Theoretical
Computer Science

Theoretical Computer Science 262 (2001) 557-568
www.elsevier.com/locate/tcs

Approximate periods of strings

Jeong Seop Sim?®!, Costas S. Iliopoulos®¢?, Kunsoo Park®!*, W.F. Smyth®d-3

2School of Computer Science and Engineering, Seoul National University, Seoul 151-742, South Korea
b Department of Computer Science, King’s College London, London WC2R 2LS, UK
¢School of Computing, Curtin University, Perth WA 6825, Australia
dDepartment of Computing & Software, McMaster University, Hamilton, Ontario, Canada LSS 4KI

Received 27 December 1999; revised 27 June 2000; accepted 7 August 2000
Communicated by M. Crochemore

Abstract

The study of approximately periodic strings is relevant to diverse applications such as molec-
ular biology, data compression, and computer-assisted music analysis. Here we study different
forms of approximate periodicity under a variety of distance functions. We consider three related
problems, for two of which we derive polynomial-time algorithms; we then show that the third
problem is NP-complete. (©) 2001 Elsevier Science B.V. All rights reserved.

Keywords. Periodicity; Approximate periods; Repetitions; Distance function

1. Introduction

Repetitive or periodic strings have been studied in such diverse fields as molecu-
lar biology, data compression, and computer-assisted music analysis. In response to
requirements arising out of a variety of applications, interest has arisen in algorithms
for finding regularities in strings; that is, periodicities of an approximate nature. Some
important regularities that have been studied in the literature are the following:

e Periods: A string p is called a period of a string x if x can be written as x = p* p/,
where k>1 and p’ is a prefix of p. The shortest period of x is called the period

of x. For example, if x = abcabcab, then abc, abcabc, and x itself are periods of x,

* Corresponding author. Fax: +82-2-886-7589.

E-mail addresses: jssim@theory.snu.ackr (J.S. Sim), csi@dcs.kclacuk (C.S. Iliopoulos),
kpark@theory.snu.ac.kr (K. Park), smyth@mcmaster.ca (W.F. Smyth).

! Supported by KOSEF Grant 981-0925-128-2 and the Brain Korea 21 Project.

2 Supported in part by the CCSLAAR Royal Society Research Grant.

3 Supported by NSERC Grant No. A8180.

0304-3975/01/$ - see front matter (© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304-3975(00)00365-0

558 J.S. Sim et al. | Theoretical Computer Science 262 (2001) 557-568

while abc is the period of x. If x has a period p such that |p| <|x|/2, then x is said

to be periodic. Further, if setting x = p* implies k=1, x is said to be primitive; if

k=2, pFis called a repetition.

e Covers: A string w is called a cover of x if x can be constructed by concatenations
and superpositions of w. For example, if x =ababaaba, then aba and x are the
covers of x. If x has a cover w=#x, x is said to be quasiperiodic; otherwise, x is
superprimitive.

e Seeds: A substring w of x is called a seed of x if it is a cover of any superstring
of x. For example, aba and ababa are some seeds of x = ababaab.

e Repetitions: A repetition is an immediately repeated nonempty string. For example,
if x =aababab, then aa and ababab are repetitions in x; in particular, a?
called a square or tandem repeat and (ab)® = ababab is called a cube.
The notions cover and seed are generalizations of periods in the sense that super-

positions as well as concatenations are used to define them. A significant amount of

research has been done on each of these four notions:

e Periods: The preprocessing of the Knuth—Morris—Pratt algorithm [21] finds all pe-
riods of x in linear time — in fact, all periods of every prefix of x. In parallel
computation, Apostolico et al. [2] gave an optimal O(log log n) time algorithm for
finding all periods, where n is the length of x.

e Covers: Apostolico et al. [4] introduced the notion of covers and described a linear-
time algorithm to test whether x is superprimitive or not (see also [7, 8, 17]). Moore
and Smyth [28] and recently Li and Smyth [24] gave linear-time algorithms for
finding all covers of x. In parallel computation, Iliopoulos and Park [18] obtained
an optimal O(log log n) time algorithm for finding all covers of x. Apostolico and
Ehrenfeucht [3] and Iliopoulos and Mouchard [16] considered the problem of finding
maximal quasiperiodic substrings of x. A two-dimensional variant of the covering
problem was studied in [11, 14], and minimum covering by substrings of a given
length in [19].

e Seeds: Iliopoulos et al. [15] introduced the notion of seeds and gave an O(n log n)
time algorithm for computing all seeds of x. For the same problem, Berkman et al.
[6] presented a parallel algorithm that requires O(log n) time and O(n log n) work.

o Repetitions: There are several O(n log n) time algorithms for finding all the repe-
titions in a string [10,5,26]. In parallel computation, Apostolico and Breslauer [1]
gave an optimal O(log log n) time algorithm (i.e., total work is O(n log n)) for
finding all the repetitions.

