class �resk . Take an arbitrary algorithm � from �resk . Assume
that x1 is its 6rst sample and that f(x1)= 0. Based on this 6rst value, the second
sample x2 is chosen, and assume again that f(x2)= 0. In general, assume that for all
chosen xi we obtain f(xi)= 0 for i=1; 2; : : : ; k. For all Boolean functions f for which
f(xi)= 0, i6k, the algorithm �(f;X) must give the same approximation which may
only depend on the vector X , that is, �(f;X)= a(X) for some function a. Then we
have

�(f)− �(f;X) = ∑
x �=xi

f(x)Ex(X)− a(X):

Note that the last sum has 2n − k¿0 terms. Take now X = x where x is any Boolean
point diIerent from all xi’s. Then (5) yields

�(f)− �(f;X) = f(x)− a(x):

Since f(x) could be zero or one, and a(x) does not depend on the value of f(x), we
have

ewor(�)¿max(|a(x)|; |1− a(x)|)¿0:5:

For the constant algorithm �con we have |�(f)(X)− 0:5|60:5 since �(f)(X)∈ [0; 1].
This proves that �con has minimal error in the class �resk .
We now consider the class �unrk . Let us 6rst estimate from above the error of �unrk .

We have

�(f)(X)− �unrk (f;X) =
2n∑

i=k+1
(f(xi(X))− 0:5)Exi(X)(X):

Since |f(x)− 0:5|=0:5 for all f and x we obtain

|�(f)(X)− �unrk (f;X)|60:5
2n∑

i=k+1
Exi(X)(X) = 0:5

(
1−

k∑
i=1

Exi(X)(X)
)
; (11)

due to (3) with p=1. Let ai=Exi(X)(X). We now show that

k∑
i=1

ai¿k2−n: (12)
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Indeed, since
∑2n

i=1 ai=1 and ai are the k largest numbers among Ex(X)(X) we have
Ex(X)(X)6k−1

∑k
i=1 ai for all x distinct from xi(X)’s. Therefore

1 =
∑

x∈{0;1}n
Ex(X)6

k∑
i=1

ai + (2n − k)k−1
k∑
i=1

ai = 2nk−1
k∑
i=1

ai;

as claimed in (12). This also proves that

ewor(�unrk )60:5(1− k 2−n):

We now show a lower bound on the error of an arbitrary algorithm �. We will do it
for X∗= [0:5; 0:5; : : : ; 0:5]. Then Ex(X∗)= 2−n for all x. Suppose the algorithm � uses
y1 as its 6rst sample point. Assume that the computed f(y1)= 0. Similarly, any time the
algorithm � uses yi we assume that f(yi)= 0. After k Boolean function values we learn
that f vanishes at these k points. In the rest of2n − k Boolean points the function can
be zero or one. Therefore, the value �(f)(X∗) can be zero or (2n− k)2−n=1− k 2−n.
The best the algorithm � can do is to take the mid-point of zero and 1 − k 2−n as
its approximation. This leads to the error at least 0:5(1 − k 2−n), and completes the
proof.

Remark 1. The algorithm �unrk enjoys even a stronger optimality property. Namely,
�unrk minimizes the worst case error for each vector X , i.e.,

min
�
max
f∈Fn

|�(f)(X)− �(f;X)|= max
f∈Fn

|�(f)(X)− �unrk (f;X)|

= 0:5
(
1−

k∑
i=1

Exi(X)(X)
)
:

Due to (11) it is enough to show that for any algorithm � we have

max
f∈Fn

|�(f)(X)− �(f;X)|¿0:5
(
1−

k∑
i=1

Exi(X)(X)
)
:

Indeed, let xi(f;X); i=1; : : : ; k, be the sample points used by the algorithm �.
Here, the dependence on f is through the use of adaption, and the dependence on X
is only present for the class �unrk . De6ne the operator T :Fn →Fn given by

Tf(x) = f(x); x ∈ {x1(f;X); : : : ; xk(f;X)};
Tf(x) = 1− f(x) otherwise:

It is easy to check that T is one-to-one. The algorithm � gives the same approximation
for f and Tf at the vector X since the two Boolean functions are indistinguishable at
the sample points xi(f;X)= xi(Tf;X); i=1; : : : ; k. Hence, we have

max
f∈Fn

|�(f)(X)− �(f;X)|¿ 0:5 max
f∈Fn

(|�(f)(X)− �(f;X)|+ |�(Tf)(X)

−�(f;X)|)
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¿ 0:5 max
f∈Fn

|�(f)(X)− �(Tf)(X)|

= max
f∈Fn

∣∣∣∣∣ ∑
x �=xi(f;X)

(f(x)− 0:5)Ex(X)
∣∣∣∣∣ :

Taking f ≡ 1 we have

max
f∈Fn

|�(f)(X)− �(f;X)|¿ 0:5
∑

x �=xi(1;X)
Ex(X)

= 0:5
(
1−

k∑
i=1

Exi(1;X)(X)
)

¿ 0:5
(
1−

k∑
i=1

Exi(X)(X)
)
;

as claimed.

We now check whether we can obtain diIerent results than those in Theorem 1 by
using a diIerent error norm in (10). Observe that in (10) we use the worst case error
in the sense of the L∞-norm. It is natural to relax the error criterion by switching to
the Lp-norm. That is, de6ne

eworp (�) = sup
f∈Fn

(∫
[0;1]n
|�(f)(X)− �(N (f;X))|p dX

)1=p
; 16p ¡∞: (13)

Since we are going to prove a negative result, we consider only the larger class
�unrk . In this class, as we shall see, the algorithm �unrk remains optimal for any p.
Unfortunately, its Lp error is still close to 0:5 if k is not exponentially large in n.
Thus, the choice of the Lp-norm does not help and we still have intractability.