A natural extension of the repetition problems is to allow errors. Approximate
repetitions are common in applications such as molecular biology and computer-assisted
music analysis [9, 12]. Among the four notions above, only approximate repetitions
have been studied. If x=uww'v where w and w' are similar, ww’ is called an ap-
proximate square or approximate tandem repeat. When there is a nonempty string y
between w and w’, we say that w and w' are an approximate nontandem repeat. In
[23], Landau and Schmidt gave an O(kn log k log n) time algorithm for finding ap-
proximate squares whose edit distance is at most & in a text of length n. Schmidt also

=aa is

J.S. Sim et al. | Theoretical Computer Science 262 (2001) 557-568 559

gave an O(n? log n) algorithm for finding approximate tandem or nontandem repeats
in [30] which uses an arbitrary score for similarity of repeated strings.

In this paper, we introduce the notion of approximate periods which is an approx-
imate version of periods. Here we study different forms of approximate periodicity
under a variety of distance functions. We consider three related problems, for two of
which we derive polynomial-time algorithms; we then show that the third problem is
NP-complete.

This paper is organized as follows. In Section 2, we describe some notations and
definitions used in this paper. In Section 3, we define approximate periods and three
related problems studied in this paper. Then we present polynomial-time algorithms for
two problems and the proof of NP-completeness of the third problem in Section 4. We
conclude in Section 5.

2. Preliminaries

A string is a sequence of zero or more characters from an alphabet X. The set of
all strings over the alphabet X is denoted by X* and all strings of length m over X is
denoted by 2™. The empty string is denoted by &. The length of a string x is denoted
by |x| and the ith character of x by x[i]. When a string w is x[{]x[i + 1]---x[j], we
denote w by x[i..j] and w is called a substring (or a factor [13]) of x. Conversely, x
is called a superstring of w. For example, bcd is a substring of abcde, and abcde is a
superstring of bcd. A blank space is denoted by 4 ¢ X, and we regard it as a character
for convenience.

A string w is a prefix of x if x=wu for u€ X*. Similarly, w is a suffix of x if
x=uw for u€ X*. A string w is a subsequence (also called a subword [13]) of x (or
x is a supersequence of w) if w is obtained by deleting zero or more characters (at
any positions) from x. For example, ace is a subsequence of aabcdef. For a given set
S of strings, a string s is called a common supersequence of S if s is a supersequence
of every string in S.

The distance 6(x, y) between two strings x and y is the minimum cost to convert
one string x to the other string y. There are several well-known distance functions. The
edit distance between two strings x and y is the minimum number of edit operations to
convert x to y. The edit operations are the insertion of a character into x, the deletion of
a character from x, and the change (or substitution) of a character in x with a character
in y. Note that since we define the edit distance by the number of edit operations, the
cost of each edit operation is 1. The Hamming distance between x and y is the smallest
number of change operations to convert x to y. Note that the Hamming distance can
be defined only when |x| =|y| because it does not allow insertions and deletions. The
edit distance can be generalized by using a penalty matrix. A penalty matrix specifies
the substitution cost for each pair of characters and the insertion/deletion cost for
each character. The weighted edit distance between x and y is the minimum cost to
convert x to y using a penalty matrix. A penalty matrix is a metric when it satisfies

560 J.S. Sim et al. | Theoretical Computer Science 262 (2001) 557-568

Fig. 1. An alignment.

the following conditions for all a, b, c€ U {4}:

d(a, b) =0,

a, b)=190(b, a),

(a, a)=0, and

da, ¢)<d(a, b) + (b, ¢) (triangle inequality).

An alignment of a set S of strings can be represented by a two-dimensional matrix,

where each row is a string in S and all rows have the same length. The equality of

lengths of all the rows can be obtained by inserting zero or more spaces to each of the
strings in S. For example, when S = {abcae,bcd,abde}, an alignment of S is shown

in Fig. 1.

We say that a distance function (x, y) is a relative distance function if the lengths
of strings x and y are considered in the value of d(x, y); otherwise, it is an absolute
distance function. The Hamming distance and the edit distance are examples of absolute
distance functions. There are two ways to define a relative distance between x and y:
e First, we can fix one of the two strings and define a relative distance function with

respect to the fixed string. The error ratio with respect to x is defined to be d/|x|,

where d is an absolute distance between x and y.

e Second, we can define a relative distance function symmetrically. The symmetric
error ratio is defined to be d/I, where d is an absolute distance between x and y,
and /=(|x| + |»|)/2 [31]. Note that we may take /= |x| + |y| (then everything is
the same except that the ratio is multiplied by 2).

If d is the edit distance between x and y, the error ratio with respect to x or the
symmetric error ratio is called a relative edit distance. The weighted edit distance can
also be used as a relative distance function because the penalty matrix can contain
arbitrary costs.

3. Problem definitions

Given two strings x, p and a distance function 6, we define approximate
periods as follows. If there exists a partition of x into disjoint blocks of substrings,
ie, x=ppr--- pr (p; #e) such that é(p, p;)<t for 1<i<r, and 6(p’, p,) <t where
p’ is some prefix of p, we say that p is a t-approximate period of x (or p is an
approximate period of x with distance ¢). Each p;, 1<i<r, will be called a partition
block of x. The last partition block p, can be matched to any prefix p’ of p as in

the definition of exact periods. If p’ is shorter than p, the last partition block will be

J.S. Sim et al. | Theoretical Computer Science 262 (2001) 557-568 561

called short. Note that there can be several versions of approximate periods according
to the definition of distance function .
We consider the following problems related to approximate periods.

Problem 1. Given x, p, and any distance function o, find the minimum t such that p
is a t-approximate period of x.

Since p is fixed in this case, it makes no difference whether J is an absolute distance
function or an error ratio with respect to p. If a threshold k <|p| on the edit distance
is given as input in Problem 1, the problem asks whether p is a k-approximate period
of x or not. Note that if the edit distance is used for 9, it is trivially true that p is a
| p|-approximate period of x.

Problem 2. Given a string x and a relative distance function o, find a substring p of
X that is an approximate period of x with the minimum distance.

Since the length of p is not (a priori) fixed in this problem, we need to use a relative
distance function for J (i.e., an error ratio or a weighted edit distance) rather than an
absolute distance function. For example, if the absolute edit distance is used, every
substring of x of length 1 is a l-approximate period of x. Moreover, we assume that
there are at least two partition blocks of x except possibly the short partition block,
because otherwise the longest proper prefix of x (or any long prefix of x) can easily
become an approximate period of x with a small distance. This assumption will be
applied to Problem 3, too.

Problem 3. Given a string x and a relative distance function o, find a string p that
is an approximate period of x with the minimum distance.

This problem is harder than Problem 2 because p can be any string, not necessarily
a substring of x.

4. Algorithms and NP-completeness

Basically, we will use weighted edit distances with metric penalty matrices for the
distance function ¢ in each problem. Recall that a penalty matrix defines the substitution
cost for each pair of characters and the insertion or deletion cost for each character.

4.1. Problem 1

Our algorithm for Problem 1 consists of two steps. Let n=|x| and m=|p]|.

(1) Let w;; be the distance between p and x[i..j], 1<i<;j<n and w;, be the minimum
value of the distances between all prefixes of p and x[i.n]. Note that x[i..n] can
be matched to any prefix of p by the definition of approximate periods. Compute
w; for all 1<i<j<n.

562 J.S. Sim et al. | Theoretical Computer Science 262 (2001) 557-568

(2) Compute the minimum ¢ such that p is a t-approximate period of x. We use
dynamic programming to compute ¢ as follows. Let # be the minimum value such
that p is a t;-approximate period of x[1..i]]. Let #p =0. For i=1 to n, we compute
t; by the following formula:

ti = min (max(t, Why1,))-
0<h<i

The value ¢, is the minimum ¢ such that p is a ¢t-approximate period of x.