Theorem 2.

inf
�∈�unrk

eworp (�) = eworp (�unrk )¿ewor1 (�unrk )¿0:5
(
1− k

(
3
4

)n)
: (14)

Proof. We 6rst prove optimality of the algorithm �unrk . Let Zi(X)=Exi(X)(X). We
have

eworp (�unrk )
p = sup

f∈Fn

∫
[0;1]n

∣∣∣∣ 2n∑
i=k+1

(f(Xi(X))− 0:5)Zi(X)
∣∣∣∣
p

dX :

Since |f(x)− 0:5|=0:5; ∀ x ∈ {0; 1}n, we have

eworp (�unrk )
p62−p

∫
[0;1]n

∣∣∣∣ 2n∑
i=k+1

Zi(x)
∣∣∣∣
p

dX = 2−p
∫
[0;1]n

∣∣∣∣1− k∑
i=1

Zi(X
∣∣∣∣
p

dX :
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To conclude optimality of �unrk , it is enough to show that for any algorithm � from
the class �unrk we have

eworp (�)p¿2−p
∫
[0;1]n

∣∣∣∣1− k∑
i=1

Zi(X)
∣∣∣∣
p

dX :

As in Theorem 1, assume that f(yi)= 0 or all the sample points yi= yi(X), i=1; 2;
: : : ; k, used by �. Then f can be equal to f1 ≡ 0 or f can be equal to f2 which
takes 1 at all Boolean points diIerent from y1; y2; : : : ; yk . For these two functions,
the algorithm � gives the same approximation, �(f1;X)=�(f2;X)= a(X). Note that
�(f1)(X)= 0 and �(f2)(X)=

∑
x �=yi Ex(X). Then

eworp (�)p¿0:5
∫
[0;1]n

(
|a(X)|p +

∣∣∣∣∣ ∑x �=yi Ex(X)− a(X)
∣∣∣∣∣
p)

dX :

Since |�+ |p62p−1(|�|p + ||p) for any � and , we obtain

eworp (�)p¿ 2−p
∫
[0;1]n

∣∣∣∣∣ ∑x �=yi Ex(X)
∣∣∣∣∣
p

dX

= 2−p
∫
[0;1]n

∣∣∣∣1− k∑
i=1

Eyi(X)
∣∣∣∣
p

dX

¿ 2−p
∫
[0;1]n

∣∣∣∣1− k∑
i=1

Zi(X)
∣∣∣∣
p

dX ;

as claimed.
We now estimate the error of �unrk . Clearly, the standard use of HNolder’s inequality

yields that eworp (�unrk )¿ewor1 (�unrk ) (obviously this holds for any algorithm). Hence, it
is enough to take p=1 and 6nd a lower bound on ewor1 (�unrk ),

ewor1 (�unrk ) = 0:5
∫
[0;1]n

(
1−

k∑
i=1

Exi(X)(X)
)
dX :

Let I0 = [0; 0:5] and I1 = (0:5; 1]. For any x= [x1; x2; : : : ; xn]∈{0; 1}n de6ne

Ix = Ix1 × Ix2 × · · · × Ixn :

Clearly, Ix’s are disjoint subsets of [0; 1]n; whose union is [0; 1]n and each of them has
Lebesgue measure 2−n. Hence,

∫
[0;1]n
|�(0)(X)− �unrk (0;X)| dX = 0:5

∑
x∈{0;1}n

∫
Ix

(
1−

k∑
i=1

Exi(X)(X)
)
dX :
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It is easy to observe that for X ∈ Ix we have

Ex(X)¿Ey(X); ∀y ∈ {0; 1}n:

Indeed, if xi=0 then Xi ∈ Ixi = [0; 0:5] and

X xi
i (1− Xi)1−xi = 1− Xi = max(Xi; 1− Xi)¿X yi

i (1− Xi)1−yi :

Similarly, if xi=1 then Xi ∈ Ixi =(0:5; 1] and

X xi
i (1− Xi)1−xi = Xi = max(Xi; 1− Xi)¿X yi

i (1− Xi)1−yi :

Hence, for any X ∈ Ix and any y∈{0; 1}n we have

Ex(X) =
n∏
i=1
max(Xi; 1− Xi)¿

n∏
i=1

X yi
i (1− Xi)1−yi = Ey(X); (15)

as claimed. This yields that∫
Ix
Exi(X)(X) dX6

∫
Ix
Ex(X) dX =

n∏
i=1

∫
Ixi

max(X; 1− X ) dX =
(
3
8

)n

; (16)

since
∫ 0:5
0 max(X; 1− X ) dX = ∫ 10:5 max(X; 1− X ) dX = 3

8 .
From this we conclude

∫
[0;1]n
|�(0)(X)− �unrk (0;X)| dX = 0:5

(
1− ∑

x∈{0;1}n

k∑
i=1

∫
Ix
Exi(X)(X) dX

)

¿ 0:5
(
1− k 2n

(
3
8

)n)
= 0:5

(
1− k

(
3
4

)n)
;

as claimed. This completes the proof.