To compute the distances in step 1, we use a dynamic programming table called
the D table. To compute the distance between two strings x and y, a D table of size
(Jx| + 1) x (Jy| + 1) is used. Each entry D[i, j], 0<i<|x| and 0<j<|y|, stores the
minimum cost of transforming x[1..7] to y[1..j]. Initially, D[0,0]=0, D[i,0]=DI[i —
1,0] 4+ o(x[i],4), and D[0, j1=D[0, j — 114 (4, y[j]). Then we can compute all the
entries of the D table in O(|x||y|) time by the following recurrence:

D[i — 1, j]1+ 6(x[i], 4)
Dli, j] = min ¢ D[i, j — 174 0(4, y[j1)
Dli =1, j = 1]+ o(x[i], yLjD)-

Note that 4 is a blank space, and thus d(a, 4) means the deletion cost of a and d(4, a)
means the insertion cost of a.

We now consider the time complexity of the above algorithm for Problem 1 under
various distances functions. For a weighted edit distance, we make a D table of size
(m+1)x (n—1i+2) for each position i of x. Since the distances between all prefixes
of p and x[i.n] appear in the last column of the D table, we can get the minimum
value of the last column as w;, without increasing the time complexity. Hence, step 1
takes O(mn?) time. In step 2, we can compute the minimum # in O(n?) time since we
compare O(n) values for each #. Therefore, the total time complexity is O(mn?).

When the edit distance is used for d, this algorithm for Problem 1 can be improved.
In this case, d(a, b) is always 1 if a £ b; (a, b) =0, otherwise. Now it is not necessary
to compute the edit distances between p and the substrings of x whose lengths are
larger than 2m because their edit distances with p will exceed m. Step 1 now takes
O(m?n) time since we make a D table of size (m + 1) x (2m + 1) for each position
of x. Also, step 2 can be done in O(mn) time since we compare O(m) values at each
position of x. Thus the time complexity is reduced to O(m’n).

However, we can do better. Step 1 can be solved in O(mn) time by the algorithm due
to Landau et al. [22]. Given two strings x and y and a forward (resp. backward) solution
for the comparison between x and y, the algorithm in [22] incrementally computes a
solution for x and by (resp. yb) in O(k) time, where b is an additional character and
k is a threshold on the edit distance. This can be done due to the relationship between
the solution for x and y and the solution for x and by. When k =m (i.e., the threshold
is not given), we can compute all the edit distances between p and every substring
of x whose length is at most 2m in O(mn) time using this algorithm. Recently, Kim
and Park [20] gave a simpler O(mn)-time algorithm for the same problem. Therefore,

J.S. Sim et al. | Theoretical Computer Science 262 (2001) 557-568 563

we can solve Problem 1 in O(mn) time if the edit distance is used for 6. When the
threshold & on the edit distance is given as input for Problem 1, it can be solved in
O(kn) time because each step of the above algorithm takes O(kn) time.

If we use the Hamming distance for J, the algorithm takes trivially O(n) time since
x must be partitioned into blocks of size m. (The last partition block can be shorter
than m.) Therefore, we have the following theorem.

Theorem 1. Problem 1 can be solved in O(mn?) time when a weighted edit distance
is used for 6. If the edit distance (resp. the Hamming distance) is used for 0, it can
be solved in O(mn) time (resp. in O(n) time).

4.2. Problem 2

When a relative edit distance is used for &, Problem 2 can be solved in O(#n*) time
by our algorithm for Problem 1. Let p be a candidate string for the approximate period
of x. If we take each substring of x as p and apply the O(mn) algorithm for Problem 1
(that uses the algorithm in [22]), it takes O(|p|n) time for each p. Since there are
O(n?) substrings of x, the overall time is O(n*).

Without using the somewhat complicated algorithm in [22], however, we can solve
Problem 2 in O(n*) time by the following simple algorithm for weighted edit distances
as well as relative edit distances. We take every substring of x as a candidate string
p, and compute the minimum distance ¢ such that p is a f-approximate period of x.
But, we do this for all substrings of x that start at a position i at the same time, as
follows.

Let T be the minimum distance so far. Initially, 7 =o00. For i=1 to n, we do the
following. For each i, we process the n—i + 1 substrings that start at position i as
candidate strings. Let m be the length of a chosen substring of x as p. Initially, m=1.
(1) Take x[i..i+m — 1] as p and compute wy; for all 1<h<;j<n. The definition of

wy; is the same as in Problem 1. This computation can be done by making n D
tables with p and each of n suffixes of x. By adding just one row to each of
previous D tables (i.e., n D tables when p =x[i..i+m —2]), we can compute these
new D tables in O(n?) time. See Fig. 2. (Note that when m = 1, we create new D
tables.)