4. Average case setting

In this section we study the average case setting in which the cardinality of informa-
tion as well as the error of an algorithm is de6ned by its average behavior. To simplify
further calculations we only analyze the average case cardinality of information in the
L1 sense and the average case error in the L2 sense.
We need to de6ne a measure on the spaceFn of Boolean functions. The cardinality of

Fn is 22
n
since each Boolean function from Fn is de6ned on 2n points and can take two

diIerent values at each of these points. It is natural to assume that all Boolean functions
from Fn are equally probable and occur with probability 2−2

n
. Hence, we assign a

uniform measure & on the space Fn, and for any A⊂Fn we have &(A)= 2−2
n |A|,

where |A| denotes the cardinality of the set A.
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In the average case setting we generalize the notion of information N in (7) by
allowing k to vary adaptively with f and X . More precisely, we assume that

N (f;X) = [f(x1); f(x2); : : : ; f(xk(f;X));X ];

where the sample points xi’s are given as in Section 3, and k(f;X) is de6ned as
in [24]. The idea is to capture the notion that we may terminate depending on the
computed data and k(f;X) should denote the local cardinality of information for the
Boolean function f. Formally, this is de6ned by termination functions

teri: {0; 1}i × [0; 1]n → {0; 1} for i=1; 2; : : : ; 2n:

We assume that ter2n ≡ 1. Then
k(f;X) = min{i: teri(f(x1); : : : ; f(xi);X) = 1}:

That is, we terminate the computation of information for the minimal i for which
the termination criterion teri(f(x1); : : : ; f(xi);X)= 1 holds. Clearly, k(f;X) is well
de6ned and we always have k(f;X)62n. Let

Ai(X) = {f ∈Fn: k(f;X) = i}: (17)

Then &(Ai(X))= 2−2
n |Ai(X)| is the measure of the set of functions for which we

compute exactly i Boolean function values for the vector X . We de6ne the average
cardinality of N by the expected value of k(f;X) in the L1 sense,

k(N ) = 2−2
n ∑
f∈Fn

∫
[0;1]n

k(f;X) dX =
2n∑
j=0
j
∫
[0;1]n

&(Aj(X)) dX : (18)

Note that k(N ) is not necessarily an integer. For a given integer k ∈ [0; 2n], we de6ne
the classes of information I resk and I unrk as well as the classes of algorithms �resk and
�unrk analogously as in Section 3. In particular, I resk is the class of all information of
the average cardinality at most k and for which the sample points as well as k(f;X)
and Aj(X) do not depend on X . This means that

k(N ) =
2n∑
j=0

j&(Aj)6k: (19)

For the class I unrk we have the same bound on the average cardinality but the sample
points as well as k(f;X) and Aj(X) may depend on X .
The average case error of the algorithm � is de6ned as

eavg(�) =

(
2−2

n ∑
f∈Fn

∫
[0;1]n
|�(f)(X)− �(N (f;X))|2 dX

)1=2
: (20)

By

eavg(�k) = inf
�∈�k

eavg(�); (21)
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we denote the minimal average case error of algorithms from the class �k =�resk or
from the class �k =�unrk .
Before we present optimal algorithms and estimate the errors, we point out that the

constant algorithm �con ≡ 0:5 has minimal error if we do not sample f, i.e., k =0, and

eavg(�res0 ) = eavg(�unr0 ) = eavg(�con) = 0:5
(
2
3

)n=2

; (22)

which will follow from Theorem 3 below with k =0. Hence, even without sampling we
have an exponentially small (in n) average error. This is, of course, an artifact of the
L2-norm used in the de6nition of the average case error. The characteristic polynomials
have values in [0; 1] and their deviation from 0:5 in the L2-norm is exponentially small
as a function of n. Therefore, when we consider the minimal errors after k samples
we compare them to the minimal error achieved for k =0. We will be interested in
how fast the ratio eavg(�k)=eavg(�0) goes to zero as k increases. As in the worst case
setting, we prove that this ratio decreases exponentially slowly and is virtually constant
for any k which is polynomial in n.
The constant algorithm �con is not optimal in the class �resk for k ¿ 0. We shall

see that the following algorithm �resk is optimal. Take k arbitrary Boolean points xi
(independent of the vectors X) compute f(xi), assign 0:5 for the unsample points and
de6ne

�resk (f;X) =
k∑
i=1

f(xi)Exi(X) + 0:5
(
1−

k∑
i=1

Exi(X)
)
: (23)

Hence, the only diIerence between the algorithms �resk and �unrk is in that the sample
points of �unrk depend on X , see (9). We are ready to prove

Theorem 3.

eavg(�resk ) = eavg(�resk ) = eavg(�res0 )
√
1− k 2−n;

eavg(�unrk ) = eavg(�unrk ) = eavg(�unr0 )
√
max(0; 1− ka−n

n );

where an ∈ [ 87 ; 2].

Theorem 3 states that for the class �resk the algorithm �resk is optimal. Its average
case error is almost the same as the minimal error without sampling as long as k is
small relative to 2n. For the class �unrk , the algorithm �unrk which is optimal in the worst
case setting remains optimal also in the average case setting. Its average case error is,
as for the previous class, almost the same as the minimal error without sampling as
long as k is small relative to (8=7)n. Hence, if we want to reduce the initial error by a
factor of �, that is, eavg(�unrk )6�eavg(�unr0 ), the number k of samples must be at least

k =
⌈(
8
7

)n

(1− �2)
⌉
:
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Hence, k is exponential in n. This indicates that the problem remains intractable in the
average case setting.