(2) Compute the minimum distance ¢ such that p is a t-approximate period of x. This
step is similar to the second step of the algorithm for Problem 1. Let #; be the
minimum value such that p is a ¢;-approximate period of x[1..;] and let # =0.
For j=1 to n, we compute ¢; by the following formula:

t; = min (max(t, wpr1,;)).

j o<h<j((tn Wh+1,5))
The value 7, is the minimum ¢ such that p is a f-approximate period of x. If ¢, is
smaller than T, we update 7" with ¢,. If m<n — i+ 1, increase m by 1 and go to
step 1.

564 J.S. Sim et al. | Theoretical Computer Science 262 (2001) 557-568

X X
x[j.n]) x[j.n]
I 1
X P x
, P
i+m-2 O
Newly computed i+m-1
row
p =x[i.i+tm-2] p =x[i.itm-1]
(Previous D table) (New D table)

Fig. 2. Computing new D tables.

When all the steps are completed, the final value of 7 is the minimum distance and
the substring p that is a T-approximate period of x is an answer to Problem 2.

Theorem 2. Problem 2 can be solved in O(n*) time when a weighted edit distance or
a relative edit distance is used for 6. When a relative Hamming distance is used for
3, Problem 2 can be solved in O(n®) time.

Proof. For a weighted edit distance, we make n D tables in O(n?) time in step 1
and compute the minimum distance in O(n?) time in step 2. For m=1to n —i + 1,
we repeat the two steps. Therefore, it takes O(n®) time for each i and the total time
complexity of this algorithm is O(#n*). If a relative edit distance is used, this algorithm
can be slightly simplified as in Problem 1, but it still takes time O(#n*).

For a relative Hamming distance, it takes O(n) time for each candidate string and
there are O(n*) candidate strings. Thus, the total time complexity is O(n*). [

4.3. Problem 3

Given a set of strings, the shortest common supersequence (SCS) problem is to
find a shortest common supersequence of all strings in the set. The SCS problem is
NP-complete [25,29]. We will show that Problem 3 is NP-complete by a reduction from
the SCS problem. In this section we will call Problem 3 the AP problem (abbreviation
of the approximate period problem). The decision versions of the SCS and AP problems
are as follows:

Definition 1. Given a positive integer m and a finite set S of strings from X* where
2 is a finite alphabet, the SCS problem is to decide if there exists a common super-
sequence w of S such that |w|<m.

Definition 2. Given a number ¢, a string x from (X’)* where X’ is a finite alphabet,
and a penalty matrix, the AP problem is to decide if there exists a string u such that
u is a t-approximate period of x.

J.S. Sim et al. | Theoretical Computer Science 262 (2001) 557-568 565

Fig. 3. The penalty matrix M.

Now we transform an instance of the SCS problem to an instance of the AP prob-
lem. We can assume that ¥={0,1} since the SCS problem is NP-complete even if
2={0,1} [27,29]. Assume that there are n strings s1,...,s, in S. First, we set 2’ =2 U
{a, b, #, $, |, *3, A}. Let x=H#x " #x, "$ #5,$ #5,$---#s,$. Then, set t=m and
define the penalty matrix as in Fig. 3, where a shaded entry can be any value greater
than m which makes the penalty matrix a metric. For example, every shaded entry can
be m + 1. It is easy to see that this transformation can be done in polynomial time.

Lemma 1. Assume that x is constructed as above. If u is an m-approximate period
of x, then u is of the form #a$ where o € {a, b}™.

Proof. We first show that u must have one # and one $.

(1) Suppose that u has no # (resp. $). Clearly, there exists a partition block of x which
has at least one # (resp. $), and the distance between u and the partition block is
greater than m. Therefore, u must have at least one # and at least one $.

(2) Suppose that u has more than one # (or $). Assume that u has two #’s. (The other
cases are similar.) Then u must also have two $’s, because unless the number of
#’s equals that of $’s in u, at least one partition block of x cannot have the same
numbers of #’s and $’s to those of u. If the numbers of #’s and $’s in u differ
from those of a partition block of x, the distance between u and the partition block
exceed m due to the penalty matrix M. Consider the first partition block of x. The
first partition block is #x; "$ #x, ™$ because it must have two #’s and two $’s
as u. For the distance between u and the first partition block of x to be at most
m, u must have at least m characters from {x, x,}. In such cases, however, the
distance between u and at least one partition block of x will exceed m.