Proof. Take an arbitrary algorithm � from the class �resk or �unrk . Let

��(X) = 2−2
n ∑
f∈Fn

|�(f)(X)− �(f;X)|2: (24)

Clearly,

eavg(�)2 =
∫
[0;1]n

��(X) dX : (25)

As in Remark 1, for a Boolean function f from Fn denote by xi(f;X), i=1; 2; : : : ;
k(f;X), the sample points used by the algorithm �. De6ne the operator T :Fn →Fn

given by

Tf(x) = f(x) x ∈ {x1(f;X); : : : ; xk(f;X)(f;X)};
Tf(x) = 1− f(x) otherwise:

The operator T is one-to-one, and since we have a uniform measure the probability
of Tf is the same as the probability of f and both are equal to 2−2

n
. Hence, we can

rewrite (24) as

��(X) = 2−2
n ∑
f∈Fn

(�(Tf)(X)− �(Tf;X))2:

Since the algorithm � gives the same approximation for f and Tf at the vector X ,
we have

��(X) = 0:5 · 2−2
n ∑
f∈Fn

((�(Tf)(X)− �(f;X))2 + (�(f)(X)− �(f;X))2):

Since |a− b|2 + |b− c|2¿0:5|a− c|2 for any real numbers a; b; c, by taking

a = �(Tf)(X); b = �(f;X); c = �(f)(X)

we obtain

|a− c| = |�(Tf)(X)− �(f)(X)| = 2
∣∣∣∣∣ ∑
x �=xi(f;X)

(f(x)− 0:5)Ex(X)
∣∣∣∣∣ :

Therefore

��(X)¿2−2
n ∑
f∈Fn

�f(X); (26)
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where

�f(X) =

( ∑
x �=xi(f;X)

(f(x)− 0:5)Ex(X)
)2

=
∑

x;y �=xi(f;X)
(f(x)− 0:5)(f(y)− 0:5)Ex(X)Ey(X): (27)

Observe that for the algorithms �resk and �unrk we have equality in (26).
The sets Aj =Aj(X) given by (17) are disjoint with respect to diIerent j’s. Since

Fn=
⋃2n

j=0 Aj(X), we have

2n∑
j
&(Aj(X)) = 1; ∀X ∈ [0; 1]n: (28)

Let N (Aj(X);X)= {zj;1; : : : ; zj; sj} denote the distinct information values for which we
perform j Boolean function evaluations. Clearly, zj;m= zj;m(X). Let Aj;m=Aj;m(X)=
{f∈Aj: N (f;X)= zj;m}. Then we have

∑
f∈Fn

�f(X) =
2n∑
j=0

∑
f∈Aj

�f(X) =
2n∑
j=0

sj∑
m=1

∑
f∈Aj;m

�f(X):

Let xi; j;m=xi; j;m(X), i=1; 2; : : : ; j, be the sample points used by N with N (f;X)= zj;m,
and let Bj;m= {x∈{0; 1}n : x �= xi; j;m}. Then we have

∑
f∈Fn

�f(X) =
2n∑
j=0

sj∑
m=1

∑
f∈Aj;m

∑
x;y∈Bj;m

(f(x)− 0:5)(f(y)− 0:5)Ex(X)Ey(X)

=
2n∑
j=0

sj∑
m=1

∑
x;y∈Bj;m

Ex(X)Ey(X)
∑

f∈Aj;m
(f(x)− 0:5)(f(y)− 0:5): (29)

We now compute the last sum with respect to f. For x= y we have (f(x) −
0:5)2 = 0:25 for all f and therefore

∑
f∈Aj;m

(f(x)− 0:5)2 = 0:25 · |Aj;m|:

For x �= y we have
∑

f∈Aj;m
(f(x)− 0:5)(f(y)− 0:5) = 0:
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Indeed, (f(x)− 0:5)(f(y)− 0:5) takes the values 0:25 and −0:25 both with the same
probability, and therefore its mean is zero. From this we can rewrite (29) as

∑
f∈Fn

�f(X) = 0:25
2n∑
j=0

sj∑
m=1

( ∑
x∈{0;1}n

E2x(X)−
j∑
i=1

E2xi;j;m(X)

)
· |Aj;m|: (30)

We now consider the class �resk . The sample points xi; j;m as well as the sets Aj and
Aj;m do not now depend on X . Note that

∫
[0;1]n

E2x(X) =
n∏
i=1

∫ 1

0
X 2xi(1− X )2(1−xi) dX =

(
1
3

)n

; ∀x ∈ {0; 1}n:

We now integrate (30) with respect to X and obtain

∫
[0;1]n

∑
f∈Fn

�f(X) dX = 0:25
2n∑
j=0

sj∑
m=1
(2n3−n − j3−n)|Aj;m|

= 0:25
(
2
3

)n
(

2n∑
j=0

sj∑
m=1
|Aj;m| − 2−n

2n∑
j=0

j
sj∑

m=1
|Aj;m|

)
:

Clearly,

sj∑
m=1
|Aj;m| = |Aj| = &(Aj)22

n
:

From this we get

∫
[0;1]n

∑
f∈Fn

�f(X) dX = 0:25
(
2
3

)n

22
n

(
2n∑
j=0

&(Aj)− 2−n
2n∑
j=0

j&(Aj)

)
:

Since
∑2n

j=0 &(Aj)= 1 and
∑2n

j=0 j&(Aj)6k, see (19), we 6nally have

∫
[0;1]n

∑
f∈Fn

�f(X) dX¿0:25
(
2
3

)n

22
n
(1− k 2−n):

This, (25), and (26) yield

eavg(�)2¿0:25 ( 23 )
n(1− k 2−n) (31)

for any algorithm � from the class �resk . Observe that for the algorithm �resk we have
equality in (31). This proves that �resk is optimal and for k =0 we have eavg(�unr0 )=
0:5(2=3)n=2. This proves the 6rst part of Theorem 3.
We now consider the class �unrk and return to (30). From (8) we have

j∑
i=1

E2xi;j;m(X)6
j∑
i=1

E2xi(X)(X):
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Thus we obtain

∑
f∈Fn

�f(X)¿ 0:25
2n∑
j=0

sj∑
m=1

( ∑
x∈{0;1}n

E2x(X)−
j∑
i=1

E2xi(X)(X)

)
· |Aj;m|

= 0:25 · 22n
2n∑
i=1

&(Aj(X))

( ∑
x∈{0;1}n

E2x(X)−
j∑
i=1

E2xi(X)(X)

)
: (32)

For the algorithm �unrk we have equality in (32). We now show that the right-hand
side of (32) is minimized when we terminate always with k Boolean function evalua-
tions, i.e., Aj = ∅ for j �= k and Ak =Fn, or, equivalently, &(Aj(X))= 0 for j �= k and
&(Ak(X)= 1. Let rj =

∑
x∈{0;1}n E

2
x(X)−

∑j
i=1 E

2
xi(X)(X). Then we need to minimize

2n∑
j=1

&(Aj(X))rj

subject to the following constraints:

2n∑
j=1

&(Aj(X)) = 1 and
2n∑
j=1

j&(Aj(X))6 k:

Observe that {rj} is convex, i.e., rj6 1
2 (rj−1 + rj+1); ∀j. From [24] we know that the

minimum is attained for &(Aj(X) = -j; k . Hence

∑
f∈Fn

�f(X)¿0:25 · 22n
( ∑
x∈{0;1}n

E2x(X)−
k∑
i=1

E2xi(X)(X)

)
:

From this we have

��(X)¿0:25

( ∑
x∈{0;1}n

E2x(X)−
k∑
i=1

E2xi(X)(X)

)
: (33)

Once more for the algorithm �unrk we have equality in (33). This means that the
algorithm �unrk is optimal for each X . Obviously,

��(X)¿0:25

( ∑
x∈{0;1}n

E2x(X)− kE2x1(X)(X)
)
: (34)

We are ready to integrate (34) with respect to X . We have

∫
[0;1]n

E2x(X) dX =
(
1
3

)n

; ∀x ∈ {0; 1}n
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and due to (15) we have

∫
[0;1]n

E2x1(X)(X) dX = 2n
∫
Ix
E2x(X) dX = 2n

n∏
i=1

∫ 0:5

0
(1− X )2 dX =

(
7
12

)n

:

(35)

This yields that

eavg(�)¿0:5
√
( 23 )

n − k( 712 )n = 0:5 ( 23 )n=2
√
1− k(7=8)n

holds for any algorithm � from the class �unrk . This proves that an¿7=8 in Theorem 3.
We obviously have an62 since �unrk ⊂�resk . This completes the proof.

5. Fixed evaluation point

In Sections 3 and 4 we studied the problem of approximating the characteristic
polynomials for all vectors X from [0; 1]n. In this section we relax the problem by
approximating the characteristic polynomials at a Cxed vector X from [0; 1]n.
As before, we consider algorithms that use k Boolean function values. Note, however,

that the diIerence between two classes of information now disappears since X is 6xed.
The error of the algorithm � that uses the information N is now de6ned:
in the worst case setting,

ewor(�;X) = sup
f∈Fn

|�(f)(X)− �(N (f;X))|

and in the average case setting

eavg(�;X) =

(
2−2

n ∑
f∈Fn

|�(f)(X)− �(N (f;X))|2
)1=2

:

Obviously, for some vectors X , the worst case error can be small or even zero.
Indeed, this holds for all boundary points of [0; 1]n and for the algorithm � = �unr1
de6ned by (9).
It is then natural to ask what is the Lebesgue measure . of vectors X from [0; 1]n

for which the minimal error of algorithms using k Boolean functions reduces the initial
error by . Here ∈ (0; 1), and the initial error is equal to the minimal error with k =0,
i.e., without sampling of Boolean functions.
More precisely, let �k be the class of algorithms that use at most k Boolean func-

tion values. In the average case setting, this means that algorithms use information
with average cardinality at most k where the average cardinality is de6ned by (19).
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Let

ework (X) = min
�∈�k

ewor(�;X) and eavgk (X) = min
�∈�k

eavg(�;X)

be the minimal errors in the worst and average case settings.
Assume that k =0. In the worst case setting we have ewor0 (X)= 0:5 for all X . In the

average case setting, (33) and (3) yield

eavg0 (X) = 0:5

( ∑
x∈{0;1}n

E2x(X)

)1=2
= 0:5

n∏
i=1
(X 2i + (1− Xi)2)1=2: (36)

As already indicated in Remark 1 and in the proof of Theorem 3, the algorithm �unrk
minimizes the worst and average case error for each X ,

ework (X) = ewor(�unrk ;X) and eavgk (X) = eavg(�unrk ;X):

We are ready to prove

Theorem 4.

.{X ∈ [0; 1]n: ework (X)6ewor0 (X)}6 k
1− 

(
3
4

)n

;

.{X ∈ [0; 1]n: eavgk (X)6eavg0 (X)}6 k
1− 2

(
1 + ln 2
2

)n

;

and (1 + ln 2)=2 = 0:8466 : : : :

Theorem 4 states that the minimal kth error is large for most X since the measure
of the set of X for which we reduce the initial error by  is exponentially small in n.
Hence, k must be exponentially large in n if we want to guarantee that the measure
of the set is relatively large.