It remains to show that u =#a$ such that o € {a, b}". Since u has one # and one
$, x must be partitioned just after every occurrence of $. Let u be of the form pf#a$y,
where B, o, y€{0, 1, a, b, %1, *2, A}*. Consider the first two partition blocks #x*; "$

566 J.S. Sim et al. | Theoretical Computer Science 262 (2001) 557-568

case (a) case (b) case (c¢)
m

#| #| i # #| $

s s . % * $
5 # 0 A i A 1 $
$3 # A 1 : A 1 $
Sn # 0 A : A 1 $
u # a b - a b $

Fig. 4. An alignment of S’ U {u}.

and #,™$ of x. If o contains i %, s for i >1, o must also have i *,’s and the remaining
m—2i characters in « must be from {a, b} so that the distances between u and the first
two partition blocks of x do not exceed m. However, this makes the distance between
u and any other partition block of x exceed m due to *;’s and *;’s in «. Hence «
cannot have #; or *;. Also, o cannot have any character from {0, 1, 4} since 0,1 and
A have cost 2 with %; and %, in the first two partition blocks of x. For the distances
between u and the first two partition blocks of x to be at most m, f and y must be
empty and o must be of the form {a, b}". See Fig. 4. O

Theorem 3. The AP problem is NP-complete.

Proof. It is easy to see that the AP problem is in NP. To show that the AP problem
is NP-complete, we need to show that S has a common supersequence w such that
|w|<m if and only if there exists a string u such that u is an m-approximate period
of x.

(if) By Lemma 1, u=#a$ where o € {a, b}". Since u is an m-approximate period
of x, the distance between u and each partition block #s;$ is at most m. (The distances
between u and the first two partition blocks #x;™$ and #x,™$ are always m.) Consider
an alignment of S’ U{u}. Since |a| =m and the distance between o and s; is at most
m, each a (resp. b) in o must be aligned with 0 (resp. 1) or 4 in s;. (See cases (a)
and (b) in Fig. 4.) If we substitute 0 for ¢ and 1 for b in o, we obtain a common
supersequence w of sy,...,s, such that |w|=m. (Note that if @ or b in « is aligned
with A for all s;, we can delete the character in « and we can obtain a common
supersequence which is shorter than m. See case (c¢) in Fig. 4.) A similar alignment
was used by Wang and Jiang [32].

J.S. Sim et al. | Theoretical Computer Science 262 (2001) 557-568 567

(only if) Let w be a common supersequence of S such that |w|<m. Let a be
the string constructed by substituting a for 0 and b for 1 in w. (When |w|<m, we
append some characters from {a, b} to a so that |a| =m.) Partition x just after every
occurrence of $. The distance between each partition block of x and #ua$ is m since
each a (resp. b) in o can be aligned with 0 (resp. 1), 4, %, or *, in each partition
block. Therefore, #a$ is an m-approximate period of x. [J

5. Conclusion

In this paper, we have introduced the notion of approximate periods and three related
problems. We presented polynomial-time algorithms for two of the problems and an
NP-completeness proof for the third problem.

There can be a variety of problems on approximate periods. For example, the fol-
lowing problem is an interesting one: Given a string x and a distance function, find
a substring of x that has an approximate period. This is a problem of finding an
interesting area (i.e., approximately periodic area) in a given string.

References

[1] A. Apostolico, D. Breslauer, An optimal O(loglogN)-time parallel algorithm for detecting all squares
in a string, SIAM J. Comput. 25 (6) (1996) 1318-1331.

[2] A. Apostolico, D. Breslauer, Z. Galil, Optimal parallel algorithms for periods, palindromes and squares,
in: Proc. 19th Int. Colloq. Automata Languages and Programming, Lecture Notes in Computer Science,
Vol. 623, Springer, Berlin, 1992, pp. 296-307.

[3] A. Apostolico, A. Ehrenfeucht, Efficient detection of quasiperiodicities in strings, Theoret. Comput. Sci.
119 (2) (1993) 247-265.

[4] A. Apostolico, M. Farach, C.S. Iliopoulos, Optimal superprimitivity testing for strings, Inform. Process.
Lett. 39 (1) (1991) 17-20.

[5] A. Apostolico, F.P. Preparata, Optimal off-line detection of repetitions in a string, Theoret. Comput.
Sci. 22 (1983) 297-315.

[6] O. Berkman, C.S. Iliopoulos, K. Park, The subtree max gap problem with application to parallel string
covering, Inform. Comput. 123 (1) (1995) 127-137.