Proof. As before, let Zi(X)=Exi(X)(X). Due to (3), the sum of Zi(X) is 1 and Zi(X)′s
are ordered: Z1(X)¿Z2(X)¿ · · · . In the worst case setting, the error of �unrk is

ewor(�unrk ;X) = 0:5
(
1−

k∑
i=1

Zi(X)
)
¿0:5(1− kZ1(X)):

Let

� := .{X ∈ [0; 1]n: ework (X)6ewor0 (X)}:

Then ework (X)= ewor(�unrk ;X) yields

� = .
{
X ∈ [0; 1]n:

k∑
i=1

Zi(X)¿1− 
}
6.{X ∈ [0; 1]n: Z1(X)¿(1− )=k}:
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Applying Chebyshev’s inequality 1 we conclude

�6
k

1− 
∫
[0;1]n

Z1(X) dX6
2nk
1− 

∫
[0;0:5]n

Z1(X) dX =
k

1− 
(
3
4

)n

;

due to (16).
For the average case setting, let

� := .{X ∈ [0; 1]n: eavgk (X)6eavg0 (X)}:

Optimality of �unrk and (36) give

� = .
{
X ∈ [0; 1]n:

2n∑
i=k+1

Z2i (X)62eavg0 (X)2
}

6 .
{
X ∈ [0; 1]n: Z21 (X)∏n

i=1(X
2
i + (1− Xi)2)

¿
1− 2
k

}
6

k
1− 2 c;

where c is given by

c =
∫
[0;1]n

Z21 (X)∏n
i=1(X

2
i + (1− Xi)2)

dX :

Due to (15) and (16) we have

c= 2n
∫
[0;0:5]n

n∏
i=1

(1− Xi)2
X 2i + (1− Xi)2

dX

=

(
2
∫ 0:5

0

(1− t)2
t2 + (1− t)2 dt

)n

=
(
1 + ln 2
2

)n

;

as claimed. This completes the proof.

6. Randomized setting

In this section we study the randomized setting. In this setting, the sample points of
information as well as the choice of an algorithm may depend on a random element
t from a set T . The elements t’s are distributed according to a probability measure 0
de6ned on measurable subsets of T . That is, �t(Nt(f;X) is now our approximation to

1 Chebyshev’s inequality states that

.{X : f(X)¿1}6E(f)=1;

where E(f) is the expectation of the measurable function f.
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�(f)(X) and the information N has the randomized cardinality de6ned as the expected
value with respect to t, i.e.,

k(N ) = sup
f∈Fn

sup
X∈[0;1]n

∫
T
kt(f;X) 0( dt);

where kt(f;X) is de6ned as in Section 4 for a 6xed random parameter t.
The randomized error of the algorithm � is now given by

eran(�) = sup
f∈Fn

sup
X∈[0;1]n

(∫
T
|�(f)(X)− �t(Nt(f;X))|2 0(dt)

)1=2
: (37)

Similarly as in the previous sections, let �resk and �unrk denote the classes of randomized
algorithms which use information with the randomized cardinality at most k. That is,
algorithms from the class �resk use randomized sample points that do not depend on X ,
whereas algorithms from the class �unrk use randomized points that may depend on X .
We now de6ne two algorithms that belong to the classes �resk and �unrk . For the class

�resk , take T = [0; 1] and A= [0; k 2
−n] for an integer k ∈ [0; 2n]. Let 0 be the Lebesgue

measure. Then de6ne kt(f;X)= kt(f)= 2n for t ∈ A and kf(f;X)= kt(f)= 0 oth-
erwise, as well as the information Nt(f;X)=Nt(f)= [f(x1); : : : ; f(x2n)] for t ∈A,
and Nt(f;X)=Nt(f)= 0 otherwise. Here, xi for i=1; 2; : : : ; 2n are all Boolean sample
points from {0; 1}n. Clearly, the information N has the randomized cardinality k. The
algorithm �rank is de6ned by

�rank;t (f;X) =

{
�(f)(X) if t ∈ A;
0:5 otherwise:

(38)

Observe that �rank is well de6ned and indeed uses the information N . The sample points
used by �rank are either all Boolean sample points or none of them. In either case, they
do not depend on X and therefore �rank ∈ �resk . As we shall see, the algorithm �rank is
optimal in the class �resk .
For the class �unrk , we de6ne an algorithm �mck which is closely related to the clas-

sical Monte Carlo algorithm and then we prove its optimality properties. Let us recall
that the classical Monte Carlo algorithm approximates the integrand

∫
[0;1]n g(Y) dY of

a L2-integrable function g by k−1
∑k

i=1 g(Yi), where the randomized points Yi are
independent and uniformly distributed over [0; 1]n. It is well known that the square
randomized error of the classical Monte Carlo algorithm is

∫
[0;1]nk

(∫
[0;1]n

g(Y) dY − 1
k

k∑
i=1

g(Yi)
)2

dY1 · · · dYk = 1
k
V (g); (39)

where V (g) is the variance of the function g,

V (g) =
∫
[0;1]n

g2(Y) dY −
(∫

[0;1]n
g(Y) dY

)2
:
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In our case, we know that the characteristic polynomials are related to multivariate
integration by (4) of Proposition 3. It would be tempting to set g(Y)=f(S(Y ;X)).
However, we can do a little better by remembering that the values of the characteristic
polynomials are always from [0; 1]. Hence, we can make their values more symmetric
if we use the Monte Carlo algorithm for the function f− 0:5 and then add 0:5. Also,
as in [17], we divide the sum of the computed function values by k +

√
k instead of

by k. That is, the algorithm �mck for k¿1 is de6ned as

�mck;t (f;X) =
1

k +
√
k

k∑
i=1
(f(S(Yi ;X))− 0:5) + 1

2

=
1

k +
√
k

k∑
i=1

f(S(Yi ;X)) +

√
k

2(k +
√
k)
; (40)

where t= [Y1; : : : ;Yk ]∈T = [0; 1]nk and Yi are independent and uniformly distributed
over [0; 1]n.
Let xi=S(Y ;X). Then xi’s are independent random Boolean vectors whose com-

ponents have binomial distribution with the probability of head equal to the successive
components of X . This is consistent with Proposition 1. With this interpretation, the
algorithm (40) is the Rubin estimator, see [16].
Observe that the number of the sample points used in the algorithm �mck is always

the same, k(f;X)≡ k. For k =0 we set �mc0; t(f;X)≡ 0:5 which, as we will see, is the
optimal algorithm.
Assume now that k¿1. Although the random point t does not depend on X , the sam-

ple points used by the algorithm �mck do depend on X . This is because the sample points
are S(Yi ;X) and the function S depends on X . For example, take X = [1; 1; : : : ; 1].
Then S(Yi ;X)=X for all Yi. In fact, for all boundary points X ∈ {0; 1}n we have
S(Yi ;X)=X with probability 1. Therefore, �mck ∈ �unrk and �mck =∈ �resk .
By

eran(�k) = inf
�∈�k

eran(�); (41)

we denote the minimal randomized error of algorithms from the class �k =�resk or
from the class �k =�unrk .
In the randomized setting, we are looking, in particular, for the best probability

measure 0 which minimizes the randomized error of an algorithm. Assume that 0 is
atomic, i.e., there exists a point t∗ such that 0(A)= 1 iI t∗ ∈ A. Such a choice of
the measure 0 corresponds to deterministic algorithms �t∗ that uses the deterministic
information Nt∗ . In this case, eran(�)= ewor(�t∗). Therefore

eran(�k)6ewor(�k) (42)

for both classes �=�resk and �unrk .
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We now show that for k = 0 we have

eran(�unrk ) = eran(�resk ) = 0:5: (43)

Indeed, due to (42) it is enough to show that eran(�unrk )¿0:5 since ewor(�resk )= 0:5 due
to Theorem 1. For k = 0, the algorithm �t(Nt(f;X)= at(X) does not depend on f.
It is easy to show that∫

T
|�(f)(X)− at(X)|20(dt)¿

(
�(f)(X)−

∫
T
at(X)0(dt)

)2
:

By taking f≡ 0 and 1 we see that

sup
f∈Fn

∫
T
|�(f)(X)− at(X)|20(dt)¿0:25:

This shows that the randomized error must be at least 0:5. Furthermore the randomized
error 0:5 is achieved for �≡ 0:5.
We now prove optimality properties of �ran and �mc in the classes �resk and �unrk ,

respectively.

Theorem 5. For the class �resk ; we have

eran(�resk ) = eran(�rank ) = eran(�res0 )
√
max(0; 1− k 2−n): (44)

For the class �unrk ; we have

eran(�unrk )6eran(�mck ) =
eran(�unr0 )

1 +
√
k
; ∀k; (45)

and for k =2s with s ¡ n− 1 we have

eran(�unrk )¿
eran(�unr0 )

4
√
k

: (46)

Theorem 5 states that the algorithm �ran is optimal in the class �resk . Its randomized
error is, however, very close to the initial error 0:5 as long as k is small relative to 2n.
This means that the approximate evaluation of characteristic polynomials is intractable
in the randomized setting in the class �resk .
For the class �unrk with k =2s; s ¡ n−1, the algorithm �mc minimizes the random-

ized error up to a factor of 4. As we shall see in the proof, the factor 2 is lost due to
the use of varying cardinality, see [19], and the other factor 2 is lost due to the switch
to an average case setting.
We also remark that Math-e [17], proved that the error (1+

√
k)−1 is the exact min-

imal error of randomized algorithms with 6xed cardinality for the integration problem
for the class of continuous functions bounded by one in the sup norm. In our case,
the class consists of 6nitely many discontinuous functions, and this is why we cannot
apply the result of Math-e.
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The most important part of Theorem 5 states that the minimal randomized error now
goes to zero with rate (1 +

√
k)−1. If we want to reduce the initial error by �, that is,

eran(�unrk )6�eran(�unr0 ), then

k = min

{
2n;

⌈(
1
a�
− 1
)2⌉}

; a ∈ [0:125; 1]:

This means that k depends polynomially on �−1 and is independent of n. This is in
sharp contrast to the worst and average case settings where k depends exponentially
on n. Hence, the approximate evaluation of characteristic polynomials is tractable in
1=� in the randomized setting for the class �unrk .

Proof. We 6rst consider the class �resk . For the algorithm �rank we have

∫ 1

0
(�(f)(X)− �rank;t (Nt(f;X)))2 0(dt) =

∫ 1

k 2−n
(�(f)(X)− 0:5)20(dt)

6 0:25(1− k 2−n):

Thus eran(�rank )60:5
√
1− k 2−n.

We now show that for an arbitrary algorithm � from the class �resk we have
eran(�)¿0:5

√
1− k 2−n. Let Nt be information used by �t and let kt(f;X)= kt(f)

be the cardinality of information for f. De6ne

Af = {t ∈ T : kt(f)62n − 1}:

Since

k¿
∫
T
kt(f)0(dt)¿

∫
T−Af

2n0(dt) = 2n(1− 0(Af))

we have

0(Af)¿1− k2−n; ∀f ∈Fn: (47)

For a Boolean function f∈Fn and a point t ∈Af, let xi= xi(f; t); i=1; 2; : : : ; kt(f)
62n−1, denote the sample points used by the information Nt for f. Choose a Boolean
point y which is diIerent from all xi’s.
Take the Boolean function f∗, which depends on f and t, such that f∗(xi)=f(xi),

i=1; 2; : : : ; kt(f), and f∗(y)= 1− f(y). Observe that Af =Af∗ and the algorithm �t
gives the same approximation for f and f∗.
Take X = y. Due to (6), we have

�(f)(X) = f(y) and �(f∗)(X) = f∗(y) = 1− f(y):
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Let at(f)=�t(Nt(f);X)=�t(Nt(f∗);X). Then we have

eran(�)2¿ 0:5

(∫
Af

(�(f)(X)− at(f))20(dt)

+
∫
Af∗
(�(f∗)(X)− at(f))20(dt)

)

= 0:5
∫
Af

((1− at(f))2 + a2t (f))0(dt):