[7] D. Breslauer, An on-line string superprimitivity test, Inform. Process. Lett. 44 (1992) 345-347.

[8] D. Breslauer, Testing string superprimitivity in parallel, Inform. Process. Lett. 49 (5) (1994) 235-241.

[9] T. Crawford, C.S. Iliopoulos, R. Raman, String matching techniques for musical similarity and melodic
recognition, Comput. Musicol. 11 (1998) 73-100.

[10] M. Crochemore, An optimal algorithm for computing the repetitions in a word, Inform. Process. Lett.
12 (5) (1981) 244-250.

[11] M. Crochemore, C.S. Iliopoulos, M. Korda, Two-dimensional prefix string matching and covering on
square matrices, Algorithmica 20 (1998) 353-373.

[12] M. Crochemore, C.S. lliopoulos, H. Yu, Algorithms for computing evolutionary chains in molecular
and musical sequences, Proc. 9th Austral. Workshop on Combinatorial Algorithms, 1998, pp. 172—-185.

[13] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, Oxford, 1994.

[14] C.S. Iliopoulos, M. Korda, Optimal parallel superprimitivity testing on square arrays, Parallel Process.
Lett. 6 (3) (1996) 299-308.

[15] C.S. Iliopoulos, D.W.G. Moore, K. Park, Covering a string, Algorithmica 16 (1996) 288-297.

[16] C.S. Iliopoulos, L. Mouchard, An O(nlogn) algorithm for computing all maximal quasiperiodicities in
strings, in: Proc. Computing: Australasian Theory Symposium, Lecture Notes in Computer Science,
Springer, Berlin, 1999, pp. 262-272.

568 J.S. Sim et al. | Theoretical Computer Science 262 (2001) 557-568

[17] C.S. Iliopoulos, K. Park, An optimal O(loglogn)-time algorithm for parallel superprimitivity testing, J.
Korea Inform. Sci. Soc. 21 (1994) 1400-1404.

[18] C.S. Iliopoulos, K. Park, A work-time optimal algorithm for computing all string covers, Theoret.
Comput. Sci. 164 (1996) 299-310.

[19] C.S. Iliopoulos, W.F. Smyth, On-line algorithms for k-covering, Proc. 9th Austral. Workshop on
Combinatorial Algorithms, 1998, pp. 97-106.

[20] S. Kim, K. Park, A dynamic edit distance table, in: Proc. 11th Symp. Combinatorial Pattern Matching,
Lecture Notes in Computer Science, Vol. 1848, Springer, Berlin, 2000, pp. 60—68.

[21] D.E. Knuth, J.H. Morris, V.R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (1) (1977)
323-350.

[22] G.M. Landau, E.W. Myers, J.P. Schmidt, Incremental string comparison, SIAM J. Comput. 27 (2)
(1998) 557-582.

[23] G.M. Landau, J.P. Schmidt, An algorithm for approximate tandem repeats, in: Proc. 4th Symp.
Combinatorial Pattern Matching, Lecture Notes in Computer Science, Vol. 648, Springer, Berlin, 1993,
pp. 120-133.

[24] Y. Li, W.F. Smyth, An optimal on-line algorithm to compute all the covers of a string, preprint.

[25] D. Maier, The complexity of some problems on subsequences and supersequences, J. ACM 25 (2)
(1978) 322-336.

[26] M.G. Main R.J. Lorentz, An algorithm for finding all repetitions in a string, J. Algorithms 5 (1984)
422-432.

[27] M. Middendorf, More on the complexity of common superstring and supersequence problems, Theoret.
Comput. Sci. 125 (2) (1994) 205-228.

[28] D. Moore, W.F. Smyth, A correction to An optimal algorithm to compute all the covers of a string,
Inform. Process. Lett. 54 (2) (1995) 101-103.

[29] K.J. Réihd, E. Ukkonen, The shortest common supersequence problem over binary alphabet is
NP-complete, Theoret. Comput. Sci. 16 (1981) 187-198.

[30] J.P. Schmidt, All highest scoring paths in weighted grid graphs and its application to finding all
approximate repeats in strings, SIAM J. Comput. 27 (4) (1998) 972-992.

[31] P.H. Sellers, Pattern recognition genetic sequences by mismatch density, Bull. Math. Biol. 46 (4) (1984)
501-514.

[32] L. Wang, T. Jiang, On the complexity of multiple sequence alignment, J. Comput. Biol. 1 (4) (1994)
337-348.