Since (1− x)2 + x2¿0:5, this and (47) yield

eran(�)¿

(
0:25

∫
Af

0(dt)

)1=2
= 0:5

√
1− k 2−n;

as claimed.
We now consider the class �unrk . We 6rst estimate the randomized error of the algo-

rithm �mck . For a 6xed X , let g(Y)=f(S(Y ;X))−0:5, and let I(gp)=
∫
[0;1]n g

p(Y) dY
for p=1 and 2. Note that g2≡ 0:25 and, therefore, I(g2)= 0:25. Then using the same
proof as the classical proof for (39) we have∫

[0;1]nk
(�(f)(X)− �mck;t (f;X))2 dt

=
∫
[0;1]nk

(
I(g)− 1

k +
√
k

k∑
i=1

g(Yi)
)2
dY1 · · · dYk

= I 2(g)− 2k

k +
√
k
I 2(g) +

1

(k +
√
k)2

k∑
i;j=1

∫
[0;1]nk

g(Yi)g(Yj) dY1 · · · dYk

= I 2(g)

√
k − k

k +
√
k
+

1

(k +
√
k)2

(kI(g2) + (k2 − k)I 2(g))

= I 2(g)

(√
k − k

k +
√
k
+

k2 − k
(k +

√
k)2

)
+

k

4(k +
√
k)2

= I(g2) · 0 + 1

4(1 +
√
k)2

:

This proves that eran(�mck )= 0:5=(1+
√
k)= eran(�unr0 )=(1+

√
k), as claimed in the upper

bound of Theorem 5.
We now prove that for k =2s with s ¡ n − 1, an arbitrary algorithm � from the

class �unrk has the randomized error at least equal to 1=(8
√
k).
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To obtain a lower bound on the randomized error of � we apply the standard
proof technique which relates the randomized error to the average case error, see
[7, 19, 23, 25]. Let & be an arbitrary probability measure on the class Fn of Boolean
functions. Let Nt be the information used by �t , and let kt(f;X) be the cardinality of
information for (f;X). We know that

sup
f∈Fn

sup
X∈[0;1]n

∫
T
kt(f;X)0(dt)6k;

Replacing the supremum with respect to f by the expectation we have∫
T

∫
Fn

kt(f;X)&(df)0(dt)6k; ∀X ∈ [0; 1]n:

De6ne the set

T (X) =
{
t ∈ T :

∫
Fn

kt(f;X)&(df)62k
}
:

As in (47), it is easy to see that

0(T (X))¿0:5; ∀X ∈ [0; 1]n:
Similarly, the randomized error of � is bounded from below by

eran(�)2 = sup
f∈Fn

sup
X∈[0;1]n

∫
T
|�(f)(X)− �t(Nt(f;X))|2 0(dt)

¿ sup
X∈[0;1]n

∫
T (X)

(∫
Fn

|�(f)(X)− �t(Nt(f;X))|2 &(df)
)
0(dt): (48)

Let

eavg(X ; &; 2k) =
(
inf

�∈�unr2k

∫
Fn

|�(f)(X)− �(N (f;X))|2 &(df)
)1=2

denote the minimal average case error for approximating the characteristic polynomials
at the point X by deterministic algorithms that use information of cardinality at most
2k. This and (48) yields

eran(�)2¿ sup
X∈[0;1]n

eavg(X ; &; 2k)20(T (X)¿0:5 sup
X∈[0;1]n

eavg(X ; &; 2k)2: (49)

We now select a special probability measure & and a point X such that we can
compute the minimal average case error eavg(X ; &; 2k). Recall that k =2s with s ¡
n − 1. We choose & as the probability measure over the Boolean functions f which
only depend on the 6rst s+ 26n components of x. That is, let

Fn;s = {f ∈Fn: ∃g : {0; 1}s+2 → {0; 1} such that f(x) = g(x1; x2; : : : ; xs+2)}:
Clearly, the cardinality of the set Fn;s is 22

s+2
. We assume that & is equally probable

over Fn;s, i.e., &({f})= 2−2s+2 for all f∈Fn;s. As the points X we take X = [0:5; : : : ;
0:5; 0; : : : ; 0], where 0:5 is taken s+ 2 times.
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This choice of & and X corresponds to the average case setting with n replaced by
s+ 2. From (33) we know that

eavg(X ; &; 2k)2 = 0:25 ·
( ∑
x∈{0;1}s+2

E2x(X)−
2k∑
i=1

E2xi(X)(X)

)
: (50)

Observe that just now all Ex(X)= 2−s−2 and therefore (50) can be rewritten as

eavg(X ; &; 2k)2 = 0:25(2−s−2 − 2k 2−2(s+2)) = (32k)−1:
From (49) we conclude that eran(�)¿1=(8

√
k), as claimed.

7. Related works

We brieOy mention a few related works. Characteristic polynomial is one of the
arithmetizations of Boolean functions, mostly used in combinational circuit analysis.
Arithmetization was 6rst studied in [6, 22]. A slightly diIerent arithmetization than
ours was used for the earlier PCP construction [3] where a multivariate polynomial is
obtained to check for satis6ability. Arithmetization was also used for testing whether
a “black-box” is computing a low degree polynomial on most points and for other
PCP and IP works [13, 3, 21, 5, 2]. In all these studies, it was assumed that the struc-
ture of the Boolean function is known whereas in our model it is an oracle; it is a
“black-box” that produces outputs on Boolean inputs. Boolean functions can also be
represented by polynomials over the ring of integers modulo m so that they agree on
all 0–1 assignments. Low degree polynomial representation is preferable and various
bounds were established [8]. The degree of the representing polynomial is related to the
complexity of the representation and is characterized by the combinatorial properties
of the Boolean function [18, 20] and a tight lower bound was obtained in [18].
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